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Abstract

We explore the phenomenology of a model of monopolium based on an electromagnetic dual formula-
tion of Zwanziger and lattice gauge theory. The monopole is assumed to have a finite-sized inner structure 
based on a ’t Hooft-Polyakov like solution, with the magnetic charge uniformly distributed on the surface 
of a sphere. The monopole and anti-monopole potential becomes linear plus Coulomb outside the sphere, 
analogous to the Cornell potential utilised in the study of quarkonium states. Discovery of a resonance fea-
ture in the diphoton channel as well as in a higher multiplicity photon channel would be a smoking gun for 
the existence of monopoles within this monopolium construction, with the mass and bound state properties 
extractable. Utilising the current LHC results in the diphoton channel, constraints on the monopole mass are 
determined for a wide range of model parameters. These are compared to the most recent MoEDAL results 
and found to be significantly more stringent in certain parameter regions, providing strong motivation for 
exploring higher multiplicity photon final state searches.
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1. Introduction

The existence of magnetic monopoles was first postulated by Dirac, with their existence found 
to provide an explanation for the quantisation of electric charge [1–3]. Monopoles have a rich 
phenomenology with connections to new physics scales as they are generic predictions of spon-
taneously broken Grand Unified Theories (GUT). Thus, discovering monopoles would provide 
a window through which to explore higher energy scales and new physics both terrestrially and 
cosmologically. Possible early universe phase transitions associated with them could also lead to 
gravitational waves, providing an additional avenue for discovery. There are important cosmolog-
ical implications for monopoles due to their stability, ensured by magnetic charge conservation, 
such as electroweak Baryogenesis and Dark matter [4–7].

Monopoles have been extensively searched for experimentally, but have yet to be discovered 
[8,9]. One important way to search for monopoles is through production at colliders which are 
able to probe monopoles of low mass relative to that usually expected from GUT models, such 
as current efforts by CMS, ATLAS, and MoEDAL collaborations. No evidence of monopoles 
has been found to date, with the current collider lower bounds on the monopole mass reaching 
as high as a few TeV, with dependence upon the nature of the monopoles [10,11]. These direct 
production searches face many technical and theoretical difficulties due to monopoles strong 
couplings and their highly ionising nature.

One exciting prospect for observing monopoles is through monopole-anti-monopole bound 
states, known as monopolium, and their associated decay products [12–28]. The monopolium 
decay to diphotons provides a clean signal region in which to observe possible decays, compared 
to the types of signals expected from monopole-anti-monopole pair production. Additionally, the 
potential large negative binding energy of the monopolium states opens the window to probing 
higher energy scales beyond that which is possible through direct production at colliders. The 
large binding energy means the production of monopolium is highly favoured over pair produc-
tion, while allowing a probe of the higher energy physics scale of the constituent monopoles. 
Such searches can provide complementary avenues for discovery to those done at MoEDAL and 
other collider searches, and illuminate the dynamics of the monopoles and their possible bound 
state formation. The details of the monopolium bound state are not clearly understood because of 
the strong couplings and subsequent non-perturbative nature. Various analyses has been done, but 
many uncertainties remain with mainly qualitative results able to be gleaned [14–16,18]. By con-
sidering cross-section constraints in the diphoton channel, it may be possible to derive constraints 
on the monopolium states [29–31]. In future, the measurement of higher multiplicity photon final 
states may provide additional avenues for discovery because the Standard Model background is 
expected to be small, and the strong coupling of the monopoles to photons potentially leading to 
large signals.

In a previous work, we presented a possible method for constructing a model of a monopole-
anti-monopole bound state [18]. The model treated the monopolium analogously to a quarkonium 
state, deriving a modified Cornell potential [32], while taking into account the possible shielding 
of the internal structure of the monopole at a finite scale. We utilise a strong coupling expansion 
in lattice gauge theory, and accordingly a linear term is included in the monopole-anti-monopole 
potential, which allows for large binding energies to be studied. The phenomenological aspect of 
our work was initially motivated by the tentative evidence for a new resonance in the diphoton 
channel and the possible bound state nature [33–35], and thus had a narrow phenomenological 
scope with the main focus the construction of the bound state. In this work, we make improve-
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ments on various aspects in the construction and investigation of the model, and provide a more 
thorough exploration of the possible collider phenomenology within this framework.

The paper is structured as follows; firstly, in Section 2 we briefly review the monopole-anti-
monopole bound state model proposed in our previous work [18]. In Section 3, we will discuss 
the properties of the monopolium state, including the binding energy, bound state wave function, 
and the diphoton decay properties. Section 4 derives the expected diphoton cross section for the 
monopolium states at the LHC, including the possible contributions of higher energy eigenstates. 
The implications to the collider phenomenology upon including higher multiplicity photon de-
cays is explored in Section 5. After which we present a discussion of the results and concluding 
remarks, including comments on future prospects.

2. Model of monopolium bound state

In our previous work, we introduced a model of monopolium based on the Zwanziger formal-
ism. The resultant potential for the monopolium state, which we shall investigate in this work, is 
analogous to the Cornell potential utilised in studies of quarkonium states [32]. We assume that 
there is only one kind of spin 1/2 monopole M in our world, that is electrically neutral, having 
magnetic charge g. Within the Standard Model we have a number of magnetically neutral spin 
1/2 fields with electric charge Q = ±e (e is the unit of the electron charge), and the monopole 
satisfies the Schwinger quantization condition with these charged particles. This gives

g = 4π

e
N (N = integer) . (1)

The difficulty of highly charged particles is the estimation of the potential between them. 
One photon exchange is insufficient, and so we will use a lattice gauge theory approach with a 
finite lattice constant a, in which a strong coupling expansion is possible [36–38]. We will apply 
this to the magnetic U(1) part of the manifestly electromagnetic dual formulation of Zwanziger 
[39,40]. However, U(1) gauge theories are not well defined in lattice gauge theory, due to the 
existence of a first-order phase transition between the weak coupling perturbative region and the 
strong coupling confinement region, and so the continuum limit of a → 0 cannot be consistently 
taken [41]. On the other hand, the continuum limit is properly taken for SU(2) [42] and other 
asymptotically free gauge theories. So, we consider that a non-Abelian structure is revealed when 
we go inside the finite sized U(1) monopole, with the gauge group expected to be enhanced 
from U(1) to SU(2) as a → 0, and the ’t Hooft-Polyakov-like structure will appear [43,44]. In 
the ’t Hooft-Polyakov monopole, the U(1) magnetic charge is located at the origin as a point-
like singularity. Instead, we consider that the U(1) magnetic charge is distributed non-locally, 
with magnetic charge distributed uniformly on the surface of a sphere with radius R, for which a 
solution exists. Inside the sphere (r < R) there is no magnetic force, and so the potential becomes 
flat, while the potential between the monopole and anti-monopole becomes linear plus Coulomb 
outside the sphere. Below we provide a summary of the details of the monopolium construction 
postulated in our previous work.

