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ABSTRACT

We demonstrate explicitly that the vacuum expectation values (vevs) of BPS line operators

in 4d N = 2 super Yang-Mills theory compactified on a circle, computed by localization tech-

niques, can be expanded in terms of Darboux coordinates as proposed by Gaiotto, Moore, and

Neitzke [1]. However, we need to augment the expressions for Darboux coordinates with addi-

tional monopole bubbling contributions to obtain a precise match. Using D-brane realization of

these singular BPS line operators, we derive and incorporate the monopole bubbling contribu-

tions as well as predict the degeneracies of framed BPS states contributing to the line operator

vevs in the limit of vanishing simultaneous spatial and R-symmetry rotation fugacity parameter.
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1 Brief Introduction and Summary

D-branes (Dirichlet branes) have become indispensable tools for modern field theorists, and one extremely

fruitful application is to study the non-perturbative objects such as instantons, vortices or domain walls in

supersymmetric gauge theories (see [2] for a pedagogical review). In this note, we will use D-branes to

study the BPS (Bogomolnyi-Prasad-Sommerfeld) line operators such as Wilson and ’t Hooft lines in 4d

N = 2 supersymmetric gauge theories. They can be regarded as the heavy BPS probe particles carrying

electric and magnetic charges whose world lines can form closed loops, namely the Wilson and ’t Hooft

loops. The vacuum expectation values (vevs) of these non-local observables characterize different phases of

gauge theories and provide invaluable quantitative tests for various field theoretic dualities. Recent exciting

progress in localization techniques has enabled the computations of their vevs exactly. In a parallel but not

entirely unrelated development, the same line operators feature prominently in the study of so-called “wall-

crossing” phenomena in 4d N = 2 gauge theories [1], which concerns counting the degeneracies of BPS

particles. Our aim here is to explicitly connect these two extremely rich areas through the BPS line operators

and their corresponding D-brane configurations will play a pivotal role in establishing such a connection.

Our main result (4.20) is a rewriting of the following relation:

〈Lζ〉 =
∑
{�γ}

Ω̂(u,Lζ , �γ)σ(�γ)X�γ(ζ) , (1.1)

which was first studied in [1], that makes manifest this connection with localization computation. The left-

hand side of (1.1) denotes vev of a line operator wrapping along S1 ⊂ R
3 × S1, which can be computed

exactly using localization techniques [3]. While the summation on the right-hand side contains two im-

portant physical quantities in the study of wall-crossing: framed BPS degeneracy Ω̂(u,Lζ , �γ) and Darboux

coordinate X�γ(ζ). We will review all these ingredients entering (1.1) in some detail in Section 2.

In Section 3, we will show that once we specify the asymptotic electromagnetic charge �γ, the functional

form of classical and perturbative contributions to the line operator vev as given by the localization com-

putation can be captured by just the ‘electric’ (as in W-bosons, quarks, etc.) contributions to the Darboux

coordinates X�γ(ζ). The values of {�γ} in the above summation for a given line operator Lζ will also be

made precise there. To match the Darboux coordinate expansion with the complete localization computa-

tion, which include the so-called “monopole bubbling” effect, the contributions from W-bosons & quarks

is not enough as one might expect. This can be attributed to the fact that such a truncated form of Dar-

boux coordinates is a good approximation in case of SYM without any line operator insertion (see [4]) but

in the presence of such insertion, there can exist smooth monopoles that screen the ’t Hooft line operator.

This means that there are additional BPS particles in the spectrum that can ‘interact’ with W-bosons without

changing the overall line operator charge, resulting in modification of the expressions for the Darboux coor-

dinates. This modification turns out to be the required piece to obtain a perfect match with the localization

results and will be obtained via D-brane realization of the line operators.

In Section 4, we will first review the D-brane configurations realizing the line operators in 4d N = 4 SYM

following [5]. Then, by reducing supersymmetry to N = 2, we will obtain a generalization of the Darboux

coordinates including the factors due to this monopole bubbling effect. We will perform the match in the

limit where the fugacity parameter for simultaneous spatial and R-symmetry rotations λ vanishes, which is

analogous to the limit of deformation parameters ε1,2 → 0 in the Nekrasov instanton partitions defined on

Ω background [6, 7] in order to recover the underlying Seiberg-Witten curves. In this limit, the D-brane

configurations offer simple geometric pictures for computing the values of {�γ} and Ω̂(u,Lζ , �γ) in (1.1).

Finally, in Section 5, we use our general construction to give some illustrative examples.
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Furthermore, the vevs of these line operators on R
3×S1 can be regarded as the building blocks for those on

other four-manifolds such as S1 ×S3 [8], S4 [9] and its deformation 4d ellipsoid S4
b [10], which implies we

can express those vevs in terms of Ω̂(u,Lζ , �γ) and Xγ(ζ) too. It would also be interesting to generalize the

pure super Yang-Mills (SYM) formula (4.19) to include other matter fields in various representations using

the relevant D-brane constructions (or even an M-theoretic approach [11]) and verify against the results from

localization computations.

2 Review of Basic Ingredients

We will study 4d N = 2 supersymmetric gauge theories on R
3 × S1, parameterized by Cartesian coor-

dinates: xμ = (xi, τ), (μ = 1, 2, 3, 4, i = 1, 2, 3) with τ ∼ τ + 2πR. Following [9, 3, 12] (for recent

surveys, see also [13, 10, 14]), we review here the relevant details about the line operators and BPS states

in such compactified theories. We will also review the Darboux coordinates, which give the metric on their

Coulomb branch. This will serve to fix the notations and terminology used in the rest of the note.

2.1 Line Operators and Framed BPS States

On R
3 × S1, a half BPS line operator can wrap around S1 and appear as a point in the remaining R

3. The

most basic example is the half BPS Wilson line operator defined by the following operator, which can be

inserted directly in the path integral:

Ww = TrRP exp

[∮
S1

( − iAτ +Re(Φ)
)
dτ

]
, (2.1)

where Aμ and Φ are the gauge field and complex scalar in the N = 2 vector multiplet. The trace here is

taken over the irreducible representation R of gauge algebra g and gauge group G, so that the Wilson line is

classified by the highest weight w ∈ Λw/W of R, where Λw denotes the weight lattice and W is the Weyl

group1. We can regard Wilson line as the world line of an infinitely massive electrically charged BPS particle

labeled by highest weight w.

The magnetic dual of a Wilson line which again wraps along S1 and remains BPS, is called ’t Hooft line

operator TB. It is defined instead within the path integral by configurations containing the following Dirac

monopole-like singularities for gauge and scalar fields [15]:

Aμdx
μ =

(
iϑ

g2

16π2

B

r
+A(∞)

τ

)
dτ +

B

2
cos θdϕ, Φ = τ̄

g2

8π

B

r
+Φ(∞). (2.2)

Here B ∈ Λcw/W is a co-weight labeling the magnetic charge of Dirac monopole in the transverse R
3,

τ = 4πi
g2

+ ϑ
2π is the 4d complex gauge coupling, A

(∞)
τ and Φ(∞) denotes the asymptotic values of Aτ

and Φ at spatial infinity r → ∞. We have expressed R
3 in terms of polar coordinates (r, θ, ϕ). We can

therefore view ’t Hooft line as transforming under irreducible representation of g∗ with the highest weight

B, in complete parallel with the Wilson line. Notice that there is a U(1)R symmetry rotating the phase of Φ
and parameterizing the residual supersymmetry preserved by the line operator. In addition, we can also have

dyonic line operators D(w,B) which carry both electric and magnetic charges (w,B) ∈ Λw/W ⊕ Λcw/W.

They are constructed by inserting into the path integral not only the ’t Hooft line operator TB but also

1We denote the Cartan sub-algebra of g as t and its dual as t∗ which is the Cartan sub-algebra of g∗. The (simple) roots and

(fundamental) weights of g then take values in t∗ and span out respectively the root lattice Λr and weight lattice Λw, such that

Λr ⊂ Λw. Using the Killing form, we can also define co-roots and co-weights which take values in t and they span respectively the

co-root lattice Λcr and the co-weight lattice Λcw, such that Λcr ⊂ Λcw. Λcw is the weight lattice of g∗ and shares the same Weyl

group W.

2



an additional Wilson line operator transforming under the subgroup of G preserved by B with a highest

weight of w. Here we also introduce a universal notation �γ = (�γe, �γm) ∈ Λw/W ⊕ Λcw/W to denote the

electromagnetic charge of the BPS line operator L and other smooth BPS states. We consider the charges

related by simultaneous Weyl transformation on Λw and Λcw as physically equivalent.

