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1 Introduction

Superstring on AdS3×S3×T4 with pure NS-NS flux is one of the string theories with good
computational control. It can be studied using the RNS formalism (see, e.g. [1–6]), and the
special case of minimal tension (referred to as the tensionless limit) being well-described by
the hybrid formalism [7–10]. In the context of holographic duality [11], the CFTs dual to
strings with pure NS-NS flux typically lie on the moduli space of the symmetric orbifold of
T4 [12]. Remarkably, for the special case of minimal tension, it was shown that the dual
theory is exactly the symmetric orbifold CFT itself [8, 13]. Evidence for this duality include
the matching of both the spectrum [8, 14] and the (structure of) correlators [9, 10, 13, 15–17],
see also [18–20]. However, for the string theory with non-minimal tension, the matching
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was for a long time only achieved for BPS protected quantities [21–28]. Recently, based
on the exact duality between the tensionless string and the symmetric orbifold of T4, a
perturbative dual of the AdS3 (super)string theory with pure NS-NS flux was proposed
in [29, 30] (see also [31–33]).1 It is a symmetric orbifold CFT deformed by an exactly
marginal operator. Thereafter, progress of matching correlators beyond the tensionless limit
was made in [29, 30, 37–39] (in a perturbative sense). Nevertheless, these works focus on
the bosonic duality2 where higher genus string correlators are not well-defined. One of the
motivations of this work is to generalize the duality to the supersymmetric case.

Spectrum of string theory on AdS3×S3×T4 with pure NS-NS flux includes short strings
and long strings [4]. In the RNS formalism, the worldsheet CFT includes a non-compect
WZW model with the target space being (the universal covering of) SL(2, R). The short
strings and long strings lie in the discrete and continuous representations of the SL(2, R)
affine symmetry respectively. To properly characterize the spectrum, one should include the
spectrally flowed representations into the theory [4–6]. Spectrally flowed vertex operators
correspond to winding strings in spacetime and capture interesting physics. However, much
is yet to be understood about the correlators of spectrally flowed operators [41–54]. Recently,
a closed formula for the 3-point and 4-point functions of the bosonic SL(2, R) WZW model
on the worldsheet was proposed in [55, 56],3 which is obtained by the “local Ward identities”
(this method is valid for SL(2, R) WZW models with general levels k, in particular, it plays
a crucial role in the discussion of the correlators in the tensionless string [13]). For short
strings, these results helped to complete the matching of the chiral ring of the two sides [59].
For long strings, these results lead to a proposal for a perturbative CFT dual of the bosonic
string on AdS3 ×X [29, 30]. In this work, we study long strings in the superstring theory on
AdS3×S3×T4. We construct physical vertex operators representing long strings and calculate
their 3-point correlators. We will also match these vertex operators with the ones in the
dual CFT side, and compare the 3-point correlators of the two sides.

The rest of the paper is organized as follows. In section 2, we construct physical vertex
operators for long strings on AdS3×S3×T4. Because of the GSO projection, their form
depends on the parity of the spectral flow. We construct all physical vertex operators with
the lowest space-time weights4 for both odd and even parities and for both the NS and R
sectors. In section 3, we calculate the three-point correlators of these physical operators.
Since their form again depends on the parities of the spectral flows of the 3 operators, we
calculate one representative for every choice of the parities. The main body of this section
is devoted to the calculation of various fermionic correlators (coming from the worldsheet
fermions and picture changing), which can be done cleanly using the formula obtained
in [55]. As a byproduct, we find the recursion relations of correlators in the bosonic SL(2, R)
WZW model can be understood from the equivalence of these superstring correlators with
different picture choices. In section 4, we identify the corresponding operators in the CFT

1One can also deform the theory away from the tensionless point by switching on R-R flux, see [34–36] for
some recent progress.

2See [29, 40] for some preliminary discussions for the supersymmetric case.
3See [57] for a proof for the 3-point formula and [58] for highly non-trivial checks for the 4-point formula.
4Since we study long strings, we will always construct a continuum of vertex operators with a continuum

of lowest space-time weights.
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side (following [60]), which is proposed to be a deformed symmetric orbifold CFT [29]. We
also compare the three-point correlators of the two sides at the leading order (where the
deformation is turned off). It turns out that the matching at this order is already non-trivial:
due to some interesting mathematical identities for covering maps, the correlators of the two
sides match precisely. In particular, the fermionic contributions together with the picture
changing effects guarantee that the dual symmetric orbifold CFT has the central charge 6k.
In section 5, we conclude our work and discuss some future directions. Some conventions
and backgrounds are described in the appendices.

2 Physical operators of the superstring

In this section, we describe physical vertex operators of the string theory on AdS3×S3×T4.
For short strings, the physical chiral operators, including both the spectrally flowed and
unflowed sectors, are constructed in [24, 25, 27, 61]. For long strings, physical spectrum are
discussed in [60, 62] (see also [4, 14, 63]). For our purpose to calculate string correlators, we
need the explicit expressions of the physical operators.5 Therefore in this section we firstly
give explicit expressions of all physical vertex operators with the lowest space-time weights
for any given spectral flow parameter w that corresponds to long strings. The construction
depends on the parity of w and the sector we consider (NS or R). We will mostly focus on
the left-moving part and omit a similar analysis for the right-movers (and always suppress
the anti-holomorphic dependence).

2.1 Superstring on AdS3×S3×T4

Firstly, we review some basic facts about superstring theory on AdS3×S3×T4, see e.g. [25, 62].
We discuss this string theory in the RNS formalism, where the worldsheet CFT is described by

sl(2, R)(1)k ⊕ su(2)
(1)
k ⊕U(1)4(1) (2.1)

In the above, sl(2, R)(1)k and su(2)(1)k represent N = 1 supersymmetric WZW model with
affine symmetry sl(2, R)(1)k and su(2)(1)k respectively. They describe the AdS3 and S3 factor.
U(1)4(1) describes the N = 1 supersymmetric version of T4 (the flat torus directions).

The sl(2, R)(1)k WZW model has symmetries generated by sl(2, R) currents JA and
fermions ψA (A = 1, 2, 3), with OPEs:

JA(z)JB(w) ∼
k
2η

AB

(z − w)2 + iϵABC JC(w)
z − w

JA(z)ψB(w) ∼ iϵABC ψC(w)
z − w

ψA(z)ψB(w) ∼
k
2η

AB

z − w
,

(2.2)

5Notice that some physical operators of long strings were constructed in literature, see e.g. [60, 63]. Here
we will give a complete construction of physical operators with the lowest space-time weights (for a given w).
In particular, we find a special one ((2.64)) in the NS sector for w even and give a detailed construction for
the ones in the R sector.
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where ϵ123 = 1 and the indices are raised and lowered with ηAB = ηAB = diag(+ + −).
Similarly, the su(2)(1)k WZW model has su(2) currents Ka and fermions χa (a = 1, 2, 3),
with OPEs:

Ka(z)Kb(w) ∼
k
2δ
ab

(z − w)2 + iϵabc J
C(w)

z − w

Ka(z)χb(w) ∼ iϵabc ψ
c(w)

z − w

χa(z)χb(w) ∼
k
2δ
ab

z − w
.