2.1. Zwanziger’s manifestly dual formulation of gauge theory

The manifestly dual formulation of U(1) gauge theory by Zwanziger [39,40] is given by the 
following action,
3
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SZW =
ˆ

d4x

[(
1

2
ημηλ√−ggνρ

)
×

(
FμνFλρ + GμνGλρ + FμνG̃λρ − GμνF̃λρ

)
+

∑
i

ψiγ
μ(iDμ − mi)ψi

]
. (2)

Here, a constant unit vector ημ, denoting the direction of Dirac strings [1–3], is displayed in 
parallel along the space-like direction, and

iDμ = i∂μ − eiAμ − giBμ , (3)

Fμν = ∂μAν − ∂νAμ , Gμν = ∂μBν − ∂νBμ , (4)

F̃μν = 1

2
εμνλρFλρ, G̃μν = 1

2
εμνλρGλρ , (5)

where fermions with electric charge ei and magnetic charge gi are introduced, and ε0123 = 1. 
From the consistency condition of the finite Lorentz transformation, the following Dirac, or 
Schwinger type, quantization condition [1–3] appears,

eigj − giej = 4πNij , (6)

where Nij is an integer. Here, we consider a flat space-time gμν = ημν = (1, −1, −1, −1) and 
ε0123 = −ε0123 = 1. In the Zwanziger formulation, the degrees of freedom are doubled by the 
introduction of electric and magnetic vector potentials, but are halved by the projection to the ημ

direction.
If the axial gauge is taken,

ημAμ(x) = ημBμ(x) = 0 , (7)

no ghost fields appear, and the Feynman rules are obtained as follows,

〈AμAν〉(k) = −i

k2 + iε

(
gμν − kμην + kνημ

k · η + η2 kμkν

(k · η)2

)
, (8)

〈BμBν〉(k) = −i

k2 + iε

(
gμν − kμην + kνημ

k · η + η2 kμkν

(k · η)2

)
, (9)

〈AμBν〉(k) = −〈BμAν〉(k) = −i

k2 + iε
εμνρσ

ηρkσ

k · η . (10)

The kinetic terms of the gauge field are complicated and depend on ημ, but the 2 ×2 matrix form 
of the propagators is simple and satisfies,

D̂abμν〈VbνVcλ〉 = δa
c η

μ
λ , (11)

where V 1
μ = Aμ, V 2

μ = Bμ, and D̂abμν is the differential operator for the gauge fields in the 
action.

2.2. Monopolium formulation

The bound state of the monopoles is formed by the exchange of magnetic photons γM . How-
ever, the coupling of the monopole to the magnetic photon is very strong, so that we adopt a 
4
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lattice gauge theory approach with a lattice constant a as a UV cutoff [36–38]. The space-time is 
considered to be a square lattice n = (n0, n1, n2, n3), where nμ are integers, with a lattice con-

stant a. The link variables U(A)

nμ̂
and U(B)

nμ̂
are introduced as usual for the electric and magnetic 

photons Aμ(x) and Bμ(x), respectively,

U
(A)

nμ̂
= ei{eaAμ(na)}, U

(B)

nμ̂
= ei{gaBμ(na)} , (12)

and the Wilson loops W(A)[C] and W(B)[C] are defined as the product of the link variables along 
the loop C:

W(A)[C] =
∏

n∈C, μ‖C
U

(A)

nμ̂
, W(B)[C] =

∏
n∈C, μ‖C

U
(B)

nμ̂
. (13)

The minimum Wilson loop is given for the boundary curve Cnμν ≡ ∂Pnμν of the minimum region 
Pnμν = rectangular (n, n + μ̂, n + μ̂ + ν̂, n + ν̂, n). Then, the Zwanziger action can be written 
as the lattice gauge theory action in the Euclidean metric,

SZW
lattice = −

∑
n,ν

(
1

2e2 W(A)[Cnην] + 1

2g2 W(B)[Cnην] + (h.c.)

)

−
∑
n,ν

1

2eg

(
W(A)[Cnην]W̃ (B)[Cnην] − W(B)[Cnην]W̃ (A)[Cnην]

)

+ a3

2

∑
i,nν

(
ψi,nγν

(
U(A)

nν + U(B)
nν

)
ψi,n+ν − ψi,nγν

(
U(A)

nν + U(B)
nν

)†
ψi,n−ν

)

− a4
∑
i,n

mi ψi,nψi,n , (14)

where the dual Wilson loop reads

W̃ (A,B)[Cnην] = − i

2
εηνλρW(A,B)[Cnλρ] . (15)

In the action, we assume that the magnetic coupling g is strong, while the electric coupling e is 
weak and perturbative. So, in estimating the expectation value of the large Wilson loop W(B)[C], 
the strong coupling expansion is used [36–38]. We choose C to be a rectangle of length T in time 
and length r in the space-like direction μ; then we have

〈W(B)[C]〉 =
´

dU
(B)
nν W(B)[C] e−SZW

lattice´
dU

(B)
nν e−SZW

lattice

(16)

= δμη exp

(
− ln(2g2)

T · r
a2

)
(1 + · · · ) , (17)

where T · r denotes the minimum area of the rectangle C, so that the Wilson’s area law is realized 
only if μ is in the η-direction.

We define the potential between a heavy monopole and its anti-monopole separated by a 
distance r to be V (r). Then, the potential has a linear term in r , if the monopole and anti-
monopole are separated in the η-direction;

V (r) = δr‖η
ln(2g2)

r + · · · . (18)

a2

5
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This clarifies the meaning of the special direction η that appears in the Zwanziger formulation, 
giving the direction of the Dirac string starting from the monopole. Therefore, the monopole and 
anti-monopole are connected by the string, starting from the monopole and ending at the anti-
monopole, which contributes to the linear potential between them.

In addition to this strong coupling contribution, we will add the usual perturbative weak cou-
pling contribution, and so the potential at this stage is

V (r) = − g2

4πr
+ ln(2g2)

a2 r . (19)

This matches with high precision QCD calculations in which the potential between a quark 
and anti-quark pair is well approximated by the linear plus Coulomb potential [45–47]; this po-
tential is known as the Cornell potential and is well-defined for point-like quarks. The monopole, 
however, may not be point-like, and may have an internal structure. The U(1) lattice gauge the-
ory is usually considered not to be well defined, since there exists a first-order phase transition 
between the confinement phase and the perturbative phase [41], and it obstructs the continuum 
limit of a → 0. One way out from this difficulty is to lift the U(1) theory to SU(2) theory, or 
other asymptotically free theory, when we approach the short distance region. As is shown by 
’t Hooft and Polyakov [43,44], the U(1) monopole was given as a classical solution of SU(2)

gauge theory, which is broken to a U(1) by a triplet Higgs field φa(x) (a = 1, 2, 3). Therefore, 
if we go inside the monopole, the non-Abelian gauge theory may appear, in which case, we may 
take the continuum limit properly.

