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We construct a supergravity model whose scalar degrees of freedom arise from a chiral superfield and
are solely a scalaron and an axion that is very heavy during the inflationary phase. The model includes a
second chiral superfield X, which is subject however to the constraint X2 =0 so that it describes only a
Volkov-Akulov goldstino and an auxiliary field. We also construct the dual higher-derivative model, which
rests on a chiral scalar curvature superfield R subject to the constraint R? = 0, where the goldstino dual

arises from the gauge-invariant gravitino field strength as ™ Dy, .. The final bosonic action is an R + R?
theory involving an axial vector A, that only propagates a physical pseudoscalar mode.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Starobinsky models of inflation in supergravity

It was recently shown how to embed in supergravity [1] a class
of models [2] including the Starobinsky potential [3], which affords
an excellent agreement with recent PLANCK data [4] for an infla-
tionary epoch of about 60 e-folds. However, the models based on
the “old minimal” supergravity rest on a pair of chiral superfields
(see also [5-7] for closely related work), and thus involve three
scalar fields in addition to the inflaton.

The construction reflects the Starobinsky duality [3,8] between
an R + R? action and a special scalar-gravity system, encompassed
by the master action

1
S :/d“xf—g[ERJrX(R —9) +a¢2], (11)
which reduces to
1 1
S :/-d4x4/_—g —(142))R— —x? (12)
2 4o

upon integration over ¢. On the other hand, x enters Eq. (1.1) as a
Lagrange multiplier imposing the constraint ¢ = R, and enforcing
it leads to the dual form
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82:/d4x\/—_g|:%R +o¢R2}. (1.3)

The embedding of this model in (higher-derivative) supergravity
takes the form [9,2]

_ R _ R
z::[—sosoJrh(E,_—)soso] +[W<—) 3} , (14)
So So D So F

where here and in the following subscripts identify D and F su-
perspace densities, Sg is the chiral compensator field and R is the
chiral scalar curvature superfield, defined via the curved chiral pro-
jector X' as

X(S
R ( 0)'
So

In Eq. (1.4) h is a real function of the chiral superfield R/Sp and
its conjugate R/So that contains an RR term and W is a chiral
function. The presence of the RR term in h brings about an R?
term in components.

In detail, the components of the chiral superfield R are [1,10,2]

(1.5)

1.1 1
R= (a =S+iP, Y™ Dpim, —5R- §A§1 +iD™ Ay — 5uﬁ>,

(1.6)
where u and Ay, are the “old minimal” auxiliary fields of N =1

supergravity and v, is the gravitino field. The action (1.4) can be
recast in a two-derivative dual form proceeding along the lines of
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Eqgs. (1.1) and (1.2) and making use of a pair of chiral multiplets A
and C as in [9,2], so that

L£=[—-S0So+h(C.,C)SoSo], + “A(C — SE) + W(C)}Sg] .
0 F

(1.7)

Eliminating A in (1.7) yields the constraint R = SoC, and one
recovers in this fashion the original Lagrangian (1.4). Notice, to this
end, that letting

W(C) =Cg(C) + W, (1.8)

on account of the identity [1,2]

[f(ARSF]; +hc.=[(f(A)+ F(A))SoSo],, + tot. deriv., (1.9)

which holds for any chiral superfield A and for any function f,
g(C) can be shifted away redefining A into another chiral super-
field A’ [2], so that the Lagrangian can be cast in the form

Ldual = [[_1 —A—A + h(C, E)]SOEO]D

+[(Wo+CA') +hc],. (1.10)

Letting

, 1
A'=T——,
2

one is then finally led to a standard N =1 supergravity with a

Kahler potential K and a superpotential W given by

(111)

_ _ 1
K=-3In[T+T —h(C,0)]. W=C<T—§>+Wo. (112)

The case in which h(C, C) is a pure Kaihler transformation of the
form h(C) + h(C), so that C is not dynamical, was considered in
[11], where it was referred to as f(R) supergravity, but this class
of models does not reproduce the R + R? bosonic terms and the
Starobinsky potential [2,12,13].

The Lagrangian (1.12) contains Starobinsky’s inflaton ¢, which
is related to T according to Re(T) = exp(/2/3¢), and setting to
zero the other three fields one can recover exactly, for Wy =0, the
scalar potential of the original Starobinsky model. However, it was
shown in [5] that for a minimal choice h(C,C) = CC the complex
scalar direction C is unstable during the inflationary phase. Non-
minimal (and therefore non-universal) Kédhler functions are thus
needed to arrive at a satisfactory model, and in particular Kallosh
and Linde [5] showed that

h(C,C)=CC — ¢(CC)? (113)

can stabilize the C direction for sufficiently large positive values
of ¢.

Although for Wy = 0 the model admits a supersymmetric
ground state, supersymmetry is broken during the inflationary
phase, and C plays the role of a goldstino superfield driving the
breaking of supersymmetry [2,5,7]. In what follows we shall ex-
plain how a minimal and universal embedding of the Starobinsky
potential in supergravity emerges once the ordinary chiral super-
field C is replaced with a chiral superfield X satisfying, as in
[14-17], the constraint X% = 0.