The vevs of various line operators L = {Ww,TB,D(w,B)} in 4d N = 2 gauge theories can be expressed

as the following twisted supersymmetric index:

〈L〉 = TrHL
(−1)F e−2πRH(−y)2(J3+I3)e2πiμfFf , y = −eiπλ. (2.3)

Here S1 is taken to be the compactified time direction and R
3 is non-trivially fibered over it, as indicated by

(−y)2(J3+I3), where J3 = i(x2∂1 − x1∂2) denotes rotation about 3-axis and I3 is the Cartan generator of

SU(2)R. We can regard this index as a twisted partition function on R
3 ×y S

1. While we have inserted the

usual Hamiltonian H and flavor symmetry generators Ff in (2.3), the trace is, however, taken over the Hilbert

space HL that forms the representation space of osp(4∗|2) ⊂ su(2, 2|2) sub-superalgebra preserved by the

BPS line operator L. We can further decompose HL into sub-spaces graded by individual electromagnetic

charge �γ:

HL =
⊕
�γ∈ΓL

HL,�γ , (2.4)

where ΓL = Γ+ �γL, with Γ and �γL denoting the BPS charge lattice without L insertion and the electromag-

netic charge of L, respectively. The point is that the residual supercharges form linear combinations which

satisfy a modified anti-commutation relation, which alters the BPS shortening condition and hence the spec-

trum when compared to the original theory. The states saturating the modified condition are referred to as

“framed BPS states” [1]. They satisfy the modified energy bound E = −Re
(
Z�γ

ζ

)
, where ζ is a complex

phase factor arising from the (complexified) U(1)R and parameterizes the supercharges preserved by the

line operators. This BPS bound differs from the usual one without L insertion: E = |Z�γ | satisfied by the

“unframed” or “vanilla” BPS states. We can thus refine the notations L, HL and osp(4∗|2) into Lζ , HLζ
and

osp(4∗|2)ζ to encode this parameterization.

2.2 Localization Computation involving Line Operators

The vev of a Wilson line operator is relatively easy to summarize:

〈Ww〉 = TrR
(
e2πia

)
, a = R

(
A(∞)

τ + iRe
(
Φ(∞)

)) ∈ tC , (2.5)

where the trace here is again taken over the representation R with highest weight w. For the vev of an ’t

Hooft line operator, we first note that TB is defined through singular boundary conditions (2.2), which render

the classical action divergent. It is necessary to introduce a space-time cutoff at r = δ around its insertion

point and regularize the boundary terms to obtain finite expressions. However, there is a further subtle

non-perturbative phenomenon in the localization computation of (2.3) for TB or D(w,B), which is known as

“monopole bubbling”.

In computing the vev of TB, authors of [3] show that the saddle point equation can be identified with the

Bogomolny equation in R
3:

∗3F = D[Im(Φ)] , (2.6)

where D is the covariant derivative and one needs to integrate over all of its possible solutions with additional

prescribed singularities (2.2). Notice that the Bogomolny equation (2.6) can also admit smooth magnetic

monopole solutions when B = 0, whose magnetic charges are labeled by a simple or composite co-root
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HI ∈ Λcr, for fundamental or composite smooth monopoles. When B �= 0, these smooth monopoles can

freely move in the transverse three spatial dimensions and surround the insertion point of the singular ’t

Hooft line operator. The magnetic charge B is now screened by integer multiples of HI . The asymptotic

magnetic charge of this combined configuration is then given by the co-weight vector v ∈ Λcr+B ⊂ Λcw of

smaller norm ||v|| ≤ ||B||. The allowed values of {v} are precisely the weights appearing in the irreducible

representations of GL, the Langland dual of G, whose highest weight is given by B and the rest are generated

by lowering operators associated with the co-roots {HI}.

It was further shown in [9, 3] that the only contributing solutions of Bogomolny equation to the path

integral in the localization computation are restricted to take the singular Dirac form (2.2). This was deduced

from the invariance under U(1)J+I × T symmetries, where U(1)J+I is the diagonal combination of spatial

rotation and R-symmetry generated by J3 + I3, and T ⊂ G is the maximal torus of gauge group G. We can

still shift the coefficient B into v in (2.2) to encode the monopole bubbling effect and the final result includes

the fluctuation determinant around each U(1)J+I × T fixed point within M(B, v). Here M(B, v) denotes

the moduli space of solutions to (2.6), which takes the form of (2.2) near the insertion point of ’t Hooft line

with B being replaced by the screened magnetic charge v. We can therefore package these contributions

into:

Z1-loop(v)Zmono(B, v) ≡
∑

{fp}∈M(B,v)

∏
i

wci
i , (2.7)

where wj and cj are the combined weights for U(1)J+I × T symmetry and the multiplicity factor associ-

ated with each fixed point of M(B, v)
(
denoted by {fp}), respectively. We have also separated the purely

perturbative one-loop contribution Z1-loop(v), which only depends on v.

To compute these sub-leading contributions, one can invoke a beautiful correspondence proposed by Kro-

nheimer [16]. It relates the moduli space of singular SU(2) monopole on R
3, M(B, v) and the moduli

space of SU(2) self-dual instanton on a multi-Taub-NUT or ALF space, invariant under certain U(1)K ac-

tion. The U(1)K action can be parameterized by the circular fiber coordinate of Taub-NUT metric, and

the locations where the fiber degenerates precisely encode the singularities of the corresponding singular

monopole configuration in R
3. Moreover, as the monopole bubbling phenomenon occurs only at the singu-

larities in Taub-NUT space where the metric reduces to C
2, we can simplify the construction of the moduli

space M(B, v) by considering the ADHM data of C2 instantons instead. To identify the fixed points in

M(B, v), we first consider the usual fixed points of C2 instanton ADHM moduli space under the combined

U(1)ε1 × U(1)ε2 × T rotational and gauge symmetries, which are labeled by a set of Young diagrams {�Y }.

We then embed the U(1)J+I × U(1)K action into U(1)ε1 × U(1)ε2 × T by identifying their equivariant

parameters as t1 = e−2πiν+iπλ and t2 = e2πiν+iπλ, where t1,2 and e2πiν are the fugacity parameters for

U(1)ε1,2 and U(1)K symmetry, respectively2. The U(1)K fixed points are labeled by a restricted subset of

the Young diagrams {�Y K} ⊂ {�Y } satisfying certain constraints, which by construction also correspond to

U(1)J+I fixed points. These fixed points in M(B, v) are responsible for monopole bubbling effects [3, 9].

Thus, in contrast to the relatively simple form of 〈Ww〉 in (2.5), 〈TB〉 now depends on asymptotic screened

charges v and includes extra contributions due to monopole bubbling effect. We can schematically express

it as:

〈TB〉 =
∑
{v}

e2πiv·bZ1-loop(a, μf , λ; v)Zmono(a, μf , λ; B, v), (2.8)

b =
Θ

2π
− 4πiR

g2
Im

(
Φ(∞)

)
+

ϑ

2π
a ∈ t∗C , (2.9)

2The action of t1,2 on the complex coordinates (z1, z2) of C2 is given by (z1, z2) → (t1z1, t2z2).
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where Θ denotes the vev of the “dual photon” that arises from the infra-red (IR) Coulomb branch of the

compactified theory and ϑ is the usual gauge theory theta angle. Notice that the last term in (2.9) arises from

the boundary regularization term as discussed in [3]. We can regard it as a manifestation of the Witten effect,

which shifts the magnetic charge of the ’t Hooft line operator in the presence of a ϑ angle.

2.3 Wall-Crossing and Darboux Coordinates

The vevs of line operators on R
3 ×y S1 reviewed above also feature prominently in the study of “wall-

crossing” phenomena in 4d N = 2 supersymmetric gauge theories [4, 12, 1], which concerns with the

degeneracies of BPS spectra on the IR Coulomb branch. There are two essential quantities in this context

which we will focus on here. The first one is the Darboux coordinate X�γ(ζ) associated to a BPS state with

charge �γ, which gives the twistorial construction of the Coulomb branch metric of the compactified theories.

The second important quantity is the “framed protected spin character” Ω̂(u,Lζ , �γ; y) given by:

Ω̂(u,Lζ , �γ; y) = TrHLζ ,�γ
y2J3(−y)2I3 , (2.10)

which counts the degeneracies of framed BPS states with charge �γ, while taking into account their spin

information too. It reduces to “framed BPS degeneracy” Ω̂(u,Lζ , �γ) in the limit y = −1. The framed wall-

crossing phenomenon occurs precisely when the degeneracies of the BPS states given by (2.10) change dis-

continuously across certain co-dimension one loci in the Coulomb branch, known as the “walls of marginal

stability”. Across the walls of marginal stability, it is energetically favorable for the framed BPS states to

emit or absorb unframed BPS state(s).

Analogously, we can define (unframed) protected spin character without any line operator insertion:

Ω(u,�γ; y) = Trhsy
2J3(−y)2I3 , (2.11)

where the trace is now taken over a finite dimensional representation hs of so(3) ⊕ su(2)R massive little

supergroup. This can be understood by decomposing the short representations of N = 2 into the tensor

product of so-called half-hypermultiplet ρhh and the representation hs. In the limit y = −1, (2.11) can be

shown to be equivalent to the definition of second helicity supertrace Ω(u,�γ) = 1
2TrHBPS

�γ,u
(2J3)

2(−1)2J3 in

[4], which counts the degeneracies of vanilla BPS states with charge �γ.