The ’t Hooft-Polyakov monopole is a classical solution of the SU(2) gauge theory with a 
triplet Higgs, based on,

LSU(2)monopole = −1

4
(F a

μν)
2 + (Dμφa)2 − λ(|φ|2 − v)2 , (20)

and the following ansatz:

Aa
i (x) = v εaij r̂j 1 − K(ξ)

ξ
, φa(x) = v r̂a H(ξ)

ξ
, (21)

where we define a dimensionless parameter ξ = evr . If we take the limit λ → 0 while keeping 
v 
= 0, the solution, called the BPS solution, is given analytically [48,49]. Then, the equations of 
motion become first order,

ξ
dK

dξ
= −KH, ξ

dH

dξ
= H − K2 + 1 , (22)

which have the following solutions,

K(ξ) = ξ

sinh ξ
, H(ξ) = ξ coth ξ − 1 . (23)

We want to know the distribution of the magnetic charge inside the monopole, ξ < 1 or r <

1/ev. The SU(2) gauge potential and the Higgs field are properly reduced by factors of 1 −K(ξ)

and H(ξ), but the monopole charge is unfortunately not smeared even inside the monopole. 
This can be understood from the U(1) field strength proposed by ’t Hooft. This gauge invariant 
expression can be rewritten as follows [50],

Fμν = ∂μ(φ̂aAa
ν) − ∂ν(φ̂

aAa
μ) − 1

εabcφ̂a∂μφ̂b∂νφ̂
c , (24)
e

6
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where φ̂a = φa/|φ|. From this expression the magnetic charge is found to be a topological num-
ber,

�m =
ˆ

BdS = 4π

e

ˆ
d3x

∂(φ1, φ2, φ3)

∂(x1, x2, x3)
= 4π

e
N , (25)

where �m is the magnetic flux, and N is the winding (wrapping) number of the sphere of the 
Higgs fields (φ2 = v2) by the sphere in space (x2 = 1).

We will consider the scenario in which the magnetic charge is distributed uniformly on the 
surface of the sphere, that is one of the solutions that exists. Let’s take the following modified 
gauge and Higgs fields in which the contribution from r < R is cutoff,

Ãa
i (x) = θ(r − R)Aa

i (x), φ̃a(x) = θ(r − R)φa(x) , (26)

where θ(r − R) is a step function 0 for r < R, and 1 for r > R. Accordingly, K and H are 
modified:

1 − K̃(r) = θ(r − R)(1 − K(r)), H̃ (r) = θ(r − R)H(r) . (27)

This modification inside the sphere (r < R) is allowed, since K(r) = 1 and H(r) = 0 is the 
solution.

The distribution of the U(1) magnetic charge is easily understood. Since φa = 0 inside r < R, 
the magnetic flux on the surface of the radius r sphere reads,

�m(r) = 4π

e
θ(r − R) , (28)

which shows that the magnetic charge 4π/e is distributed uniformly on the surface of the 
monopole sphere with radius R. The solution satisfies the following equations,

ξ
dK̃

dξ
= −K̃H̃ + evR (1 − K(evR)) δ(ξ − evR) , (29)

ξ
dH̃

dξ
= H̃ − K̃2 + 1 + evRH(evR)δ(ξ − evR) , (30)

which are modified only on the surface, where the magnetic charge is distributed.
Therefore, the magnetic force between the monopole and anti-monopole vanishes when one 

goes inside either respective sphere (r < R). We will consider that the linear potential is the 
dominant contribution and the Coulomb potential plays the role of lowering the potential. Then, 
the corresponding potential is,

V (r) =
{

V1(r) = const = −αg

R
+ ln(8παg)

a2 R , (for r < R) ,

V2(r) = −αg

R
+ ln(8παg)

a2 r , (for r > R) ,
(31)

where αg = g2

4π
= 1

α
= 137. We shall utilise this potential to describe the monopolium bound 

state in what follows.

3. Wave function and binding energy of monopole in bound state

Using the potential V (r), we can obtain the wave function and energy eigenvalues of the mo-
nopolium states. Given that we have a piecewise potential, we solve the Schrödinger’s equation 
7
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requiring continuity at the point r = R in the radial wavefunction, where we will assume spher-
ical symmetry. We define the potential as follows and derive the radial wavefunction for both 
potentials,

V1(r) = −137

R
+ κR (for r < R) , (32)

V2(r) = −137

R
+ κr (for r > R) , (33)

where we denote the string tension by κ = ln(8παg)/a
2.

The radial wavefunction is defined by ψ(r) = χ(r)/r , such that χ(r) satisfies the one-
dimensional Schrödinger equation. From the potentials given in Eqs. (32) and (33), the corre-
sponding radial wavefunction solutions are described by sinusoidal and Airy functions, respec-
tively,

χ1(r) = C1 sin
(
mr

√
2xn/m

)
(for r < R) , (34)

χ2(r) = C2Ai

⎡
⎣2

(
m2

2κ

) 2
3 κ(r − R) − xn

m

⎤
⎦ (for r > R) , (35)

where the boundary conditions χ1(0) = 0 and lim
r→∞χ2(r) = 0 have been imposed, and the nth 

energy eigenvalue is,

�En = −137

R
+ κR + xn , (36)

with corresponding eigenstate mass,

Mn = 2m − 137

R
+ κR + xn , (37)

for n ≥ 1, where xn = xn(p, q, m) is a function of p, q and m, that is to be determined numeri-
cally.

In order to determine C1 and C2, and the corresponding energy eigenvalues, we require that 
the following three conditions are satisfied,

χ1(R) = χ2(R) and
d

dr
χ1(R) = d

dr
χ2(R) , (38)

for continuity, and

4π

∞̂

0

|χ(r)|2dr = 4π

⎛
⎝ R̂

0

|χ1(r)|2dr +
∞̂

R

|χ2(r)|2dr

⎞
⎠ = 1 , (39)

to normalise the wavefunction. These can be solved numerically, and the energy eigenvalues 
derived. By requiring 0 < Mn < 2m, the list of possible spherically symmetric bound state can 
be compiled for given input parameters, R, a and m.

In the analysis that follows we will make the identification that R = q
m

and a = p
m

. The energy 
scales in this scenario are given by both the core size of the monopole, and necessarily when the 
QED description would break down embodied in the lattice scale a. Furthermore, motivated by 
the usual classical monopole radius we will assume that R and a are proportional to 1

m
, with 

constants of proportionality defined as q and p [51]. The most motivated choice of q is 137 
8
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Fig. 1. Lower bound of the monopolium to monopole mass ratio for all mass eigenvalues, for given q and p. Plotting for 
fixed (left) p = 40 (dashed), 80 (dot-dashed), 180 (dotted), and 300 (line); and (right) q = 70 (line), 100 (dashed), 130 
(dot-dashed), and 190 (dotted).

from the definition of the approximate monopole core radius, there may be some ambiguity 
in this denominator so we will allow it to vary for our analysis. In this parametrisation, the 
monopole mass parameter m factors out for many of the calculations, allowing determination of 
the monopolium properties by varying the parameters q and p, each exhibiting unique bound 
state signatures and phenomenology.

