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Abstract Asymptotic expansions of Feynman amplitudes
in the loop-tree duality formalism are implemented at
integrand-level in the Euclidean space of the loop three-
momentum, where the hierarchies among internal and exter-
nal scales are well-defined. The ultraviolet behaviour of the
individual contributions to the asymptotic expansion emerges
only in the first terms of the expansion and is renormalized
locally in four space-time dimensions. These two properties
represent an advantage over the method of Expansion by
Regions. We explore different approaches in different kine-
matical limits, and derive explicit asymptotic expressions for
several benchmark configurations.

1 Introduction

Since the Higgs boson has been discovered successfully at
CERN’s Large Hadron Collider almost one decade ago, clear
evidence of further particles not described by the Standard
Model (SM) has not been reported, although observations
such as the anomalous magnetic moment of the muon [1] or
the B anomalies [2] hint at discrepancies between SM pre-
dictions and measurements. With decreasing experimental
uncertainties it is clear that theoretical predictions at increas-
ing precision are at the forefront of current research in order to
confirm or reject deviations from the SM [3]. Consequently,
higher order contributions in perturbative Quantum Field
Theory (pQFT) are crucial. This endeavour quickly reaches
its limits in the common approach of Dimensional Regular-
ization (DREG) [4,5]. Within this technique the divergent
expressions that appear in loop calculations of Feynman dia-
grams are regularized by working in d = 4 − 2ε space-
time dimensions, thus leaving the problematic integrals for-
mally well-defined. The limit ε → 0 is taken only after both
infrared (IR) and ultraviolet (UV) singularities have been
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canceled in IR safe observables and/or renormalized through
appropriate redefinition of the constants appearing in the the-
ory. Within DREG, the difficulty posed by the integral(s) in a
Feynman amplitude scales with the number of loops, external
legs and mass scales.

The interest in asymptotic expansions within pQFT arises
from their potential to facilitate analytic results in specific
kinematic configurations, particularly when full analytic cal-
culations in DREG are not possible. While work on the solu-
tion for further master integrals is ongoing, an expanded
result can still be of great interest since it showcases the
relevant behaviour of the amplitude in the needed kinematic
limit. There are many observables where an analytic result
is not necessary for every set of kinematics and where spe-
cific limits are the window to test potential discrepancies
between experiments and SM predictions, thus identifying
new physics contributions. Furthermore, in the context of
the local cancellation of IR singularities expanded integrands
could be very convenient to reduce computation time. While
maintaining the correct analytic structure in the divergent
limit and thus allowing for the combination with the real-
emission contributions, the less complicated form of the
expanded virtual contributions is expected to evaluate faster
during the point-by-point process of numerical integration.

As an example for a new-physics scenario likely to bene-
fit from asymptotic expansions highly-boosted Higgs boson
production may be mentioned: while the regime of small
transverse momentum has been calculated with a point-like
interaction encoding the top-quark loop [6,7], first attempts
at the full calculation necessary for obtaining the large trans-
verse momentum distribution have been published recently
and rely on either numerical integration [8] or expansions
in the Integration by Parts identities [9]. It is exactly this
part of the amplitude which is needed in order to rule out an
additional point-like effective Higgs-gluon-gluon coupling.

The interest in asymptotic expansions becomes also clear
noting that there are already well-developed methods for
simplifying the integrands of Feynman amplitudes. Widely
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known among them is Expansion by Regions [10–16]. While
this technique has been shown to provide correct results a
general proof is still pending [17]. Additionally, the degree
of UV divergence rises with every term in the expansion
which can be considered inconvenient.

In recent years an alternative regularization method based
on the loop-tree duality (LTD) has been developed and
applied both at one loop and beyond [18–36]. Other alter-
native methods to DREG have been proposed and are sum-
marized in Ref. [37]. The basis of LTD is using the Cauchy
residue theorem to integrate one component of the loop
momentum. Loop amplitudes can thus be expressed as a
sum of residues which can be reformulated as so-called dual
amplitudes. These consist of sums of tree-level like objects
to be integrated in what essentially is a phase-space integral.

As a result of LTD, one obtains a function to be integrated
over the Euclidean three-momenta. In addition, the LTD rep-
resentation exhibits a clear and localized singular structure
that enables the local cancellation of IR singularities. This
feature allowed the development of the Four-dimensional
Unsubtraction method (FDU) [38–40]. Further, it leads to an
additional characteristic: in comparison to the original Feyn-
man amplitude as a function of Minkowski four-momenta the
size of scalar products appearing in the dual integrand can be
directly compared to external scales. This allows the develop-
ment of a well-defined formalism of asymptotic expansions
of the integrand. Specific asymptotic expansions in the con-
text of LTD have been presented for the first time for the
process H → γ γ at one loop [24]. The aim of this paper is
to extend these preliminary studies to other kinematical con-
figurations. First steps have been reported on in [41] recently.

The structure of the paper is as follows. General guide-
lines for the expansion of dual propagators are layed out
in Sect. 2. Those rules are then applied to the scalar one-
loop two-point function in Sect. 3 as well as the scalar three-
point function in Sect. 4, in both cases for a variety of limits.
We aim towards obtaining an expansion that is well-defined
also at integrand-level and simplifies integrands sufficiently
to obtain loop analytic results at higher orders and multiple
scales. For this purpose, we analyze in Sect. 5 the multiloop
case of the so called Maximal Loop Topology (MLT) defined
in Ref. [34], which is the most symmetric multiloop config-
uration and is used as the building block to construct more
complex topologies.