(2.3)

The indices are raised and lowered with δab = δab = diag(+ + +). As usual, we define

J± = J1 ± iJ2, K± = K1 ± iK2, ψ± = ψ1 ± iψ2, χ± = χ1 ± iχ2 . (2.4)

It is convenient to split the supersymmetric currents into the bosonic and fermionic parts

JA = jA + ĵA, Ka = ka + k̂a , (2.5)

where ĵA and k̂a are the fermionic currents, defined as:

ĵA = − i
k
ϵABCψ

BψC , k̂a = − i
k
ϵabcχ

bχc . (2.6)

The currents jA, ĵA and ka, k̂a generate 2 bosonic SL(2, R) affine algebras at levels k + 2,−2
and 2 bosonic SU(2) affine algebras at levels k−2,+2, respectively. Since jA and ka commute
with the free fermions, the spectrum and interactions of the original level k supersymmetric
WZW models are then factorized into 2 (decoupled) bosonic WZW models and free fermions.

In terms of the decoupled WZW currents and free fermions, one can easily write down
the stress tensor and supercurrent of the worldsheet theory

T = 1
k
jAjA −

1
k
ψA∂ψA + 1

k
kaka −

1
k
χa∂χa + T (T 4)

G = 2
k

(
ψAjA + 2i

k
ψ1ψ2ψ3

)
+ 2
k

(
χaka +

2i
k
χ1χ2χ3

)
+G(T 4) ,

(2.7)

where and in the rest of the paper, normal-ordering is always understood. Superstring on
AdS3×S3×T4 also contains the standard bc and βγ ghosts. The standard BRST operator
of the superstring is then given by

QBRST =
∮
dz

(
c

(
T + 1

2Tgh

)
+ γ

(
G+ 1

2Ggh

))
. (2.8)

Physical vertex operators should be BRST invariant and will be discussed in the next section.
Importantly, to obtain all the physical operators, we need the following automorphism σ

of the current algebra, namely the spectral flow [4, 27]

σw(J±
m) = J±

m∓w, σw(J3
m) = J3

m + kw

2 δm,0 ,

σw(ψ±
m) = ψ±

m∓w, σw(ψ3
m) = ψ3

m ,

σw(K±
m) = K±

m∓w, σw(K3
m) = K3

m −
kw

2 δm,0 ,

σw(χ±
m) = χ±

m∓w, σw(χ3
m) = χ3

m .

(2.9)
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Notice that spectral flow acts on the decoupled currents jA, ka and the fermionic currents
ĵA, k̂a the same way as on the full currents JA,Ka. The spectral flows in the (supersymmetric)
AdS3 and S3 directions are independent, in the following we only consider spectral flow in
the AdS3 direction. With this restriction, the spectral flow of the T and G are6

σw(Ln) = Ln − wJ3
n −

k

4w
2δn,0, σw(Gm) = Gm − wψ3

m . (2.10)

2.2 Vertex operators in the bosonic model

Since the worldsheet supersymmetric WZW model is factorized into bosonic WZW models
and free fermions, let’s first describe vertex operators in the bosonic sl(2, R) WZW model
(we mainly follow the convention in [55] for the bosonic model). There are spectrally flowed
operators and unflowed operators. The unflowed operators are simpler. In the x-basis [4]
they are labeled by the spin j and the defining OPEs are:7

jA(z)Vj(x, x̄;w, w̄) ∼
DA
x Vj(x, x̄;w, w̄)

z − w
, (2.11)

where
D+
x = ∂x, D3

x = x∂x + j, D−
x = x2∂x + 2jx . (2.12)

The conformal dimension is (recall that the level for the decoupled SL(2, R) WZW model
is shifted to be k + 2):

∆h = ∆̄ = −j(j − 1)
k

, (2.13)

which can be formally expanded in modes as

Vj(x, x̄) =
∑
m,m̄

Vj,m,m̄x
−j−mx̄−j̄−m̄ . (2.14)

Thus, the action of the zero modes on Vj,m,m̄ is

j30Vj,m,m̄ = mVj,m,m̄, j±0 Vj,m,m̄ = (m∓ (j − 1))Vj,m±1,m̄ . (2.15)

These operators Vj,m,m̄ are in the “m-basis”. We are ultimately interested in vertex operators
in the x-basis, since they are local in x and x̄, which are identified with the holomorphic and
anti-holomorphic coordinates of the boundary CFT. Nevertheless, the m-basis is also useful
because the action of spectral flow is more clear in this basis, as we show in the following.

Now we describe the spectrally flowed operators. In the m-basis, we write vertex operators
with spin j and spectral flow w as V w

j,m(z). Denote their corresponding states as [|j,m⟩]w,
then they form a spectrally flowed representation of the algebra sl(2, R)k+2

j+w [|j,m⟩]w = (m+ 1− j)[|j,m+ 1⟩]w, j+n [|j,m⟩]w = 0, n > w

j30 [|j,m⟩]w =
(
m+ (k + 2)m

2

)
[|j,m⟩]w, j3n[|j,m⟩]w = 0, n > 0

j−−w[|j,m⟩]w = (m+ 1− j)[|j,m− 1⟩]w, j−n [|j,m⟩]w = 0, n > −w .

(2.16)

6Notice that when discussing chiral operators (short strings), it is convenient to also spectral flow the
(supersymmetric) S3 part [27], though it does not give new representations but only reshuffles states. Here we
focus on long string so spectral flow of the (supersymmetric) AdS3 part is enough for us.

7Notice that we will always use lowercase letter ja to denote the decoupled currents and capital letter Ja

to denote the full currents.
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Then one can accordingly write down the OPEs of the currents and m-basis operators V w
j,m(z).

Notice that a m-basis operator V w
j,m(z) is a Virasoro primary but not an affine primary [6, 27].

When w > 0 (w < 0) it is the lowest (highest) weight state of the global SL(2, R) algebra
generated by ja0 (a = 3,±). We also need the x-basis operators in the flowed sector. They
can be defined from the spectrally flowed operator in the m-basis [55]

V w
j,h(x; z) ≡ ezL−1exJ

+
0 V w

j,h(0; 0)e−xJ
+
0 e−zL−1 , (2.17)

where V w
j,h(0; 0) ≡ V w

j,m(0) with h = m+ (k+2)w
2 . A few comment on this definition are in order:

• Notice that L−1 and J+
0 commute, thus the order of the exponentials in the defini-

tion (2.17) does not matter.

• The definition (2.17) means J+
0 is the generator of translation in the x-space. Since

both the two m-basis operators V w
j,m(z) and V −w

j,−m(z) contribute to the same x-basis
operator V w

j,h(x; z), one can always label a x-basis operator by a positive spectral flow
parameter w [6, 27, 64].

• Notice that in the above definition we used the modes L−1 and J+
0 in the exponentials,

which are modes in the full supersymmetric WZW models. Since the bosonic and
fermionic contributions decouple, we can write the modes L−1 and J+

0 as sums of the
corresponding modes in the bosonic and fermionic WZW models: L−1 = l−1 + l̂−1,
J+
0 = j+0 + ĵ+0 . Then l−1, l̂−1, j

+
0 , ĵ

+
0 commute with one another and V w

j,h(0; 0) commute
with the fermionic modes l̂−1, ĵ

+
0 . Thus we will obtain the same result if we replace

L−1, J+
0 by l−1, j+0 in (2.17).

Then we can write down the OPEs of operators in the x-basis [55]

j+(ξ)V w
j,h(x, z) =

w+1∑
p=1

(j+p−1V
w
j,h)(x, z)

(ξ − z)p +O(1)

(j3(ξ)− xj+(ξ))V w
j,h(x, z) =

hV w
j,h(x, z)
ξ − z

+O(1)

(j−(ξ)− 2xj3(ξ) + x2j+(ξ))V w
j,h(x, z) = (ξ − z)w−1(j−−wV w

j,h)(x, z) +O((ξ − z)w) .

