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1 Introduction

It has been understood since the late 1980’s that contributions to gravitational path inte-
grals from spacetime wormholes can markedly change properties of S-matrices, boundary
correlators, or boundary partition functions [1–6]. Here the term spacetime wormhole
means a geometry whose boundaries have more than one connected component, and the
discussion includes real geometries of any signature as well as spacetimes that are intrin-
sically complex. As a result, gravitational path integrals that do not include spacetime
wormholes generally factorize into a product of terms associated with each boundary. But
this factorization is expected to fail when spacetime wormholes contribute; see figure 1.

One issue of interest is the potential consequence for the AdS/CFT correspondence.
The standard picture of AdS/CFT in which bulk gravity is dual to a single well-defined
CFT [7–9] would require the above factorization to hold, so failure of factorization requires a
significant change. In parallel with the understanding from the 1980’s, a possible resolution
is that the bulk gravitational path integral is dual to an ensemble of boundary theories; see
e.g. recent discussions in [10–19]. For this reason, we use notation involving angle-brackets
(e.g., 〈Z〉, 〈Z2〉, etc.) to denote results of bulk gravitational path integrals. A non-zero
“connected correlator” 〈Z2〉 − 〈Z〉2 is then interpreted as describing δZ2 for fluctuations
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Figure 1. An example showing failure of factorization due to spacetime wormholes. The top line
represents a path integral 〈Z〉. Although we have drawn the configuration as connected, it may
include contributions from disconnected spacetimes as well. In any case, the natural path integral
〈Z2〉 associated with a pair of boundaries yields all terms generated by squaring 〈Z〉, but also
contains additional contributions connecting the two boundaries as indicated by the second term
in the bottom line.

δZ associated with differences between the partition function Z in any particular element
of the ensemble and the ensemble-mean 〈Z〉.

While the importance of this issue has been understood for some time (see e.g. [20]),
the issue has received renewed emphasis due to the recently-recognized role that replica
wormholes play in allowing bulk gravitational path integrals to reproduce the Page curve
associated with unitarity in black hole evaporation [21, 22] and the associated connections
to true spacetime wormholes and ensembles of boundary theories [13, 22, 23]. The impor-
tance of understanding a possible ensemble interpretation of AdS/CFT was then further
highlighted by the discovery [24, 25] that it could circumvent the arguments of [26, 27] (see
also [28]). In particular, while bulk theories dual to a single QM theory cannot have global
symmetries, such symmetries can exist in bulk theories dual to an ensemble average.1 This
then raises the question of whether bulk theories dual to ensemble averages might also
allow similar violations of other so-called swampland conjectures.

A critical question remains whether an ensemble interpretation will hold for the most
familiar examples of AdS/CFT. The potential obstacle is that the relevant bulk theories
involve large amounts of supersymmetry, and this supersymmetry should be reflected in
each member of the boundary ensemble.2 An ensemble interpretation is thus in tension

1Refs. [24, 25] describe the sense in which the bulk theories nevertheless violate conservation of the
global charge; see also [29]. It is important to note that these violations arise when one focuses on charge
in regions accessible to asymptotic observers. The full bulk state, including all so-called baby universes,
appears to conserve global charge. We find this to be particularly clear from the real-time point-of-view
described in [23, 30].

2This property holds in the examples of [12] that have N = 1 supersymmetry, and where the supercharge,
rather than the Hamiltonian, is the fundamental quantity that is disordered. A general argument follows
from the fact that the full bulk system admits an algebra of asymptotic SUSY charges, and that these
charges must act trivially on the ‘baby universe sector’ of the theory (i.e., on the HBU of [13, 23]). Thus
the SUSY algebra acts within each bulk superselection sector. The boundary dual interpretation is then
that each member of the associated ensemble has a well-defined SUSY algebra.
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with the idea that there are strict limits on SUSY CFTs in higher dimensions. In particular,
for boundary dimension d = 4 and N = 4 SUSY, there is a unique maximally-symmetric
marginal deformation of appropriate free field theories which correctly predicts the deriva-
tives of the d = 4 N = 4 SU(N) super Yang-Mills correlators evaluated at zero coupling.3

It is natural to address this issue by investigating the status of bulk spacetime worm-
holes in UV-complete theories. In particular, it is interesting that analyses of Euclidean
wormholes in 10- or 11-dimensional supergravity have always found such wormholes to fail
to dominate path integral computations [20, 36–39] (or else the analyses were unable to
fully investigate the question). Two potential issues are that the wormhole can have ‘neg-
ative modes’, indicating that it fails to be a local minimum of the Euclidean path integral,
and that adding various branes to the solution can lower the Euclidean action. Whenever
a Euclidean spacetime wormhole solution has been found to have lower action than the
natural disconnected (factorizing) semi-classical saddle, investigations of such issues have
found one or the other of these features to arise. However, it is also interesting that [39]
identified sub-leading wormhole saddles that are free of both issues, and which thus appear
to cause violations of factorization. The fact that such saddles are sub-leading would mean
only that the associated violation is small, so that the relevant dual ensemble is sharply
peaked.

It might be expected that any dual ensemble would be sharply peaked in this way. If
this is the case, then bulk wormholes should dominate only in the presence of very large
sources that could compensate for the sharpness of this peak by spreading out the answers
associated with various members of the ensemble. In general, such large sources could be
associated with large back-reaction that is difficult to control.

However, as pointed out in [10–12], studying the evolution of the system at large
(Lorentzian) times can achieve a similar effect. Such large times may in fact be thought
of as the large boundary sources suggested above, but in a context where back-reaction
need not generate large curvature invariants. In particular, [10–12] identified a new saddle
called the double cone which appears to dominate bulk path integral computations of the
spectral form factor 〈Z(β−iT )Z(β+iT )〉 for large T , and which reproduces a crucial aspect
(‘the ramp’) of the expected quantum-chaotic behavior of any dual theory associated with
times tramp � T � eS , where tramp is non-universal and depends on the details of the
system [40]. Furthermore, due to its close relation (reviewed below) to AdS-Schwarzschild
black holes, such double cone saddles will exist in any asymptotically-AdS bulk theory.

3This might indicate that super Yang-Mills theory is the unique local maximally-supersymmetric theory
that admits a weakly-coupled limit. And such reasoning suggests to some that there should be a novel
piece of physics associated with the UV-completion of bulk gravity that counteracts the effect of spacetime
wormholes and allows the boundary ensemble to degenerate to a single unique theory; see related discussions
in [13, 31]. Of course, such a resolution would be surprising from the viewpoint of low-energy semi-classical
gravity. One alternative is that there is in fact an infinite discrete family of maximally supersymmetric CFTs
with weakly coupled limits associated with different instanton corrections, perhaps due to a mechanism like
that described in [32–35]. We thank Juan Maldacena for correspondence on this point, and in particular
for pointing out the existence of such references.
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The double cone is thus a prime target for further investigation. In particular, it is
critical to understand the stability of such saddles from the bulk point of view.4 The double
cone was not included in the analysis of [39] due to various subtle features and the fact
that it is naturally viewed as having a complex metric. We take up the challenge below
and argue at the probe-brane level in various UV-complete contexts that the double cone
does not suffer from brane-nucleation instabilities for Sd−1 × S1 boundary metrics.5

However, we do not address the question of possible field-theoretic negative modes, as
this is especially complicated to understand in complex spacetimes; see further discussion
in section 2. Another analysis of double cone stability based on a constrained-instanton
description is also being released simultaneously with this work [42].

