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Measuring the triple Higgs boson coupling is a crucial task in the LHC and future collider experiments.
We apply the message passing neural network (MPNN) to the study of nonresonant Higgs pair production
process pp → hh in the final state with 2bþ 2lþ Emiss

T at the LHC. Although the MPNN can improve the
signal significance, it is still challenging to observe such a process at the LHC. We find that a 2σ upper
bound (including a 10% systematic uncertainty) on the production cross section of the Higgs pair is 3.7
times the predicted Standard Model cross section at the LHC with the luminosity of 3000 fb−1, which will
limit the triple Higgs boson coupling to the range of ½−3; 11.5�.
DOI: 10.1103/PhysRevD.104.056003

I. INTRODUCTION

The discovery of a 125 GeV Higgs boson [1,2] is a great
leap in the quest to the origin of mass. The precision
measurement of the Higgs couplings is one of the primary
goals of the LHC experiment, which will further reveals the
electroweak symmetry breaking mechanism and sheds light
on the new physics beyond the Standard Model (SM).
Although the current measurements of the Higgs couplings
with fermions and gauge bosons are compatible with that
predicted by the SM, testing the triple and quartic Higgs
self-interactions is rather challenging at the LHC (for recent
reviews, see e.g., [3–17]).
In the Brout-Englert-Higgs mechanism of electroweak

symmetry breaking [18–22], the Higgs boson is a massive
scalar with self-interactions. The Higgs self-couplings are
determined by the structure of the scalar potential,

V ¼ m2
h

2
h2 þ λ3vh3 þ

1

4
λ4h4; ð1Þ

where mh is the mass of the SM Higgs boson, and v is the
vacuum expectation value of the SM Higgs field. The λ3
and λ4 are the Higgs self-couplings, and the corresponding
SM values are

λSM3 ¼ λSM4 ¼ m2
h

2v2
: ð2Þ

The values of λ3 and λ4 are measured via the double and
triple Higgs production processes, respectively. In many
extensions of the SM, these couplings can be altered by
Higgs mixing effects or higher order corrections induced by
new particles, such as two Higgs doublet model [23–25]
and (next-to-)minimal supersymmetric Standard Model
[26–29]. Since the Higgs self-coupling plays an important
role in vacuum stability [30] and electroweak baryogenesis
[31,32], measuring the Higgs self-coupling will provide a
crucial clue to new physics [33].
The triple Higgs boson coupling can be indirectly probed

by using the loop effects in some observables, for example,
the single Higgs production [34–36] and the electroweak
precision observables [37]. With 80 fb−1 of the LHC Run-2
data, the triple Higgs boson coupling has been constrained
in the range −3.2 < λ3=λSM3 < 11.9 at 95% C.L. [38]. On
the other hand, the Higgs pair production provides a direct
way to measure the triple Higgs boson coupling at the
LHC. Such a production is dominated by the gluon-gluon
fusion process, which has two main contributions: one is
from the triangle diagram induced by the triple Higgs boson
coupling, and the other is from the box diagram mediated
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by the top quark, as shown in Fig. 1. It should be noted that
these two amplitudes interfere destructively, and thus
results in a small cross section of 38.65 fb for the
production process gg → hh at 14 TeV LHC, which is
computed at next-to-next-to-next-to-leading order and
including finite top quark mass effects [39]. The new
physics effects that can significantly modify the Higgs pair
production have been intensively studied at the LHC (see,
for examples, [40–51] and references therein).
In Refs. [9,10,52–68], the potential of measuring the

Higgs pair production has been investigated in various decay
modes: bb̄bb̄, bb̄τþτ−, bb̄WW�, γγbb̄, γγWW�, and
WW�WW�. Among these channels, the process of hh →
4b has the largest branching ratio, while the process of hh →
bb̄γγ has a more promising sensitivity because of the low
backgrounds. Using the combination of the above six
analyses, the ratio −5 < λ3=λSM3 < 12 is constrained at
95% C.L. at 13 TeV LHC with the luminosity of
36.1 fb−1 [69]. The sensitivity will be greatly improved at
the high-luminosity (HL)-LHC [70] and future hadron
colliders [71].
In this paper, we focus on the Higgs pair production at the