(2.18)

Notice that in the above, we recombined the currents to simplify the expressions. In fact,
the recombined currents are just the currents written in the x-basis:

j+(z) = ezL−1exJ
+
0 j+(0; 0)e−xJ

+
0 e−zL−1

j3(z)− xj+(z) = ezL−1exJ
+
0 j3(0; 0)e−xJ

+
0 e−zL−1

j−(z)− 2xj3(z) + x2j+(ξ) = ezL−1exJ
+
0 j−(0; 0)e−xJ

+
0 e−zL−1

(2.19)

where ja(0; 0) ≡ ja(0), as in the definition (2.17).

2.3 Physical operators of the superstring

Now we construct physical vertex operators in the superstring. For this, we need to include
contributions from the su(2)k−2 part, the free fermions, the internal torus as well as the
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ghosts. We focus on physical vertex operators of long strings that have the lowest space-time
weights in both the NS and R sector (with w given). Because of the GSO projection, there
will be a difference between operators with odd and even spectral flow parameters, since
the fermion number depends on the parity of the spectral flow parameter [27, 62]. This
dependence comes from the fact that when one performs spectral flow in the decoupled
bosonic WZW model (ja), one should at the same time do spectral flow in the fermionic
part (ψa) to respect the N = 1 supersymmetry on the worldsheet.8 For the fermionic part,
one can write any spectrally flowed states explicitly and find that doing spectral flow once
change the parity of the fermionic number [27]. Notice that for long strings, the spectral
flow parameter w will be identified with the cycle length of single cycle twisted sectors on
the CFT side. Thus a similar difference between operators with odd and even single cycle
appears on the CFT side [60, 65], and we will analysis this in detail in section 4.

In practice, we follow the steps of the construction of physical chiral operators (short
strings) in [25, 27] to construct physical operators representing long strings in this section.
Since in the following we frequently bosonize the worldsheet fermions to describe spectrally
flowed operators in the fermionic part, we recall its form here [1]

∂Ĥ1 =
2
k
ψ2ψ1, ∂Ĥ2 =

2
k
χ2χ1, ∂Ĥ3 =

2
k
iψ3χ3, ∂Ĥ4 = η2η1, ∂Ĥ5 = η4η3 , (2.20)

where Ĥ are canonically normalized bosons, including proper cocycles

Ĥi = Hi + π
∑
j<i

Nj , Ni = i

∮
∂Hi, Hi(z)Hj(w) ∼ −δij log(z − w) . (2.21)

Then
e±iĤ1 = ψ1 ± iψ2

√
k

, e±iĤ2 = χ1 ± iχ2
√
k

, e±iĤ3 = χ3 ∓ ψ3
√
k

e±iĤ4 = η1 ± iη2√
2

, e±iĤ5 = η3 ± iη4√
2

.

(2.22)

and the fermionic SL(2, R) currents are:

ĵ3 = i∂Ĥ1, ĵ± = ±e±iĤ1(e−iĤ3 − e+iĤ3) (2.23)

The final results for the physical operators are summarized in the table 1.

2.3.1 Odd spectral flow parameters

We first discuss the case where operators have odd spectral flow parameters w. Recall that
operators corresponding to local operators on the field theory side should be in the x-basis.
Nevertheless, we will firstly write them in the m-basis (then transform them into the x-basis),
since spectral flow is simpler to perform in the m-basis.

In the NS sector, one can construct the following vertex operators (in the m-basis):

Owj,m(z) ≡ e−ϕ(z)1wψ(z)V w
j,m(z) , (2.24)

8It is completely fine if one does not spectral flow the operators in the fermionic part. The point here is
that one can always describe a vertex operator in this “supersymmetric spectrally flowed” frame since spectral
flow only reshuffles states in the fermionic part. Besides, the discussion of the string spectrum will be clearer
in this “supersymmetric spectrally flowed” frame.

– 7 –
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where ϕ is the bosonized βγ ghosts so the term e−ϕ means the operators above are in the
standard (−1) picture. The term 1wψ(z) denote the w spectrally flowed operator of the
identity operator in the free fermion theory of ψA (A = 3,±). It terms of the bosonized
field Ĥi, it can be written as [27]:

1wψ = e−iwĤ1 (2.25)

Since we want to obtain the physical operators with lowest spacetime weights, in (2.24)
we turned off any excitations in the su(2)k−2 WZW model, the free fermions χa and the
torus theory T4. For these operators to be physical, one needs to impose the mass-shell
condition in the NS-sector[

0− −2w
2

4

]
+
[
−j(j − 1)

k
− wm− (k + 2)w2

4

]
= 1

2 , (2.26)

where terms in the 2 square brackets are conformal weights of 1wψ , V w
j,m respectively. In

terms of the full space-time weight

H = h+ ĥ = m+ (k + 2)w
2 + 0 + −2w2 = m+ wk

2 , (2.27)

the above mass shell condition becomes:

−j(j − 1)
k

− wH + kw2

4 = 1
2 . (2.28)

For long strings, we have j = 1
2 + ip, then the mass shell condition determine the lowest

space-time weights as

HNS,odd =
1
4 + p2

kw
+ kw

4 −
1
2w . (2.29)

Besides, 1wψ(z)V w
j,m(z) are clearly super-Virasoro primaries so Owh,m(z) are indeed BRST

invariant. Finally we should demand Owh,m(z) to survive the GSO projection, which restrict
w to be odd [27]. Notice that the space-time weights (2.29) had been determined in [14, 60].
While in [60] the ground states of the su(2)k−2 WZW model could be an arbitrary affine
primary with spin l, here we focus on the case with l = 0 (since we only concern the operators
that have the lowest space-time weights) and construct these physical operators explicitly.

Now we write the operators with the lowest space-time weights in the x-basis:

Owj,h(x; z) = e−ϕ(z)1wψ(x; z)V w
j,h(x; z). (2.30)

Notice that we have labeled the operator Owj,h(x; z) by the weight from the bosonic WZW
h = m + (k+2)w

2 , while the full space-time weight is H = h − w. 1wψ(x; z) is the x-basis
operators of 1wψ(z). When one expands it as a power series of x, only finite terms appear
(with each mode being a member in the SL(2, R) multiplet of 1wψ(z)) and in particular, it
contains the m-basis operator 1wψ = e−iwĤ1 and its conjugate 1−w

ψ = eiwĤ1 [27].9 To calculate
9This is different from a general x-basis operator V wj,h(x; z), where there are typically infinite members in

the SL(2, R) multiplet of V wj,m(V −w
j,−m) (which is true for both the continuous and discrete spectrally flowed

representations), so V wj,h(x; z) is generally an infinite power series of x.
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3-point correlators, one also needs the picture 0 version, which can be obtained by acting the
picture rasing operator eϕG [66]. Since eϕG commute with J+

0 , we firstly calculate the action
of the picture rasing operator on the m-basis physical operators (2.24). The result is:

O
w(0)
j,m (z) = 1

k

[
(m+ j − 1)ψ+,wV w

j,m−1 − 2
(
m+ km

2

)
ψ3,wV w

j,m + (m− j + 1)ψ−,wV w
j,m+1

]
.

(2.31)
where ψa,w(a = 3,±) are the w spectrally flowed operator of the fermions ψa, which can
be written in terms of Ĥi as [27, 63]:

ψ±,w =
√
kei(±1−w)Ĥ1 , ψ3,w = ψ3e−iwĤ1 =

√
k

2 (e−iĤ3 − e+iĤ3)e−iwĤ1 (2.32)

Then from the definition (2.17), we can translate these operators into the ones in the x-basis:

O
w(0)
j,h (x;z)= 1

k

[
−2(h−w)ψ3,w(x;z)V w

j,h(x;z)+
(
h− (k+2)w

2 +j−1
)
ψ+,w(x;z)V w

j,h−1(x;z)

+
(
h− (k+2)w

2 −j+1
)
ψ−,w(x;z)V w

j,h+1(x;z)
]
, (2.33)

where ψa,w(x; z) are the x-basis operators of ψa,w(z) defined as in (2.17). Similar to 1wψ (x; z),
ψa,w(x; z) are also finite power series of x and contains both the m-basis operator ψa,w(z)
itself and its conjugate [27].