We begin our discussion with a conceptual overview in section 2. The emphasis here
is on the double cone geometry described as a complex saddle for the bulk path integral
that computes the boundary spectral form factor, and on understanding what it means to
study brane-nucleation stability issues on complex spacetimes. We in particular mention
subtleties associated with brane back-reaction and the microcanonical ensembles used to
define the spectral form factor, though we defer consideration of back-reaction to section 7
and focus on strict probe-branes in the bulk of this work. The rest of the stage for our
calculations is set by establishing conventions and reviewing brane actions in section 3.
We then proceed to study the AdS5 double cone (×S5) as a saddle for 10d type IIB
supergravity in section 4. In this context, the branes whose nucleation might seem most
likely to lead to an instability are supersymmetric D3-branes. But at the probe-brane level
we argue against such instabilities by showing that all saddle-points of the D3 brane action
(in the full complexified double cone geometry) have positive real part for the relevant
Euclidean action. We also use this section to review the general construction of the double
cone spacetime and the sense in which it is intrinsically complex. Section 5 then studies
generalizations to other truncations of 10- and 11-dimensional supergravity that allow
AdSd+1-Schwarzschild double cones, and section 6 further generalizes to charged (boundary
dimensions d = 3 and d = 4) and rotating (boundary dimension d = 4) double cones.
Similar cases with flat boundaries (and in particular BTZ double cones) are discussed in
appendix A. We close with a discussion of back reaction and other open issues in section 7.

2 Overview

This section provides a conceptual orientation to the physics that will be studied in the
rest of this work. We first review the double cone geometry in its role as an intrinsically-

4Instability of the double cone would make wormholes less relevant, and would thus reduce the need for
ensembles. But stability of the double cone would not forbid novel corrections from UV physics that could
remove the need for an ensemble interpretation. One might imagine such corrections to leave the double
cone as the dominant contribution to the average of the spectral form factor over some small window of
time; see e.g. [41]. Furthermore, even without a possible link to ensembles, establishing stability of the
double cone would make the bulk recovery of the ramp in [10–12] more robust.

5In contrast, branes give a divergent contribution to the double cone amplitude with flat boundaries.
This is consistent with the boundary expectation that there is no ramp in such cases due to a divergence in
the density of states associated with the infinite volume of a non-compact moduli space. This divergence
also leads to a continuous spectrum.
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complex saddle for the bulk path integral computing the so-called spectral form factor. We
then describe what it will mean to study the stability of such complex saddles with respect
to brane nucleation.

2.1 The spectral form factor and the double cone

The spectral form factor (SFF) for any quantum-mechanical theory is defined by studying
the partition function Z(β) = Tr

(
e−βH

)
at imaginary β = −iT , or more generally at

complex β. In particular, the SFF is the product Z(−iT )Z(iT ) = Tr
(
e−iHT

)
Tr
(
eiHT

)
.

Furthermore, it is often useful to restrict the trace to states with energies in some win-
dow [E1, E2], or equivalently to evaluate the trace in a microcanonical ensemble. This in
particular guarantees the traces to converge in any theory with a finite density of states.

Refs. [10–12] study the bulk gravitational path integral that would compute the SFF
in a dual theory (and with any baby universe sector in its Hartle-Hawking state in the lan-
guage of [13]). Using the angle-bracket notation above, they thus study 〈Z(−iT )Z(iT )〉 =
〈Tr

(
e−iHT

)
Tr
(
eiHT

)
〉. In particular, the above references consider bulk gravitational sys-

tems with two Lorentz-signature asymptotically AdS boundaries, each of the form S1×X.
The S1 factor is timelike and is periodic with boundary time T , but with time running in
opposite directions around the S1 factors on opposite boundaries. The latter requirement
is perhaps best understood as requiring the bulk path integral to have a symmetry that
complex conjugates the bulk amplitude and exchanges the two boundaries. As suggested
above, microcanonical boundary conditions are also imposed, forcing the total energy at
each boundary to lie in a small window near some value E.

The above references then consider any two-sided asymptotically AdS stationary black
hole (with a bifurcate Killing horizon); e.g., perhaps the Kruskal-like extension of AdS-
Schwarzschild. They note that periodically identifying such a solution under translations of
magnitude T generated by the stationary Killing field ∂t yields a spacetime that satisfies the
desired boundary conditions. In particular, because ∂t is future-directed in one asymptotic
region and past-directed in the other, the quotient naturally has S1 factors whose periods
correspond to boundary times T and −T as desired; see figure 2.

A complication, however, is that ∂t has fixed points on the bifurcation surface. This
makes the quotient singular, raising potential questions about its validity as a saddle point
in the path integral. In particular, it is not immediately clear how to check whether
the action is in fact stationary under variations of the metric at this singularity. But
reference [10] regularizes the singularity by making an excursion into the complex plane.
Since the fixed points of ∂t in the full complexified black hole geometry all lie on the
bifurcation surface of the real Lorentzian slice, any contour that avoids this surface (and
which also avoids the black hole singularity) and which also remains invariant under t →
t+T yields a smooth quotient. Indeed, so long as they also end on the asymptotically AdS
boundary of the original real slice, quotients of such contours define (complex) solutions
which satisfy all boundary conditions imposed by the path integral. Thus any such contour
defines a valid complex saddle for the SFF path integral.
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Figure 2. Schematic illustration showing the identifications in the Kruskal spacetime that lead to
the double cone geometry.

Figure 3. A keyhole-type contour in the complex r plane that defines the double cone.

As described in [10], finding such contours is not difficult. In particular, for any two-
sided black hole one may consider the Schwarzschild area-radius r, noting that two distinct
surfaces in the real black hole spacetime map to each value of r so that the map from
r-values to the spacetime has a branch point at some r = r0 describing the bifurcation
surface. One may then consider a contour in the complex r plane that starts at real
positive infinity and approaches close to the (real) value r0, but which then circles halfway
around r0 through the complex plane and returns to positive real infinity (now in the
opposite asymptotic region due to the branch point at r0, see figure 3). The geometry on
this contour fulfills all of the conditions required above.

We will thus use the term “double cone” to refer to any such smooth complex contour
in the periodically identified complexification of a two-sided stationary black hole. In
this way, it is natural to think of the double cone as a spacetime with an intrinsically
complex metric. Note that, while there is great ambiguity in the choice of this contour,
Cauchy’s theorem guarantees the action to be invariant under deformations of the contour.
As a result, this ambiguity does not affect the result of our path integral. The action
for simple cases is computed in [10–12], and is argued to have the right properties to
dominate the semiclassical bulk computation of the spectral form factor in the ramp regime
tramp � T � eS [40].

– 6 –
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2.2 Brane nucleation on complex saddles

Although the double cone is indeed a saddle, and while it reproduces the expected prop-
erties of the SFF ramp, it is important to investigate whether the double cone is in fact
the dominant semiclassical bulk saddle in the ramp regime, or whether some other saddle
or off-shell effect might provide a larger contribution that would make the double cone
irrelevant. For a real saddle in a Euclidean path integral, one can probe this by inves-
tigating whether small real perturbations of the saddle increase or decrease the action.6

In this context, small real perturbations of the bulk supergravity fields that decrease the
Euclidean action are known as (field-theoretic) negative modes.

On the other hand, as is familiar from the general properties of analytic functions,
near any complex saddle there are necessarily certain complex perturbations that decrease
the real part of the Euclidean action as well as those that increase the real part. One
could thus say that all saddles have negative modes in the complex plane, but this is
clearly neither useful nor physical relevant. Indeed, the same is true of the above real
Euclidean saddles if one considers both the original real perturbations and the imaginary
perturbations obtained by multiplying them by i.

Instead, for a complex saddle the first relevant question is whether it lies on what
we will call a ‘global descent contour’, by which we simply mean a contour along which
(1) the integrand has constant phase (so that the imaginary part of the Euclidean action
is constant), (2) the saddle in question maximizes the integrand (and thus minimizes the
real part of the Euclidean action), and (3) the real part of the Euclidean action becomes
infinitely positive at a sufficient rate as one follows the contour to an appropriate notion of
infinity. If so, then the saddle will dominate the integral along the global descent contour
in the semiclassical limit ~→ 0 (here `Planck → 0).

Finally then, one should ask if the global descent contour can be obtained by deforming
the defining contour of the integral without passing through singularities or picking up
contributions from ‘arcs at infinity’ or other boundaries of the contour. If this can be
done, then Cauchy’s theorem tells us that our complex saddle can be used to compute a
good semiclassical approximation to the desired integral. Unfortunately, for an infinite-
dimensional path integral such issues are clearly extremely complicated to analyze in full,
and are beyond the scope of this work. We thus set such concerns aside.