HL-LHCwith 3 ab−1 luminosity, where oneHiggs decays to
bb̄ and the other toWW�. The decay branching ratio ofhh →
WW� is the second largest after hh → bb̄, so the bb̄WW�
final state can thus act as an important channel to enhance the
combining result if the signal can be well separated from the
dominant tt̄ background. Earlier conventional cut-flow
analyses [59,62,68] and machine learning methods
[67,72–74] applied to this channel get no more than 1σ
significance, while recent work [65] has combined the deep
neural network (DNN) and convolutional neural network
methods to reach the significance of 1σ. Given the impor-
tance of the Higgs pair production, in this work we apply the
machine learning method message passing neural network
(MPNN) [75] to explore the potential of observing such di-
Higgs events through the channel pp → hh → bb̄WW�.
In addition to the conventional kinematic cut-flow

analyses, the machine learning methods have been pro-
posed to accelerate the discovery of new physics [76–110].
The MPNN framework inherits the generality and power-
fulness of the graph neutral network [111,112]. It abstracts
the commonalities between several of the most popular
models for graph-structured data, such as spectral
approaches [113–115] and nonspectral approaches [116]

in graph convolution, gated graph neural networks [117],
interaction networks [118], molecular graph convolutions
[119], deep tensor neural networks [120], and so on [121].
In the MPNN, a collision event is represented as a
numerical geometrical graph formed by a number of final
state objects, which are nonlinear models with a bunch of
parameters that relate the output to the input graphs. The
supervised learning is used to find optimized parameters
and will help to recognize the pattern in the collision events
efficiently. Different from the DNN, MPNN is a dynamic
neural network and independent of the number and order-
ing of final state particles. Therefore, the MPNN is suitable
for processing the graph representation of the collision
event. Recently, this method has been successfully applied
to collider phenomenological studies, such as jet physics
[122], Higgs physics [123], and supersymmetry [124].
This paper is organized as follows. In Sec. II, we describe

the event generation and reconstruction for the signal and
backgrounds. Next, in Sec. III, we illustrate the event graph
and network architecture for the MPNN approach. In
Sec. IV, we present numerical results and discussions.
Finally, we draw our conclusions in Sec. V.

II. EVENT GENERATION AND
RECONSTRUCTION

The signal and background events at parton level
are generated with MadGraph5_aMC@NLO v2.6.1 [125] with
the default parton distribution function (PDF) set
NNPDF2.3QED [126] at the LHC with leading order with
center-of-mass energy

ffiffiffi
s

p ¼ 14 TeV. We employ the fol-
lowing cuts for parton level event generation: pTj >
20 GeV, pTb > 20 GeV, pTγ > 10 GeV, pTl > 10 GeV,
ηj < 5, ηb < 5, ηγ < 2.5, ηl < 2.5, ΔRbb < 1.8,
ΔRll < 1.3, 70 GeV < mjj < 160 GeV, 70 < mbb <
160 GeV, and mll < 75 GeV, where l denotes e and μ.
We impose additionally 5 GeV < mll < 75 GeV for
jjllνν̄, llbj and tW þ j backgrounds. The angular dis-
tance ΔRij is defined by

ΔRij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕijÞ2 þ ðΔηijÞ2

q
; ð3Þ

where Δϕij ¼ ϕi − ϕj, and Δηij ¼ ηi − ηj are the
differences of the azimuthal angles and rapidities between
particles i and j, respectively.

FIG. 1. Representative Feynman diagrams for the Higgs boson pair production in the SM: (a) through triple Higgs self-coupling;
(b) through Higgs-fermion Yukawa interaction.
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The signal cross section is normalized to the next-to-
next-to-leading-order (NNLO) accuracy in QCD [127], that
is σgg→hh ¼ 40.7 fb. The main background tt̄ cross section
is normalized to the NNLO QCD value 953.6 pb [128].
Along with the signal and tt̄, all other backgrounds and
their normalized cross sections are listed in Table I.
We generate the low-Q2 soft QCD pile-up events and

apply hadronization via package PYTHIA8243 [132], fol-
lowed by detector simulation with DELPHES 3.4.2 [133]. In
the ATLAS card, we consider the average amount of pile-
up events per bunch crossing as 100. We take the default
parametrization implemented in the ATLAS card to dis-
tribute the hard scattering events and pile-up events
randomly in time and z positions. The maximum spread
of pile-up events in the beam direction is 0.25 m, and the
maximum spread of pile-up events in time is 8 × 10−10 s.
In this work, we follow the default parametrization of the