We consider that the monopole and anti-monopole collide when the distance r = R in our 
model, so that the wave function is evaluated at r = R.

The eigenvalue masses are determined by the value of xn, which increases with n. That is,

Mn = 2m − 137

R
+ κR + xn 


(
2 − 137

q
+ q ln(1096π)

p2

)
m + xn , (40)

for n ≥ 1, and subsequently the lower bound on the monopolium mass M∗, for a given q , is given 
by,

M0 = 2m − 137

R
+ κR 


(
2 − 137

q
+ q ln(1096π)

p2

)
m , (41)

and is depicted as a function of q and p in Fig. 1. For large p, the smallest allowed q value 
can be derived to be approximately 68.5 < q , above which Mn > 0 is always satisfied. Although 
smaller q values can be accessed by choosing q > p, in what follows we explore q ≥ 70 to ensure 
that the monopolium masses considered always satisfy M0 > 0. We will require 2m > Mn > 0, 
for which the monopolium states exhibit negative binding energies, opening the possibility to 
probing energy scales much greater than production of the constituent particles would allow, 
particularly for large binding energy scenarios.

In the following we will confine our analysis to q ∈ [70, 200] and p ∈ [60, 2000], which takes 
into all major regions of interesting behaviour in this model. p values that are too small can lead 
to monopolium masses greater than 2m, while for q this would give M < 0. We do not consider 
combinations in which q is so small and p so large that M → 0, which we ensure be considering 
q > 70. The large negative binding energies we obtain allow us to probe monopole masses well 
beyond those probed by pair production.

Now we can investigate the properties of the wavefunction for the corresponding energy 
eigenvalues. Upon numerically solving the above equations, the number of eigenvalues obtained 
in the region M0 < M < 2m, for the range of q and p parameters to be considered, varies be-
tween 100-600 states. Below we will also consider the stability and decay properties of these 
different energy level states, and the phenomenological implications.
9
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3.1. Diphoton decay width of monopolium states

After obtaining the energy and wave function of the monopolium, we can estimate the decay 
properties of the monopolium states. The decay rate of the monopolium state to diphotons can 
be estimated from the cross section σ(m + m → 2γ ) as,

�(M → 2γ ) = 4ρσ(m + m → γ + γ )vrel , (42)

where

ρ =
´ R

0 |ψ(r)|2dr

4
3πR3

, (43)

since the monopoles have a finite core size R, we use the average probability density of finding 
the monopole and anti-monopole at a relative distance R or less in the bound state. We assume 
that a distance of r ≤ R indicates collision of the monopole-anti-monopole pair, and hence an-
nihilation. The factor 4 σvrel gives the reaction rate, with the factor 4 coming from the possible 
combination of monopole and anti-monopole spin states.

In this calculation, the polarization vector of the magnetic photon εm(k)μ, has to be con-
verted to the usual electric photon’s polarization εγ (k)ν , by using the off-diagonal propagator 
〈BμAμ〉(k), that is,

εm(k)μ = εμνρσ εγ (k)ν
ηρkσ

(k · η)
. (44)

The polarization sum of photons, 
∑

pol εγ (k)∗λεγ (k)ρ = −gλρ , is performed, then we have∑
γ ′s pol.

εm(k)∗μεm(k)ν

= gμν

(
−1 + η2k2

(k · η)2

)
+ kμην + kνημ

(k · η)
− kμkνη2 + ημηνk2

(k · η)2 , (45)

if the photon is on the mass shell, k2 = 0, and the Ward identity is used, kμ and kν terms vanish 
in the amplitude of monopoles on the mass shell, and hence 

∑
γ ′s pol. εm(k)∗μεm(k)ν = −gμν . 

Therefore, the expression of σ(m + m → γ γ ) is obtained from σ(e+ + e− → γ γ ), by replacing 
the mass me by m and the coupling constant e by g.

Now we can obtain the full form of the two photon decay rate as,

�(M → 2γ ) = �2γ = 16π
α2

g

M2

´ R

0 |ψ(r)|2dr

4
3πR3

, (46)

which is the formula valid at low energy, in the case of 
√

ŝ = M ≈ 2m. This approximation will 
be used in our subsequent analysis.

Due to the large coupling associated with the monopole coupling, this decay width can be very 
large depending upon the relation between the average probability density and the monopolium 
mass. We will consider as a general requirement throughout our work that the total decay width 
is less than 10% of the corresponding monopolium mass, in order to not strongly violate the 
narrow width approximation.

In Fig. 2 we depict the dependence of the two photon decay width to monopolium mass ratio 
for a range of p and q parameters. The decrease of this ratio with increasing q is attributable to 
10
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Fig. 2. Ratio of the diphoton decay width and monopolium mass, for varying q and p. Plotting for fixed (left) p = 60
(dashed), 100 (dot-dashed), 180 (dotted), and 300 (line); and (right) q = 130 (line), 140 (dashed), 160 (dot-dashed), and 
190 (dotted).

the enlargement of the monopolium mass and decrease in the average probability density. Values 
of q � 130 lead to large decay widths for p > 40, so we will consider q > 130 for the analysis 
of the lowest energy level monopolium states.

We must also consider the contribution to the decay rate coming from the emission of multi-
photons due to the monopoles strong coupling to photons. The total decay rate will become,

�M =
∑

n=even

�(M → nγ ) , (47)

to calculate this total decay width we will follow [20], which utilises an analogy to multiphoton 
positronium decays to estimate the branching ratios of higher multiplicity photon final states. 
In the next section we will confine ourselves to the two photon final state only, with the subse-
quent section introducing higher multiplicity photon decays and their collider phenomenological 
implications.

4. Production cross section and LHC constraints on monopoles from monopolium
diphoton decays

Now that we have obtained the states that may contribute to resonance like collider signatures, 
we can derive the current constraints on the monopolium model parameters and corresponding 
monopole mass. The current strongest cross section limits in the diphoton channel are provided 
by the ATLAS collaboration with ∼139 fb−1 of data [31], and CMS collaboration with ∼39 fb−1

at 13 TeV [30]. The derived monopole mass constraints can then be compared to those derived 
from the MoEDAL experiment which has been designed to search for pair produced monopoles.

We will not consider states for which �M > 0.1M , as the smeared resonance structures ex-
hibited by these states are weakly constrained by current experimental bounds. Despite this, for 
cases where the energy difference between the energy levels of the monopolium and the total de-
cay widths are of comparable size, it may be important to consider possible interference effects. 
To calculate these effects would require analysis of the many possible states, which is beyond the 
scope of the current analysis. Our approximate assumption that these interference effects may 
not be detrimental will be discussed below.

In calculating the predicted diphoton cross sections, we will begin by following the works of 
[15][16],

σ̂γ γ (ŝ) = 4π

ŝ

M2�2γ �M(
ŝ − M2

)2 + M2�2
, (48)
M

11
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where the total decay width includes the sum of all possible contributions, including multiphoton 
channels which will be discussed in the next section.