However, another issue turns out to be more important for most known examples of
real Euclidean spacetime wormholes in UV-complete theories. In the context of string
theory or M-theory, one can imagine starting with the original saddle and building a new
spacetime by adding various D-, NS-, or M-theory branes. It is useful to stress that, at least
as the limit of smooth regulated solutions, one can replace the branes by appropriate bulk
fluxes (in the sense of [56], see also related discussions in [57, 58]). In particular, we can
think of this construction as producing a new bulk supergravity spacetime with a different
topology (and with the above fluxes threading a new ‘handle’). At the conceptual level,

6One should also take proper care of issues [43–53] related to the so-called conformal factor problem
which makes the action for Euclidean gravity unbounded below. See also [54, 55] for discussions of such
issues in the presence of couplings to matter.
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the main difference from the above discussion of negative modes is then just that negative
modes involve infinitesimal versions of deformations of the original spacetime, while the
addition of branes requires a discrete change in topology and/or quantized charges.

This difference has several important consequences. The first is that, in contrast to the
field-theoretic perturbations discussed above, one cannot simply multiply a brane-induced
deformation by i =

√
−1. In particular, even in a complex spacetime we need consider

only branes that have real tension and charge. The reality (and in fact integer-valuedness)
of the charge is especially manifest in a magnetic description where it is both real and
quantized due to topological features, and in string- or M-theory the ratio of the tension
to (the absolute value of) the charge is just a given (real) function of the (real) coupling
constants of the theory. So the addition of any particular configuration of branes will have
an unambiguous effect on the Euclidean action.

The second consequence of the discreteness of branes is that, even if we start with a bulk
saddle, at weak coupling the change in the action under the addition of branes is generally
of first order in the brane charge Q. Furthermore, because continuous deformations of a
saddle can affect the action only at second order, this first-order-in-Q change is independent
of any first-order-in-Qmodifications one chooses to make in the original saddle in the region
far from the new brane sources (or far from the associated changes in topology). As a result,
the first-order-in-Q change in the bulk action under the addition of branes is a local function
of the brane configuration to be added. Indeed, in a weakly-coupled limit this change must
agree with the corresponding probe-brane action evaluated on the desired configuration;
see again [56–58]. The relevant probe-brane actions will be reviewed in section 3 below.

Note, however, that this probe-brane action will generally be an analytic function of
parameters describing the configuration of branes, and in particular of the location at which
the branes are inserted. And as in our discussion of field-theoretic perturbations, the real
part of an analytic function cannot be bounded either above or below, making it clear
that the real part of the Euclidean probe brane action will become arbitrarily negative for
branes inserted at appropriate complex positions in a complexified spacetime. But once
again, this issue cannot be of physical relevance.

Indeed, the key point here is that we have so far used the insertion of branes to
create only new off-shell complex configurations for our path-integral. What we wish to
understand is the integral of the associated amplitude over an appropriate contour. At the
semiclassical level, this as always becomes the questions of what saddle points might exist,
whether they lie on global descent contours, and whether such global descent contours can
be obtained by allowed deformations of the original contour of integration.

We thus focus below on identifying saddles of the probe brane action on the complex-
ified spacetime.7 We assume such saddles to be invariant under the Killing symmetries of
the double cone (or, at least those associated with the AdSd+1 factor of the spacetime).
This then reduces the space of configurations so that it can be parametrized by a single
complex coordinate (e.g., the Schwarzschild area-radius r). We can then identify global

7In studying brane nucleation in Euclidean signature one often does not bother to identify saddles, but
instead declares an instability when any configuration has negative (real) Euclidean action. This is justified
since any configuration with Euclidean action requires there to be a local minimum (defining a saddle) or
divergent contributions from asymptotic regions of the path integral with negative action.
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descent contours within this one-dimensional complex space, and we can analyze whether
such contours can be deformed to the contour we use to define the double cone (or, equiv-
alently, whether it can be deformed to the positive real r-axis; see figure 3 above or the
pink dashed lines in figures 5 and 7 below).

An important point is that, whenever we find a global descent contour that can be
deformed to the defining contour, Cauchy’s theorem guarantees that the integral along this
contour gives the desired answer. As a result, in the semiclassical limit our path integral
will be dominated by the relevant saddle. In particular, if this saddle has positive Euclidean
action then the result of the integral will be small in the semiclassical limit. It therefore
follows that no saddle with negative Euclidean action can dominate. Instead, any global
descent contours associated with saddles having negative Euclidean action must fail to be
deformable to the defining contour. It is thus not necessary to find all saddles when one
can study such contours in detail. After setting conventions and reviewing certain technical
details in section 3, we execute this procedure for the AdS5 × S5 double cone in section 4
and for other string- and M-theoretic cases in section 5.

2.3 Branes and anti-branes

We now pause to explain an important further subtlety in our analysis. With boundary
conditions that fix only potentials at infinity, solutions typically exist in which one adds
only a single brane and thus in which one changes the asymptotic charges on one side or
the other. Recall, however, that we wish to impose microcanonical boundary conditions
which fix the total energy on both sides of the black hole. We also wish to fix the D-brane
charge on each boundary, corresponding to fixing at least simple parameters describing
the theory in which the SFF is computed (e.g. N for an SU(N) gauge theory). At least
on-shell, this is inconsistent with the addition of a single brane when one goes beyond the
strict probe-brane approximation to allow the new branes to contribute to the total bulk
charges.

Now, we can easily arrange to satisfy the D-brane charge constraint by adding instead
a brane/anti-brane pair for which the total D-brane charge vanishes. However, the energy
constraint turns out to be harder to satisfy in a useful way. It is true that on the real section
the background has a CPT symmetry that swaps branes for anti-branes and interchanges
the two boundaries. So for a real brane saddle at area-radius r? with energy E?, there is
a corresponding anti-brane saddle on the ‘second sheet’ at r? with energy −E (as defined
with respect to the Killing field ∂t). And by analytic extension this remains true of complex
saddles. However, the same symmetry implies the probe-brane/anti-brane actions to be I
and −I. Thus the pair contributes a net zero action which one might think suggests an
instability. But since this symmetry is also valid off-shell, the change in sign of the action
means that it maps descent contours for the brane to ascent contours for the anti-brane
and vice versa. This in turn suggests that if e.g. the brane descent contour can be deformed
to the defining contour then this will not be possible for the anti-brane descent contour.

Indeed, a sharp argument can be made by noting that the Lorentz-signature probe-
brane/anti-brane actions are real on the real section. They thus extend to functions on
the complex r-plane that satisfy IL(r∗) = (IL(r))∗, with ∗ denoting complex conjugation.

– 9 –
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For the Euclidean action IE = −iIL, this implies IE(r∗) = − (IL(r))∗. So if the brane
saddle at r? has actions IL?, IE?, then the anti-brane saddle on the 2nd sheet at r∗? has
actions −I∗L?, I∗E?. Thus for this pair of brane/anti-brane saddles our symmetry preserves
the magnitude of the path integral amplitude and so maps descent contours to descent
contours. Furthermore, since the defining contour for the double cone is invariant under
the CPT-like map defined by including this extra complex conjugation, the brane descent
contour through r? can be deformed to the defining contour if and only if the same is true
for the anti-brane descent contour through r∗? on the second sheet. In other words, using
the argument from the subsection above, it is guaranteed that any pair of brane/anti-
brane saddles that dominate our path integral will be of this form. In particular, if the
contribution from this latter pair is suppressed, then the zero-action pair described above
that both lie at r? cannot contribute.

We will thus study brane/anti-brane pairs of this latter form (brane at r?, anti-brane
on the second sheet at r∗?) in all cases below. And as foreshadowed above, we will always
find the saddles with useful descent contours to have ImIL > 0 (and so also ReIE > 0)
so that these contributions are indeed suppressed. At the level of a strict probe-brane
calculation this then indicates stability of the double cone.