2 Loop-tree duality and asymptotic expansions of dual
propagators

A general one-loop scattering amplitude with N external legs
in the Feynman representation is given by

A(1)
N =

∫
�

N (�, {pk}N )

(
N∏
i=1

GF (qi )

)
, (1)

where the loop integral measure in d = 4 − 2ε space-time
dimensions is

∫
�

= −ı μ4−d
∫

dd�/(2π)d and the expres-
sion N (�, {pk}N ) is a function of the loop momentum � and
the N external momenta {pk}N . The Feynman propagators
GF (qi ) = (q2

i − m2
i + ı0)−1 carry momenta qi = � + ki ,

where ki are linear combinations of the external momenta.
Applying the loop-tree duality theorem this amplitude is
rewritten as

A(1)
N = −

∫
�

N (�, {pk}N )

N∑
i=1

δ̃ (qi )

⎛
⎝∏

j �=i

GD
(
qi ; q j

)
⎞
⎠ ,

(2)

where GD(qi ; q j ) = (q2
j − m2

j − ı0 η · k ji )−1, with k ji =
q j − qi , are the so-called dual propagators and η is an arbi-
trary future-like vector. The dual propagators differ from the
Feynman propagators only in their infinitesimal imaginary
prescription, whose sign in the dual propagator depends on
the external momenta. A different internal loop momentum
is set on-shell in each of the terms in Eq. (2), which are
conventionally called dual amplitudes, through the modified
delta functional δ̃ (qi ) = 2π i θ(qi,0)δ(q2

i −m2
i ), in short, or

δ̃ (qi ;mi ) ≡ δ̃ (qi ) whenever it is necessary to make refer-
ence to the internal masses. Due to the on-shell conditions,
the dimension of the integration domain is reduced by one
unit. The choice η = (1, 0) is the most convenient because
it is equivalent to integrating out the energy component of
the loop momentum, thus reducing the integration measure
to the Euclidean space of the loop three-momentum.

The behaviour of scattering amplitudes is ruled by their
analytic properties. Aiming for asymptotic expansions at
integrand-level, we must therefore consider in detail the anal-
ysis of propagators which are the objects that give rise to sin-
gularities. While the numerator plays a role in determining
whether the amplitude has a UV divergence this is not rele-
vant for the discussion that follows about asymptotic expan-
sions since within LTD the singular UV behaviour is neu-
tralized through local renormalization before integration. An
example of this will be shown in the following section.

The dual propagators can manifest non-causal or unphys-
ical singularities on top of the physical divergences related
to causal threshold and IR singularities. These unphysi-
cal divergences appear only when the various terms in the
sum are considered separately. Identifying the conditions
under which both causal and unphysical singularities appear
as well as their position in the integration space is neces-
sary groundwork for asymptotically expanding an amplitude.
The examination of said singularities can be achieved effi-
ciently by reparametrizing the dual propagators as shown in
Refs. [21,33]
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δ̃ (qi )

π ı
GD(qi ; q j ) =

δ
(
qi,0 − q(+)

i,0

)

q(+)
i,0 λ+−

i j λ++
i j

,

λ±±
i j = ±q(+)

i,0 ± q(+)
j,0 + k ji,0, (3)

where q(+)
s,0 = √

q2
s + m2

s are the on-shell energies. In this

notation, a causal unitarity threshold appears for λ++
i j → 0

while an unphysical singularity appears for λ+−
i j → 0. The

latter case always appears entangled between two dual ampli-
tudes which leads to the cancellation of these unphysical sin-
gularities due to the always opposite sign of the infinitesimal
imaginary prescription in the dual propagators. It is straight-
forward to derive the kinematic conditions for either of these
limits to occur and examples are provided in Refs. [21,33].
In some special kinematic configurations, the unphysical sin-
gularities may even be avoided altogether by redefining the
loop momentum flow through � → −�, see e.g. Ref. [33].
Remarkably, we have recently presented dual representations
of selected multiloop topologies that are explicitly free of
unphysical singularities, and we conjectured that this prop-
erty holds to other loop topologies at all orders [34]. The
advantages that the causal representation introduces will be
illustrated in Sect. 5.

Having identified the propagators of the amplitude that
lead to singularities, we can now reparametrize the dual prop-
agators in the following form that is more suitable for asymp-
totic expansions

δ̃ (qi ) GD
(
qi ; q j

) = δ̃ (qi )

2qi · k ji + Γi j + Δi j − ı0η · k ji ,
(4)

where Γi j +Δi j = k2
j i +m2

i −m2
j . If Γi j +Δi j vanishes the

dual propagator is not expanded. Otherwise the starting point
for the asymptotic expansion is to demand that the condition

|Δi j | � |2qi · k ji + Γi j | (5)

be fulfilled for the whole range of the loop integration space
except for potentially small regions around physical diver-
gences. The distinctive feature of LTD is that since dual prop-
agators only appear in integrands where one loop momentum
has been set on-shell, the condition has to be fulfilled in the
Euclidean space of the loop three-momentum. Whenever it
is satisfied, the dual propagator can be expanded as

GD
(
qi ; q j

) =
∞∑
n=0

(−Δi j
)n

(
2qi · k ji + Γi j − i0η · k ji

)n+1 , (6)

or in the case of amplitudes with propagators raised to multi-
ple powers, as often occurs in multiloop amplitudes, by using
the generalized binomial theorem

(
GD

(
qi ; q j

))m

=
∞∑
n=0

(−m

n

) (
Δi j
)n

(
2qi · k ji + Γi j − i0η · k ji

)n+m . (7)

A special case of the above is the situation when k2
j i+m2

i −m2
j

is much smaller than the scalar product 2qi · k ji . Then we
must identify Γi j = 0 and the expansion above simplifies as
follows:

GD
(
qi ; q j

) =
∞∑
n=0

(−Δi j
)n

(
2qi · k ji

)n+1 . (8)

The asymptotic expansion of the dual propagators given in
Eq. (6) is the basis for the majority of the examples that will be
presented in this work. In the following, we will discuss how
to select the functions Γi j and Δi j in different kinematical
limits. Further simplifications arise wheneverk j i = 0. In that
case, with the change of variables |qi| = mi/2 (xi − x−1

i ),
the denominator of the expanded dual propagator takes an
easily integrable form.