Photon fusion processes are made up of three key processes, inelastic, semi-elastic and elas-
tic, which must each be included to obtain the total predicted cross section. From [52] we can 
compute the inelastic contribution to the production cross-section, that in which neither of the 
protons remains intact after exchange of a photon. This is given by the following integral,

σ inel.
pp (s) =

1ˆ

sth/s

dx1

1ˆ

sth/sx1

dx2

1ˆ

sth/sx1x2

dz1

1ˆ

sth/sx2x2z1

dz2
1

x1
F

p

2

(
x1,Q

2
)

· 1

x2
F

p
2

(
x2,Q

2
)

fγ (z1) fγ (z2) σ̂γ γ (x1x2z1z2s) ,

(49)

where the energy of the subprocess is given by ŝ = x1x2z1z2s, 
√

sth = M is the threshold centre 
of mass energy, and the factors Fp

2 (x, Q2) represent the deep inelastic proton structure function. 
The value of Q2 is chosen throughout to be ŝ/4. Subsequently, we use the NNPDF2.3QED 
package to compute the partonic densities in the proton, in order to calculate the cross section.

In the semi-elastic process, only one of the protons remains intact after photon exchange. The 
associated production cross section is given by,

σ semi-el.
pp (s) =2

1ˆ

sth/s

dx1

1ˆ

sth/sx1

dz1

1ˆ

sth/sx1z1

dz2
1

x1
F

p

2

(
x1,Q

2
)

· fγ (z1) f el.
γ /p (z2) σ̂γ γ (x1z1z2s) ,

(50)

where ŝ = x1z1z2s. For the photon spectrum fγ (z), we use

fγ (z) = α

2π

(
1 + (1 − z)2

)
z

ln

(
Q2

1

Q2
2

)
, (51)

where Q2
1 = ŝ/4 − M2/4 and Q2

2 = 1 GeV2.
To calculate the elastic photon spectrum we use an approximate analytic form utilised in [52], 

which are based upon the Weizsäcker-Williams approximation [53–56]. It is of the following 
form,

f el.
γ /p(z) = α

2πz

(
1 + (1 − z)2

)[
lnA − 11

6
+ 3

A
− 3

2A2 + 1

3A3

]
, (52)

where

A = 1 + 0.71(GeV)2

Q2
min

, (53)

and

Q2
min = −2m2

p + 1

2s

[(
s + m2

p

)(
s − zs + m2

p

)
−

(
s − m2

p

)√(
s − zs − m2

p

)2 − 4m2
pzs] ,

(54)
12
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where in the limit s � m2
p , we can approximate this as

Q2
min 
 m2

pz2

1 − z
. (55)

Finally, the elastic contribution, where both protons remain intact after exchanging a photon, is 
given by

σ el.
pp(s) =

1ˆ

sth/s

dz1

1ˆ

sth/z1s

dz2 f el.
γ /p (z1) f el.

γ /p (z2) σ̂γ γ (z1z2s) , (56)

where ŝ = z1z2s.
The total monopolium production cross section will be given by the sum of these three con-

tributions. From this we can now begin our analysis of the diphoton channel predictions for our 
model at the LHC. To start we will consider the scenario in which the monopolium only has one 
decay path, into two photon, and consider only the lowest energy eigenvalue for given p and q
values. Thus we use the two photon decay width given in Eq. (46) as the total decay width, and 
consider only p and q values within the range p ∈ [60, 2000] and q ∈ [130, 200].

4.1. Predicted cross section to diphoton final state

We can now calculate the predicted diphoton cross sections for our monopolium model at the 
13 TeV LHC searches. In calculating these we have included the elastic, inelastic and semi elastic 
contributions to the photon fusion processes. These results can then be compared to the latest 
constraints determined by the ATLAS and CMS collaborations, to see which parameter regions 
of our model have already been probed. The diphoton channel constraints we utilise are the 95%
CL constraints from ATLAS and CMS, across the S = 0 state mass ranges [500, 3000] GeV and 
[2250, 4600] GeV, respectively. The range of masses considered by the ATLAS Collaboration, 
[500, 3000] GeV, is smaller than that given by CMS, [500, 4600] GeV. Although ATLAS utilises 
139 fb−1 [31], compared to 39 fb−1 at 13 TeV [30] for CMS, hence providing more stringent 
constraints for the mass range [500, 3000] GeV. Thus, we include both analyses in order to 
extend the monopolium masses probed to a maximum of 4.6 TeV. Given the prevalence of large 
decay widths in our formulation, it is important to note the constraints applied by the ATLAS 
collaboration can probe widths as large as 10% of the monopolium mass, see Table 1, while the 
results we quote form the CMS collaboration are for �M/M ∼ 5.6%.

The dependence of the predicted diphoton cross section on p and q is depicted in Fig. 3. In 
each figure we fix q to different values and vary p within p ∈ [60, 2000]. The variation of p
seen here indicates a continuous decrease in the predicted cross section with decreasing p, and 

Table 1
Current ATLAS diphoton cross section constraints for both the Narrow 
Width Approximation (NWA), and broad width resonances [31].

M 400 GeV 2800 GeV

NWA 1.1 fb 0.03 fb
�M/M = 2% 2.5 fb 0.03 fb
�M/M = 6% 4.4 fb 0.03 fb
�M/M = 10% 8.3 fb 0.03 fb
13



N.D. Barrie, A. Sugamoto, M. Talia et al. Nuclear Physics B 972 (2021) 115564
Fig. 3. The predicted diphoton cross-sections at 13 TeV LHC for the monopolium ground state (n = 1), which is assumed 
to solely decay to two photons �M = �2γ with �M < 0.1M . The monopole masses considered are m =1500 (grey line), 
2000 (grey dashed), 2500 (grey dot-dashed), and 3000 GeV (grey dotted), for fixed q = (a) 130, (b) 137, (c) 150, and 
(d) 200. The results across a range of p are used, p ∈ [60, 2000], with (a) labelled with corresponding p values at the 
extrema, which are consistent across each figure. The latest 95% CL constraints from the CMS (black line) [30] and 
ATLAS (dashed black) [31] collaborations are included.

equivalently increasing monopolium mass. Larger p values decrease the monopolium mass until 
the p dependent term in the monopolium mass becomes negligible, after which further decreases 
in p have minimal effects. On the other hand, increasing q values lead to larger monopolium 
masses for given p and m.

By comparing different fixed q values we can see the monopole mass constraints across the 
range of possible p. The variation observed for the full range of parameters makes it difficult to 
apply explicit limits on the allowed monopole masses. In Fig. 4, we show the allowed parameter 
regions for fixing only the monopole mass. The parameters p and q are varied across a range of 
values for which �2γ < 0.1M , namely p ∈ [60, 2000] and q ∈ [130, 200]. Due to the continuous 
behaviour observed for varying p and m for a fixed q , we obtain a polygon which subtends the 
region of predicted cross sections for a given monopole mass, within our model.