However, when one considers back-reaction one must return to the issue of the mi-
crocanonical boundary conditions. Under the various symmetries above, the energy and
action transform in precisely the same way. This is to be expected, as for the static solu-
tions we consider the brane action takes the form IL =

∫
(pq̇ −Hbrane) = −HbraneT , with

Hbrane = E + qΦ in terms of the energy E, the brane-charge q, and the corresponding
potential Φ. The upshot is then that if our brane at r? has energy E?, then the anti-brane
at r∗? has energy −E∗? with respect to the KVF ∂t. The total energy contributed by the
pair is thus E? − E∗? = 2i ImE?, which will not generally vanish.

In many perturbative problems one could compensate for any non-zero boost energy
contributed by the branes by adjusting parameters in the double cone background. How-
ever, on-shell double cones exist only when the boost energy vanishes exactly. So shifting to
some non-zero (imaginary) value is not allowed. The physics of this result is essentially the
same as that for the brane charge, where Gauss’ law requires a strict source-free on-shell
double cone to have equal and opposite charges at the right and left boundaries.

As a result, unless E? happens to be real, it will not be possible to incorporate per-
turbative back-reaction from our branes using on-shell techniques. The correct approach
should be to include off-shell physics, but that is beyond the scope of this work.

In sections 4–6 we thus confine ourselves to a strict probe-brane analysis without
considering brane contributions to the total charges or their effect on the microcanonical
boundary conditions. The fact that we find all relevant saddles to be suppressed even
in this less stringent context is a strong argument for stability of the double cone. We
will, however, briefly return to the issue of back-reaction in section 7, where we highlight
the off-shell information required for a full analysis (though we leave its investigation for
future work).
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2.4 Remarks about boundary curvature

We conclude this already-lengthy overview section with a short remark about the role of
boundary curvature in brane nucleation instabilities in AdS. As pointed out in [20] (see
their equation (3.7)), if the asymptotically AdS space has a negative curvature boundary,
then the brane action is such that moving the branes closer to the boundary lowers the
Euclidean action. The branes thus want to fly off to infinity. This instability is reflected
in the boundary theory via conformal couplings of scalar fields, which act as negative
mass-squared terms if the boundary curvature is negative; see e.g. [59–61].

The story is different when the boundary curvature is positive. From the point of view
of the brane action, equation (3.7) of [20] is then modified by the replacement of cosh ρ by
sinh ρ:

(sinh ρ)d − d
∫ ρ

dρ′(sinh ρ′)d ∼ + 2d
2d(d− 2) e

(d−2)ρ , (2.1)

where crucially the sign is now different than in [20]. This means that the branes do not
want to run away to the boundary, and this agrees with the conformal couplings of the
scalars in the boundary CFT now endowing them with a positive mass-squared. Of course,
the above provides only an asymptotic analysis near the AdS boundary. The goal of this
paper is to perform a systematic analysis of the saddle points of the brane action everywhere
on the double cone geometry with positive curvature boundaries. In this context we find
no brane nucleation instabilities. Double cones with flat boundaries are treated in the
appendix.

3 Conventions and actions

This work studies configurations of Dp-branes and M-branes in various models. The two
cases are very similar, and we discuss each in turn.

The Dp-brane configurations descend from the supersymmetric Dp-brane action

IDp = −
∫

dp+1 σ e−
p−3

4 φ
√
−detG +

∫
C(p+1), (3.1)

where G is the pull-back of the target space metric in the Einstein frame to the brane
world-volume, φ is the dilaton and

C(p+1) = 1
(p+ 1)!ε

µ1µ2...µpµp+1 ∂x
a1

∂σµ1

∂xa2

∂σµ2
. . .

∂xap

∂σµp

∂xap+1

∂σµp+1
C(p+1) a1a2...apap+1 , (3.2)

where C(p+1) is the Ramond-Ramond (RR) target space potential. In particular, we can
consistently ignore contributions of the gauge field on the brane to the Born-Infeld term as
it will not be sourced by the background in the configurations studied below. The action
for anti-branes differs only by a sign in the second term. Below, we focus on backgrounds
with a Z2 symmetry exchanges the two boundaries and which also exchanges branes and
anti-branes. As a result, as described in section 2.3, it suffices to ignore anti-branes and to
compute the action for branes with the above signs so long as we allow such branes to lie
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on either side of our double cones. For simplicity we have set the brane tension to unity
in (3.1). We have written the action in Lorentzian signature, and we note that the path
integral weighting is

exp i IDp . (3.3)

The corresponding Euclidean action is thus IEuclidean
Dp = −iIDp.

In sections 4 and 5, we will be interested in adding such branes to spacetimes with
geometry SAdSd+1×X, where SAdSd+1 is a (d+1)-dimensional AdS-Schwarschild spacetime
and X is a compact manifold. In particular, with spherical boundaries the metric on
SAdSd+1 takes the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1 , (3.4)

with dΩ2
d−1 is the unit round metric on a (d− 1)-dimensional sphere and

f = 1 + r2

L2 −
2M
rd−2 , 2M = rd−2

+

(
1 +

r2
+
L2

)
, (3.5)

in terms of the horizon area-radius r+ and the AdS scale L. The full solution will also
involve various matter fields so as to solve the relevant supergravity equations of motion.
In particular, AdS compactifications of 10-dimensional supergravity are associated with
fluxes for a U(1) gauge field that — in an electric representation — may be thought of as
a d-form potential with (d + 1)-form field strength F supported on the SAdSd+1 factor.8

For any given model, there are a variety of branes that we could consider adding in various
configurations. However, one expects that the branes most likely to activate an instability
are those where the above flux acts to lessen the branes’ attraction to the black hole. We
thus focus below on branes with p = d − 1 with the d = (p + 1) spacetime dimensions
along the brane oriented to lie “in the same directions” as the conformal boundary of
the SAdSd+1 factor. We also take the brane configuration to preserve the symmetries
of the SAdSd+1 factor, so in practice this places each brane at a constant value of the
Schwarzschild area-radius coordinate r.

The above features are common to each model below. Furthermore, we restrict atten-
tion to models with vanishing dilaton (φ = 0) and which live in supersymmetric theories.
The latter condition fixes the relative normalization of the two integrands in (3.1) at the
conformal boundary of SAdSd+1. Taken together, these features allow a uniform treatment
of all string-theoretic models.

As an illustrative example, we now supply further details for the familiar case p = 3
in which we consider type IIB supergravity solutions that are asymptotically AdS5 × S5.
In the relevant solutions the only non-trivial bosonic fields are the self dual five-form F(5)

8In some cases there may be additional fluxes as well, though they are typically related to the aforemen-
tioned flux by some sort of symmetry (at least after Kaluza-Klein reduction on X).
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and the ten-dimensional metric G. For this particular sector, the equations of motion read

F(5) = dC(4) (3.6a)

F(5) = ?10F(5) (3.6b)

GRAB = 1
96F(5) ACDEFF

CDEF
(5) B (3.6c)

where ?10 is the ten-dimensional Hodge operation with respect to G, GRAB are the compo-
nents of the Ricci tensor associated with G, C(4) the RR 4-form potential and upper case
Latin indices are ten-dimensional.

For most of this work we are interested in studying configurations arising in five-
dimensional minimal gauged supergravity, whose action comprises a five-dimensional metric
g and a five-dimensional gauge field F = dA

I5D = 1
16πG5

∫
M

√
−g

(
R+ 12

L2 −
1
4F

abFab + 1
12
√

3
εabcdeFabFcdAe

)
, (3.7)

where R is the Ricci scalar associated with g, lower case Latin indices are five-dimensional
indices and L is the five-dimensional cosmological constant.

Solutions to the equations of motion derived from eq. (3.7) are known to uplift to
solutions of type IIB supergravity via [62–64]

ds2 = gab dxa dxb + L2
[(

dΨ + A− A√
3L

)2
+ dS2

CP2

]
(3.8a)

G(5) = − 4
L

Vol5 −
L3

2
√

3
J ∧ ?5F , (3.8b)

F(5) = G(5) + ?10G(5) , (3.8c)

where Vol5 is the volume form of g, ?5 is the five-dimensional Hodge dual operation ob-
tained using g, dS2

CP2
is the standard Fubini-Study metric on CP2 and J = dA is its

associated Kähler form. Note that if A = 0 one recovers the standard Freund-Rubin com-
pactification [65]. One can then use the above to compute the action (3.1) for D3 branes
at constant r and constant location on the S5 to find that the brane contributes a path
integral weight

exp iIDp = exp
{
−iT Ωd−1

[
rd−1

√
f(r)−

rd − rd+
L

]}
, (3.9)

where Ωd−1 is the area of a unit round (d− 1)-dimensional sphere and we have written the
answer in a form where it in fact applies to all models considered below for any p = d− 1.
Again we remind the reader that we have set the brane tension to unity.