For the case of Γi j = 0 the denominator of Eq. (8) is given
by

2qi · k ji = k ji,0 mi (xi + x−1
i ). (9)

Otherwise, the denominator of Eq. (6) can be written as

2qi · k ji + Γi j − ı0 η · k ji
= Q2

i (xi + ri j )(x
−1
i + ri j ). (10)

The form found here determines the parameters Γi j and ri j
appearing in the expansion to be restricted by the conditions

Γi j − ı0 η · k ji = Q2
i (1 + r2

i j ),

ri j = mi k ji,0
Q2

i

− ı0 η · k ji
Q2

i

, (11)

assuming |ri j | ≤ 1. For the class of limits where one hard
scale Q is available, we can identify Q2

i = ±Q2, where
the sign is determined by the sign of the hard scale in the
expression k2

j i + m2
i − m2

j . As will be seen in the examples
of the following sections this type of expansion facilitates the
analytical integration based on integrals of the form∫ ∞

1

dxi

xi (xi + ri j )(x
−1
i + ri j )

= log(ri j )

r2
i j − 1

, |ri j | < 1. (12)

On top of the relations in Eq. (11) additional conditions are
to be respected by the expansion parameters. The expansion
is to converge both at integrand- and at integral-level and the
analytic behaviour of the dual propagator may not be fun-
damentally changed. This is to mean that for a propagator
with a singularity the expansion is to also display that sin-
gularity, while the expansion of a non-singular propagator
is to be finite in all of the integration domain as well. The
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infinitesimal imaginary prescription of ri j given in Eq. (11)
accounts properly for the complex prescription of the origi-
nal dual propagator and therefore its causal thresholds. This
corresponds to the argument ri j of the logarithm in Eq. (12)
taking a negative value, Re(ri j ) < 0.

While the scenario described above covers the majority of
typical limits, asymptotic expansions at thresholds deserve
a special treatment since all the scales are of the same order
and, therefore, a hard scale cannot be clearly identified. Even
when approaching the physical threshold from below and
thus considering a dual propagator without pole on the real
axis, its behaviour is still strongly influenced by the threshold
singularity. In cases like this it is necessary to consider the
trajectory of the pole in the non-expanded propagator more
carefully, which is determined by

xi = −k2
j i,0 + m2

i − m2
j ± λ1/2(k2

j i,0,m
2
i ,m

2
j )

2k ji,0mi
, (13)

in terms of the modified Källén function λ(k2
j i,0,m

2
i ,m

2
j ) =

(k2
j i,0 − (mi +m j )

2)(k2
j i,0 − (mi −m j )

2) − ı0k ji,0(k2
j i,0 +

m2
i − m2

j ). Then, by expanding close to threshold

xi |β→0±

= −sign(k ji,0)

(
1 ±

√
−m j β

mi
− ı0k ji,0 + O(β)

)
,

(14)

with β defined through k2
j i,0 = (mi+m j )

2(1−β). Following
this procedure we can deduce the correct ri j parameters for
the asymptotic expansion both from above and from below
threshold and bring the dual propagator into the desired form,
Eq. (10), while showcasing the same threshold behaviour as
the non-expanded propagator.

In the following sections we will apply these general
ideas to benchmark one-loop integrals, and will present their
asymptotic expansions in several kinematical limits within
the LTD formalism.

3 Asymptotic expansion of the scalar two-point function
with two internal masses

An obvious first benchmark application is the asymptotic
expansion of the scalar two-point function with two different
internal masses corresponding to the diagram in Fig. 1. The
corresponding amplitude in the Feynman representation is

A(1) =
∫

�

GF (q1; M)GF (q2;m), (15)

with q1 = �− p and q2 = �. The momentum flow, assuming
p0 > 0, has been chosen to avoid the appearance of non-
causal or unphysical singularities. These types of integrand

Fig. 1 Two-point function with internal masses M > m

singularities, if they appear, always cancel in the sum of dual
amplitudes.

We are interested in the asymptotic expansion of the renor-
malized amplitude, which is well defined directly in four
space-time dimensions

A(1,R) = A(1) − A(1)
UV

∣∣∣
d=4

, (16)

where A(1)
UV is a local UV counterterm that suppresses the

singular behaviour of the unintegrated amplitude for large
loop momenta.1 Its Feynman and dual representations are
respectively given by

A(1)
UV =

∫
�

(GF (�;μUV))2 =
∫

�

δ̃ (�;μUV)

2
(
�
(+)
0,UV

)2 ,

�
(+)
0,UV =

√
�2 + μ2

UV, (17)

where μUV is an arbitrary scale. Its integrated form takes the
shape

A(1)
UV = Γ (1 + ε)

(4π)2−ε

1

ε

(
μ2

UV

μ2

)−ε

, (18)

and implements the standard MS renormalization scheme
when identifying the parameter μUV with the DREG renor-
malization scale μ. The full analytic expression of the renor-
malized scalar two-point function is well known through
standard techniques

A(1,R) = 1

16π2

[
2 + p2 + M2 − m2

2p2 log

(
μ2

UV

M2

)

+ p2 + m2 − M2

2p2 log

(
μ2

UV

m2

)

1 For realistic scattering amplitudes the UV counterterm should contain
also contributions that integrate to zero and a finite renormalization to
preserve the Ward identities, see e.g. [25].
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+ λ1/2
(
p2,m2, M2

)
p2

· log

(
m2 + M2 − p2 + λ1/2

(
p2,m2, M2

)
2mM

)]
,

(19)

which is symmetric under the exchange m ↔ M . This
expression will be used to check the validity of the asymptotic
expansions presented in the next sections.