In the context of our monopolium construction, we can thus constrain monopole masses to 
be greater than 1500 GeV for the entire model parameter space. Constraints can be applied on 
different sets of input parameters up to 4000 GeV. The most theoretically motivated choice of the 
q parameter, is likely q ∼ 137 due to the relation to the classical monopole radius. For this value 
of q the monopole mass can be constrained up to ∼ 3500 GeV, which is larger than the current 
constraints from the MoEDAL experiment.

The shape of the predicted cross section region is approximately conserved with changing 
monopole mass, which is expected from the factoring out of m dependence in the energy eigen-
value calculation. The region is then defined by the range of p and q values that are taken. 
Once p � q , there is no increase in the size of this region because the p contribution to the 
monopolium binding energy gets increasingly suppressed. An increase in the region is only pos-
sible through considering smaller p and q values, but these have minimum values fixed by the 
requirement that the monopolium mass satisfies 0 < M < 2m. In the next section, we include 
14
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Fig. 4. The predicted diphoton cross-sections at 13 TeV LHC for the monopolium ground state (n = 1), which 
is assumed to solely decay to two photons �M = �2γ with �M < 0.1M . The monopole masses considered are 
m = (a) 1500, (b) 2000, (c) 2500, (d) 3000, (e) 3500, (f) 4000 GeV respectively, and the latest 95% CL LHC con-
straints from the CMS (black line) [30] and ATLAS (grey line) [31] collaborations are included. The ATLAS constraints 
have utilised the narrow width approximation, while the CMS constraints assume �M/M ∼ 5.6%. The regions subtended 
by the black dotted lines indicate the range of predicted cross sections for parameters p ∈ [60, 2000] and q ∈ [70, 200], 
with (a) including {p, q} labelling of extrema, which are consistent across each figure.

model parameters with smaller q values that still maintain M > 0, for which the lowest energy 
eigenvalues that exhibited large decay widths. We do this by considering higher energy levels of 
the bound states, which can have decay widths satisfying � < 0.1M .

4.2. Including higher energy eigenstates

For the model parameters within the range 70 < q < 130 the lowest energy level consists of a 
total decay width that is too large to be probed by current collider results, which assume narrower 
resonances. In order to test this region of parameter space we consider the lowest energy state 
for which �M = �2γ < 0.1M is satisfied. From the production cross section extracted from these 
energy eigenstates we can then attempt to constrain them.

The justification for this choice can be seen in Fig. 5, which depicts all the energy eigenvalues 
with �M < 0.1M for the q = p = 100 model, and their predicted cross sections. It can be seen 
15
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Fig. 5. Predicted two photon cross section for each energy level (n ≥ 1) satisfying �M/M < 0.1, for the fixed parameters 
p = q = 100 and m = 1500 GeV. Assuming the monopolium decays solely to two photons �M = �2γ .

that the state with the largest cross section is that which has the lowest energy eigenvalue, and 
hence smallest monopolium mass, with all subsequent states are suppressed. This suppression 
is caused by the combination of larger monopolium masses, and the decrease of the probability 
density factor ρ for increasingly excited energy states.

Although it may be possible to probe other states in this series, we will consider only the 
one with the largest cross section. One possible concern with this analysis is the potential for 
interference effects between the different energy eigenstates. Although this could be an important 
effect for the large decay widths considered here, for simplicity we assume the relative cross 
sections is sufficiently suppressed for the higher energy states that there contributions can be 
ignored. A full analysis of the possible implications of this interference is beyond the scope of 
the current work, with further investigation of interest in future work.

By opening our analysis to this higher energy states we can probe smaller values of q , namely 
we consider 70 < q < 130, in addition to n = 1 states for 130 < q < 200. As can be seen in 
Eq. (40), such model parameter selections leads to larger negative binding energies, and thus 
smaller monopolium masses for a given monopole mass. This gives an opportunity to probe 
larger monopole masses than is possible through monopole-anti-monopole pair production.

In Figs. 6 and 7, we provide the expected cross sections for the monopolium diphoton decays 
for the model parameter range q ∈ [70, 200] and p ∈ [60, 2000]. The monopole mass is chosen 
for various values between 1500 GeV and 14000 GeV for illustrative purposes. By comparing 
these results to those in Fig. 4, for the ground state case, we see that including excited states 
(n = 2, 3,...) has resulted in enlarging the predicted cross section region. This is due to the 
inclusion of monopolium models consisting of q < 130 parameter values, which were originally 
excluded as their ground state decay widths violated our requirement that �M < 0.1M . The 
excited energy states of q < 130 monopoliums exhibit larger cross sections and smaller bound 
state masses, than the ground states of q > 130 models. Furthermore, where in the n = 1 case, no 
parameter constraints could be found for monopole masses greater than 4000 GeV, in the n ≥ 1
case, it is possible to constrain monopole masses as large as 12000 GeV from Fig. 7, for certain 
input parameter. This points to the key advantage and motivation of considering the formation of 
monopole-anti-monopole bound states.

5. Multi-photon annihilation of monopolium and branching ratio to diphoton

In our analysis so far, we have neglected the possibility of other decay channels existing be-
yond the expected diphoton decays. Issues with monopoles arise when calculating the total decay 
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Fig. 6. The predicted diphoton cross-sections at 13 TeV LHC for the monopolium ground state (n = 1) and excited states 
(n = 2, 3,...), assuming decay solely into two photons �M = �2γ with �M < 0.1M . The monopole masses considered 
are m = (a) 1500, (b) 2000, (c) 2500, (d) 3000, (e) 3500, (f) 4000, (g) 5000, (h) 6000 GeV respectively, and the 
latest 95% CL LHC constraints from the CMS (black line) [30] and ATLAS (grey line) [31] collaborations are included. 
The regions subtended by the black dotted lines indicate the predicted cross sections for parameters p ∈ [60, 2000] and 
q ∈ [130, 200], with (a) including {p, q} labelling of extrema, which are consistent across each figure.

width due to the non-perturbative nature of their couplings, with higher order photon decays can 
become enhanced leading to very large total widths. In our previous work, we attempted to con-
trol this divergent behaviour but the resultant total decay widths were well beyond the mass 
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Fig. 7. The predicted diphoton cross-sections at 13 TeV LHC for the monopolium ground state (n = 1) and excited states 
(n = 2, 3,...), assuming decay solely into two photons �M = �2γ with �M < 0.1M . The monopole masses considered 
are m = (a) 7000, (b) 8000, (c) 9000, (d) 10000, (e) 11000, (f) 12000, (g) 13000, (h) 14000 GeV respectively, and the 
latest 95% CL LHC constraints from the CMS (black line) [30] and ATLAS (grey line) [31] collaborations are included. 
The regions subtended by the black dotted lines indicate the predicted cross sections for parameters p ∈ [60, 2000] and 
q ∈ [70, 200].

of the monopolium itself, making it difficult to derive any meaningful phenomenological con-
straints. Here we will consider the possibility of making an analogy between the monopolium 
multiphoton decays and those of the positronium bound states, which was recently suggested in 
Ref. [20]. By making this connection the divergence of the full width is constrained by phase 
18



N.D. Barrie, A. Sugamoto, M. Talia et al. Nuclear Physics B 972 (2021) 115564
space suppression effects. The model tends to lead to the prediction of significant multiphoton 
final states with multiplicity greater than two, as suggested in our previous work. This can lead to 
interesting phenomenology, as even if the production rate of monopolium states is large their de-
cays may be hidden from the diphoton channel, with the majority of decays occurring into higher 
multiplicity final states, which are difficult to constrain at present colliders. One may be able to 
obtain tentative bounds on these from two photon plus missing energy searches, but a thorough 
analysis is needed. This is strongly motivated by the expected large signals that can be produced 
by monopolium decays. The branching ratio model suggested in Ref. [20] may be valued more 
on a qualitative than quantitative basis, but we will consider the implications for our monop-
olium construction here, under the assumption that this positronium analogy is approximately 
valid.