DELPHES ATLAS card to perform the pile-up subtraction and
use the spatial vertex resolution parameter jzj to perform
charged pile-up subtraction. We consider every charged
particle originating from a reconstructed vertex with jzj >
0.01 cm as coming from pile-up events and only keep those
tracks that pass through the TrackPileUpSubtractor in
DELPHES.
Similar to the tracks, the reconstructed jets are supposed

to be corrected from low-Q2 pile-up events containing
neutral particles. Jet pile-up subtraction is done via the
JetPileUpSubtractor module that takes as input the jet
constitutes and pile-up density ρ based on the jet area.
This technique helps to correct the jet momenta by
calculating pile-up density (ρ) and jet area. Jets are
clustered with the calorimeter tower elements using
FASTJET 3.3.2 [134] with anti-kT jet algorithm [135] and
jet radius R ¼ 0.4 with pT > 20 GeV, and we allow the
default estimation of ρ with the calorimeter towers. As for
the pile-up subtraction of missing transverse momentum,
we calculate it based on the pile-up subtracted jets, photons,
and leptons.
The DELPHES card for the ATLAS detector simulation is

modified as follows:
(i) Jets, including b-jets, with pTðjÞ > 20 GeV and

jηjj < 2.5 are selected.
(ii) Flat b-tagging efficiency is ϵb→b ¼ 0.75, mistagging

efficiency for c quark as b is ϵc→b ¼ 0.1, and
mistagging rates of other jets are ϵj→b ¼ 0.01 [136].

(iii) Maximum transverse momenta ratio for lepton

isolation is set as
P

i≠e
pTi

pTl
< 0.15, where the sum

is taken over the transverse momenta pTi of all final
state particles i, i ≠ l, with pTi > 0.5 GeV and
within angular distance ΔRil < 0.3 with lepton
candidate l. Leptons with pTðlÞ > 10 GeV and
jηlj < 2.5 are selected.

(iv) Isolation of photons also require
P

i≠γ
pTi

pTγ
< 0.12 for

particles i, without including γ, with pTi > 0.5 GeV
and within angular distance ΔRiγ < 0.3 with photon
candidate γ. Photons are required to have pTðγÞ >
25 GeV and jηγj < 2.5 to be selected.

After the reconstruction, the missing transverse momen-
tum Emiss

T is defined as the negative vector sum of the
transverse momenta of the accepted photons, leptons and
jets, and unused tracks as in [137],

Emiss
T ¼ −

X
accepted
electrons

pe
T −

X
accepted
muons

pμ
T −

X
accepted
photons

pγ
T −

X
accepted

jets

pj
T −

X
unused
tracks

ptrack
T ;

ð4Þ
where the tracks with pT > 0.4 GeV and jηj < 2.5 are
considered.
We further apply the following cuts to reduce back-

ground events sufficiently relevant to the signals:
(i) The two leading jets must be b tagged, each

with pT > 30 GeV.
(ii) Exactly two opposite sign leptons, each with

pT > 25 GeV.
(iii) Modulus of Emiss

T is required to be Emiss
T > 20 GeV.

(iv) Angular distances for two leptons and for two b jets
are ΔRll < 1.0 and ΔRbb < 1.3, respectively.

(v) Invariant masses for two leptons and for two b jets,
respectively, are mll < 65 GeV and 95 GeV <
mbb < 140 GeV.

We export only the four momenta (which also contain the
corresponding charge signs of leptons and b-jet tagging
information) of those events, which passed the above cuts
for later network training.