2. The Volkov-Akulov Lagrangian

It has been known for some time that the Volkov-Akulov La-
grangian [19] can be recast in a manifestly supersymmetric form
introducing a chiral superfield X that satisfies identically the con-
straint [14-17]

X?=0. (21)

This eliminates the scalar component of X in favor of a goldstino
bilinear, so that in two-component notation

GG

X=—— 426G +6°Fx, (2:2)
2Fx

and the complete Volkov-Akulov Lagrangian is then

Lya=I[XXlp +[fX+hclF, (2.3)

where the subscripts denote again D and F superspace densities.
Notice that supersymmetry can be realized off-shell, as emphasized
in [17,18], insofar as Fx is not replaced by the solution of its al-
gebraic equation of motion. In supergravity, the off-shell couplings
of the goldstino to the gravity multiplet can be found in a similar
way, but taking into account the constraint (2.1) the most general
couplings of X to supergravity rest on a Kdhler potential K and a
superpotential W of the form

K =—3log(1 — XX) =3XX, W= fX+ Wy, (2.4)

since terms linear in X or X can be reabsorbed in W, and as a
result [20]

1
V=3IfIF =3IWol,  m3, =Wl (2.5)

The supergravity Lagrangian resulting from Eq. (2.4) does en-
code the proper goldstino couplings, and in particular in two-
component notation the fermionic mass terms read

i — i —
Lingss = —M + —onG a’""( + —o0 G)—i—h.c.
mass 3/2 (1pm \/6 m ) 1//n \/6 n
(2.6)

3. The minimal Starobinsky Lagrangian

The usual embedding of the Starobinsky Lagrangian in super-
gravity rests, in the “old minimal” two-derivative formulation, on
the gravitational supermultiplet coupled to a pair of additional chi-
ral multiplets. As we have anticipated, the corresponding action is
not unique, and non-minimal terms are actually needed [5] to sta-
bilize the scalar fields during the inflationary phase.

A minimal universal model obtains if supergravity is coupled to
the constrained goldstino multiplet X described in the preceding
section and to a chiral multiplet T containing the inflaton.” Taking
into account the constraint of Eq. (2.1), in this off-shell formulation
the Lagrangian is determined by

K=-3In[T+T — XX], W =MXT + fX + Wy, (3.1)

where M? = % from the comparison with Eq. (1.1), while the cor-
responding scalar potential [20] is simply
yo MT+ fI?

T +T)2’

since the scalar component of X is not a dynamical field but a
goldstino bilinear. Let us stress, however, that X contributes to the
scalar potential via its derivatives, since

(3.2)

Fy=e?(Kyg) Wy, (33)

includes a bosonic contribution although it contains no elementary
scalar field.

2 The constrained superfield X was previously considered, in a different context
also related to inflationary models, in [21].



34 1. Antoniadis et al. / Physics Letters B 733 (2014) 32-35

The form of (3.2) reflects the no-scale structure [22] of the T
kinetic term and its coupling to the goldstino superfield X, and in
particular the constant superpotential Wo does not enter V while
it determines the gravitino mass. The complete bosonic Lagrangian
is

R 3 IMT + f|?
=> - — =5 T|2—7_2, (3.4)
2 (T+7) 3(T+T)
and letting
2 2
r=e?3 4 ia\/; (3.5)
it finally becomes
R
L=> - —<a¢>) 5 2“’[wa)
1 _ /2 M2 5, /2
- ﬁ(M+fe \E‘i’)2 M” 20,32 (3.6)

If Mf < 0, after a shift of ¢ and a rescaling of the axion a, one can
bring the Lagrangian to the form

£=5——<a¢>) - 2M(@a)

-—1- 67[¢ ’2"’\/’ 2,

12

This is precisely a minimal Starobinsky Lagrangian where ¢ is ac-
companied by an axion field a that is however much heavier dur-
ing the inflationary phase where the vacuum values ¢g are large
and positive, so that

(3.7)

M2 5, /2 M2
mi~_¢ 2‘750\/: <«m?=—.

3= = (3.8)

4. Dual gravitational formulation

In the conformal compensator formalism [1], the Lagrangian of
the previous section reads

L=—[(T+T-1XI*)S0S0],
+ [((MXT + fX + Wo)S3 +h.c],. (41)

and can be recast in the form

£=[IX*SoSo],

R
+ [(T(—S— +MX> +fX+ wo)sg +h.c.] (4.2)
0 F
resorting to the identity
[(T+T)S0S0], = [TRS]; +hc., (4.3)

where R is the chiral supergravity multiplet. Notice that T enters
Eq. (4.2) as a Lagrange multiplier, whose equation of motion is the
constraint

1R
=——, (4.4)
M So

and as a result the constraint X2 =
similar constraint on R:

0 of Eq. (2.1) translates into a

R?=0. (4.5)

Conversely, one can start from the dual gravitational theory

= RR R 3 2
L=—50S0—— | +|Wo+&—-Sg+0RSo| , (4.6)
M2 |, So F
and in this form the nonlinear constraint (4.5) originates from the

field equation of o. One can also use the identity

[0R250 +hc], = |:(O’E + 55)50%] + tot. deriv., (4.7)
So So D

which is a particular case of (1.9), and introducing two Lagrangian
chiral superfields multipliers T and C according to

L [(1 —oC—6C CC)S S]
dual = — —— ]S0S0
ua M2 b
R 3
+|(-T{=——-C)+Wp+£&C 50+h.c.
So F

cC
[<1+T+T oC— oC——)SOSo]
M? D

+[W(o,T.0)53 +hel,. (4.8)

where

W(T,C) =W + (T +£)C, (4.9)

a final shift T - T+oC — % and the replacement of & — % with f
turn this expression into

W(o,T,C)=TC+0C%+ W+ fC. (410)

Notice that the o field equation enforces the constraint X2 =0,

and finally letting C/M = X and rescaling f to f/M yields the

Lagrangian
=—[(T+T—XX)SoSo],, +

[W(T,X)S3 +hc],, (411)

where

W(T,X)=Wo+ (MT + f)X.

This is precisely the dual action coupled to a goldstino multiplet
(3.1), which completes our proof of the duality with the higher-
derivative supergravity form of the Starobinsky model (4.6).

In order to write explicitly the bosonic gravitational action, one
introduces the Jordan scalar

ed’\/g:l-i-Zx,

(4.12)

(4.13)
in terms of which the Lagrangian (3.7) becomes
2
R 3 1 M2 x2+%
= ———— | 0x)?*+ =00 |- —2—5_. (414
2 (1+2x)2[( 100 ] 3 arar Y

The transition to the Jordan frame is effected by the Weyl rescaling

g—> (1+2x)g, (415)
and the resulting Lagrangian is
1 @a? M?[ , d?
=—(14+2x)R— ———F+— — — ). 416
( +2x) 2142y 3 X 6 ( )

In the “old minimal” supergravity formulation the axion should
be traded for the longitudinal mode D - A of the pseudovector
auxiliary field Ap, and this last step brings about an interesting
general link that can be deduced from the master Lagrangian
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M? 1
ﬁa:—§a2+Amama+5(1+2x)A§1. (417)
Varying £, with respect to Ap yields indeed

Oma M? 1 (3a)?
Ap=——, =M1 007 (418)
142y 18 2142y
while varying £, with respect to a yields

9 9 5, 1 2
a= —WD A, L= W (D- A+ 5(1 +2))A;,. (419)
Using these results in (4.16) one finds

1 M? 9
L=-A+2)0)(R+A2) — —x*+ == (D- A)?, 420
SA+20R+AL) = 5 x°+ 555D A) (4.20)
and finally, eliminating x via its algebraic field equation
_ 2
X = W(RJFA,“), (4.21)
one reaches the bosonic terms of the higher-derivative supergravity
Lagrangian.
The final redefinition
2
An — §Am (4.22)

recasts this Lagrangian in the notation of [10],

2
1 2 3 2 3
L=-(R+ ZA? — _(R+2A2 —_(D-A)?, (423
2( +3 ’">+4M2< +3 m) +op @A (423)
and the linearized higher-derivative terms then reproduce precisely
the combination

&[R2 —4APY,0M AL,
in agreement with [23].

The bosonic Lagrangian (4.23) propagates one scalar and one
pseudoscalar degree of freedom, in addition to gravity. The scalar
degree of freedom draws its origin, as is well known, from the R?
term, which is manifest in our construction, while the need for
the pseudoscalar one was pointed out long ago in [23]. The field
equation for A, following from Eq. (4.23) can be turned into a
Klein-Gordon equation for D - A, since

(4.24)

M?2 M2
8m(D-A)—?Am:0 — D(D-A)—?(D-A)ZO.

(4.25)

As a result, there is indeed one (pseudo-)scalar degree of freedom
whose mass, MTZ, coincides with the mass of the dual axion a.

Let us conclude by stressing the dual gravitational interpreta-
tion of the constraint (4.4), which translates into the component
relations

_ . GG

Y™ D = MG, (4.27)
1.1 1

—5R- §A,2n+iD’"Am— Ul =MFx, (4.28)

and thus links the (pseudo-)scalar auxiliary fields to the goldstino.
Notice that in this dual formulation the goldstino is determined by
the gauge-invariant expression in Eq. (4.27). All in all, the off-shell
formulation is crucial for the consistency of the theory, and indeed

the spacetime curvature R is not fixed in any way by the constraint
(4.5), but is dynamically determined by the expectation value (Fy)
of the auxiliary field Fx. Notice also that Eq. (4.26) implies that
u is nilpotent, a fact that we used in deriving the Lagrangian of
Eq. (4.23).
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