Now we turn to the Ramond sector. Firstly, note that the Ramond ground states are
created by acting on the vacuum with the spin fields

S(z) = e
i
2
∑

I
ϵIĤI , (2.34)

where ϵI = ±1, and the GSO projection imposes the mutual locality condition

5∏
I=1

ϵI = +1 . (2.35)

Besides, the BRST condition demands [1]:

3∏
I=1

ϵI = +1 . (2.36)

Thus, there are in total 25−2 = 8 supercharges Q obtained from these spin fields

Q =
∮
dze−

ϕ
2 S(z) . (2.37)

They corresponds on the boundary side to the 8 supercharges of the global N = 4 super-
conformal algebra.

Now we can write physical vertex operators in the Ramond sector. Writing out explicitly
the ϵ dependence of the spin fields:

S(z) = e
i
2
∑

I
ϵIĤI ≡ Sϵ1ϵ2ϵ3ϵ4ϵ5 . (2.38)
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These fields have (H,J,∆) = ( ϵ12 ,
ϵ2
2 ,

5
8). The spectrally flowed spin fields Swϵ1ϵ2ϵ3ϵ4ϵ5 have

(H,J,∆) =
(
ϵ1
2 − w,

ϵ2
2 ,

5
8 + w2

2 −
wϵ1
2

)
. (2.39)

Notice that we only spectral flow the sl(2, R)(1) part, so J will not change.10 These charges
fix their bosonizations as

Swϵ1ϵ2ϵ3ϵ4ϵ5 = e
i
2
∑

I
(ϵI−2δ1,Iw)ĤI . (2.40)

In the Ramond sector, (the matter part of) physical operators in the picture (−1
2) are

superconformal primaries and should survive the GSO projection. To construct them, we
start form the ones in the picture (−3

2), which can be written as (we focus on the states with
the lowest weights, thus turn off all possible additional excitations)

Õwj,m(z) ≡ e−
3ϕ(z)

2 V w
j,m(z)Swϵ1ϵ2ϵ3ϵ4ϵ5(z) , (2.41)

where ϵi should satisfy ∑5
I=1 ϵI = 1, which comes form the GSO projection. It takes the

same form as the one in (2.35) for the spin fields, because we are in the picture (−3
2) and

we assume that the spectral flow parameter w is odd. As will be clear in the following, the
remaining 25−1 = 16 operators only give 8 BRST equivalent classes.

Then the picture (−1
2) operators can be constructed as

Owj,m(z) = eϕ(z)G0Õ
w
j,m(z) . (2.42)

Notice that in the following, we always omit the labels in the fermionic parts and only use the
labels of the bosonic operators to label the full supersymmetric physical operators. Besides,
we always use “O” to denote the physical operators in various situations. Now Owj,m(z) is
guaranteed to be BRST invariant given that Õwj,m(z) (thus also Owj,m(z)) is on-shell since

G0O
w
j,m(z) = eϕ(z)G2

0Õ
w
j,m(z) = eϕ(z)

(
L0 −

c

24

)
Õwj,m(z) = eϕ(z)

(5
8 −

15
24

)
Õwj,m(z) = 0 .

(2.43)
Now we write down the explicit form of Owj,m(z). For this we need the form of the supercurrent
in terms of the bosonized fields:

G= 1√
k

[
e+iĤ1j−+e−iĤ1j++(e+iĤ3−e−iĤ3)j3+(i∂Ĥ2− i∂Ĥ1)e−iĤ3 +(i∂Ĥ2+ i∂Ĥ1)e+iĤ3

+e+iĤ2k−+e−iĤ2k++(e+iĤ3 +e−iĤ3)k3
]
+G(T 4) . (2.44)

For the calculation of Owj,m(z) here, only the first line for G above is needed. Notice that (2.42)
can be generalized to allow additional excitations in Õwj,m(z), such as those in the su(2)k−2
WZW model or the T4 theory. For these generalizations one will also need the second line
of G above. Since the operators we consider are spectrally flowed, we also need to count

10Notice that only ψ+, ψ− change under the spectral flow (ψ3 does not change), so the spectral flow only
acts on e

iϵ1
2 Ĥ1 .
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the effect of spectral flow acting on G in (2.10). With all these effects included, finally
we finds 8 physical operators:

Owj,m(z) = e−
ϕ(z)

2
1√
k

[
(m− j + 1)V w

j,m+1(z)Sw−ϵ2+ϵ4ϵ5(z) (2.45)

+ ϵ2

(
m+ kw

2 + 1− ϵ2
2

)
V w
j,m(z)Sw+ϵ2−ϵ4ϵ5(z)

]
, (ϵ2ϵ4ϵ5 = +1) ,

or

Owj,m(z) = e−
ϕ(z)

2
1√
k

[
(m− j + 1)V w

j,m+1(z)Sw−ϵ2−ϵ4ϵ5(z) (2.46)

− ϵ2
(
m+ kw

2 + 1 + ϵ2
2

)
V w
j,m(z)Sw+ϵ2+ϵ4ϵ5(z)

]
, (ϵ2ϵ4ϵ5 = −1) .

A few comments on these operators are in order

• The above operators are obtained by letting {ϵ1, ϵ3} = {+,+} and {+,−} in (2.42)
(with (2.41)) respectively. To obtain them, the cocycles in Ĥi need to be properly
counted. If we instead let {ϵ1, ϵ3} = {−,−} and {−,+}, we will obtain the same set of
operators as the above 8 ones. For example, letting {ϵ1, ϵ3} = {−,−}, one gets:

Owj,m+1(z) = e−
ϕ(z)

2

[
ϵ2

(
m+ kw

2 + 1 + ϵ2
2

)
V w
j,m+1(z)Sw−ϵ2+ϵ4ϵ5(z)

+ (m+ j)V w
j,m(z)Sw+ϵ2−ϵ4ϵ5(z)

]
, (ϵ2ϵ4ϵ5 = +1) ,

(2.47)

These operators are proportional to those in (2.45), due to the mass-shell condition (2.48).
Thus we only have 8 independent physical operators in total.

• One can check that these operators are indeed BRST invariant, again using the bosonized
form of G in (2.44) and the mass-shell condition.