Moreover, the authors of [1] proposed a striking relation between 〈Lζ〉 on R
3 ×y S

1 reviewed earlier, and

the two quantities arising from the studies of wall-crossing phenomena we just discussed:

〈Lζ〉 =
∑
�γ∈ΓL

Ω̂(u,Lζ , �γ)σ(�γ)X�γ(ζ), (2.12)

where σ(�γ) = (−1)〈�γe,�γm〉 is referred to as “quadratic refinement”. As reviewed in the previous section, left-

hand side of (2.12) can be computed by explicitly introducing the line operator L into the UV Lagrangian

and then applying the localization technique. So 〈Lζ〉 gives the vev of a UV line operator. However, since

localization computations are typically exact along the RG flow, we expect 〈Lζ〉 to be also expressible in

terms of certain IR quantities and this is provided by the summation on the right-hand side3. In particular,

if we compare the expression for the vev 〈TB〉 in (2.8) with (2.12), the natural interpretation for Darboux

coordinate X�γ(ζ) is that of the vev of a BPS line operator with charge �γ on the IR Abelian Coulomb branch

of the compactified theory, weighted by Ω̂(u,TB, �γ). We would also need to identify the various parameters

3This decomposition of single UV line operator in terms of a sum over the IR ones was made more precise in [17], where

the authors constructed bijective renormalization group flow map relating them at least when the phenomenon of magnetic charge

screening reviewed earlier does not occur.
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involved and include the monopole bubbling factors in terms of the Darboux coordinates for this interpreta-

tion to hold. We will do precisely that in the following sections and as a result, show that the linear expansion

(2.12) needs to be refined to include the monopole bubbling contributions in order to completely match with

(2.8).

Let us now discuss the Darboux coordinate X�γ(ζ) in more detail [4]. We will begin with G = SU(2)
which has rank one so we can drop the vector “� ” symbol on charges and scalars. The Darboux coordinate

associated to a BPS state is given by the following integral equation:

Xγ(ζ) = X sf
γ (ζ) exp

⎡
⎣ i

4π

∑
γ′∈Γ

Ωγ′〈γ, γ′〉Iγ′(ζ)

⎤
⎦, (2.13)

Iγ′(ζ) =

∫
lγ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

(
1− σ(γ′)Xγ′(ζ ′)

)
, lγ′ :=

{
ζ :

Zγ′
ζ ∈ R

−
}
. (2.14)

The various quantities appearing above are defined as follows: the second helicity supertrace Ωγ′ ≡ Ω(u, γ′),
lγ′ is the BPS ray pointing at an angle −eiφγ′ = − Zγ′

|Zγ′ | specifying the integration contour, the symplectic

product 〈γ, γ′〉 = Tr(γmγ′e − γeγ
′
m) = (γm · γ′e)− (γe · γ′m) 4, and X sf

γ (ζ) is the so-called semi-flat piece of

the Darboux coordinate:

X sf
γ (ζ) = exp

[
πRZγ

ζ
+ i(θγ + ψγ) + πRZγζ

]
,

Zγ = Tr(γea+ γmaD) +

Nf∑
i=1

siμi , ψγ = 2πR

Nf∑
i=1

siμ̃i .

(2.15)

Here (a, aD) =
(
a(u), aD(u)

) ≡ (a2H, aD2 α) are the complex electric and magnetic coordinates on the

Coulomb branch of 4d N = 2 theories with α and H denoting the root and co-root of SU(2). Similarly θγ =
Tr(γeθe + γmθm), where

(
θe, θm

) ≡ (
θe
2 H, θm2 α

)
are the Wilson line and dual photon taking real values.

Altogether (a, aD, θe, θm) form the electromagnetic coordinates on the Coulomb branch of the compactified

theory on R
3 × S1. When the theory contains matter fields in the representation R, we can also introduce

complex mass parameters μi, flavor charges si for the hypermultiplets, and the flavor Wilson lines 2πRμ̃i

such that μ̃i becomes the so-called “real mass” in 3d limit.

Before we proceed further, we should state clearly here that the Darboux coordinates introduced in (2.13)

are originally defined for the smooth BPS states with finite mass, i.e., |Zγ | is finite, as opposed to line

operators, which can have infinite mass and are localized in spatial directions. However, in Section 4,

we will use D-brane configurations to obtain singular line operators from such smooth BPS states. The

net effect on Darboux coordinate Xγ(ζ) will be to replace various charges γ and scalars (a, aD, θe, θm)
with the appropriate “projected” values, see (4.2), (4.9), (4.10), (4.11), while the integral definition remains

unchanged. This replacement will not affect the mathematical manipulations we perform on Xγ(ζ) in the

next section. In fact, we will already recover the functional forms of classical and one loop contributions to

the line operator vevs computed from localization, but it is important to keep this distinction in mind.

From the abelian nature of the Darboux coordinate Xγ(ζ) (2.13), we can decompose it as follows:

Xγ(ζ) = Xγe(ζ)Xγm(ζ)

Nf∏
i=1

[Xfi(ζ)]
si , (2.16)

4We have defined the inner product A ·B = Tr(AB). The trace arises when we express (γe, γm) in a matrix basis of Λw/W⊕
Λcw/W depending on the representation of the BPS state γ.
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where Xγe(ζ), Xγm(ζ) and Xfi(ζ) are defined to be:

Xγe(ζ) = X sf
γe(ζ) exp

⎡
⎣ i

4π

∑
γ′∈Γ

Ωγ′〈γe, γ′m〉Iγ′(ζ)

⎤
⎦ , (2.17)

Xγm(ζ) = X sf
γm(ζ) exp

⎡
⎣ i

4π

∑
γ′∈Γ

Ωγ′〈γm, γ′e〉Iγ′(ζ)

⎤
⎦ , (2.18)

Xfi(ζ) = exp

[
πRμi

ζ
+ i2πRμ̃i + πRμ̄iζ

]
. (2.19)

Here the electric and magnetic semi-flat pieces are simply read off from (2.15):

X sf
γe(ζ) = exp

[
γe ·

(
πRa

ζ
+ iθe + πRāζ

)]
, X sf

γm(ζ) = exp

[
γm ·

(
πRaD

ζ
+ iθm + πRāDζ

)]
. (2.20)

We now proceed to recast these expressions and obtain localization results as discussed above.

3 Building Line Operators from Darboux Coordinates

We now systematically expand Xγ(ζ) in the weak 4d coupling limit g2 → 0, which is also the same limit

in localization computation, while keeping the S1 radius R fixed and arbitrary [18, 19]. This introduces

a hierarchy for masses of the BPS particles in an ascending order of 1
g2

, such that a magnetically charged

particle whose mass is proportional to |aD| ≈ |τa| � |a| � 1 becomes very massive. Based on this

expansion, let us further split Xγe(ζ) and Xγm(ζ) into perturbative and non-perturbative contributions:

Xγe(ζ) = X (0)
γe (ζ)X (np)

γe (ζ) , Xγm(ζ) = X (0)
γm (ζ)X (np)

γm (ζ) , (3.1)

where

X (0)
γe (ζ) = X sf

γe(ζ) , X (0)
γm (ζ) = X sf

γm(ζ)Dγm(ζ). (3.2)

The factor Dγm(ζ) includes all the perturbative corrections to Xγm(ζ) originating due to integrating out

electrically charged BPS particles, such as W-bosons in vector multiplet, quarks in hypermultiplet or matter

fields in other representation in general. Explicitly, we have:

Dγm(ζ) = exp

⎡
⎣ i

4π

∑
γ′∈pert.

Ωγ′〈γm, γ′〉
∫
lγ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

(
1− σ(γ′)X sf

γ′ (ζ ′)
)⎤⎦, (3.3)

where “pert.” denotes all the electrically charged BPS states in the theory. The remaining non-perturbative

parts come from the corrections due to heavy magnetic BPS particles:

X (np)
γe (ζ) = exp

⎡
⎣ i

4π

∑
γ′∈Γ̃

Ωγ′〈γe, γ′m〉I(0)
γ′ (ζ)

⎤
⎦, X (np)

γm (ζ) = exp

⎡
⎣ i

4π

∑
γ′∈Γ̃

Ωγ′〈γm, γ′e〉I(0)
γ′ (ζ)

⎤
⎦, (3.4)

where Γ̃ indicates the removal of all the electrically charged BPS states from Γ and I(0)
γ′ (ζ) is basically (2.14)

with Xγ′(ζ ′) replaced by X (0)
γ′ (ζ ′) in the integrand. In the weak coupling limit, X (0)

γm ∼ exp
[
− |γm·a|

g2

]
� 1

so the integrals in the exponents of these non-perturbative contributions effectively vanish, allowing us to

ignore them altogether in our analysis.
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To convince ourselves that we are on the right track with such an expansion when comparing with the

vevs of line operators, we set ζ = −eiφ with |ζ| = 1 as we only have real rather than complexified U(1)R in

localization computation. Substituting this into X sf
γe(ζ) and X sf

γm(ζ), we obtain:

X sf
γe(−eiφ) = e−2πR|γe·a| cos(φγe−φ)+iγe·θe , X sf

γm(−eiφ) = e−2πR|γm·aD| cos(φγm−φ)+iγm·θm . (3.5)