3.1 Master asymptotic expansion

The dual representation of the renormalized scalar two-point
function (Eq. (16)) is given by

A(1,R) = −
∫

�

[
δ̃ (q1; M) GD(q1; �) + δ̃ (�;m) GD(�; q1)

+ 1

2
δ̃ (�;μUV)

(
�
(+)
0,UV

)−2
]
, (20)

where the dual propagators are

GD(q1; �) = 1

2q1 · p + p2 − m2 + M2 − ı0 p0
, (21)

GD(�; q1) = 1

−2� · p + p2 + m2 − M2 + ı0 p0
. (22)

Setting p = (p0, 0) with p0 > 0, the on-shell energies and

scalar products are q(+)
1,0 =

√
�2 + M2, �

(+)
0 =

√
�2 + m2,

q1 · p = q(+)
1,0 p0 and � · p = �

(+)
0 p0. With this choice of the

reference frame the dual representation and its asymptotic
expansion become particularly simple as the angular inte-
gration of the loop three-momentum is straight. The renor-
malized result can be reproduced through direct integration
of Eq. (20).

Still, the general propagator expansion of Eqs. (6) and (10)
can be applied to this amplitude to simplify the integrand

A(1,R) = − 1

16π2

[ ∑
i, j=1,2

m2
i

Q2
i

∞∑
n=0

(
−Δi j

Q2
i

)n

I (n)(ri j ,mi )

+ IUV(μUV)

]
, (23)

where m1 = M , m2 = m and the remaining integrals are
contained in

I (n)(ri j ,mi )

= lim
Λ→∞

∫ Λ+
√

Λ2+m2
i

mi

1
dx

(x2 − 1)2 x−3

[(
x + ri j

) (
x−1 + ri j

)]n+1 ,

(24)

and

IUV(μUV) = lim
Λ→∞

∫ Λ+
√

Λ2+μ2
UV

μUV

1
dx

2(x2 − 1)2 x−1

(
x2 + 1

)2 . (25)

We have introduced a cutoff Λ because the individual con-
tributions are still singular in the UV. The sum of all of them
is UV finite, however. Therefore, we can safely work in four
space-time dimensions and then take the limit Λ → ∞ after
integration. Notice that the cutoff is a valid regulator because
it acts on the Euclidean space of the loop three-momentum.
The results of these integrals, up to order n = 2, are given by

I (n)(ri j ,mi )

n=0= lim
Λ→∞

[
2Λ

mi ri j
−
(

1 + 1

r2
i j

)
log

(
2Λ

mi

)

+
(

1 − 1

r2
i j

)
log
(
ri j
)]

,

n=1= lim
Λ→∞

[
− 1

r2
i j

(
1 − log

(
2Λ

mi

)
− 1 + r2

i j

1 − r2
i j

log
(
ri j
))]

,

n=2= 1(
1 − r2

i j

)2

(
1 + r2

i j

2r2
i j

+ 2

1 − r2
i j

log
(
ri j
))

, (26)

and

IUV(μUV) = lim
Λ→∞

[
2 log

(
2Λ

μUV

)
− 2

]
. (27)

A noteworthy feature of this expansion is that the UV diver-
gence lessens with each order in the expansion. Indeed, all
the contributions with n ≥ 2 are UV finite, and can be calcu-
lated directly by extending the upper limit of the integral to
infinity. The linearly UV divergent terms appearing at n = 0
cancel between the two dual amplitudes and the logarithmic
dependence on the UV cutoff Λ of both terms at n = 0
and n = 1 is canceled by the UV counterterm. Since these
cancellations happen locally in momentum space, numerical
integration in the UV limit is straightforward.

The asymptotic expansion of the renormalized amplitude
then takes the general form

A(1,R) = 1

16π2

∑
i, j

[
2 + c0,i log

(
μUV

mi

)

+
∞∑
n=0

(
c(n)

1,i + c(n)
2,i log

(
ri j
))]

. (28)

The coefficient ci,0 is given by

c0,i = m2
i

Q2
i

(
1 + 1

r2
i j

(
1 + Δi j

Q2
i

))
= p2 + m2

i − m2
j

p2 , (29)
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Table 1 The coefficients of the
asymptotic expansions for the
scalar two-point function in
different kinematical limits

M2 � {m2, p2} p2 � {m2, M2} p2 = (m + M)2(1 − β), β → 0±

GD(q1; �)

Γ12 M2 + p2 p2 + M2 2Mp cosh

(√
−m β

M − ı0

)

Δ12 −m2 −m2 p2 + M2 − m2 − Γ12

r12

√
p2

M
M√
p2

exp

(√
−m β

M − ı0

)

Q2
1 M2 p2 M p exp

(
−
√

−m β
M − ı0

)

GD(�; q1)

Γ21 −M2 − m2 p2

M2 p2 + m2 2m p cosh

(√
− M β

m + ı0

)

Δ21 p2 + m2 + m2 p2

M2 −M2 p2 + m2 − M2 − Γ21

r21
m
√

p2

M2 − m√
p2

+ ı0 − exp

(√
− M β

m + ı0

)

Q2
2 −M2 p2 m p exp

(
−
√

− M β
m + ı0

)

and the coefficients c(n)
1,i and c(n)

2,i needed for the first few
orders of the expansion are given by

c(n)
1,i = −m2

i

Q2
i

⎧⎨
⎩0,

−Δi j

Q2
i

−1

r2
i j

,

(
−Δi j

Q2
i

)2
1 + r2

i j

2r2
i j (1 − r2

i j )
2
,

(
−Δi j

Q2
i

)3
1 + 10r2

i j + r4
i j

6r2
i j (1 − r2

i j )
4

⎫⎬
⎭ ,

c(n)
2,i = −m2

i

Q2
i

⎧⎨
⎩1 − 1

r2
i j

,
−Δi j

Q2
i

1 + r2
i j

r2
i j (1 − r2

i j )
,

(
−Δi j

Q2
i

)2
2

(1 − r2
i j )

3
,

(
−Δi j

Q2
i

)3
2(1 + r2

i j )

(1 − r2
i j )

5

⎫⎬
⎭ .

(30)

Each term of the expansion is suppressed by extra powers of
Δi j .

3.2 Asymptotic expansion for different kinematical limits

We now consider explicitly different kinematical limits and
the corresponding asymptotic expansions. In the limit of one
large mass, M2 � {m2, p2}, the expansion parameters are
Q2

1 = −Q2
2 = M2, r12 = √

p2/M , and r21 = m
√
p2/M2.