• All the 4 terms in (2.45) and (2.46) have the same space-time conformal weight H =
m+ kw

2 + 1
2 , and one can check that they have the same mass shell condition, which

can be written as

−j(j − 1)
k

− w(m+ 1)− (k + 2)w2

4 + 5
8 + w2

2 + w

2 = 5
8 . (2.48)

• Form the above equation, we obtain the lowest weight HR,odd of states in the Ramond
secter with w odd:

HR,odd = j(1− j)
kw

+ kw

4 =
1
4 + p2

kw
+ kw

4 = HNS,odd + 1
2w . (2.49)

One finds that it is larger than (2.29) in the NS sector, which means these 8 operators
correspond to excited states in the spacetime theory. The ground state is unique and
lies in the NS sector (for a given w).
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We also need the form of the above operators in the x-basis. For the operators (2.41) in
picture (−3

2), in x-basis they are

Õwj,h(x; z) = e−
3ϕ(z)

2 V w
j,h(x; z)Swϵ1ϵ2ϵ3ϵ4ϵ5(x; z) , (2.50)

where h = m + (k+2)w
2 and Swϵ1ϵ2ϵ3ϵ4ϵ5(x; z) is the x-basis operator of Swϵ1ϵ2ϵ3ϵ4ϵ5(z), which

contains finite terms as a power series of x, including in particular the m-basis opera-
tor Swϵ1ϵ2ϵ3ϵ4ϵ5(z) itself and its conjugate S−w

(−ϵ1)ϵ2(−ϵ3)ϵ4ϵ5(z)
11 [27] The operators in picture

(−1
2) read

Owj,h(x; z) = e−
ϕ(z)

2
1√
k

[
(h− (k + 2)w

2 − j + 1)V w
j,h+1(x; z)Sw−ϵ2+ϵ4ϵ5(x; z) (2.51)

+ ϵ2

(
h− w + 1− ϵ2

2

)
V w
j,h(x; z)Sw+ϵ2−ϵ4ϵ5(x; z)

]
, (ϵ2ϵ4ϵ5 = +1)

or

Owj,h(x; z) = e−
ϕ(z)

2
1√
k

[
(h− (k + 2)w

2 − j + 1)V w
j,h+1(x; z)Sw−ϵ2−ϵ4ϵ5(x; z) (2.52)

− ϵ2
(
h− w + 1 + ϵ2

2

)
V w
j,h(z)Sw+ϵ2+ϵ4ϵ5(x; z)

]
, (ϵ2ϵ4ϵ5 = −1)

2.3.2 Even spectral flow parameters

Now we turn to the case where operators have even spectral flow parameters w. Since w
is even, comparing to the odd case (2.24), an additional fermion should be excited in order
to survive the GSO projection. We first consider the NS sector. Somewhat similar to the
case of flat space-time, the BRST condition gives a polarization constraint, which reduces
the number of states by one. Meanwhile, the action of G− 1

2
on the ground state (which does

not survive the GSO projection) is spurious, which reduces the number of states by one as
well. Thus we have in total 10 − 2 = 8 physical operators at the level 1

2 . In the following
we will construct these 8 physical operators concretely.

In the NS sector, excited fermionic operators in the 7 compact directions are easy to
write down and they are of the form (in the m-basis)

Owj,m(z) ≡ e−ϕ(z)1wψ(z)V w
j,m(z)F(z) , (2.53)

where F(z) is the excited fermion and the above operators are in the standard picture (−1).
One set of choices of the F(z) corresponding to these 7 excitations are

η1, η2, η3, η4, χ−, χ3, χ+. (2.54)

It is easy to see that the above 7 operators are all BRST invariant, and the mass shell
condition is (H = m + kw

2 )

−j(j − 1)
k

− wH + kw2

4 + 1
2 = 1

2 . (2.55)

11Notice that the “conjugate” here means w → −w,m→ −m, so only ϵ1 and ϵ3 change their signs.
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This leads to the lowest space-time weights

HNS,even =
1
4 + p2

kw
+ kw

4 . (2.56)

Finally, we can write these physical operators in the x-basis

Owj,h(z) ≡ e−ϕ(z)1wψ(x; z)V w
j,h(x; z)F(z) , (2.57)

with h = m + (k+2)w
2 .

The remaining one physical operator is the fermionic excitations in the (super-symmetric)
AdS3 part. In the m-basis, it has the following form

Owj,m(z) = e−ϕ(z)Owj,m(z), Owj,m(z) = α−V
w
j,m+1ψ

−,w +α3V
w
j,mψ

3,w +α+V
w
j,m−1ψ

+,w , (2.58)

where (α−, α3, α+) are the (to be determined) polarization. Notice that the mass-shell
conditions of the above three operators are respectively

−j(j − 1)
k

− w(m+ 1)− (k + 2)w2

4 + (1 + w)2
2 = 1

2 ,

−j(j − 1)
k

− wm− (k + 2)w2

4 + w2 + 1
2 = 1

2 ,

−j(j − 1)
k

− w(m− 1)− (k + 2)w2

4 + (1− w)2
2 = 1

2 ,

(2.59)

which are the same and coincide with (2.55) and hence consistent (notice that for all the
3 operators we have H = m + wk

2 ). BRST invariance requires

LnOwj,m(0)|0⟩ = 0, GrOwj,m(0)|0⟩ = 0, for n, r > 0 , (2.60)

where Ln, Gr are the modes of the stress tensor and supercurrent. From the form of the
stress tensor and supercurrent (2.7), as well as the action of the spectral flow on them (2.10),
it is clear that the first condition in (2.60) is satisfied. As for the second condition, only
when r = 1

2 it gives a non-trivial constraint(
G 1

2
− wψ3

1
2

)(
α−Vj,m+1ψ

−
− 1

2
+ α3Vj,mψ

3
− 1

2
+ α+Vj,m−1ψ

+
− 1

2

)
|0⟩ = 0 . (2.61)

Using the expression of the supercurrent Gn, this equation become

(m+ j)α− +
(
m+ wk

2

)
α3 + (m− j)α+ = 0 . (2.62)

This linear equation has 2 independent solutions but only one gives a real physical state.
The other is spurious and has the form

Ow,spuriousj,m (z) ≡ e−ϕ(z)
[
G− 1

2
1wψ(z)V w

j,m(z)
]

(2.63)

∝ (m− j + 1)V w
j,m+1ψ

−,w − 2
(
m+ wk

2

)
V w
j,mψ

3,w + (m+ j − 1)V w
j,m−1ψ

+,w .
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It can be checked that the coefficients in (2.63) satisfy equation (2.62) after using the mass-
shell condition (2.55). This spurious state has the same form as the picture 0 operator (2.31)
in the case of odd spectral flow parameters. Of course, that operator is not spurious because
the mass-shell condition is different there. The remaining physical operators thus has the
form (in the x-basis)

Owj,h(x;z)=e−ϕ(z)[α−ψ
−,w(x;z)V w

j,h+1(x;z)+α3ψ
3,w(x;z)V w

j,h(x;z)+α+ψ
+,w(x;z)V w

j,h−1(x;z)],
(2.64)

where (α−, α3, α+) is the real physical solution of (2.62) (up to the spurious one). For
example, they can be chosen as

α− = j −m, α3 = 0, α+ = j +m (2.65)

Now we can write physical vertex operators in the Ramond sector. The result is almost
the same as in the case of odd spectral flow parameters. In picture (−3

2), they take the form

Õwj,m(z) ≡ e−
3ϕ(z)

2 V w
j,m(z)Swϵ1ϵ2ϵ3ϵ4ϵ5(z) (2.66)

where now ϵi satisfy ∑5
I=1 ϵI = −1, which has a sign difference comparing with the case

of odd spectral flow parameters. Accordingly, there are 8 physical operators, written in
the picture (−1

2) as

Owj,m(z) = e−
ϕ(z)

2
1√
k

[
(m− j + 1)V w

j,m+1(z)Sw−ϵ2+ϵ4ϵ5(z) (2.67)

+ ϵ2

(
m+ kw

2 + 1− ϵ2
2

)
V w
j,m(z)Sw+ϵ2−ϵ4ϵ5(z)

]
, (ϵ2ϵ4ϵ5 = −1)

or

Owj,m(z) = e−
ϕ(z)

2
1√
k

[
(m− j + 1)V w

j,m+1(z)Sw−ϵ2−ϵ4ϵ5(z) , (2.68)

− ϵ2
(
m+ kw

2 + 1 + ϵ2
2

)
V w
j,m(z)Sw+ϵ2+ϵ4ϵ5(z)

]
, (ϵ2ϵ4ϵ5 = +1) .