Comparing these with the classical actions of the respective line operators computed in (2.5) and (2.8), we

get the following parameter matching (identifying (w, v) = (γe, γm) with the understanding that v = B if

no magnetic charge screening occurs):

a = R
(
A(∞)

τ + iRe(Φ(∞))
)
= R

(
θe
2πR + i|a| cos(φγe − φ)

)
, (3.6)

b =
Θ

2π
− 4πiR

g2
Im(Φ(∞)) +

ϑ

2π
a =

(
θm
2π

+
ϑ

2π

θe
2π

)
+ iR|τ||a| cos(φγm − φ) . (3.7)

We have included the shifted dual photon θm → θm + ϑ
2πθe as explained in [4, 18] to facilitate matching

both sides in (3.7). In the weakly coupled limit, Zγm ∝ aD ≈ τa ≈ 4πi
g2

a, so φγm − φγe = π
2 . Later, we

will need to set φ = φγm , which implies that we need to restrict our comparison with the vev of line operator

to the origin of Coulomb branch Φ(∞) = a = 0. Otherwise, the U(1)R symmetry allowing us to pick the

phase of ζ is spontaneously broken. Moreover, we can justify this choice by recalling that electromagnetic

duality exchanges Wilson and ’t Hooft line operators, hence a and b, so they both need to be either real or

complex. It is crucial to understand that while our order by order expansion clearly requires |a| > 0 for the

series convergence, we will perform Poisson resummation soon, which allows us to take the |a| → 0 limit

smoothly. Summarizing, this parameter identification implies a and b are both real:

θe = 2πRA(∞)
τ = 2πa, θm = Θ = 2πb. (3.8)

We immediately see that the functional form of the vev of Wilson line Ww is precisely reproduced by

X (0)
γe (−eiφγm ), while for the ’t Hooft line TB we match only the exponential factor.

Let us next focus on various electric contributions Dγm(ζ) to X (0)
γm (ζ) as defined above in (3.3). We can

further split Dγm(ζ) into:

Dγm(ζ) =
∏

γ′∈pert.

[Dγ′(ζ)
]〈γm,γ′〉

, (3.9)

where “pert.” = {W±, q, q̄} in the cases we discuss here. The individual contributions can now be captured

by the following general expression:

logDγ′(ζ) =
iΩγ′

4π

[∫
l+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

(
1−X sf

+ (ζ ′)
) − ∫

l−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

(
1−X sf

− (ζ ′)
)]
, (3.10)

where we have used σ(γ) = 1 for purely electric (anti-)particles, and the subscripts ± correspond to BPS

particle +γ′ and its anti-particle −γ′, respectively. The fact that we include both particle and anti-particle

contributions in Dγ′ explains the absolute value of the power in (3.9). We also have Ωγ′ = −2 for W±, and

Ωγ′ = +1 for a (half-)hypermultiplet q and q̄.

To perform the integrals and facilitate comparison with the vevs of line operators later, we need to massage

the above expression (3.10) a little. First, we follow the “ε-prescription” [20, 21] to split the positive and

negative powers of ζ and also use the series expansion of log(1 − x) = −∑∞
n=1

xn

n

(|x| < 1
)

to get the
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following double series:

logDγ′(ζ) =
iΩγ′

4π

∞∑
n=1

∞∑
m=0

[
−

∫
l+

dζ ′

ζ ′

(
ζ ′m+1

ζm+1
− ζm+1

ζ ′m+1

) (X sf
+ (ζ ′)

)n
n

+

∫
l−

dζ ′

ζ ′

(
ζ ′m+1

ζm+1
− ζm+1

ζ ′m+1

) (X sf− (ζ ′)
)n

n

]
. (3.11)

Second, we choose the BPS ray along Zγ′ such that ζ ′ = −y′eiφγ′ for l+ and ζ ′ = +y′eiφγ′ for l−. Keeping

in mind that we are calculating corrections to magnetic coordinate, we also write ζ = −yeiφγm , which

provides dramatic simplification of the infinite summation over m because we can use φγm − φγe = π
2 as

discussed below (3.7). Now, using the following Bessel function identities:∫ ∞

0

dy′

y′m+2
e
−|X|

(
1
y′+y′

)
=

∫ ∞

0
dy′ y′m e

−|X|
(

1
y′+y′

)
= 2Km+1

(
2|X|) ,

we can express (3.11) into:

logDγ′(ζ) =
iΩγ′

2π

∞∑
n=1
m=0

[{
(i y)m+1 −

(−i

y

)m+1
}

einθγ′

n
Km+1

(
2πnR|Zγ′ |)

+

{
(i y)m+1 −

(−i

y

)m+1
}

e−inθγ′

n
Km+1

(
2πnR|Zγ′ |)

]
. (3.12)

To compare with the results in [3], we further restrict y = 1 as discussed above (3.5) and we see that only

the odd Bessel functions survive:

logDγ′(ζ) =
Ωγ′

π

∞∑
n �=0

∞∑
m=0

(−1)m+1 e
inθγ′

|n| K2m+1

(
2πR|nZγ′ |). (3.13)

Third, we perform Poisson resummation5 of this expression (in order to obtain a finite answer in |a| → 0
limit) by using the “DPI” (Differentiate, Poisson resum, then Integrate back) trick:

I:
Ωγ′

π

∑
n �=0

∞∑
m=0

(−1)m+1 e
inθγ′

|n| K2m+1

(
2πR|nZγ′ |) ∂

∂|Zγ′ |−−−−→ Ωγ′R
∑
n �=0

einθγ′K0

(
2πR|nZγ′ |),

II: Ωγ′R
∑
n �=0

einθγ′K0

(
2πR|nZγ′ |) Poisson resum−−−−−−−→ Ωγ′πR

∞∑
k=−∞

1√
(2πR|Zγ′ |)2 + (2πk − θγ′)2

,

III:

∞∑
k=−∞

Ωγ′πR√
(2πR|Zγ′ |)2 + (2πk − θγ′)2

∫
d|Zγ′ |−−−−−→

Ωγ′

2
log

[ ∞∏
k=−∞

(
2πR|Zγ′ |+

√
(2πR|Zγ′ |)2 + (2πk − θγ′)2

)]
.

5Poisson resummation works as follows:

∞∑
n=−∞

f(n) =

∞∑
k=−∞

f̂(k) , f̂(k) =

∫ ∞

−∞
dx e−2πikxf(x) .
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In Step I, we used the identity
∂Kν(x)

∂x = −1
2

(
Kν−1(x) + Kν+1(x)

)
, which simplifies the summation over

m drastically because other than the m = 0 term, all other terms cancel pairwise. In Step II, we suppress

the regularization term but it should be understood to be regulated for the final expression to make sense

below. Now, using the infinite product formula for sin(x), the Poisson resummed expression of Step III can

be rewritten as

Ωγ′

2
log

[ ∞∏
k=−∞

(
2πR|Zγ′ |+

√
(2πR|Zγ′ |)2 + (2πk − θγ′)2

)]

=
Ωγ′

2

[
log

∣∣∣∣sin Aγ′

2

∣∣∣∣ + ∑
k∈Z

log

(
1 +

Im(Aγ′)

|Aγ′ − 2πk|
)
+ const.

]
, (3.14)

where Aγ′ = θγ′+2πiR|Zγ′ | and “const.” denotes the regularization constant. We can now take the |a| → 0
or Im(Aγ′) → 0 limit to compare with the vevs of line operators, consistent with the parameter matching in

(3.8). After exponentiation, we obtain the contribution of γ′:

Dγ′(−eiφγm ) =

∣∣∣∣sin θγ′

2

∣∣∣∣
Ωγ′
2

. (3.15)

Combining together all such contributions we have the one-loop fluctuation determinant due to the magnetic

BPS state γm:

Dγm(−eiφγm ) =
∏

γ′∈pert.

∣∣∣∣sin θγ′

2

∣∣∣∣
Ωγ′
2

〈γm,γ′〉
=

∏
γ′∈pert.

∣∣∣∣sin γ′ · θe
2

∣∣∣∣
Ωγ′
2

〈γm,γ′〉
. (3.16)

Notice that for γ′ charged under flavor symmetry, such as quarks q, q̄ in (half-)hypermultiplets, we need to

shift γ′ · θe to (γ′ · θe + ψγ′) as given in (2.15). We can repeat the above analysis for higher-rank gauge

groups by using the explicit definitions of the Darboux coordinates in (4.5), (4.6) and (4.7) and the end result

can be obtained just by replacement of (γe, γm) → (�γe, �γm), (a, aD) → (�a,�aD) and (θe, θm) → (�θe, �θm)
defined on the root / co-root lattice. The one loop determinant for a general higher rank theory is then given

by:

D�γm(−eiφ�γm ) =
∏

�γ′∈pert.

∣∣∣∣∣sin �γ′ · �θe
2

∣∣∣∣∣
Ω�γ′
2

〈�γm,�γ′〉
, (3.17)

with appropriate modifications to incorporate the flavor symmetries. We will discuss more about the higher

rank case in the next section. We should comment here that the inner product 〈�γm, �γ′〉 determines the overall

power of the sine factors above, and for definiteness we should restrict �γm to be in a Weyl chamber that

enforces (�γm · �α) > 0 for all positive roots �α ∈ Δ+ associated with BPS W-bosons contributions. We

should also perform Weyl reflections such that (�γm ·w) > 0 for all the weights w ∈ R for other matter fields.