III. EVENT GRAPH AND NETWORK
ARCHITECTURE

Each collider event obtained in the preceding section is
converted to an event graph as the input for our neural

TABLE I. Signal and background cross sections in fb unit before hadron-level cuts but after baseline cuts and after the MPNN
validation process requiring the signal events number Nsig ¼ 20 to have reasonable statistics. The significance α is calculated by using
the Eq. (11) with β ¼ 0 for simplicity.

hh tt̄ tW þ j lþl−bj tt̄h τþτ−bb̄ tt̄V jjlþl−νν̄ αðσÞ S=B

No cut 40.7 [127] 953600 [128] 123200 117100 [129] 661.3 [130] 29070 [129] 1710 [131] 48200a ≃0 ≃0
Baseline cuts 0.0105 1.8568 0.2189 0.0675 0.0247 0.0246 0.0153 0.0101 0.3876 0.0047
MPNN 0.0067 0.0581 0.0180 0.0152 0.0080 0.0025 0.0018 0.0017 1.13 0.06

aApplied a NLO k factor of 2.0.
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network. Figure 2 illustrates a simulated signal event as an
event graph which consists of nodes and edges. A node
represents a final state object passed all the cuts, and this
object can be a photon, lepton, jet, or missing transverse
momentum (MET). Each node has a seven-dimensional
feature vector xi ¼ ðI1; I2; I3; I4; pT; E;mÞ, which contains
the major property of the corresponding final state. For the
elements of a feature vector, pT , E, and m are, respectively,
the transverse momentum, energy, and mass of the object,
while the default values for Ii are 0, with I1 ¼ 1 for a
photon, I2 being the charge of the lepton, I3 ¼ 1 for a b-
tagged jet, I3 ¼ −1 for a non-b-tagged jet, and I4 ¼ 1 for
the MET. Each pair of nodes are linked by an edge which is
weighted by the angular distances (3) between the corre-
sponding two nodes.
Due to the rotation invariance of the differential cross

section of the collider events around the beam axis, we can
get rid of the information of azimuthal angle dependence of
the event from the node features, and the difference of
azimuthal angles is encoded in edge weights. This will
make sure that the classification is not dependent on the
definite azimuthal angle of the final states of an event and
that it is stable with respect to the rotation of the event
around the beam axis. The other two advantages of such an
event graph design are the following: (1) The number of
nodes equal to the number of final state objects, i.e., the
number of nodes is not fixed, which guarantees to use full
information of final state objects1; (2) The node features
and edge weights are easily transformed by the four
momenta of the object, no sophisticated discriminants

are needed to be constructed, which makes the model
quite general and easy to implement to other scenarios,
as well.
The structure of our MPNN is shown in Fig. 3, which

consists of one embedding layer,N message passing layers,
and one output layer. The embedding transformation for
input data is given by

m0
i ¼ ReLUðW0

mxi þ b0mÞ; ð5Þ

where W0
m and b0m are learnable weight and bias vectors,

and the activation function ReLU is the rectified linear unit
[138]. The dimension ofm0

i is higher than xi. It can be seen
that ith node m0

i in the embedding layer is a vector, which
only contains information from input feature xi, without
including any geometrical pattern of the event graph. Then,
the ith node in the nth message passing layer is obtained by
the following transformation:

sni ¼
X
j

ReLUðWn
mðmn−1

j ⊕ d̂ijÞ þ bnmÞ; ð6Þ

mn
i ¼ ReLUðWn

s ðmt−1
i ⊕ sni Þ þ bns Þ; ð7Þ

where i and j are indices of nodes, sni is the intermediate
vector, ⊕ represents vector concatenation, and Ws and bs
are learnable weights and biases. The message passing
process is realized by two subprocesses: First, Eq. (6)
collects information from all previous nodes and distances
between nodes. Second, Eq. (7) passes this information,
together with previous nodes, to the next one. By repeating
this process, each note in the message passing layer gets
knowledge of other nodes and relationships between
them and updates itself. Therefore, the message-passing

FIG. 2. Left figure illustrates an event graph, which includes nodes (circles) and edges (yellow lines), for a simulated signal event. A
node represents a final state object passed all cuts and an edge represents the angular distance between two nodes. The upper right table
shows the six objects; each of them is a seven-dimensional feature vector xi ¼ ðI1; I2; I3; I4; pT; E;mÞ with Ii features identifying its
type, e.g., I1 ¼ 1 for a photon, I2 is the charge of the corresponding lepton, I3 ¼ 1 is a b-tagged jet, I3 ¼ −1 is a non-b-tagged light jet,
I4 ¼ 1 is the missing transverse momentum. Note that pT , E, and m are the transverse momentum, energy, and mass of the object. The
table at the bottom shows the angular distances [Eq. (3)] between a pair of nodes for all six objects.