One can also write down the corresponding operators in the x-basis, just as in the NS sector.
Mass shell condition gives the same weight H as in (2.49), namely HR,even = HR,odd, the
difference is that now it is equal to the lowest space-time weights (2.56) in the NS sector:

HR,even = HNS,even . (2.69)

Thus, for w even, there are in total 8 + 8 = 16 ground states in the space-time theory.

Summary. The operators constructed in this section are summarized in the following table 1.
For the matching with the CFT side, we want to specify the representation contents of these
operators. Notice that the (small) N = 4 superconformal algebra has an outer automorphism
SU(2)outer, which is not a symmetry of the theory. Then the full automorphism group of the
algebra is SU(2)R ⊕ SU(2)outer (here we only consider the left-moving part). It is therefore
helpful to organize operators into representations of this SU(2)R ⊕ SU(2)outer.
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Parity of w
Sectors

NS sector R sector

odd 1 ground (in (2.30)) 8 excited (in (2.51), (2.52))
even 8 ground (in (2.57), (2.64)) 8 ground (in (2.67), (2.68))

Table 1. The operators with the lowest space-time weights.

Parity of w
Sectors

NS sector R sector

odd (1,1) (in (2.30)) 2 (2,2) (in (2.51), (2.52))

even (3,1)⊕ (1,1)⊕ (1,3)⊕ (1,1)
(in (2.57), (2.64)) 2 (2,2) (in (2.67), (2.68))

Table 2. The representation contents.

Firstly, notice that among all the generators in the (small) N = 4 superconformal algebra,
SU(2)outer only acts non-trivially on the supercharges (see, e.g. [67]). One can write the
indices of the supercharge (2.37) explicitly as Qϵ2,ϵ4± ϵ1

2
[1]. Then it is clear that SU(2)R rotates

the index ϵ2 and SU(2)outer rotates the index ϵ4(= ϵ5). Thus, the generators of SU(2)outer
can be constructed by (the zero modes of) the following currents

J3
outer = i∂Ĥ4, J±

outer = ∓e±iĤ4(e−iĤ5 + e+iĤ5) . (2.70)

Notice that an alternative choice is to exchange the role of Ĥ4 and Ĥ5 in the above construction.
It will gives the same results for the representation contents as we will show shortly. Now,
one can directly read the representation contents with respect to SU(2)R ⊕ SU(2)outer, listed
in the table 2. In particular, notice that in the case of NS sector and w is even, the (3,1)
comes from F = χ3,± in (2.57), the first (1,1) comes from (2.64), the (1,3) comes from
F = η1±iη2

√
2 and F =

√
2η3 in (2.57), the last (1,1) comes from F = η4 in (2.57). If we choose

the alternative currents for SU(2)outer in (2.70) by exchanging Ĥ4 and Ĥ5, representations
involving the 4 fermion ηi(i = 1, 2, 3, 4) change according to η1 ↔ η3, η2 ↔ η4, which again
leads to (1,1)⊕ (1,3). Further, if we bosonize different combinations of ηis, we can define
the SU(2)outer that makes any one of the 4 operators in (2.57) with F = ηi to be in the
singlet (1,1). These different choices of SU(2)outer are just conventions and we will show
their counterparts in the CFT side in section 4.

3 Superstring correlators

Now we calculate the superstring three point correlators. There are various cases with
different parities of the spectral flows. We use O and E to denote w odd and even respectively.
We also use X-Y-Z, where X, Y, Z can be O or E, to denote the parities of the three vertex
operators. Since the form of the three point functions in the bosonic SL(2, R) WZW model
depends on the total parity of ∑iwi [55] (see also (A.1)), we discuss correlators with different
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total parity separately. When ∑iwi is odd, there are two possible cases: O-O-O and O-E-E;
when ∑iwi is even, and another two possible cases, O-O-E and E-E-E. Furthermore, for
w even (E), as we had discussed above, there are 16 different choices for the space-time
ground states with different fermionic excitations. On the other hand, for w odd (O), the
ground state is unique (lies in the NS sector) and we have 8 choices for excited states with
lowest excited energy (lie in the R sector).

We will not calculate all the cases of the three point functions. Instead, for each
type of correlators, we will calculate one representative as an illustration. Besides, these
representatives involve operators lying in both the NS sector and the R sector. Notice
that when the total picture number is −2, the number of operators in the R sector is 0
or 2; on the other hand, the form of (A.1) depends on the total parity ∑iwi. Thus the 4
representatives we choose in the following include the above 2 choices of the number of the
R sector operators for each value of the total parity of ∑iwi. In the following, we again
focus on the left-moving part and omit a similar analysis for the right-movers (we also mostly
suppress the anti-holomorphic dependence of the correlators).

3.1 Parity odd

When ∑iwi is odd, there are two possible types of correlators, namely O-O-O or O-E-E.

3.1.1 O-O-O

In this case, there are 2 possibilities:

1. All the three operators are in the NS sector ((2.30));

2. One operator is in the NS sector ((2.30)) and the other two are in the R sector
((2.51), (2.52)).

We choose to calculate the case 1, which is the simplest. In fact, the calculation of the
case 2 is completely analogous with the correlator we will calculate in the type E-O-O in
section 3.2.1, so we omit it here. Thus the correlator we consider is (here we only write its
left-moving part, the final result should also include the right-moving part).

Mleft
OOO =

〈
c(z1)Ow1

j1,h1
(x1; z1)c(z2)Ow2

j2,h2
(x1; z1)c(z3)Ow3(0)

j3,h3
(x3; z3)

〉
, (3.1)

where we have included the c ghosts. Notice that we label the correlator simply by the type
“OOO”, which is fine since we only choose one representative for each type of correlators.
The result is

Mleft
OOO = 1

k

[
−2(h3−w3)⟨1w1

ψ (x1)1w2
ψ (x2)ψ3,w3(x3)⟩⟨V w1

j1,h1
(x1)V w2

j2,h2
(x2)V w3

j3,h3
(x3)⟩ (3.2)

+
(
h3−

(k+2)w3
2 +j3−1

)
⟨1w1
ψ (x1)1w2

ψ (x2)ψ+,w3(x3)⟩⟨V w1
j1,h1

(x1)V w2
j2,h2

(x2)V w3
j3,h3−1(x3)⟩

+
(
h3−

(k+2)w3
2 −j3+1

)
⟨1w1
ψ (x1)1w2

ψ (x2)ψ−,w3(x3)⟩⟨V w1
j1,h1

(x1)V w2
j2,h2

(x2)V w3
j3,h3+1(x3)⟩

]
.

Notice that MOOO does not have zi dependence since the ghosts are included. Thus we
have omitted all the zi dependence of all the operators in (3.2). We can use the global
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SL(2, R) symmetries to fix xi and zi to be: (z1, z2, z3) = (x1, x2, x3) = (0, 1,∞). Then, we
need to compute the correlators

⟨1w1
ψ (0; 0)1w2

ψ (1; 1)ψa,w3(∞;∞)⟩ a = 3,±, ⟨V w1
j1,h1

(0; 0)V w2
j2,h2

(1; 1)V w3
j3,h3

(∞,∞)⟩ , (3.3)

A closed formula for the bosonic correlator ⟨V w1
j1,h1

(0; 0)V w2
j2,h2

(1; 1)V w3
j3,h3

(∞,∞)⟩ is obtained
in [55]. We review the result in the appendix A.