The functions Γi j and Δi j are summarized in Table 1.
The election of the expansion parameters in the limit of a

large external momentum, p2 � {m2, M2}, is also summa-
rized in Table 1. Since this kinematical configuration is above
threshold, the asymptotic expansion should feature an imag-
inary part just as the original integral. This imaginary part is
generated through log (r21), with r21 = −m/

√
p2 + ı0.

In the slightly more involved case of the threshold limit
with β = 1 − p2/(m + M)2 → 0±, the election of
the expansion parameters, also summarized in Table 1, is
such that log(r12) = √

m/M
√−β − ı0 and log(r21) =√

M/m
√−β + ı0 − ıπ . This compact result is obtained

by exponentiating the expanded expression determining the
position of the threshold in the complex plane given by
Eq. (14). Note that going beyond the formalism described in
Sect. 2 through exponentiation is not necessary for obtaining
a convergent expression but it facilitates a simpler and more
intuitive understanding of the expansion. The expressions for
Δi j and Q2

i fulfill the necessary asymptotic behaviour as

m2
i

Q2
i

= mi

m + M
+ O(β1/2),

Δi j

Q2
i

= O(β2). (31)

The first dual propagator GD(q1; �) is free of threshold sin-
gularities and thus leads to a real expansion independently of
the sign of β. The expressions obtained for both r12 and r21

can be used both when approaching the threshold from below
and from above because the infinitesimal imaginary compo-
nent accompanying β is fixed by the complex prescription
of the dual propagators. While in the case below threshold
no singularity appears in the propagator on the real axis, it
does exist in the complex plane and approaches the path of
integration as can be seen in Fig. 2.

In all the kinematical regions studied, we have achieved
their asymptotic expansions by conveniently selecting the
expansion parameters that are used in a common expres-
sion, Eq. (28), that describes all these limits at once. In each
limit fast convergence was achieved both at integrand- and
at integral-level.
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Fig. 2 The position of the singularities of the unexpanded dual prop-

agator in terms of the threshold parameter β = 1 − p2

(m+M)2 after the

change of variable |qi| = mi/2 (xi − x−1
i ). The path of integration goes

from the point where the singularities reach the real axis until infinity

3.3 Comparison with Expansion by Regions

It is of interest to see how the expansions developed above
hold up in comparison to the established method of Expan-
sion by Regions (EbR) [10–17]. Within this successful
method the integrand of the Feynman amplitude, written
in terms of Minkowski momenta, is expanded by dividing
the space of the loop momenta into distinct regions. In each
region, the integrand is expanded into a Taylor series with
respect to the parameters considered small therein. Con-
secutively, the expanded integrands are integrated over the
whole integration domain, not just within the region where
the expansion was justified. The scaleless integrals that may
appear are set to zero as commonly done within DREG.
While Expansion by Regions has been successful for many
types of amplitudes a general proof is still pending. One may
raise a few issues with the procedure above which will be
mentioned in the context of its application to the scalar two-
point function in Eq. (1). We centre the discussion on the
limit of one large mass, M2 � {m2, p2}.

While in a general loop integral many types of regions
can appear in this particular example there are only two
regions, the hard region with � ∼ M and the soft region
with � ∼ {m,

√
p2} 2. The scalar product between the loop

momentum and the external momentum inherits the scaling
of the momentum itself, that is for the hard region one per-
forms the replacements

{�2, M2} → λ2 {�2, M2}, p · � → λ p · �, (32)

and expands for λ → ∞. The assumed relationship between
the large loop momentum and both its square and its scalar
products does not account for cancellations between the

2 To be precise, the scaling is assumed for the momentum in the

Euclidean sense, i.e. |�| =
√

�2
0 + �2.

energy component and the spatial components which will
take place when integrating over the unrestricted components
of the loop momentum. The Taylor series with the prescrip-
tions above and comparable ones for the soft region leads to
the expanded integrands

A(1)
hard =

∫
�

(
1

�2 + m2

(�2)2 + m4

(�2)3 + . . .

)

·
(

1

�2 − M2 + 2p · � − p2

(�2 − M2)2 + 4(p · �)2 + p2

(�2 − M2)3 + . . .

)
,

(33)

A(1)
soft =

∫
�

1

�2 − m2

·
(

− 1

M2 − (p − �)2

M4 − (p − �)4

M6 + . . .

)
. (34)

The first order of the expansion at integrated level is
achieved by combining the UV counterterm with the first
term appearing in the hard region

∫
�

1

�2(�2 − M2)
− A(1)

UV =
1 − log

(
M2

μ2
UV

)

16π2 + O(ε). (35)

The soft region does not contribute at this order. For the next
order one must select all terms in the expansion at integrand-
level which will lead to contributions of order M−2. This
includes the first term of the expansion in the soft region and
three terms from the hard region. The result achieved in this
way is indeed the Taylor series (T ) of the full result

T A(1,R) (M,∞) = 1

16π2

⎛
⎝1 − log

(
M2

μ2
UV

)

+
p2 − 2m2 log

(
M2

m2

)

2M2 + . . .