5.1. Branching ratio to higher multiplicity photon decays

In [20], the ratios of the higher multiplicity photon final states were matched to those of the 
positronium states, to obtain a numerical approximation for higher n multiplicities. The resultant 
ratio of the rate of multiphoton emission is,

�2nγ

�2γ

=
(

1

2

)2n−2 (αg

π

)2n−2
(

M

2m

)4n−4 2n!
2!(2n − 1)!(2n − 2)! , (57)

where �2nγ is the decay width of monopolium to n photon pairs, and αg = 1/α = 137 for 
monopoles of charge g. Note that, this approximate relation assumes that the monopole loop 
can be shrunk to a point due to the monopole mass being very heavy, and hence that the monop-
olium and multi-photons interact via a contact interaction.

The total decay width is then given by the sum over all final state pairs of photons,

�M =
∑
n

�2nγ , (58)

which allows us to write,

�M

�2γ

=
∑
n

n

(2n − 2)!
(

137M2

8πm2

)2n−2

, (59)

from which we can derive at what monopolium masses each higher multiplicity final state can be 
expected to dominate the total decay width,

�M

�2γ

≈ 1︸︷︷︸
nγ =2

+
(

M

0.43m

)4

︸ ︷︷ ︸
nγ =4

+
(

M

0.56m

)8

︸ ︷︷ ︸
nγ =6

+
(

M

0.66m

)12

︸ ︷︷ ︸
nγ =8

+
(

M

0.75m

)16

︸ ︷︷ ︸
nγ =10

+... +
(

M

1.04m

)32

︸ ︷︷ ︸
nγ =18

+... (60)

From Eqs. (57) and (60), we see that the decay to higher multiplicities n is favoured for larger 
monopolium masses, relative to the monopole mass. This has implications of varying importance 
for the diphoton branching ratio dependent upon the p and q values considered. Interestingly, 
this behaviour leads to an enhancement of the total decay width for increasingly higher order 
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Fig. 8. Branching ratio to two photons as a function of (left) q fixing p = 70 (dashed), 100 (dot-dashed), 140 (dotted), 
and 200 (line); and (right) p fixing q = 70 (dashed), 100 (dot-dashed), 140 (dotted), and 200 (line); for the corresponding 
lower bound on the monopolium mass M0. The bottom figure depicts the dominant photon multiplicity final state for 
given p and q values.

energy states, which is counter to the decrease observed in solely the two photon decay width 
case discussed in Section 4. This reduces the number of eigenstates that satisfy �M < 0.1M , 
while simultaneously suppressing the branching ratios of higher energy states to diphotons. The 
predicted diphoton cross section for the lowest energy state satisfying �M < 0.1M will thus 
dominate over the higher energy states.

In Fig. 8, we can see how changing values of q and p effects the expected branching ratios 
to different multiplicity photon states. The key behaviour, is that for increasing values of q the 
decay width to two photons becomes rapidly suppressed. On the other hand, the dependence on 
p has a minor effect when p > q , with minimal effect for larger p values. This can be deduced 
by considering the importance of the monopolium to monopole mass term in the decay width 
ratio equation, Eq. (57), with the p and q dependence of the monopolium mass, see Eq. (40). 
Constraints from collider searches on higher multiplicity photon final states have not yet been 
explored, so monopolium mass states with smaller |�E| are hidden from current experimen-
tal probes. To illuminate their properties, specialised analysis of higher multiplicity final states 
needs to take place. There may also be many regions of the model parameter space for which 
meaningful constraints could be provided by multiple decay channels, with a discover in two 
channels being a possible smoking gun for a monopolium state. This provides strong motivation 
for dedicated searches in the multiphoton final states.

The inclusion of the extra possible decay channels means that the total decay widths are 
larger for all the monopolium states. In the previous section, we discussed the potential issues 
with constraining states exhibiting broad resonance structures. As such, in this scenario we will 
follow the methodology employed above in which we considered the higher energy eigenvalues, 
determining that state with the largest cross section while also maintaining �M < 0.1M . Unlike 
the case with solely diphoton decay, the higher energy eigenvalues now have rapidly increasing 
decay widths due to the monopolium mass dependence in the branching ratio calculation. This 
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Fig. 9. Predicted cross section for each excited monopolium state (n > 1) satisfying �M/M < 0.1, when multiphoton
decays are included, i.e. �M = ∑

n �2nγ . The parameters p = 1000 and m = 2000 GeV are fixed, with results for all 
allowed excited states given for q = 80 (black), 100 (grey), 120 (light grey) respectively.

means that there will be less states that satisfy the requirement of a small total decay width, 
particularly for larger q models.

In Fig. 9, we show the dependence of the predicted cross section on the energy eigenvalues 
for three different sets of parameters, q = 80, 100, 120, with p = 1000 and m = 2000 GeV fixed. 
This demonstrates the similar higher energy state cross section suppression to that depicted in 
Fig. 5, but with fewer eigenvalues satisfying �tot < 0.1M due to the large decay width contri-
bution to higher multiplicity decays. In what follows, we again assume that there is minimal 
interference effects between these states.

5.2. Constraints upon inclusion of multiphoton decay channels

In Figs. 10 and 11, we provide the expected cross sections for the monopolium diphoton 
decays for the model parameter range q ∈ [70, 200] and p ∈ [60, 2000]. The monopole mass is 
chosen for various values between 1500 GeV and 14000 GeV for illustrative purposes. The 95%
CL diphoton channel constraints from the LHC collaborations, ATLAS and CMS, are included 
across the S = 0 state mass ranges [500, 3000] GeV and [2250, 4600] GeV, respectively. As in 
the previous scenarios, we can see that the monopole mass dependence has a small effect on the 
shape of the predicted cross section region, which instead is defined by the range of p and q
values.