To enforce this choice from now on, we will use modulus |〈 , 〉| as the power in (3.17).
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Finally, if we set �γm = B, the above results reproduce the one-loop determinants obtained from the

localization computations in λ → 0 limit [3] for a ’t Hooft line operator with magnetic charge B:

Zvm
1-loop(a; B) = lim

λ→0

∏
�α∈Δ+

|�α·B|−1∏
k=0

∏
±

sin−
1
2

[
π

(
�α · a±

( |�α · B|
2

− k

)
λ

)]

=
∏

�α∈Δ+

[sinπ (�α · a)]−|�α·B| , (3.18)

Zhm
1-loop(a; B) = lim

λ→0

Nf∏
f=1

∏
w∈R

|w·B|−1∏
k=0

sin
1
2

[
π

(
w · a−mf +

( |w · B| − 1

2
− k

)
λ

)]

=

Nf∏
f=1

∏
w∈R

[sinπ (w · a−mf )]
|w·B|

2 . (3.19)

While for the screened magnetic charge v which descend from B and is due to monopole bubbling effect to

be discussed next, we simply replace B with v in the expressions above. We see that by using the parameter

identifications (3.8) in the weak coupling limit, the functional form of one-loop determinants for the ’t

Hooft line operators can be exactly reproduced by the perturbative contributions due to electrically charged

particles in the magnetic Darboux coordinate (3.17). However, we end this section by emphasizing again

that in reproducing the classical and one-loop perturbative pieces of 〈L〉, we have ignored the fact that the

parameters entering into X�γ(ζ) such as �γ, (�a,�aD) and (�θe, �θm) are defined for smooth BPS states only. In

the next section we “project” out these quantities appropriately to obtain correct results for the singular line

operators, including the crucial contributions from monopole bubbling effect.

4 Taking Monopole Bubbling into Account

As mentioned in the introduction, one might expect that the contributions from W-bosons & quarks might

not be enough for the relevant Darboux coordinates in the presence of a line operator to account for its vev,

which turns out to be true due to the phenomenon of monopole bubbling. This extra contribution modifies

the ‘1-loop’ expression of Darboux coordinates derived above and turns out to be the required piece to match

with localization calculations.

In this section, we will use explicit D-brane configurations to realize singular monopoles corresponding

to ’t Hooft line operators from the smooth ones. This will yield the desired modification of the Darboux

coordinate: X�γm(ζ) → XΠ(�γm)(ζ), where Π(�γm) is the asymptotic magnetic charge of the line operators

obtained from smooth BPS monopoles of magnetic charge �γm
6. We will then also be able to obtain the

additional monopole bubbling contributions in λ → 0 limit by understanding how this effect is realized from

the D-branes point of view.

4.1 Line Operators from D-brane Configurations

Let us begin by briefly reviewing the D-brane construction in [5] (see also [22, 23, 24] for earlier dis-

cussion), which involves a supersymmetric configuration of intersecting D3 and D1 branes in Type IIB

string theory. The D3 world volume theory is four dimensional N = 4 SYM. The smooth BPS fundamen-

tal monopole configurations are represented by finite length D1 branes stretching between the adjacent D3

branes. We can also have composite smooth monopoles, which are built from D1 branes stretching across

6For completeness, we also realize Wilson lines from electrically charged W-bosons.
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multiple D3 branes. Specifically, we consider N = 4 SYM with gauge group SU(N + 1) on its Coulomb

branch. The D1 branes stretching between I-th and I + 1-th D3 branes represent the smooth fundamental

monopole charged under I-th simple co-root �HI ,7 while the D1 branes stretching from I-th to J + 1-th D3

branes correspond to the smooth composite monopole charged under the positive root �HIJ =
∑J

K=I
�HK ,

which can be formed as the bound state of fundamental monopoles. The D-brane configurations for these

different smooth monopoles are given in Figure 1.

1

a1

2

a2

3

a3

4

a4

N

aN

N+1

aN+1

· · ·

(a)

D1

1

a1

2

a2

3

a3

4

a4

N

aN

N+1

aN+1

· · ·

(b)

D1

�
x1,2,3

� x4

Figure 1: (a) A smooth monopole configuration with asymptotic magnetic charge �H2. (b) A composite

monopole configuration with magnetic charge �H13 = �H1 + �H2 + �H3. Here we align D3 branes along

x0,1,2,3 and D1 branes along x0,4.

To obtain singular ’t Hooft lines from the smooth monopole configurations, we recall that it can be re-

garded as the world line of the infinitely heavy monopole and the length of D1 branes is proportional to the

smooth monopole mass. This naturally leads to the systematic construction in [5, 22], where the singular ’t

Hooft lines are identified with the semi-infinite D1 branes. We can realize these by having one end of the D1

branes ending on the leftmost N + 1-th D3 brane that is subsequently moved to x4 = −∞. In other words,

we can construct N distinct semi-infinite ’t Hooft lines from the N distinct smooth monopoles charged un-

der the co-roots �HIN =
∑N

J=I
�HJ , I = 1, · · · , N . More generally, as D1 branes with same orientation are

mutually supersymmetric, we can also construct systems involving multiple singular and smooth monopoles

of arbitrary charges through this decoupling procedure of moving a D3 brane to infinity. We illustrate these

different singular D-brane configurations in Figure 2.

Removing the leftmost N +1-th D3 brane also corresponds to higgsing the four dimensional SU(N +1)
gauge group to PSU(N) = SU(N)/ZN . This requires us to project the SU(N + 1) magnetic charges for

the initial smooth monopole configurations into the PSU(N) magnetic charges for the resultant singular

’t Hooft line plus smooth monopole configurations. This has been done in [5] and we breifly review the

procedure here. The SU(N+1) magnetic charge of a generic smooth monopole configuration is represented

in the following way:

�γm =

N∑
I=1

pI �HIN +

N−1∑
Ĭ=1

kĬ
�HĬ , pI , kI = 0, 1, 2, 3, · · · , (4.1)

where “ ˘ ” highlights the quantities in the resultant PSU(N) gauge theory, i.e., Ĭ = 1, · · · , N − 1. The

first sum in (4.1) corresponds to the SU(N + 1) smooth monopole configuration that will yield singular ’t

7We choose the basis for simple roots {�αI} and co-roots { �HI} such that �αI · �HJ = Tr(�αI
�HJ) = CIJ , where CIJ is the Cartan

matrix of SU(N + 1).
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· · ·
4 3 2 1NN+1

· · ·
4 3 2 1NN+1

· · ·
4 3 2 1N

· · ·
4 3 2 1N

�

�

Π

Π
(a)

(b)

Figure 2: The diagram (a) illustrates the transition of a smooth composite monopole of charge �H2N in

SU(N + 1) to a singular ’t Hooft line operator of magnetic charge Π( �H2N ) in PSU(N). The diagram (b)

illustrates the transition from smooth fundamental and composite monopoles in SU(N+1) to a combination

of a ’t Hooft line operator and a smooth fundamental monopole in PSU(N).

Hooft lines as the N + 1-th D3 brane is moved to x4 = −∞, so we regard the integers pI as the number of

the semi-infinite D1 branes ending on I-th D3 brane. While the second sum corresponds to the remaining

smooth fundamental monopoles which are not charged under the last simple co-root �HN . Notice that the

traceless condition TrSU(N+1)(�γm) = 0 is automatically imposed.

The projected electromagnetic charge under the reduced PSU(N) gauge group after decoupling the N +
1-th D3 brane is given by:

Π(�γm) =

N∑
I=1

pIΠ( �HIN ) +

N−1∑
Ĭ=1

kĬΠ( �HĬ) =

N−1∑
Ĭ=1

(pĬ − p̄) �HĬ(N−1) +

N−1∑
Ĭ=1

kĬ
�HĬ , (4.2)

where Π(·) denotes the projection from SU(N+1) to PSU(N), p̄ = 1
N

∑N
I=1 pI , and we used the following

projection rules:

Π( �HI) = �HĬ , Π( �HIN ) = �HĬ(N−1) −
1

N

N−1∑
Ĭ=1

�HĬ , for I ≡ Ĭ = 1, 2, · · · , N − 1,

Π( �HN ) ≡ Π( �HNN ) = − 1

N

N−1∑
Ĭ=1

�HĬ .

(4.3)

We see that pI semi-infinite D1 branes ending on I-th D3 brane carry PSU(N) magnetic charge of pIΠ( �HIN ),
while the smooth SU(N + 1) monopoles neutral under �HN remain unchanged.

It is also useful to mention that the dimension of the moduli space for this smooth monopole plus singular

’t Hooft line configuration has been computed in [25, 5] and it is given by:

dimMkĬ ,pĬ
= 4

N−1∑
Ĭ=1

kĬ + 2

N−1∑
J̆=1

N−1∑
K̆=J̆

(
pJ̆ − pK̆+1 + |pJ̆ − pK̆+1|

)
. (4.4)
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Notice that when pK̆+1 ≥ pJ̆ , contribution of the second summation to the moduli space dimension vanishes.