⎞
⎠ . (36)

In direct comparison, we give here the first renormalized
orders of the series achieved through the general expansion
of the dual propagator Eq. (28) in the limit of one large mass:

A(1,R)
n≤1 = 1

16π2

(
1 − log

(
M2

μ2
UV

)
− m2

M2

− m2(M2 + m2 + p2)

M4 − m2 p2 log

(
M2

m2

)

+ m2((p2)2 − m2M2)

(M2 − p2)(M4 − m2 p2)
log

(
M2

p2

))
. (37)

By including the next term of the expansion (n = 2) and then
expanding the rational coefficients for M2 � {m2, p2}, we
recover the expected Taylor series. Higher terms of the Tay-
lor series can be obtained by including more terms in the dual
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Table 2 The relative errors with respect to the full result of the dual
expansion as given from Eq. (28) (both the direct result of this expansion
and considering only the leading behaviour at large M) compared with

the result obtained through Expansion by Regions. Numerical evalua-
tion with parameters M = 10m, p2 = 3m2, and μUV = M

GD expansion O(M−2) O(M−4) EbR

n = 1 2.67% 2.45% 2.68% O(M−0) 3.34%

n = 2 0.0375% 0.135% 0.0300% O(M−2) 0.135%

n = 3 7.60 · 10−6 0.135% 6.18 × 10−5 O(M−4) 6.18 × 10−5

expansion, n ≥ 3. The asymptotic expansions in Eqs. (36)
and (37) display the same logarithmic dependence, although
they differ in the rational coefficients accompanying the logs,
which partially encode higher orders in the expansion. This
is due to the fact that Δ12 includes subleading terms. The
expression in Eq. (37) also contains a logarithmic depen-
dence on log

(
M2/p2

)
, which is formally one order higher

than Eq. (36) and cancels when more terms in the dual expan-
sion are included.

The relative error obtained by the two expansions with
respect to the full result (19) is numerically of the same order
of magnitude. For the values of M = 10m, p2 = 3m2 and
μUV = M the relative error obtained including only the lead-
ing term in EbR is 3.3% compared to the 2.7% obtained by
expanding the dual propagator as described above. Includ-
ing one more order in the expansion the results are given by
0.14% and 0.038%, respectively. Interestingly, the numerical
error at leading order of the expansion of the dual propaga-
tors can be reduced by expanding the rational coefficients.
The comparison of the results obtained in EbR with those
based on the expansion of the dual propagator is summa-
rized in Table 2, demonstrating that the results of EbR can be
exactly reproduced through the expansion of the coefficients
whenever sufficient terms in the dual expansion have been
included.

There is a distinction in the application of the two meth-
ods which we would like to emphasize. In EbR it is essential
to consider the terms of the expansion at integrand-level to
pick out only those which will contribute at a given order
of the result. Failing to do so does not only lead to numeri-
cal differences but will generally lead to divergent results.
This is due to the cancellation between UV and IR sin-
gularities appearing in the expansions of the soft and hard
region. In contrast, UV renormalization within the method
of expanding the dual propagators only involves the low-
est orders of the integrand-level expansion. Including higher
terms is optional for improving numerical precision and for
this purpose it is possible to straight-forwardly include any
amount of terms without needing to worry about ensuring
cancellations between separate regions.

3.4 Asymptotic expansion by dual regions

The properties of dual amplitudes can also be exploited in
a more direct way to facilitate asymptotic expansions. After
applying LTD to the integrand of a Feynman integral the
loop momentum is restricted to on-shell values. Thus, the
direct expansion of the integrand into a Taylor series with
respect to whichever scale is considered to be small or large is
unambiguous. These asymptotic expansions can be done any-
where within the integration domain and depend on the size
of the Euclidean loop three-momentum. For example, in the
case of the two-point function in the limit of one large mass,
M2 � {m2, p2}, two regions in the loop three-momentum
can be distinguished. One soft region with �2 � M2, and one
hard region with �2 � {m2, p2} and �2 ∼ M2. We call these
regions in the loop three-momentum dual regions because
they become accessible only after obtaining a Euclidean
integration domain through the application of LTD. The
Euclidean integration domain can then be split up into two
well-defined integrand-level expansions as

A(1,R) =
∫ ∞

0
d|�| a(�)

=
∫ λ

0
d|�| T a(M,∞) +

∫ ∞

λ

d|�| T a({�, M},∞),

(38)

where a(�) is the unintegrated form of the renormalized
amplitude defined in Eq. (16) and m < λ < M . The
integrand-level convergence and the behaviour around the
matching scale λ is shown in Fig. 3.

Integration of this type of expansion is straight-forward, as
the integrand simplifies significantly. Including only the first
order of the Taylor expansion in the soft region one obtains
the result

A(1;R)
soft,n=0 =

∫ λ

0
d|�| T0 a(M,∞)

= −2

16π2

⎛
⎝ λ3

M3 + m2

M2 Sinh

(
λ

m

)−1

− λm

M2

√
1 + λ2

m2

⎞
⎠ , (39)
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Fig. 3 The convergence at integrand-level of the expansion given in
Eq. (38) for the values M = 10m, p2 = 3m2, and μUV = M

Fig. 4 The convergence of the integrated results of the expansion given
in Eq. (38) for the values M = 10m, p2 = 3m2, and μUV = M

while in the hard region

A(1;R)
hard,n=0 =

∫ ∞

λ

d|�| T0 a({�, M},∞)

= 1

16π2

⎛
⎝1 − 2λ2

M2

⎛
⎝1 − 1√

1 + M2

λ2

⎞
⎠
⎞
⎠ , (40)

While the soft and hard regions are independent of each other,
and the local renormalization is guaranteed in any case, a
comparable accuracy in both regions requires to combine
the (n + 1)-th term of the hard region with the n-th term of
the soft region. We consider this combination of expansion
orders in the soft and hard region to be the n-th term of the
overall expansion. In Fig. 4, we show the result of the asymp-
totic expansion in Eq. (38) as a function of the matching scale
λ at different orders. We achieve good order-to-order conver-
gence at the integrated level of the expansion for a wide range
of values of λ.

As would be expected evaluation of the integrated result
at the edges of the allowed range for λ does not lead to ideal
agreement with the full result. The range of values of λ for

which the amplitude is well approximated increases with ris-
ing order in the expansion. An example of this can be seen
in Fig. 4. For any order, an appropriate point of evaluation
can be obtained by setting the derivative with respect to λ

and determining the position of the extrema. Coincidentally,
the values obtained thus lie very close to λ = p0. Numerical
results for different choices of λ are presented in Table 3.

The main advantage of this Taylor series inspired expan-
sion method is its easy application and automatization.