In fact, the expression (3.9) also applies to M-theoretic models. Since M-theory con-
tains M2-branes and M5-branes, such models are relevant to d = 3 and d = 6. In particular
they pertain to configurations that result from embedding Schwarzschild-AdS black holes
with d = 3 and d = 5 in eleven-dimensional supergravity. From the higher-dimensional
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perspective, these backgrounds asymptote to AdS4 × S7 and AdS7 × S4, respectively. In
that case the supersymmetric probe-brane action is

ĨMp = −
∫

dp+1 σ
√
−detG +

∫
C(p+1) , (3.10)

with p = 2, p = 5 for the AdS4 × S7 and AdS7 × S4 cases, respectively. Eq. (3.10) differs
from (3.1) mostly by deleting the dilaton factor. However, since we restrict analysis below
to those string-theoretic cases in which the dilaton vanishes, our treatment of M-branes
will be essentially identical to our treatment of D-branes.

In particular, it turns out that eq. (3.9) again describes the weight that each M-brane
contributes to the path integral. This can be verified in detail using the standard Freund-
Rubin compactification [65] to relate the AdS4 and AdS7 theories to eleven-dimensional
supergravity. For reference purposes, our conventions are that the equations of motion of
eleven-dimensional supergravity read

GRAB −
GR

2 GAB = 1
12

[
F(4) ACDEF

CDE
(4) B − GAB

8 F(4) CDEFF
CDEF

(4)

]
(3.11a)

d ?11 F(4) = 1
2F(4) ∧ F(4) , (3.11b)

where F(4) = dC(3). Upper case Latin indices are now eleven-dimensional. In this case
the lower dimensional theories are just Einstein-Hilbert gravity endowed with a negative
cosmological constant.

4 AdS5

As a warm up for the more general cases studied below, we begin by taking A = 0 in
eqs. (3.8) and focus on Schwarzschild-AdS5 black holes with a spherical horizon. The five-
dimensional metric is simply given by (3.4) with d = 4. The horizon is the null hypersurface
r = r+ where f vanishes linearly. The Hawking temperature, entropy and energy of this
black hole spacetime are

TH = 1
2πr+

(
1 +

2r2
+

L2

)
, SH =

π2r3
+

2G5
and EH =

3πr2
+

8G5

(
1 +

r2
+
L2

)
, (4.1)

respectively. It can be readily checked that these quantities satisfy the first law of black
hole thermodynamics and that the specific heat of these black holes becomes negative for
r+/L < 1/

√
2, divergent at r+/L = 1/

√
2 and positive for r+/L > 1/

√
2. Furthermore,

the Hawking-Page transition occurs at r+ = L, which the black hole solution becoming
dominant in the canonical ensemble for r+ > L [66].

To bring our analysis as close as possible to [10], we introduce a new coordinate ρ
defined by

r =
√
r2

+ + (L2 + 2r2
+) sinh2 ρ , (4.2)
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with ρ ≥ 0 corresponding to the right side of the eternal Schwarzschild-AdS5 black hole.
In these new coordinates the line element (3.4) becomes

ds2
5D = −

(1 + 2y2
+)2 cosh2 ρ

y2
+ + (1 + 2y2

+) sinh2 ρ
sinh2 ρ dt2 + L2 dρ2 + L2

[
y2

+ + (1 + 2y2
+) sinh2 ρ

]
dΩ2

3 ,

(4.3)
where we defined y+ ≡ r+/L. The above metric is singular at ρ = 0, since the metric
degenerates there. This singularity could be avoided if we worked in Euclidean signature
and identified the period of Euclidean time appropriately. However, here we want to keep
the period of the Lorentzian time t as being T , so there is a genuine singularity at ρ = 0.
There are also curvature singularities, which in Schwarzschild coordinates occur at r = 0,
and are now mapped to the complex plane

ρ± jsing = ± i arcsin

 y+√
1 + 2 y2

+

+ i j π (4.4)

with j ∈ Z. In the ρ coordinates, the action from (3.9) for the D3-branes becomes

i ID3(ρ) = iT π2L3(1 + 2y2
+) e−ρ sinh ρ

[
y2

+ sinh(2ρ)− (1 + y2
+) cosh(2ρ)− y2

+ + 1
]
. (4.5)

The analysis of anti-branes follows by symmetry as described in section 2.3.9

Searching for saddle points in the complex ρ plane is a tedious exercise, but can
nevertheless be done analytically. We find three different classes of saddles, which can be
written as

ρI j? = −1
2 logXI + i

(
j − 1

2

)
π (4.6a)

with j ∈ Z, I ∈ {1, 2, 3} and

X1 = 1
1 + 2y2

+

{
cosh

[1
3arccosh (1 + 8 y2

+ + 8 y4
+)
]
− 1

2

}
, (4.6b)

X2 = 1
1 + 2y2

+

{
cosh

[1
3arccosh (1 + 8 y2

+ + 8 y4
+) + 2π

3 i
]
− 1

2

}
, (4.6c)

X3 = 1
1 + 2y2

+

{
cosh

[1
3arccosh (1 + 8 y2

+ + 8 y4
+) + 4π

3 i
]
− 1

2

}
. (4.6d)

We note that X1 is real, and X2, X3 are complex, with X2 having positive imaginary part
and being the complex conjugate of X3. I t is also straightforward to show that X1, X2

and X3 satisfy

X1 +X2 +X3 = − 3
2(1 + 2y2

+)
. (4.7)

9Explicitly, the weighting in the brane path integral is exp(i ID3(ρ)) and the weight in the anti-brane
path integral is exp(−i ID3(−ρ)).
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It is now a simple matter to evaluate the real part of the action (4.5) on the corresponding
saddles, for which we find

Re
[ i
TL3 ID3

(
ρ1 j
?

)]
= 0 , (4.8a)

Re
[ i
TL3 ID3

(
ρ2 j
?

)]
= 3
√

3π2

8 sinh
(2χ

3

)[(1 + 2y2
+)2

cosh(2χ) − cosh
(2χ

3

)]
, (4.8b)

Re
[ i
TL3 ID3

(
ρ3 j
?

)]
= −3

√
3π2

8 sinh
(2χ

3

)[(1 + 2y2
+)2

cosh(2χ) − cosh
(2χ

3

)]
, (4.8c)

with
χ = log

(√
1 + y2

+ + y+

)
. (4.8d)

The saddles with the most potential danger are ρ2 j
? , for which (4.8b) is positive definite;

the corresponding quantities are negative definite or identically zero for the other saddles.
Note that the action is independent of the j index, as only exp(2ρ) enters actions and
equations. However, finding a saddle is not enough to show that it actually contributes to
the path integral, as discussed in detail in section 2.2.

Our initial contour C is given by

C = {ρ ∈ C : ρ = x− i ε with x ∈ R} , (4.9)

where ε > 0 is taken to be small. This contour is chosen in such a way that eiID3 decays
as |x| → +∞. Furthermore, since ε > 0 we avoid the singularity at ρ = 0. The initial
contour is the dashed magenta line in figure 4, it runs parallel to the real ρ axis, and slightly
below it.