The physical interpretation is that the segment of D1 branes stretching between J̆-th and K̆+1-th D3 branes

cannot move freely in x1,2,3 directions, i.e., they are stuck. Conversely, this contribution is nonvanishing

when pK̆+1 < pJ̆ and is equal to 4(pJ̆ − pK̆+1), which implies that D1 segments are mobile and can now

move away from the insertion point of ’t Hooft line operators.

Now, we are in a position to understand the monopole bubbling effect. Let us begin with a ’t Hooft line

configuration with pJ̆ ≤ pK̆+1 while pI = 0 if I �= J̆ , K̆ + 1 (a more genetic configuration would not

affect our current discussion), which has vanishing moduli space dimension as given by (4.4). Next, let a

mobile smooth monopole with magnetic charge HJ̆K̆ approach the insertion point of the singular ’t Hooft

line and eventually get absorbed. The resultant ’t Hooft line configuration now carries a shifted PSU(N)
magnetic charge (pJ̆ , pK̆+1) → (pJ̆ +1, pK̆+1 − 1). For this new configuration to be a genuine bound state,

the dimension formula (4.4) tells us that we need pK̆+1 − 1 ≥ pJ̆ + 1 or pJ̆ + 2 ≤ pK̆+1. This describes the

usual picture of monopole bubbling effect in the literature [8, 5] as illustrated in the top diagram of Figure 3.

This process can be repeated further by absorbing another smooth monopole charged under HJ̆K̆ and so on.

· · · · · · · · ·N K̆+1 J̆ 1

· · · · · · · · ·N K̆+1 J̆ 1

pK̆+1

pJ̆

· · · · · · · · ·N K̆+1 J̆ 1

pK̆+1 + 1

pJ̆ − 1

· · · · · · · · ·N K̆+1 J̆ 1

�

�Absorption

Emission

(a)

(b)
pK̆+1

pJ̆

�

�

pK̆+1 − 1

pJ̆ + 1

Figure 3: The diagram (a) illustrates monopole bubbling effect, when a mobile smooth monopole of magnetic

charge �HJ̆K̆ approaches a singular ’t Hooft line operator and forms a bound state with screened magnetic

charge (pJ̆ + 1)Π( �HJ̆N ) + (pK̆+1 − 1)Π( �HK̆+1N ). We can also have the reverse process where smooth

monopole of magnetic charge �HJ̆K̆ is emitted by the same operator as illustrated in diagram (b).

It is interesting to note that in transitioning between these two configurations, the dimension of the moduli

space changed from 0 to 4, indicating a jump to a different moduli space. However, while the charge of

’t Hooft line operator changed, the total asymptotic magnetic charge remained the same, which means that

there is no change in regularized energy and the absorption process described above should be reversible.

Basically, the formation of genuine bound states after absorption stops when pJ̆ < pK̆+1 < pJ̆ + 2 holds

and we now only have marginally bound states since even after the absorption, these extra D1 segments can

move off the insertion point without any energy cost. We can view this as a smooth monopole being emitted

by the ’t Hooft line after its absorption. More generally, when we have pK̆+1 < pJ̆ to start with, this ’t Hooft

line configuration can emit a smooth monopole charged under HJ̆K̆ or “bubble away”. The resultant charge

of the ’t Hooft line operator changes from (pJ̆ , pK̆+1) → (pJ̆ − 1, pK̆+1 + 1) as illustrated in the bottom

diagram of Figure 3. This emission process continues until pK̆+1 < pJ̆ < pK̆+1 + 2 is violated and then the

process of absorption starts. From this discussion, it is clear that under a Weyl reflection that exchanges pJ̆
and pK̆+1, we can exchange the absorption and emission processes or vice-versa.
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Having reviewed the D-brane construction of smooth monopoles and singular ’t Hooft line operators in

N = 4 SYM with gauge group PSU(N), we would now like to implement a similar decoupling procedure

described above into the Darboux coordinates Xγ(ζ) for BPS states in N = 2 gauge theories. The corre-

sponding D-brane construction for realizing ’t Hooft line operators is given in Figure 4, where we generalize

to the intersecting D2-D4-NS5 brane configuration. The D4 branes are mobile in the x4,5 directions and we

�

�

Π

Π(a)

(b)

· · · · · · · · ·N+1 N K J 1

· · · · · · · · ·N+1 N K J 1 · · · · · · · · ·N K̆ J̆ 1

· · · · · · · · ·N K̆ J̆ 1

Figure 4: The D-brane realization of the 4d N = 2 ’t Hooft line operators. We use the standard intersecting

D4-NS5 setup here: Two NS5 branes (indicated by the gray shaded plane) are placed along x0,1,2,3,4,5 and

separated by a finite interval Δx6 in x6 direction (perpendicular to the grey plane). The N = 2 SU(N + 1)
SYM is realized through the N+1 D4 branes placed along x0,1,2,3 and the finite interval Δx6. The smooth

BPS monopole configurations are realized through the D2 branes whose world volume stretches along x0,4

and Δx6, thus intersecting both D4 and NS5 branes. The S1 compactification is along x0 direction and we

can obtain the intersecting D1-D3-NS5 configuration via T-duality.

have restricted the D2 branes representing the smooth monopoles to be along x4 directions for simplicity.

However, they can be oriented holomorphically along the complex plane x4,5, in general. If we now follow

similar steps as in the D1-D3 configuration by moving the leftmost D4 brane in various smooth monopole

configurations to x4 = −∞, the resultant semi-infinite D2 branes now describe an ’t Hooft line operator in

pure N = 2 SYM. We will see in the next subsection that this simple generalization is sufficient for repro-

ducing the monopole bubbling contributions to the ’t Hooft line operators in λ → 0 limit. One can also add

D6 branes along x0,1,2,3,7,8,9 to introduce flavors or other matter fields, however, we will only focus on the

simplest case of pure SYM.

4.2 Darboux Coordinates Revisited

Let us focus again on the definition of Darboux coordinates for the electric and magnetic BPS states in

pure SYM with gauge group SU(N+1)[26]. For our purposes, we will only need the classical and one-loop
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perturbative pieces as in the previous section:

X (0)
�γe

(ζ) = exp

[
�γe ·

(
�a

ζ
+ i�θe + �̄aζ

)]
, (4.5)

X (0)
�γm

(ζ) = exp

[
�γm ·

(
�aD
ζ

+ i�θm + �̄aDζ

)] ∏
A∈Δ+

[DA(ζ)]
|〈�γm,�αA〉| , (4.6)

DA(ζ) = exp

[
ΩWA

2πi

∑
±

(
±

∫
l±

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

(
1−X (0)

W±
A

(ζ ′)
))]

. (4.7)

The vector quantities above are expanded in the roots / co-roots basis as follows:

�γe =

N∑
I=1

qI�αIN , �a =

N∑
I=1

aI �HIN , �γm =

N∑
I=1

pI �HIN , �aD =

N∑
I=1

aID�αIN . (4.8)

Analogously, �θe and �θm are also expanded. The {W±
A } are

N(N+1)
2 W-bosons and their anti-particles,

charged under the
N(N+1)

2 positive roots {�αA} of SU(N +1) gauge group. A nice basis for {�αA} is �αJK =∑K
I=J �αI and J,K = 1, 2, · · ·N , so we replace the index A with the double index “JK”, 1 ≤ J ≤ K ≤ N .

We will use a similar double index notation J̆K̆ when considering the PSU(N) quantities.

Let us now discuss the crucial modifications of
(X�γe(ζ),X�γm(ζ)

)
arising from the decoupling procedure

of one D-brane, such that they can be identified with the vevs of Wilson and ’t Hooft line operators. In

short, all the quantities in root / co-root lattice appearing in (4.5)-(4.7) need to be projected from SU(N +1)
to PSU(N) following what was done for the magnetic charge �γm in (4.2)-(4.3). So, the root vectors get

projected analogously to (4.3):

Π(�αI) = �αĬ , Π(�αIN ) = �αĬ(N−1) −
1

N

N−1∑
Ĭ=1

�αĬ , for I ≡ Ĭ = 1, 2, · · · , N − 1,

Π(�αN ) ≡ Π(�αNN ) = − 1

N

N−1∑
Ĭ=1

�αĬ .

(4.9)

This gives the projected electric charge to be Π(�γe) =
∑N−1

Ĭ=1
(qĬ − q̄)�αĬ(N−1), with q̄ = 1

N

∑N
I=1 qI .

Similarly, the projection of electric and magnetic coordinates follows:

Π(�a) =

N−1∑
Ĭ=1

(aI − ā) �HĬ(N−1), Π(�aD) =
N−1∑
Ĭ=1

(aĬD − āD)�αĬ(N−1), (4.10)

Π(�θe) =
N−1∑
Ĭ=1

(θeI − θ̄e) �HĬ(N−1), Π(�θm) =
N−1∑
Ĭ=1

(θĬm − θ̄m)�αĬ(N−1), (4.11)

where the barred quantities are averages defined similarly to q̄ above.