Now we turn to the fermionic correlators: ⟨1w1
ψ (0; 0)1w2

ψ (1; 1)ψa,w3(∞;∞)⟩. The cases
with a = 3,− were in fact calculated in [27] using free field techniques.12 We do not use these
free field techniques in this work. Instead, we treat them as three special cases of the general
results (A.1) of ⟨V w1

j1,h1
(0; 0)V w2

j2,h2
(1; 1)V w3

j3,h3
(∞;∞)⟩. In fact, ψa can be viewed as states

|j = −1,m = a⟩ in the fermionic SL(2, R) WZW model with k = −2. This method turns
out to be more systematic. Before doing the computation, notice that there is a convention
difference between the basis ψa and |j = −1,m = a⟩ in the fermionic WZW model. To get
the correct result, we should multiply the formula in [55] by a factor −1

2 once a ψ3 appears.
Firstly, since all wi are odd, we need to use the formula (A.1) for ∑iwi ∈ 2Z + 1. In

the case at hand, we have

j1 = j2 = 0, j3 = −1, k = −2 . (3.4)

Then the y-basis correlator is simply (here and in the following, when refer to the y-basis
correlator, we always omit the overall factor in (A.1))

X2
3 = (Pw1,w2,w3+1 + Pw1,w2,w3−1y3)2 . (3.5)

Since the three operators belong to the (spectral flow of) discrete representations, the
integral of (A.1) just gives the residue of the integrand at yi = 0 [55]. For the case
⟨1w1
ψ (x1)1w2

ψ (x2)ψ−,w3(x3)⟩, it can be checked that y
kwi

2 +ji−hi−1
i = y−1

i (i = 1, 2, 3) and thus
the residue can be read off by setting yi = 0 in (3.5), leading to:

⟨1w1
ψ (x1)1w2

ψ (x2)ψ−,w3(x3)⟩ =
√
kP 2

w1,w2,w3+1 . (3.6)

Notice that in the above we have included the overall factor
√
k for the 3-point correlator.13

Eq. (3.6) agrees with eq. (4.74) of [27]. For the case ⟨1w1
ψ (x1)1w2

ψ (x2)ψ3,w3(x3)⟩, we have

y
kwi

2 +ji−hi−1
i = y−1

i (i = 1, 2), y
kw3

2 +j3−h3−1
3 = y−2

3 (3.7)

and the residue gives

⟨1w1
ψ (x1)1w2

ψ (x2)ψ3,w3(x3)⟩=−
√
k

2 ×2Pw1,w2,w3+1Pw1,w2,w3−1 =−
√
kPw1,w2,w3+1Pw1,w2,w3−1 .

(3.8)
12As pointed out in [59], while the result for ⟨1w1

ψ (0; 0)1w2
ψ (1; 1)ψ−,w3 (∞;∞)⟩ in [27] is correct, the expression

for ⟨1w1
ψ (0; 0)1w2

ψ (1; 1)ψ3,w3 (∞;∞)⟩ seems not correct there.
13This factor comes from the prefactor in the formula (A.1), which is related to the unflowed 3-point function.

We determined it here by letting w1 = w2 = 0, w3 = −1.
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For the case ⟨1w1
ψ (x1)1w2

ψ (x2)ψ+,w3(x3)⟩, we have

y
kwi

2 +ji−hi−1
i = y−1

i (i = 1, 2), y
kw3

2 +j3−h3−1
3 = y−3

3 (3.9)

and the residue becomes

⟨1w1
ψ (x1)1w2

ψ (x2)ψ+,w3(x3)⟩ =
√
kP 2

w1,w2,w3−1 . (3.10)

With these expressions MOOO evaluates to (including the right-moving dependence)

MOOO = CS2

k

[
(h3−

(k+2)w3

2 +j3−1)P 2
w1,w2,w3−1⟨h3−1⟩+2(h3−w3)Pw1,w2,w3−1Pw1,w2,w3+1⟨. . .⟩

+(h3−
(k+2)w3

2 −j3+1)P 2
w1,w2,w3+1⟨h3+1⟩

]
×(anti-homomorphic part) , (3.11)

where CS2 is the normalization of the string path integral [29, 68]. The “anti-homomorphic
part” above denote the right-moving part. Here and in the following when we calculate other
correlators, we always take the excitations in the right-moving part to be the similar ones
as the left-moving part. Then “anti-homomorphic part” here is an expression obtained by
replacing all h in the square brackets above by h̄. Besides, we always use ⟨h3 ± 1⟩, ⟨. . .⟩ to
denote ⟨V w1

j1,h1
V w2
j2,h2

V w3
j3,h3±1⟩, ⟨V

w1
j1,h1

V w2
j2,h2

V w3
j3,h3
⟩, with the anti-holomorphic part not specified.

The product of two such terms means specifying both the holomorphic and anti-holomorphic
dependence, e,g.

⟨h3 − 1⟩ × ⟨h̄3 + 1⟩ ≡ ⟨V w1
j1,h1,h̄1

V w2
j2,h2,h̄2

V w3
j3,h3−1,h̄3+1⟩ (3.12)

Then the right-hand-side can be obtained by the formula (A.1).

3.1.2 O-E-E

In this case, there are 3 possibilities:

1. “O” is in the NS sector ((2.30)) and the two “E” are in the Ramond sector ((2.67), (2.68));

2. “O” is in the NS sector ((2.30)) and the two “E” are also in the NS sector ((2.57), (2.64));

3. “O” is in the R sector ((2.51), (2.52)) and one “E” is also in the R sector ((2.67), (2.68)),
the other “E” is in the NS sector ((2.57), (2.64)).

We choose to calculate the case 1. The calculation of the second case is analogous with the
case 1 in the type of O-O-O, and the calculation of the third case is analogous with the case 1
here. So we omit the calculation for the latter 2 cases. One choice of the spin fields so that the
correlators are non-vanishing is (other choices for the spin fields can be calculated similarly)

O
w1(−1)
j1,h1

= e−ϕ1w1
ψ V w1

j1,h1
, O

w2(− 3
2 )

j2,h2
= e−

3ϕ
2 Sw2

++++−V
w2
j2,h2

, O
w3(− 3

2 )
j3,h3

= e−
3ϕ
2 Sw3

+−−−+V
w3
j3,h3

.

(3.13)
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To calculate the correlator, the total picture number should be −2. For this, we choose the
first operator to be in picture (−1) and the other two in picture (−1

2)

O
w2(− 1

2 )
j2,h2

= e−
ϕ
2

1√
k

[
(h2 −

(k + 2)w2
2 − j2 + 1)Sw2

−+++−V
w2
j2,h2+1 + (h2 − w2)Sw2

++−+−V
w2
j2,h2

]
O
w3(− 1

2 )
j3,h3

= e−
ϕ
2

1√
k

[
(h3 −

(k + 2)w3
2 − j3 + 1)Sw3

−−−−+V
w3
j3,h3+1 + (h3 − w3)Sw3

+−+−+V
w3
j3,h3

]
.