We now proceed to numerically find the paths of steepest descent associated with each
of our saddles. We show these saddles and a density plot of Re (iID3(ρ)) in figure 4, taking
r+ = L. The red disks indicate the location of the singularities, the singularity at ρ = 0 is
the orbifold singularity at the bifurcation point. The purple diamonds are saddles of type
ρ1 j
? , the black triangles are saddles of type ρ2 j

? , and the blue squares are saddles of type
ρ3 j
? . Also shown are the paths of steepest descent through ρ1 j

? (dotted purple line) and
through ρ3 j

? (solid blue line).
We find that we can smoothly deform the original contour to the steepest descent

contour through the blue square (the solid blue line), while keeping the contribution from
the asymptotic ends suppressed. This is the saddle we called ρ3 j

? (with j = 0), and on this
saddle, we have Re(iID3) < 0.10

To double check our calculation, we verified numerically that the integral along the
steepest descent path and along our original contour agree to very high accuracy. As
described in section 2.2, this means that no other saddle can be more dominant. But for

10The Z2 symmetry discussed in section 2.3 implies that the relevant saddle for the anti-brane will be at
−(ρ3 j

? )∗. Also, as noted in section 2.3 and as can be easily checked explicitly in this case, the on-shell value
of Re (iID3) is the same for the brane and anti-brane.
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Figure 4. A density plot of Re
(
iID3/L

3T
)
in AdS5 showing saddles and relevant contours for

r+ = L. The red disks are singuarlities, with ρ = 0 being the orbifold singularity of the double cone
at the black hole bifurcation surface. The magenta dashed line is slightly below the real axis, and
we take it to be the defining contour for our path integral. The blue square corresponds to ρ3 j

? ,
and the blue line through it is the steepest descent contour. The defining contour can be deformed
to this, so we find a contribution to the integral from this saddle. But (4.8c) has negative real
part, so this contribution is suppressed; it does not induce a brane nucleation instability. The black
triangle corresponds to ρ2 j

? , and the purple diamonds correspond to ρ1 j
? . The steepest descent path

through the purple saddle is also shown, but any deformation to the defining contour is obstructed
both by regions of large brane amplitude (shaded in red) and the black hole singularity (associated
with the red disk below the real axis). The constant phase contour (not shown) that descends from
the black triangle in fact also passes through the blue dot, near which it is the contour of steepest
ascent; the amplitude then grows without bound as one continues further along this contour.

completeness we include discussion of descent contours through the other saddles in the
caption of figure 4, making manifest that they cannot be deformed to the defining contour.

Note, however, that the contour of steepest descent through a saddle described by
a purple square is also asymptotically suppressed at both ends. But the initial contour
cannot be deformed to this contour without crossing over one of the red dots in figure 4 at
Im ρ 6= 0, corresponding to the black hole singularity at r = 0. So the purple saddles are
not relevant to the desired calculation.

5 General dimensions

We now establish the absence of brane nucleation instability on the double cone in arbitrary
dimensions (as usual, at the strict probe-brane level). We work in AdSd+1 with d ≥ 3.
Section 4 studied the case of d = 4, but as described in section 3 the general case is similar
and involves branes with p = d− 1.
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We work directly in the r-coordinate without attempting to introduce an analogue of
the ρ-coordinate (4.2). The brane contributes to the path integral a weight given by (3.9).
Note that f ≈ r2/L2 at large r so that the area and volume terms almost cancel; this is a
consequence of working in a supersymmetric model. The extremization of the brane action
yields the equation

1
2f
′ rd−1 + frd−2(d− 1) = d rd−1

L

√
f . (5.1)

Only the right hand side involves a square root. The extremization equation can be squared
and simplified to a polynomial equation involving four terms. The saddle point value r?
satisfies

r
2(d−1)
? d (d− 2)

L2 + r
2(d−2)
? (d− 1)2 − 2 rd−2

? d(d− 1)M + d2M2 = 0 . (5.2)

We also find a very simple expression for the on-shell action

exp iI? = exp
{
− iT Ωd−1

L

[
d− 1
d

L2 rd−2
? − L2M + rd+

]}
. (5.3)

A saddle that dominates over the configuration with no branes should thus have
Im (rd−2

? ) > 0.

AdS4: figure 5 shows a density plot of density plot of Re (iIM2) in AdS4 indicating saddles
and relevant contours in the complex r plane for r+ = L. Other values of r+ are similar.
As in AdS5, we can identify a saddle on a global descent contour that can be deformed to
the defining contour for our integral. And again the relevant saddle has Re (iIM2) < 0. As
described in section 2.2, no other saddle can be more dominant,11 so the system is stable
to brane nucleation.

Higher dimensions: increasing d increases the degree of the polynomial equation to be
solved for saddles. We thus find an increasing number of branch points in the r plane
located at roots of f . Typical cases for AdS7 are shown in figure 6. The most relevant
structures are similar to that seen in AdS4, especially near the line (blue curve) of steepest
descent that can be deformed to the defining contour. However, the detailed structure
of branch points and branch cuts depends on r+ as shown in the figures. As above, the
relevant saddle has Re (iIM7) < 0 indicating stability with respect to brane nucleation.
We have checked that these statements remain true for all 3 ≤ d ≤ 20. This includes
many cases that cannot correspond to microscopic supersymmetric theories, but where our
universal form can be studied nonetheless.

Large d limit: the above numerical results suggest that the double cone is stable to
brane nucleation for all d ≥ 3. An analytic treatment also becomes possible in the large d

11We have also checked explicitly that no other saddle lies on a global descent contour that can be
deformed to the defining contour.
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0.
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Figure 5. A density plot of Re (iIM2) in AdS4 showing saddles and relevant contours in the complex
r plane. We take r+ = L. The red dots are branch points for the action, which now include all
singularities of the double cone spacetime (though some branch points also occur at smooth points
of the double cone spacetime). The dashed magenta curve is the defining contour for our integral.
The blue dots are saddles, and one of these has a global descent contour (solid blue line) that can
be deformed to the dashed magenta curve. The relevant saddle has Re (iIM2) < 0. As described in
section 2.2, no other saddle can be more dominant (and we have again checked explicitly that the
other saddles fail to lie on useful descent contours), so the system is stable to brane nucleation.

-1. × 103

-5. × 102

0.

5. × 102

1. × 103

-5. × 104

-2.5 × 104

0.

2.5 × 104

5. × 104

Figure 6. A density plot of Re (iIM5) in AdS7 showing saddles and relevant contours in the complex
r plane. We use the same conventions as in figure 5, with the steepest descent contour that can
be deformed to the defining contour shown in solid blue. Again, its saddle has Re (iIM5) < 0
and indicates stability with respect to brane nucleation. The details of the branch point structure
change at r+/L =

√
3. The left panel was generated with r+ = L/2, whereas on the right panel we

have r+ = L.
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limit, where we take the limit d→∞ while keeping r+ fixed. We make the ansatz12

r? = r+

∞∑
i=0

α(i)
di

, (5.4)

and determine the coefficients α(i) in an expansion of eq. (5.2) at large d. We find that
α(0) = 1, which means that as d → +∞, r∗ approaches r+. The next to leading order
coefficient reads

4e2α(1) − 4eα(1) + y2
+ + 1 = 0 , (5.5)

where recall that we defined r+ ≡ y+ L. This equation can be readily solved to give

αj(1) ± = 2π j i + log
[1

2(1± iy+)
]
, (5.6)

with j ∈ Z and we defined the log so that log z = log |z| + i arg z with −π < arg z < π.
Keeping the root closest to the real axis and with a negative imaginary part (which we
expect to be the relevant one, though this is nontrivial to check in detail), we find

r? = r+

{
1 + 1

d
log

[1
2(1− iy+)

]
+ O(d−2)

}
. (5.7)

As d→∞ this value approaches the horizon r = r+ from the lower half plane (i.e., with
a small imaginary part). Note also that (5.7) gives us the value of the on-shell action (5.3)
in the large d limit, for which we find

exp iI? = exp
{
−
T rd−1

+ Ωd−1
2 (1 + i y+)

[
1 + O(d−1)

]}
, (5.8)

and we see that the brane action is suppressed. This provides a further check on the claim
that any d ≥ 3 is qualitatively similar to the d = 3 case shown in figure 5.

We thus find the Schwarzschild double cone to be stable to brane nucleation at the
strict probe-brane level in any AdSd+1 with d ≥ 3.