The electric charge projection condition (4.9) is also needed when we realize Wilson lines from the semi-

infinite F1 strings ending on D4 branes, which come from N out of
N(N+1)

2 W-bosons charged under roots

�αIN , when we move the N +1-th D4 brane to x4 = −∞. This also implies that we need to project out these

N now infinitely heavy electrically charged BPS states from the summation in (4.7), and we are left only with

the
N(N−1)

2 light W-bosons {WJ̆K̆} charged under {�αJ̆K̆}, 1 ≤ J̆ ≤ K̆ ≤ N − 1 of the residual PSU(N)
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gauge group. Finally, we also need to compute the inner product between the PSU(N) magnetic charge of

the singular ’t Hooft lines Π(�γm) =
∑N

I=1 pIΠ( �HIN ) =
∑N−1

Ĭ=1
(pĬ− p̄) �HĬ(N−1) and �αJ̆K̆ corresponding to

a particular W-boson, which governs the overall power of the sine factors, as we saw in the previous section.

This has actually been computed in [5]:

〈Π(�γm), �αJ̆K̆〉 = Π(�γm) · �αJ̆K̆ = pJ̆ − pK̆+1 . (4.12)

Collecting all the results of these projections, we can once more write the expressions for Darboux coor-

dinates but now, these are full-fledged expressions relevant for us as they correspond to the line operators

with asymptotic PSU(N) electric and magnetic charges, Π(�γe) and Π(�γm), respectively:

X (0)
Π(�γe)

(ζ) = exp

[
Π(�γe) ·Π

(
�a

ζ
+ i�θe + �̄aζ

)]
, (4.13)

X (0)
Π(�γm)(ζ) = exp

[
Π(�γm) ·Π

(
�aD
ζ

+ i�θm + �̄aDζ

)] N−1∏
J̆≤K̆

[DJ̆K̆(ζ)]|pJ̆−pK̆+1| , (4.14)

DJ̆K̆(ζ) = exp

[
ΩWJ̆K̆

2πi

∑
±

(
±

∫
l±

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

(
1−X (0)

W±
J̆K̆

(ζ ′)
))]

. (4.15)

It is useful to note that identities such as
∑N−1

Ĭ=1
(qĬ − qN )(aĬ − ā) =

∑N
I qIaI and

∑N−1

Ĭ=1
(qĬ − qN )(θeĬ −

θ̄e) =
∑N

I qIθeI where
∑N

I=1 aI =
∑N

I=1 θeI = 0 so that we can use the same scalars {aI , aID, θeI , θIm} to

express the final results.

Let us pause here and peek at the localization results for the ’t Hooft line of magnetic charge Π(�γm) in

[3] to realize that we actually need pJ̆ + pK̆+1 instead of pJ̆ − pK̆+1 in (4.14) if the linear expansion (1.1)

is to hold. One may worry whether the two expressions are calculating different quantities but comparing

their fundamental definitions given in [1] and [3], we expect them to compute the same physical quantity.

Moreover, as we are matching the two expressions at the origin of the Coulomb branch as discussed in

previous section, one may worry about the convergence of the expansion of Darboux coordinates. However,

the Poisson resummation allows us to take the |a| → 0 limit smoothly so we could formally consider the

Darboux coordinate expansion to hold even at this point of the moduli space. Finally, one may suspect

that the mismatch could be compensated by the omitted contributions X (np)
�γ (ζ) coming from dyonic BPS

states in (3.4) when we performed the systematic expansion of X�γ(ζ) for pure magnetically charged line

operators. However, if we perform similar Poisson resummation for these, they yield sine functions with

both θe and θm in the argument, rather than the desired terms that contain only θe. Concluding from these

observations, we proceed to resolve the mismatch by applying the description of the monopole bubbling

effect in terms of the D-brane construction discussed above. In fact, we are going to match the Darboux

expansion and localization results term by term because the D’s we have calculated are very suggestive

that it might work. The mismatch right now is of the power of sin functions but as we mentioned before,

including the contribution to Darboux coordinates of W-bosons with smooth monopoles is expected as there

is no reason to expect ‘pure’ Darboux coordinates would be sufficient in the presence of line operators. So

let us show this in a concrete case.

To understand better the effect monopole bubbling can have on (4.14), we again set pI = 0, I �=
J̆ , K̆ + 1. This simplified configuration can be engineered from a single ’t Hooft line with PSU(N)
magnetic charge (pJ̆ + pK̆+1)Π( �HJ̆N ) and pJ̆ > pK̆+1, which can systematically emit pK̆+1 smooth

monopoles charged under HJ̆K̆ . These emitted smooth monopoles would give additional one-loop fac-

tors [DJ̆K̆(ζ)]|〈pK̆+1HJ̆K̆ ,αJ̆K̆〉| = [DJ̆K̆(ζ)]2pK̆+1 because they can still interact with the electrically charged
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W-bosons, even though they no longer contribute to the magnetic charge of the resultant ’t Hooft line opera-

tor. Returning to the general configuration, we can start with a configuration with PSU(N) magnetic charge

PΠ( �H1N ) and P =
∑N

I=1 pI and allow it to emit various smooth monopoles step by step to obtain other

desired ’t Hooft line configurations. We can regard this emission process as acting on the highest weight rep-

resentation with the lowering operators. An alternative but Weyl equivalent construction is to start instead

from a ’t Hooft line with charge (pJ̆ + pK̆+1)Π( �HK̆+1N ) and pJ̆ ≤ pK̆+1 and allow it to absorb pJ̆ mobile

monopoles charged under �HJ̆K̆ . They contribute an additional one loop factor [DJ̆K̆(ζ)]2pJ̆ , as before. For

general configuration, we can start from ’t Hooft line with PSU(N) magnetic charge PΠ( �HNN ) and sys-

tematically allow it to absorb smooth monopoles. We can again regard this process as acting on the lowest

weight representation with the raising operators. We illustrate both the absorption and emission processes in

Figure 5.

· · · · · · · · ·N K̆+1 J̆ 1

· · · · · · · · ·N K̆+1 J̆ 1

pJ̆ + pK̆+1

pJ̆

· · · · · · · · ·N K̆+1 J̆ 1

pK̆+1

pJ̆

pJ̆

· · · · · · · · ·N K̆+1 J̆ 1

�

�Absorption

EmissionpJ̆ + pK̆+1

�

�

pK̆+1

pJ̆

(b)

(a)

Figure 5: The diagram (a) illustrates smooth monopole of magnetic charge pJ̆
�HJ̆K̆ approaching a singular

’t Hooft line and forming a bound state with screened magnetic charge pJ̆Π( �HJ̆N ) + pK̆+1Π( �HK̆+1N ). We

can also have the reverse process where smooth monopole of magnetic charge pJ̆
�HJ̆K̆ is emitted by the ’t

Hooft line as illustrated in diagram (b).

From these two cases, we can summarize the bubbling contributions coming from the emission / absorp-

tion of the smooth monopoles charged under �HJ̆K̆ as:

BJ̆K̆ (ζ; Π(�γm)) =

{
[DJ̆K̆(ζ)]2pK̆+1 for pJ̆ > pK̆+1

[DJ̆K̆(ζ)]2pJ̆ for pJ̆ ≤ pK̆+1 .
(4.16)

Combining all the possible contributions from smooth monopoles charged under the positive co-roots {HJ̆K̆},

the total bubbling contribution is given by:

B(ζ; Π(�γm)) = CΠ(�γm)

∏
J̆≤K̆

BJ̆K̆ (ζ; Π(�γm)) , (4.17)

where CΠ(�γm) is the combinatorial factor denoting the number of equivalent ways to engineer such a config-

uration with the asymptotic magnetic charge Π(�γm). We can readily compute CΠ(�γm) for the highest weight

PΠ( �H1N ) from the corresponding D-brane configuration and the answer is:

CΠ(�γm) =
P!∏N

I=1 pI !
. (4.18)
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Comparing with the explicit monopole bubbling contributions in [3] (see also [9]) obtained from counting

the allowed Young diagrams, we find that CΠ(�γm) computes the number of such Young diagrams for the

same highest weight PΠ( �H1N ) and asymptotic magnetic charges Π(�γm). However, the information about

the shape of these Young diagrams is lost upon taking the limit λ → 0 and we are only left with the overall

powers 2pJ̆ and 2pK̆+1 in (4.16).