1We verified the assumption by restricting the number of light
jets at the final states and obtained the best result by using full
information.
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mechanism is the key for automatically extracting features
of the input event graph, which efficiently disseminates the
information among all the nodes taking into account the
connections between nodes. After N iterations, each node
state vector can be viewed as an encoding of the whole
event graph representing the whole information of both the
kinematic features of all final states and the geometrical
relationship between them. Here, we expand edge weight
dij onto 21 Gaussian bases to make it more suitable for
linear transformation [124], and the kth component of this
weight vector is

ðd̂ijÞk ¼ exp
�ðdij − μkÞ2

2σ2

�
; ð8Þ

where μk is linearly distributed in range of [0, 5] and
σ ¼ 0.25. Such an expansion is inspired by radial basis
function networks [139,140], which can solve nonlinear
problems by mapping input into high dimensions.
At the output layer, we use the sigmoid function on the

vector mN
i to get the probability pi of the node i as

pi ¼ σðWpmN
i þ bpÞ ¼

1

1þ e−ðWpmN
i þbpÞ ; ð9Þ

and then average the probabilities from all nodes at the
output layer by

s ¼ 1

V

X
pi; ð10Þ

with V being the number of nodes in the input event, which
is the number of final state particles in an event. It should be

mentioned that V is not a constant, e.g., if there are two
extra light jets and one photon in an event apart from the
required two b jets, two leptons, and one MET, then we
have V ¼ 7.
The MPNN can be efficiently trained using the super-

vised learning method. We adopt binary cross entropy as
the loss function. Although increasing the number of
hidden layers can enable the network to learn more
complex features in the data, it may have disadvantages
like overfitting and time consuming. We find that for our
network N ¼ 3 is the most optimal choice.2 Note that W0

m,
Wn

m, Wn
s , and Wps in Eqs. (5)–(7) and (9) are 30 × 7,

30 × 51, 30 × 60, and 1 × 30 matrices, respectively. Thus,
the overall number of learnable parameters in our MPNN
model is 10441. The Adam [141] optimizer with a learning
rate of 0.001 is used to optimize the model parameters
based on the gradients calculated on a minibatch of 128
training examples. A separate set of validation examples is
used to measure the generalization performance, while
training to prevent overfitting using the early-stopping
technique. All these are implemented in the deep learning
framework of PYTORCH [142] with a CUDA platform and
trained on a NVIDIA Titan Xp GPU with 12 Gb DDR5
memory for acceleration. One cycle of training and
validation takes about half an hour when the size of the
training data set and the validation data set are 300k and
100k, respectively. Note that signal and backgrounds have
equal training and testing samples, while each subback-
ground has a number of samples proportional to the cross

(5)

(5)

(5)

(6) (7) (6) (7)

(9)

(9)

(9)

(10)

Embedding Message passing Message passing OuthputMessage passing

FIG. 3. Schematic diagram of the MPNN classifier which consists of one embedding layer, N pairs of message passing layers, and one
output layer (these layers are sequentially connected by nonlinear transformations). The numbers in parentheses correspond to equation
numbers in the text, the operators ⊕, Σ and 1

V denote vector concatenation, summation, and averaging, respectively; the summation and
averaging run over all V nodes.

2Message passing layer with N ¼ 3 can increase significance
by about 5% compared to N ¼ 2, while N ¼ 4 can only increase
significance by less than 1% compared to N ¼ 3.
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section after the baseline cuts, e.g., 1.8568=2.2178 ×
150 K training samples for tt̄, 0.2189=2.2178 × 150 K
for tW þ j, and so on, where the sum of the cross sections
of all backgrounds after the baseline cuts is 2.2178 fb (see
Table. I).

IV. RESULTS AND DISCUSSIONS

In order to estimate the observability of the signal, we
calculate the signal significance (α) with the following
formula,

α ¼ S
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ ðβBÞ2
q

; ð11Þ

where S and B denote number of signal and background
events after our selections, respectively. L is the integrated
luminosity of the collider. It should be mentioned that the
main systematic uncertainty is parametrized by the factor of
β in our calculations.