6 The Cvetič-Lü-Pope black holes

Here we study a family of charged Kerr-AdS black holes in five dimensions with two equal
angular momenta whose line element and gauge field read

ds2 = −f
h

dt2 + dr2

f
+ r2

4 (σ2
1 + σ2

2) + r2

4 h (σ3 −W dt)2 , (6.1a)

A =
√

3Q̃
r2

(
dt− J̃

2 σ3

)
, (6.1b)

12We determine all coefficients to i = 4, when the error in eq. (5.4) compared with the exact results in
d = 6 where well under the one percent level.
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where σ1, σ2, σ3 are the usual left-invariant 1-forms of S3 with

σ1 = cosψ sin θ dφ− sinψ dθ , (6.2a)
σ2 = sinψ sin θ dφ+ cosψ dθ , (6.2b)
σ3 = dψ + cos θ dφ , (6.2c)

and

f = r2

L2 + 1− 2M̃
r2 (1− χ) + Q̃2

r4

(
1− J̃2

L2 + 2M̃L2χ

Q̃2

)
, (6.3a)

W = 2J̃
r2h

(
2M̃ + Q̃

r2 − Q̃2

r4

)
, (6.3b)

h = 1− J̃2Q̃2

r6 + 2J̃2(M̃ + Q̃)
r4 , (6.3c)

where L2χ ≡ J̃2(1 + Q̃/M̃). The constants M̃ , Q̃ and J̃ parameterize the energy EH ,
electric charge Q and angular momentum J as

EH = 3M̃π

4G5

(
1 + χ

3

)
, (6.4a)

Q =
√

3LπQ̃
4G5

, (6.4b)

J = J̃π

4G5
(2M̃ + Q̃) . (6.4c)

The line element (6.1a) enjoys U(2) symmetry, which is the reason why it can be written
as a cohomogeneity-1 spacetime, whose homogeneous surfaces are surfaces of constant r.

The black hole event horizon is the null hypersurface r = r+, with r+ being the largest
real positive root of f(r). In the static limit, where J̃ = 0, this solution reduces to the
familiar Reissner-Nordström black hole with AdS asymptotics, whereas in the uncharged
limit, where Q̃ = 0, it yields the equal angular momenta Kerr-AdS black hole first found
in [67] and subsequently in [68]. Perhaps more importantly, if we set

M̃ = M̃BPS ≡ r2
+

(
1 +

3r2
+

2L2 +
r4

+
2L4

)
(6.5a)

Q̃ = Q̃BPS ≡ r2
+

(
1 +

r2
+

2L2

)
, (6.5b)

J̃ = J̃BPS ≡
Lr2

+
r2

+ + 2L2 , (6.5c)

the solution becomes the one-parameter family of supersymmetric black holes found in [69,
70]. Although the parameters M̃ , Q̃, J̃ allow us to easily write all metric functions, it turns
out to be more beneficial to write f in terms of r+ and the radius of the Cauchy horizon
r− ≤ r+. Using the fact that f vanishes at the Cauchy horizon and at the black hole event
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horizon, we can invert the relation between M̃ and Q̃ as a funtion of r+ and r−. In terms
of r+ and r− the function f(r) simplifies considerably, namely

f(r) =
(r2 − r2

+)(r2 − r2
−)(r2 + L2 + r2

− + r2
+)

L2r4 . (6.6)

As usual, we expect the D3-brane action to be minimized by branes that respect the
symmetry. Due to the above-mentioned U(2) symmetry, this requires r to be constant over
the brane worldvolume. Using our embedding formula (3.8) together with the D3-brane
action (3.1) then gives an action for D3-brane probes that is remarkably similar to (3.9)
with d = 4, namely

iID3(r) = 2iπ2T

L

[
r4 − r4

+ − Lr3
√
f(r)

]
, (6.7)

but now with f(r) given as in (6.6). We are thus left with

iID3(r) = 2iπ2T

L

[
r4 − r4

+ − r
√

(r2 − r2
+)(r2 − r2

−)(r2 + L2 + r2
− + r2

+)
]
. (6.8)

There are six branch points in the complex r plane located at

rbranch =
{
±r+,±r−,±i(L2 + r2

− + r2
+)
}
, (6.9)

and we choose the branch cuts as in figure 7.
It is no longer possible to find the saddle points of (6.8) in closed form because the

resulting equations for determining r? turn out to be a quintic polynomial in r2. However
they can be found numerically.

Results for r+ = L and r− = L/5 are described in figure 7. For this case we can again
find a steepest descent contour that can be deformed to our defining contour, and as above
the relevant saddle has Re (iID3) < 0. So the system is stable to brane nucleation. We
will refer to this saddle as r! below, with the notation indicating that it is the only saddle
relevant to the stationary phase approximation.

Other values give similar results when either r+ or r− are small. However, even our
subleading saddle-point contribution disappears when both r+ and r− are sufficiently large.
This can be shown analytically by investigating the discriminant of the above-mentioned
quintic.

We will not present here a detailed analysis of the discriminant as it requires a rather
tedious calculation. However, one can prove that for a given value of r+ > L, a value of
r−(r+) exists such that r! becomes real, signaling a phase transition. At the transition,
the steepest descent contour through r! passes through the branch point. And after the
transition, the descent contour crosses through the cut and can no longer be deformed to the
defining contour. So then even the contribution of this subdominant saddle disappears.13

Furthermore, one can determine r−(r+) explicitly as a particular root of a quartic
polynomial. For r+ > L this r−(r+) becomes less than r+, so the phenomenon becomes

13When this happens, we can no longer argue that other saddles fail to contribute just by studying the
contour for r!. But a direct check of the descent contours for other saddles again shows that they fail to
contribute.
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Figure 7. A density plot of Re (iID3) for a Cvetič-Lü-Pope black hole with r+ = L and r− = L/5.
We use the same conventions as in figure 5, with the (unique!) steepest descent contour that can
be deformed to the defining contour shown in solid blue. Again, its saddle (which we call r!) has
Re (iID3) < 0. So as described in section 2.2, no other saddle can be more dominant and our results
indicate stability with respect to brane nucleation.

relevant to physically allowed black holes. The case r+ = L is special, as r−(r+) = r+,
so the saddle merely merges with the branch point r = r+ at extremality (r− = L) but is
otherwise complex. For r+ < L and r− < r+, we find that r! is always complex.

We have also studied the uplift of the standard Reissner-Nordström black hole to
eleven-dimensional supergravity using the results in [62]. The conclusions are identical to
those for Cvetič-Lü-Pope black holes described above.

7 Discussion

Our work above studied the possibility of brane nucleation in the double cone spacetime.
As described in section 2, at the strict probe-brane level this reduces to finding complex
saddle points for the probe-brane action and studying their action. We studied general
microscopic models in M-theory or in string-theory where the double cone has vanishing
dilaton and where the vacuum is AdSd × X for some compact X. Schwarzschild double
cones were studied in sections 4 and 5, but more general charged and rotating models were
also studied in section 6.

In all cases with positively-curved boundaries we find that saddles either yield sup-
pression relative to the original double cone without branes, or else the saddle fails to lie
on a global descent contour that can be deformed to the original contour of integration.
This argues that double cones in such theories are stable to brane nucleation, and thus that
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they dominate the semiclassical bulk path integral for the boundary spectral form factor
in the ramp regime tramp � T � eS .

Cases with flat (toroidal) boundaries are studied in the appendix. While there are no
strict instabilities, the brane action remains bounded at infinity. As a result, the integral
over brane configurations makes the path integral diverge and the double cone does not
dominate the SFF. As is also briefly discussed in the appendix, this nevertheless consis-
tent with expectations from the dual field theory (which in this case suffers from an IR
divergence in its density of states).

As described in section 3, our study was limited in three ways. First, we considered only
brane configurations that preserved the Killing symmetries of the asymptotically AdSd+1
factor. While this restriction is natural, and while it may in fact be that all saddles are
of this form, it would be useful for future work to fill in this gap. Second, we did not
investigate the possibility of field-theoretic negative modes. We mention that [42] will
discuss such issues for related constrained instantons, but it would be interesting to probe
the issue directly for our complex saddles.