Putting everything together, we can express the vev of an ’t Hooft line operator transforming in PSU(N)
representation with the highest weight B = PΠ( �H1N ) in terms of the following sum:

〈TB〉λ→0 =
∑

{Π(�γm)}
X (0)
Π(�γm)(ζ)B(ζ; Π(�γm))

=
∑

{Π(�γm)}
CΠ(�γm)X sf

Π(�γm)(ζ)
∏
J̆≤K̆

[DJ̆K̆(ζ)](pJ̆+pK̆+1), (4.19)

where the summation {Π(�γm)} consists of Π(�γm) labeled by all possible partitions of P into N non-negative

integers {pI}. In other words, the same as {v} in (2.8)8 containing all the possible roots that can be reached

from the highest weight state PΠ( �H1N ) by the action of the lowering operators including the lowest weight

state PΠ( �HNN ) ≡ PΠ( �HN ). As we derived in Section 3, the above expression is understood to be evaluated

at ζ = −eiφΠ(�γm) (along with all the parameter matching we already discussed) to obtain the expected sine

factors from localization. If we now compare with the proposed linear expansion in (1.1), we see that the

second line of (4.19) takes an identical form once we include the bubbling factor B along with the D’s

of electrically charge BPS particles in X sf
�γ to get X�γ and the expansion coefficients CΠ(�γm) are identified

with the framed BPS degeneracies Ω̂(u,TB,Π(�γm)). It would be very interesting to verify them using the

localization calculation of Witten index for the corresponding quiver quantum mechanics [27, 28].

Finally, we propose a generalization of (4.19) for any line operator as a rewriting of (1.1), which makes

the bubbling factor explicit (but hides the BPS degeneracy):

〈Lζ〉λ→0 =
∑

{Π(�γ)}
σ(�γ)X (0)

Π(�γ)(ζ)B
(
ζ; Π(�γ)

)
, (4.20)

where Π(�γ) can even be dyonic. We can realize such a configuration by having both F1 strings and D2

branes ending on N + 1-th D4 branes, and then performing the decoupling procedure as described above.

The analogous monopole bubbling terms included in B(ζ,Π(�γ)) can now be straightforwardly computed,

which only depend on �γm ∈ �γ and its descendant magnetic charges. One may wonder why it is so in the

presence of semi-infinite electrically charged lines (as in Wilson and Dyonic line operators) as there can still

be interactions between them and the mobile monopoles. We believe these to be captured by the X (np)
�γe

(ζ)
factor in (3.4), which we argued to not contribute in the weak coupling limit and the comparison with the

localization results seems to corroborate that. Another non-trivial factor that requires some effort to compute

is the combinatorial factor CΠ(�γ) included in B(ζ,Π(�γ)), which would give us the framed BPS degeneracies.

5 Examples

To further verify our proposal, we compare the general expression in (4.19) with a few explicit exam-

ples of vevs of ’t Hooft line operators computed from localization [3] in λ → 0 limit. Notice that since

the localization results are invariant under ZN of SU(N) gauge group, we can readily compare with the

PSU(N) = SU(N)/ZN expressions obtained above.

8We emphasize here that we have not derived this summation. We have only derived the summands and observe that the same

sum produces a match for these two different ways of writing down the vevs of line operators.
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G = SU(2), B = 2Π(H12)

This is the simplest case with monopole bubbling contribution. We have P = 2 and (p1, p2) = {(2, 0), (1, 1), (0, 2)}.

After we project out the heavy root, the descendant charges are γp1,p2 = Π(p1H12 + p2H22) =
p1−p2

2 H1.

Their one loop contributions to the sum in (4.19) are as follows:

Xγ2,0 =
e4πib

sin2(2πa)
, Xγ1,1 = 1 , Xγ0,2 =

e−4πib

sin2(2πa)
· (5.1)

The monopole bubbling contribution is non-trivial only in one case:

B(γ1,1) = 2

sin2(2πa)
· (5.2)

Along with parameter identifications (3.8), we have also imposed the traceless conditions a1 = −a2 = a and

b1 = −b2 = b. Summing over these three contributions, we recover the corresponding localization result:

〈T2Π(H12)〉 =
1

sin2(2πa)

(
e4πib + 2 + e−4πib

)
. (5.3)

SU(3), B = 3Π(H13)

In this case, monopole bubbling contributions from composite monopoles start to appear. The charges are

γp1,p2,p3 = Π(p1H13 + p2H23 + p3H33) = (p1 − p
3)H1 + (p1 + p2 − p

3)H2, where p = p1 + p2 + p3. We

list all ten different one loop contributions labeled by (p1, p2, p3) below:

Xγ3,0,0 =
e3iθ

1
m

sin3 θe12
2 sin3 θe13

2

, Xγ0,3,0 =
e3iθ

2
m

sin3 θe12
2 sin3 θe23

2

, Xγ0,0,3 =
e3iθ

3
m

sin3 θe13
2 sin3 θe23

2

,

Xγ2,1,0 =
ei(2θ

1
m+θ2m)

sin θe12
2 sin θe23

2 sin2 θe13
2

, Xγ1,2,0 =
ei(θ

1
m+2θ2m)

sin θe12
2 sin2 θe23

2 sin θe13
2

,

Xγ0,2,1 =
ei(2θ

2
m+θ3m)

sin2 θe12
2 sin θe23

2 sin θe13
2

, Xγ0,1,2 =
ei(θ

2
m+2θ3m)

sin θe12
2 sin θe23

2 sin2 θe13
2

,

Xγ2,0,1 =
ei(2θ

1
m+θ3m)

sin2 θe12
2 sin θe23

2 sin θe13
2

, Xγ1,0,2 =
ei(θ

1
m+2θ3m)

sin θe12
2 sin2 θe23

2 sin θe13
2

,

Xγ1,1,1 = 1 .

(5.4)

The corresponding monopole bubbling contributions are as follows:

B(γ3,0,0) = 1 , B(γ0,3,0) = 1 , B(γ0,0,3) = 1 ,

B(γ2,1,0) = 3

sin2 θe12
2

, B(γ1,2,0) = 3

sin2 θe12
2

,

B(γ0,2,1) = 3

sin2 θe23
2

, B(γ0,1,2) = 3

sin2 θe23
2

,

B(γ2,0,1) = 3

sin2 θe13
2

, B(γ1,0,2) = 3

sin2 θe13
2

,

B(γ1,1,1) = 6

sin2 θe12
2 sin2 θe13

2 sin2 θe23
2

·

(5.5)

After combining both one loop contributions and monopole bubbling factors as in (4.19), we obtain the ’t

Hooft line operator vev 〈T3Π(H13)〉. Substituting θeIJ
2 = πaIJ , we again recover the corresponding vev

computed using localization in λ → 0 limit, including the monopole bubbling contributions computed from

Young diagrams.
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SU(N), B = PPPΠ(H1N)

Finally, we consider the vev of a generic ’t Hooft line operator with SU(N) gauge group. It should be clear

from the previous examples that the number of contributions in localization calculations escalate rapidly

as the rank of gauge group increases. Nevertheless, the authors in [3] proposed and verified explicitly form

their localization computation that the line operator vevs can be constructed from a set of “minimal” building

blocks, i.e.,
〈L1 × L2 ...... × Ln〉 = 〈L1〉 ∗ 〈L2〉 ...... ∗ 〈Ln〉 . (5.6)

Here × denotes composition of elementary line operators that do not exhibit monopole bubbling and ∗
operation is the Moyal product defined for two functions f(a, b) and g(a, b) depending on electromagnetic

coordinates (a, b) as

(f ∗ g)(a, b) ≡ ei
λ
4π

(∂b∂a′−∂a∂b′ )f(a, b)g(a′, b′)|a′=a,b′=b . (5.7)

Since we are interested in the λ → 0 limit, Moyal product reduces to ordinary product. So following this

proposal, we can construct the vev for ’t Hooft line operator labeled by PΠ( �H1N ) in terms of P minimal ’t

Hooft line operators labeled by Π( �H1N ) and we obtain the following decomposition:〈
T
PΠ( �H1N )

〉
=

〈
TΠ( �H1N )

〉P

. (5.8)

One can easily check that this is consistent with our previous examples for SU(2) and SU(3) theories.

Expanding (5.8) for the general SU(N) theory:

〈
T
PΠ( �H1N )

〉
=

[
N∑

J=1

e2πibJ∏
I �=J | sinπaIJ |

]P

=
∑
{�p}

P!∏N
L=1 pL!

N∏
J=1

[
e2πibJ∏

I �=J | sinπaIJ |

]pJ

. (5.9)

The summation over {�p} runs through all possible N-dimensional vectors �p = (p1, p2, · · · , pN ) satisfying∑N
I=1 pI = P with all pI ≥ 0, which means the numerical factor above is same as the coefficient C

PΠ( �H1N )
given in (4.18). As a result, we get the explicit formula:

〈
T
PΠ( �H1N )

〉
=

∑
{�p}

P!∏N
L=1 pL!

e2πi
∑N

I=1 pIbI

N∏
J<K

1

| sinπaJK |pJ+pK
. (5.10)

But we do expect this result to be given by (4.19) so we recast the above expression in order to make the

match explicit:

〈
T
PΠ( �H1N )

〉
=

∑
{�p}

C
PΠ( �H1N )X sf

PΠ( �H1N )
(ζ)

N−1∏
J̆≤K̆

[
sin

�αJ̆K̆ · �θe
2

]−(pJ̆+pK̆+1)

. (5.11)

We used the fact that the summation given by {Π(�γm)} in (4.19) is equivalent to {�p} here, along with other

obvious identifications using (4.14) and (3.17). Note that the product over JK in (5.10) is anti-symmetric

and that over J̆K̆ in (5.11) is symmetric, thus both expressions generate the same
N(N−1)

2 terms.
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