Upon comparing these results to those depicted in Figs. 6 and 7, it can be seen that the region 
describing each monopole masses predicted cross section has been shifted, with the peak cross 
section remaining approximately the same, and the minimum being largely suppressed. Impor-
tantly, this leads to a narrowing of the predicted region, allowing easier separation of possible 
degeneracy between model parameters within uncertainty. Additionally, in allowing for higher 
multiplicity photon decays we can no longer fully rule out monopoles of mass 1500 GeV, as 
could be achieved when considering only diphoton decay. This is because those higher mass mo-
nopolium states now predominately decay into higher multiplicity states and as such are hidden 
from the diphoton channel. States that decay predominantly into higher multiplicity photon states 
require dedicated searches to be probed. This means their production by photon fusion is also 
suppressed. One may also consider multiphoton fusion processes to search for these particles, 
for example in heavy ion collisions.
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Fig. 10. The predicted diphoton cross-sections at 13 TeV LHC for the monopolium ground state (n = 1) and excited 
states (n = 2, 3,...), including multiphoton decay processes �M = ∑

n �2nγ with �M < 0.1M . The monopole masses 
considered are m = (a) 1500, (b) 2000, (c) 2500, (d) 3000, (e) 3500, (f) 4000, (g) 5000, (h) 6000 GeV respectively, 
and the latest 95% CL LHC constraints from the CMS (black line) [30] and ATLAS (grey line) [31] collaborations are 
included. The regions subtended by the black dotted lines indicate the predicted cross sections for p ∈ [60, 2000] and 
q ∈ [70, 200], with (a) labelled with corresponding q values at the extrema, which are consistent across each figure.

Similar to the two photon only case, constraints can be applied on monopole mass models as 
high as 13 TeV, which is far beyond the current capabilities of dedicated monopole searches at the 
LHC. This is the key motivation of searching for monopoles through their bound state formation, 
and gives exciting possibilities for the monopole masses that could be probed by future colliders 
with larger centre of mass energies, such as 100 TeV.
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Fig. 11. The predicted diphoton cross-sections at 13 TeV LHC for the monopolium ground state (n = 1) and excited 
states (n = 2, 3,...), including multiphoton decay processes �M = ∑

n �2nγ with �M < 0.1M . The monopole masses 
considered are m = (a) 7000, (b) 8000, (c) 9000, (d) 10000, (e) 11000, (f) 12000, (g) 13000, (h) 14000 GeV respec-
tively, and the latest 95% CL LHC constraints from the CMS (black line) [30] and ATLAS (grey line) [31] collaborations 
are included. The grey regions subtended by the black dotted lines indicate cross sections for parameters p ∈ [60, 2000]
and q ∈ [70, 200], with extremal q values labelled in (a), which are consistent across each figure.

6. Conclusions

The prospect of discovering the existence of monopoles could lead to many exciting phe-
nomenological consequences, and have significant implications for cosmological observables, 
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including Baryogenesis and gravitational waves. The strong coupling of monopoles leads to the 
possibility of monopole-anti-monopole pairs readily being produced in the form of bound states, 
namely monopolium. The large negative binding energy of monopolium states means that they 
can be copiously produced at energy scales well below that of the monopole mass itself. This 
can open the window to probing higher energy scales than could be reached by pair production 
alone. The monopolium states are expected to decay predominantly into multiphoton final states, 
which can provide a clean signal in comparison to that produced by monopole pair production. 
This possibility is a strong motivation for exploring the physics and properties of monopolium 
states.

In this work, we have investigated the phenomenology of monopolium bound states, with 
particular focus on the diphoton signatures that they produce at colliders. This analysis is built 
upon details of a monopolium construction we had previously proposed, to which we have made 
significant enhancements alongside expanded exploration of the phenomenological implications. 
This monopolium model utilised an analogy to the strong coupling regime description of quarko-
nium bound states, in which the bound state is formed non-perturbatively using a strong coupling 
expansion in lattice gauge theory. Improvements have been made in the calculation of the prop-
erties of the bound state, and the description of higher energy eigenvalues of the monopolium 
state. A new method has been used to control the divergence of total decay width upon includ-
ing multiphoton decays, by utilising an analogy to multiphoton positronium decays that was 
suggested by a recent work [20]. These improvements have allowed a thorough analysis of the 
phenomenology of our monopolium construction at current colliders. For certain parameter re-
gions of our model, we have derived constraints on the spin 1/2 monopole mass that exceed the 
strongest constraints available from the MoEDAL collaboration, namely m > 2420 GeV [10]. 
This result emphasises the key role that monopolium searches will play in probing the existence 
and properties of monopoles, motivating further study of the bound state dynamics and decay 
properties. The possible monopole mass ranges that will be probed by future 100 TeV colliders 
is of particular interest.

We have constrained our analysis to the para-monopolium (S = 0) bound states with l = 0, 
but the existence of ortho-monopolium states (S = 1) is also expected. The signatures produced 
by decays to three photon final states of the ortho-monopolium with l = 0 would be an ideal 
complementary test to the para-monopolium decays, but at present there are minimal constraints 
in this decay channel [57]. Understanding the phenomenology of the ortho-monopolium states 
at current and future collider searches is an important next step of this work. For example, com-
paring the characteristics of the corresponding resonance structures found in the even and odd 
multiplicity channels would provide insight into the properties of the monopoles and their bound 
state formation.

Large areas of monopolium parameter space have not been explored due to the very large 
decay widths that they exhibit, �tot > 0.1M . Future theoretical and experimental techniques will 
be required to make it possible to probe these states. There has been recent progress in such 
searches, in particular in regards to t t̄ states which consider total decay widths as high as �tot ∼
0.6M [58]. Additionally, prior to the discovery of the Higgs boson, there was discussion of 
the idea of the stealthy Higgs [59]. A large invisible Higgs width would lead to a very broad 
resonance allowing it to evade conventional methods of analysis. Such analyses will help guide 
the future investigations of the large multiphoton decay widths we predict for the monopolium 
states, which is necessary to fully explore their phenomenological implications. The bound states 
with �tot > 0.1M may also lead to non-minimal interference effects between energy eigenstates, 
which will require a more detailed analysis that is the subject of future work.
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The monopole bound states we predict generically exhibit large decay widths, such that there 
are no stable monopolium states. Additionally, the strong coupling regime of the monopoles 
means that they readily form bound states. Thus, it would be expected that the cosmological 
implications typically considered to result from free monopoles do not apply to those within 
our framework. Although if the monopolium bound states are produced at late times, possibly 
through cosmic rays, and are sufficiently long lived the possible energy level transitions may lead 
to low energy photon signals alongside the annihilation signature. The prospect of probing the 
monopoles through this avenue will be a subject of future work as the exact nature of these signals 
is difficult to ascertain without a dedicated analysis, due to the complex parameter dependence 
and short life time of the monopolium bound states.

Through the building of new colliders, such as the proposed 100 TeV collider [60], we will 
be able to probe deeply into the parameter space of our model, and possibly discover monopoles 
with masses of order O(10) TeV through the unique benefits of monopolium states. This in 
combination with new cosmological observations may provide new possibilities in the search for 
monopoles.
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