4 Asymptotic expansion of the scalar three-point
function

As a benchmark application with more external legs, we con-
sider the scalar three-point function at one-loop as shown in
Fig. 5 with all the internal masses equal

A(1)
3 =

∫
�

GF (q1, q2, q3; M), (41)

where GF (q1, q2, q3; M) = ∏3
i=1 GF (qi , M), with q1 =

� + p1, q2 = � + p1 + p2 and q3 = �. Applying LTD to this
integral leads to

A(1)
3 = −

∫
�

[
δ̃ (q1)GD(q1; q2, q3)

+ δ̃ (q2)GD(q2; q1, q3) + δ̃ (q3)GD(q3; q1, q2)
]
,

(42)

with GD(qi ; q j , qk) = GD(qi ; q j )GD(qi ; qk) based on the
dual propagators given as in Eq. (4). The three different linear
combinations of external momenta that appear in the dual
propagators are k12 = −k21 = −p2, k13 = −k31 = p1, and
k23 = −k32 = p1 + p2. Only one of these can be chosen to
have a vanishing three-momentum, for example by using the
center-of-mass system of p1 and p2, therefore p12 = 0. The
complete dual integrand thus only has angular dependence
in the scalar products qi · p1 and qi · p2.

Assuming that all the internal particles running in the loop
have the same mass M and the external particles are massless
(p2

1 = p2
2 = 0 and p2

12 = s12, with p12,0 > 0) the LTD
representation condenses to

A(1)
3 = −

∫
�

{
− δ̃ (q1; M)

2q1 · p12

(
1

2q1 · p1
+ 1

2q1 · p2

)

+ δ̃ (�; M)

(−2� · p2)(−2� · p12 + s12 + ı0)

+ δ̃ (�; M)

(2� · p1)(2� · p12 + s12)

}
, (43)
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Table 3 Integrated results of the expansion in Eq. (38) evaluated at λ = m, λ = 3M/4 and λ = p0, with parameters M = 10m, p2 = 3m2, and
μUV = M , compared to the full result of A(1,R) = 0.006128

Order A(1,R)(λ = m) Rel. error A(1,R)(λ = 3M/4) Rel. error A(1,R)(λ = p0) Rel. error

1 0.006097 0.50% 0.004803 24% 0.006110 0.30%

2 0.006140 0.20% 0.005100 18% 0.006132 0.063%

3 0.006121 0.11% 0.006473 5.5% 0.006126 0.021%

Fig. 5 The three-point function with equal internal masses

with the on-shell energies q(+)
1,0 = √

(� + p1)2 + M2 and

q(+)
2,0 = q(+)

3,0 = �
(+)
0 =

√
�2 + M2. Thus, the on-shell ener-

gies in the second and third on-shell cuts are identical.
We may use the following integral identity

∫
�

δ̃ (q1; M)

(2q1 · p12)(2q1 · pi ) =
∫

�

δ̃ (�; M)

(2� · p12)(2� · pi ) , (44)

to consequently rewrite Eq. (43) as

A(1)
3 =

∫
�

δ̃ (�; M) s12

(2� · p12)(2� · p1)

{
1

−2� · p12 + s12 + ı0

+ 1

2� · p12 + s12

}
. (45)

Notice that now both terms in this expression are UV finite.
Therefore, they can be integrated the loop three-momentum
separately without the necessity of introducing a cut-off.

The loop three-momentum can be parametrized as

� = |�|
(

2
√

v(1 − v)ê⊥, 1 − 2v
)

, (46)

where ê⊥ is the unit vector perpendicular to p1. The angular
dependence then takes the shape

2� · pi = √
s12 (�

(+)
0 ∓ |�|(1 − 2v)), i = 1, 2. (47)

In this expression the two angular integrations are related by
the change of variables v → 1 − v and thus

∫ 1

0

dv

2� · pi = 1

2
√
s12 |�| log

(
�
(+)
0 + |�|

�
(+)
0 − |�|

)
, i = 1, 2,

(48)

where the usual change of variables |�| = M/2 (x − x−1)

with x > 1 can be employed to obtain the full analytic result

A(1)
3 = 1

32π2s12

× log2

(√
s12(s12 − 4M2) + 2M2 − s12

2M2

)
. (49)

The large mass expansion is straightforward and it is free
of thresholds, i.e. the ı0 prescription can be dropped when
r = s12/M2 � 1. We need to consider both GD(q2; q3) and
GD(q3; q2) in the context of the general propagator expan-
sion. Since in both propagators the condition Γ +Δ = s12 <

M
√
s12 holds we must identify Γ = 0 and Δ = s12. Thus

the asymptotic expansion of the propagators are given by

GD(q2; q3) = 1

−2q2 · p12 + s12
=

∞∑
n=0

(−s12)
n

(−2q2 · p12)
n+1

(50)

and

GD(q3; q2) = 1

2q3 · p12 + s12
=

∞∑
n=0

(−s12)
n

(2q3 · p12)
n+1 . (51)

Combining the two expanded propagators one obtains a sin-
gle asymptotic expansion as

GD(q2; q3) + GD(q3; q2) = − 2

s12

∞∑
n=1

(
s12

2� · p12

)2n

, (52)

leading to the expanded amplitude

A(1)
3 (s12 � M2)

= −
∫

�

δ̃ (�; M)

(2� · p12)(� · p1)

∑
n=1

(
s12

2� · p12

)2n

. (53)
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Integration leads to the following result for the large mass
expansion:

A(1)
3 (s12 � M2)

= − 1

16π2

1

2M2

(
1 + r

12
+ r2

90

)
+ O(r3). (54)

For M/
√
s12 = 3 the relative error of the result is 9 × 10−3

with only the first term of the expansion and reduces to 1 ×
10−4 and 2 × 10−6 when including up the second and third
term of the expansion, respectively.