However, the third limitation may be the most interesting. This was the fact that
we have thus far neglected brane back-reaction, and that — as discussed in section 2.3
— such back-reaction raises complications for the microcanonical boundary conditions
associated with the SFF. Recall that considering a brane/anti-brane pair means that we
add no net charge and thus preserves the fixed-charge boundary conditions of the double
cone background, but that the relevant pairs contribute a net imaginary energy 2i ImE?
associated with the Killing field ∂t. In perturbation theory this Killing energy becomes
related to the difference in ADM energies on the two boundaries, so including back-reaction
would appear to violate the boundary conditions that fixed the energy of the original double
cone to be the same on both ends.

In many contexts, one could compensate for the addition of Killing energy 2i ImE? by
adjusting parameters in the background. But the on-shell double cone exists only when
the ADM energies at the two ends agree (so that the total Killing energy defined by ∂t
vanishes). So this option is not available.

At the saddle point level one may nevertheless declare victory. Since no backgrounds
exist that can compensate for the addition of Killing energy 2i ImE?, the perturbative
addition of such branes cannot lead to new saddles that might dominate over the original
double cone. Perturbation theory for saddles thus gives no reason to doubt the dominance
of the original double cone. But this approach is unsatisfying, as it leaves us with no way
to analyze the actual physics associated with the addition of such branes. Let us thus take
another look at this issue.

Recall [10, 71] that a microcanonical ensemble can be represented as an integral over
canonical ensembles. In particular, the microcanonical SFF with energy E and energy-
width ∆E can be written∫

dβLdβR 〈Z(βL − iT )Z(βR + iT )〉 exp
(
(βL + βR)E + (β2

L + β2
R)∆E2

)
. (7.1)

While there is no bulk saddle for 〈Z(βL− iT )Z(βR+ iT )〉, in analogy with either the lower-
dimensional results of [10] or the constrained-instanton results of [72] one may expect to
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be able to write

〈Z(βL − iT )Z(βR + iT )〉 =
∫

db e−Igrav(βL−iT,βR+iT,b) + . . . , (7.2)

where b is the constraint parameter to be integrated over last, and for some Euclidean
gravitational effective action Igrav(βL− iT, βR + iT, b) associated with off-shell double cone
contributions. The dots indicate additional contributions, such as from double cones with
additional branes. In particular, including a term with a single brane/anti-brane pair would
yield

〈Z(βL − iT )Z(βR + iT )〉 =
∫

db e−Igrav(βL−iT,βR+iT,b)

×
(

1 +
∫

dρbdρb e
−[Ibrane(ρb;βL−iT,βR+iT,b)+Ianti-brane(ρ

b
;βL−iT,βR+iT,b)] + . . .

)
.

(7.3)

Here ρb and ρb denote the positions of the brane and anti-brane respectively.
A full analysis would then consist of performing the integrals in (7.3) and comparing

the results for the terms with and without branes. It would be interesting to return to
this task in future work. However, given that the ramp is relevant for large values of T
(so long as T � eS), a full analysis may require a great deal of control over the effective
action Igrav(βL− iT, βR + iT, b) summarizing off-shell contributions. In particular, suppose
that Igrav is evaluated by performing some of the integrations in our path integral in the
stationary phase approximation. In simple contexts like those studied in [72], the result
becomes independent of T due to cancellations between the left and right sides of the
double cone. But general off-shell contributions may nevertheless depend on T . Though
they will come with a small coefficient which vanishes in the semiclassical limit, such terms
may nevertheless become relevant at exponentially large times. We are thus unable to rule
out novel behavior at large T , including the potential for new instabilities.

Of course, even if stability of the double cone were to be fully confirmed, the precise
implications for AdS/CFT would remain a subject of debate. The double cone contribution
to the SFF gives a precisely-linear ramp and violates boundary factorization. So unless
further UV ingredients in the bulk can provide large corrections, this would then require
the bulk theory to be dual to an ensemble of CFTs; see associated comments in section 1.
On the other hand, if e.g. bulk string field theory could provide such corrections, then one
would expect them to introduce detailed structure in the ramp regime but to nevertheless
maintain the simple qualitative features associated with the double cone at some coarse-
grained level. In particular, to be consistent with expectations from quantum chaos, the
double cone would still need to dominate calculations of the spectral form factor when one
averages the time parameter T over windows that are small on macroscopic scales but large
on microscopic scales; see e.g. [41]. In either case, our results indicate that the double cone
will remain a robust part of the description of the spectral form factor in UV-complete
higher-dimensional models.
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A BTZ and higher-dimensional black holes with torus boundaries

In this appendix we consider the case when the boundary has topology Td ≡ (S1)d and is
thus flat. We are particularly interested in the cases with d = 2, 3, 4, 6.

The d = 2 case corresponds to a BTZ black hole [73], whose uplift to ten-dimensional
type IIB supergravity we have not yet discussed. To this end we consider type IIB su-
pergravity with only the ten-dimensional metric (10)g, Ramond-Ramond three-form F(3) ≡
dA(2) and dilaton φ. The corresponding equations of motion are

(10)RAB= 1
2

(10)∇Aφ(10)∇Bφ+ eφ

4

[
F(3)ACDF

CD
(3)B −

(10)gAB
12 F(3)CDEF

CDE
(3)

]
,

(A.1a)

d
(
eφ ?10F(3)

)
=0, (A.1b)

�φ− e
φ

12F(3)ABCF
ABC

(3) =0, (A.1c)

where ?10 is the Hodge operation associated with the ten-dimensional metric (10)g, (10)∇ its
associated metric-compatible connection and upper case Latin indices are ten-dimensional.

Consider the following ten-dimensional field configuration

ds2 = gabdxadxb + L2dΩ2
3 + dz2

1 + dz2
2 + dz2

3 + dz2
4 (A.2a)

F(3) = − 2
L

Vol3 + 2L2 d3Ω3 (A.2b)

and

φ = 0 , (A.2c)

where d3Ω3 is the volume form on a round 3-sphere, Vol3 is the volume form of the three-
dimensional metric (10)g. Inserting the Ansätze (A.2) into the 10-dimensional equations of
motion (A.1) yields a set of three-dimensional equations for g which can be derived from
the following three-dimensional action

S3d =
∫
M

d3x
√
−g

(
R+ 1

L2

)
. (A.3)
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In particular, the BTZ black hole can be uplifted to a solution of ten-dimensional type IIB
supergravity following the formulae above.

Returning to general d, all the metrics we wish the investigate take the following form

ds2 = −f(r)dt2 + dr2

f(r) + r2
d−1∑
i=1

dx2
i , (A.4a)

with
f(r) = r2

L2 −
rd+

L2rd−2 (A.4b)

where xi are coordinates on Td and the black hole event horizon is the null hypersurface
r = r+. Before proceeding we introduce a new coordinate ρ defined via

r = r+ cosh
2
d

(
d ρ

2

)
. (A.5)

with ρ = 0 being the birurcating Killing surface. In terms of the ρ coordinates the line
element (A.4a) becomes

ds2 = −
r2

+
L2 cosh

4
d

(
d ρ

2

)
tanh2

(
d ρ

2

)
dt2 + L2dρ2 + r2

+ cosh
4
d

(
d ρ

2

) d−1∑
i=1

dx2
i . (A.6)

It is now a simple exercise to compute the on-shell brane action for D1-branes (d = 2),
M2-branes (d = 3), D3-branes (d = 4) and M5-branes (d = 6) for which we find

iId =
i rd+ T VTd−1

2L
(
e−d ρ − 1

)
(A.7)

where VTd−1 is the volume of Td−1.
At large positive ρ, the action approaches a constant, and thus the brane contribution

to the path integral is divergent. This is a well-known effect; see e.g. [59–61]. In particular,
for d = 2 the theories dual to AdS3 that have BPS branes are 2d sigma models with a
non-compact target space. The density of states, being proportional to the volume of the
non-compact target space times a continuous function, is thus, strictly speaking, infinite.
Hence, we do not expect a ramp in the spectral form factor.

If we consider higher dimensional AdS black holes with toroidal boundaries, the con-
tribution to the path integral from brane configurations again diverges. The interpretation
in the dual field theory is similar.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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