Firstly, we focus on the SMHiggs pair production process
pp → hh → bb̄WW� → bb̄lþl− þ Emiss

T at 14 TeV LHC
with the luminosity of 3000 fb−1. In Fig. 4, we show the
output of the trained MPNN evaluated on the validation test.
The left panel is the discrimination score s, i.e., the
probability distribution in Eq. (10), for the signal and the
background processes. We label the signal as “1” and
the background as “0” before training. As expected, the
signal peaks near s ¼ 1 and dominant background tt̄ peaks
near the score s ¼ 0, which are well separated from each
other. For a given value of score s0, we can add the signal or
background events in the range of ½s0; 1� in the left panel and
then obtain the ROC curve in the middle panel, where the
signal and background efficiencies are a fraction of the
survival events in the initial signal and background events,
respectively.We can see that theROCcurve increases steeply
and shows a good discrimination in the signal and back-
ground. The right panel shows the significance of signal as a
function of score. Unfortunately, the maximum value of the

FIG. 4. The MPNN training results for the signal (hh) and backgrounds (tt̄, tWj, lþl−bj, bb̄ττ þ jjlþl−νν̄, and tt̄h=V) in the SM at
14 TeV LHC. Left panel: the event fractions of the signal and each background versus the final score s. Middle panel: the receiver
operating characteristic (ROC) curve of the signal and background. Right panel: the signal significance versus the final score s. The
luminosity L ¼ 3000 fb−1 is assumed.

FIG. 5. The 2σ upper bounds on production cross section of the Higgs pair (left panel) and triple Higgs boson coupling (right panel) at
14 TeV LHC.
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significance for the SM Higgs pair process pp → hh →
bb̄WW� → bb̄lþl− þ Emiss

T can only reach about 1.5σ at
the HL-LHC.
At the last row of Table I, we give the sensitivity of the

SM signal process pp → hh → bb̄WW� → bb̄lþl− þ
Emiss
T for the MPNN at 14 TeV LHC with the luminosity

of 3000 fb−1. In order to guarantee the statistic, we require
to have 20 signal events after all selections for each method.
The signal significance given by the MPNN is about 1.12σ.
Finally, we apply our method to constrain the production

cross section of the Higgs pair and the Higgs trilinear
coupling in the beyond SM at 14 TeV LHC. We adopt the
model-independent way to present the 2σ limits on the ratio
of σhh=σSMhh in the left panel of Fig. 5, where we take the
systematic uncertainty β ¼ 0; 10%; 20%; 30%, for exam-
ple. It can be seen that the production cross section of the
Higgs pair larger than 13.5 times of the SM prediction can
be excluded for the luminosity L ¼ 139 fb−1 and system-
atic error β ¼ 30%. If β can be controlled at 10%, then the
2σ upper bound on the ratio of σhh=σSMhh will be reduced to
9.5. Such results can be improved to be 10.2 for β ¼ 30%
and 3.7 for β ¼ 10% at the HL-LHC. Provided β ¼ 0, this
limit on σhh=σSMhh will become 1.5. Besides, we reinterpret
these bounds for triple Higgs boson coupling in the right
panel of Fig. 5. We find that the ratio of λ3h=λSM3h can be
constrained to the range of ½−10; 18� for L ¼ 139 fb−1 and
β ¼ 30% and will be further narrowed down to the range of
½−3; 11.5� for L ¼ 3000 fb−1 and β ¼ 10% at 2σ level.

V. CONCLUSIONS

In this paper, we explored the discovery potential of
Higgs pair production process pp → hh → bbWW� →
2bþ 2lþ Emiss

T with the message passing neural network
at the (HL-)LHC. In the MPNN, we can represent each
collision event as an event graph that consists of the final
state objects and use the supervised learning to optimize
training parameters. By using the MPNN, we obtained that
the significance of the SM Higgs pair production process
can reach the maximum of about 1.5σ at the HL-LHC.
Then, we extended our study to constrain the production
cross section of the nonresonant Higgs pair and the triple
Higgs trilinear coupling in a model-independent way. We
found that the production cross section of the Higgs pair
larger than 10.2 times of the SM prediction can be excluded
at 2σ level for the HL-LHC when a 30% systematic
uncertainty is included. If the systematic error can be well
controlled, such as 10%, this upper bound can be improved
to 3.7 times of the predicted by the SM, which will
constrain the triple Higgs boson coupling to the range of
½−3; 11.5�. Therefore, we expect this channel can play an
important role in enhancing the sensitivity of the combining
analysis of SM Higgs pair production at the HL-LHC.
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