In the small mass limit, 2M/
√
s12 � 1, the general expan-

sion of the dual propagators can be applied as well. The
expansion parameters are

Γ32 = Γ23 ≡ Γ = s12

(
1 + M2

s12

)
,

r32 = −r23 = − M√
s12

+ ı0,

Q2
2 = Q2

3 = s12. (55)

This leads to the expanded amplitude

A(1)
3 (s12 � M2) =

∫
�

δ̃ (�; M) s12

(2� · p12)(2� · p1)

·
∞∑
n=0

{
M2n

(−2� · p12 + Γ )n+1

+ M2n

(2� · p12 + Γ )n+1

}
. (56)

Alternatively, both propagators in the sum may be com-
bined as

A(1)
3 =

∫
�

δ̃ (�; M)

(2� · p12)(2� · p1)

2s2
12

(− (2� · p12)
2 + s2

12 + ı0)
,

(57)

and expanded similarly to the general expansion so as to
obtain the final expanded form at integrand level

A(1)
3 (s12 � M2) =

∫
�

δ̃ (�; M) s2
12

(2� · p12)(� · p1)

·
∞∑
n=0

(
s2

12r
2
23 (2 + r2

23)
)n

(−(2� · p12)2 + Γ 2
)n+1 . (58)

Also in this variation of the expansion it is possible to simplify
the denominator in terms of the integration variable x by
making use of

−(2� · p12)
2 + s2

12 (1 + r2
23)

2

= s2
12 (x2 − r2

23)(x
−2 − r2

23). (59)

Analytic integration up to n = 1 gives the result

A(1)
3 (s12 � M2) = 1

16π2

1

2(1 + r2
23)

2s12

(
log2

(
−r2

23

)

+ r2
23(r

2
23 + 2) log

(−r2
23

)
1 + r2

23

×
(

2

1 − r2
23

+ log
(−r2

23

)
1 + r2

23

)

+O
(
r4

23

))
. (60)

Using the numerical values
√
s12/M = 3 the relative error of

this result is 33% (7.5%) in the real (imaginary) part including
only the first term of the expansion and reduces to 7.5%
(0.04%) and 1.5% (0.26%) when including up the second
and third term of the expansion, respectively. The relative
errors obtained by integrating Eq. (56) are slightly better but
of the same order of magnitude with 26% (2.7%) with only
the first term and 3.0% (1.3%) and 0.31% (0.27%) when
including up the second and third term of the expansion,
respectively. Even better results can be obtained by obtaining
the parameters through expansion of the singularity position
of the full propagator as discussed in Eq. (14). In this case
already at first order the relative error is at 3.9% (0.83%).

5 Asymptotic expansion of multiloop integrals from the
causal LTD representation

A new LTD representation of multiloop amplitudes has been
presented recently [34], which is manifestly causal and,
therefore, free of the unphysical singularities discussed in
Eq. (3). We will focus in this section on the class of mul-
tiloop integrals known as Maximal-Loop-Topology (MLT),
which represented by the diagram in Fig. 6 and are defined
as

A(L)
MLT(p) =

∫
�1,...,�L

GF (q1, . . . , qL+1), (61)

where GF (q1, . . . , qL+i ) = ∏L+1
s=1 GF (qs), and L is the

number of loops. The momenta of the internal propagators are
qs = �s , with s ∈ [1, . . . , L], and qL+1 = −∑L

s=1 �s + p.
The internal masses, ms , are arbitrary. The one-loop two-
point function corresponds to the special case q1 = �1 and
q2 = −�1 + p. The causal LTD representation of Eq. (61) is
extremely compact and is given by

A(L)
MLT(p) = −

∫
�1,...,�L

1

xL+1

(
1

λ−
L+1

+ 1

λ+
L+1

)
, (62)
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Fig. 6 Maximal Loop Topology at L loops with arbitrary internal
masses

where the integration measure in the spacial components of
the loop momenta is∫

�s

= −μ4−d
∫

dd−1�s/(2π)d−1 (63)

and

xL+1 =
L+1∏
s=1

2q(+)
s,0 , λ±

L+1 =
L+1∑
s=1

q(+)
s,0 ± p0, (64)

with q(+)
s,0 = √

q2
s + m2

s − ı0 the on-shell energies and p0

the energy component of the external momentum.
The causal representation in Eq. (62) is particularly suit-

able to achieve the asymptotic expansion in the limit p2 �
m2

s . Assuming p = (p0, 0), we obtain

A(L)
MLT(p2 � m2

s ) = −2
∞∑
n=0

(p2)n
∫

�1,...,�L

(
λ0
L+1

)−1−2n

xL+1
,

(65)

where λ0
L+1 = ∑L+1

s=1 q(+)
s,0 . Notice that there is no depen-

dence on p0 neither in xL+1 nor in λ0
L+1, and therefore the

asymptotic integrals on the right-hand side of Eq. (65) are a
function of the internal masses exclusively to all loop orders.

6 Conclusions and outlook

In this work, we presented several benchmark asymptotic
expansions of Feynman integrals in the loop-tree dual-
ity formalism. These asymptotic expansions take place at
integrand-level in the Euclidean space of the loop three-
momentum, where the hierarchies among internal and exter-
nal scales are more evident than in the Minkowski space of the
four-momentum. The method is well-defined since conver-
gence to the full integral is not only achieved in the final result

but also at integrand-level, giving ample justification for
applying these expansions. Additionally, the UV behaviour
of the individual contributions to the asymptotic expansion
does not increase when higher orders in the expansion are
included. Renormalization is completed locally in four space-
time dimensions with only the first terms of the expansion.
Both of these aspects are an improvement compared to the
commonly used method of Expansion by Regions.

We have presented explicit results for the scalar two- and
three-point functions at one loop in different kinematical lim-
its. Specifically, we have achieved with a single expression a
universal description of several asymptotic limits of the two-
point function by conveniently selecting certain parameters
of this expression. Recent developments in the realization of
the LTD representation at all orders [34] appear especially
suitable to facilitating asymptotic expansion. We have pro-
vided a final example to all loop orders by exploiting their
simplicity.

More work is needed to make a wide range of applica-
tions possible at one loop and higher orders leading to addi-
tional challenges. Further results and physical applications
are underway and will be published in forthcoming publica-
tions.
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