(3.14)
As in the case of O-O-O, ⟨V w1

j1,h1
(0; 0)V w2

j2,h2
(1; 1)V w3

j3,h3
(∞;∞)⟩ is already known [55], thus we

need to compute the following 4 correlators of the fermionic multiplets〈
1w1
ψ (0; 0)Sw2

a+b+−(1; 1)S
w3
c−d−+(∞,∞)

〉
, (a, b) = (±,∓), (c, d) = (±,±) . (3.15)

This time, Sw2
a+b+− (Sw3

c−d−+) can be viewed as the state |j = −1
2 ,m = a

2 ⟩ (|j = −1
2 ,m = c

2⟩)
in the fermionic SL(2, R) WZW model with k = −2. Then we have ∑iwi ∈ 2Z + 1 and
j1 = 0, j2 = j3 = −1

2 . Thus the correlator in the y-basis is

X2X3 = (Pw1,w2+1,w3 + Pw1,w2−1,w3y2)(Pw1,w2,w3+1 + Pw1,w2,w3−1y3) . (3.16)

Reading out the residue as in the O-O-O case, we get respectively

• (a, b) = (−,+), (c, d) = (−,−)〈
1w1
ψ Sw2

−+++−Sw3
−−−−+

〉
= (X2X3)|yi=0 = Pw1,w2+1,w3Pw1,w2,w3+1 , (3.17)

• (a, b) = (−,+), (c, d) = (+,+)〈
1w1
ψ Sw2

−+++−Sw3
+−+−+

〉
= ∂y3(X2X3)|yi=0 = Pw1,w2+1,w3Pw1,w2,w3−1 , (3.18)

• (a, b) = (+,−), (c, d) = (−,−)〈
1w1
ψ Sw2

−+++−Sw3
+−+−+

〉
= ∂y2(X2X3)|yi=0 = Pw1,w2−1,w3Pw1,w2,w3+1 , (3.19)

• (a, b) = (+,−), (c, d) = (+,+)〈
1w1
ψ Sw2

++−+−Sw3
+−+−+

〉
= ∂y2∂y3(X2X3)|yi=0 = Pw1,w2−1,w3Pw1,w2,w3−1 . (3.20)

The correlator then reads

MOEE = CS2

k2

[
(h2−

(k+2)w2
2 −j2+1)(h3−

(k+2)w3
2 −j3+1)Pw1,w2+1,w3Pw1,w2,w3+1⟨0++⟩

+(h2−
(k+2)w2

2 −j2+1)(h3−w3)Pw1,w2+1,w3Pw1,w2,w3−1⟨0+0⟩

+(h2−w2)(h3−
(k+2)w3

2 −j3+1)Pw1,w2−1,w3Pw1,w2,w3+1⟨00+⟩ (3.21)

+(h2−w2)(h3−w3)Pw1,w2−1,w3Pw1,w2,w3−1⟨000⟩
]
×(anti-homomorphic part) ,

where the “anti-homomorphic part” is again an expression obtained by replacing all h in the
square brackets above by h̄. Here, we use ⟨0 + +⟩ to denote ⟨V w1

j1,h1
V w2
j2,h2+1V

w3
j3,h3+1⟩, with

the anti-holomorphic part not specified. All other correlators in (3.21) are similarly defined.
The product of two such terms means specifying both the holomorphic and anti-holomorphic
dependence.
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3.2 Parity even

When ∑iwi is even, there are two possible types, namely E-O-O or E-E-E.

3.2.1 E-O-O

In this case, there are 3 possibilities:

1. “E” is in the NS sector ((2.57), (2.64)) and the two “O” are also in the NS sector
((2.30));

2. “E” is in the NS sector ((2.57), (2.64)) and the two “O” are in the R sector ((2.51), (2.52));

3. “E” is in the R sector ((2.67), (2.68)) and one “O” is also in the R sector ((2.51), (2.52)),
the other “O” is in the NS sector ((2.30)).

We choose to calculate the case 1 with the “E” being the special physical operator (2.64). In
fact, the calculation of the second case is similar with the one we will calculate in the type of
E-E-E in section 3.2.2, and the calculation of the third case is similar with the case 1 here. So
we omit the calculation for the latter 2 cases. Concretely, the three operators we choose are:

O
w1(−1)
j1,h1

= e−ϕ(α−V
w1
j1,h1+1ψ

−,w1 + α+V
w1
j1,h1−1ψ

+,w1 + α3V
w1
j1,h1

ψ3,w1) ,

O
w2(−1)
j2,h2

= e−ϕ1w2
ψ V w2

j2,h2
, O

w3(−1)
j3,h3

= e−ϕ1w3
ψ V w3

j3,h3
,

(3.22)

where w1 is even and w2 and w3 are odd. Notice that if we demand all the three operators
corresponding to ground states, the above choice is the only one that makes the correlator
non-vanishing.

For the total picture number being −2, we choose the third operator to be in picture 0:

O
w3(0)
j3,h3

= 1
k

[
(h3 −

(k + 2)w3
2 − j3 + 1)V w3

j3,h3+1ψ
−,w3 − 2(h3 − w3)V w3

j3,h3−1ψ
+,w3 (3.23)

+ (h3 −
(k + 2)w3

2 + j3 − 1)V w3
j3,h3

ψ3,w3

]
. (3.24)

Then there are 9 terms contribute to MEOO. Since ⟨V w1
j1,h1

(0; 0)V w2
j2,h2

(1; 1)V w3
j3,h3

(∞;∞)⟩ is
already known [55], we simply compute explicitly the following 9 correlators of the fermionic
multiplets 〈

ψa,w1(0; 0)1w2
ψ (1; 1)ψb,w3(∞;∞)

〉
, a, b = 3,± . (3.25)

Now we have ∑iwi ∈ 2Z and j1 = j3 = −1, j2 = 0, so the y-basis correlator is simply

X2
13 = (Pw1+1,w2,w3+1 + Pw1−1,w2,w3+1y1 + Pw1+1,w2,w3−1y3 + Pw1−1,w2,w3−1y1y3)2 . (3.26)

Reading out the residues, we get (in the following, we omit the same overall factor k for
all the correlators)

• (a, b) = (−,−)
〈
ψ−,w11w2

ψ ψ−,w3
〉
= X2

13|yi=0 = P 2
w1+1,w2,w3+1 . (3.27)
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• (a, b) = (−, 3)
〈
ψ−,w11w2

ψ ψ3,w3
〉
= −1

2 × ∂y3X
2
13|yi=0 = −Pw1+1,w2,w3+1Pw1+1,w2,w3−1 . (3.28)

• (a, b) = (−,+)
〈
ψ−,w11w2

ψ ψ+,w3
〉
= 1

2∂
2
3X

2
13|yi=0 = P 2

w1+1,w2,w3−1 . (3.29)

• (a, b) = (3, 3)

〈
ψ3,w11w2

ψ ψ3,w3
〉
=
(
−1
2

)2
∂y1∂y3X

2
13|yi=0 (3.30)

= 1
2Pw1+1,w2,w3+1Pw1−1,w2,w3−1 +

1
2Pw1+1,w2,w3−1Pw1−1,w2,w3+1 .

• (a, b) = (3,+)
〈
ψ3,w11w2

ψ ψ+,w3
〉
= −1

2 ×
1
2!∂y1∂

2
y3X

2
13|yi=0 = −Pw1+1,w2,w3−1Pw1−1,w2,w3−1 . (3.31)

• (a, b) = (+,+)

〈
ψ+,w11w2

ψ ψ+,w3
〉
=
( 1
2!

)2
∂2y1∂

2
y3X

2
13|yi=0 = P 2

w1−1,w2,w3−1 . (3.32)

Notice that we omit all coordinates in the above expressions. With all these results, the
correlator reads

MEOO =CS2

{
α−

[
P 2
w1+1,w2,w3+1(h3−

(k+2)w3

2 −j3+1)⟨+0+⟩

+2Pw1+1,w2,w3+1Pw1+1,w2,w3−1(h3−w3)⟨+00⟩

+P 2
w1+1,w2,w3−1(h3−

(k+2)w3

2 +j3−1)⟨+0−⟩
]

−α3

[
Pw1+1,w2,w3+1Pw1−1,w2,w3+1(h3−

(k+2)w3

2 −j3+1)⟨00+⟩

+(Pw1+1,w2,w3+1Pw1−1,w2,w3−1+Pw1+1,w2,w3−1Pw1−1,w2,w3+1)(h3−w3)⟨000⟩

+Pw1+1,w2,w3−1Pw1−1,w2,w3−1(h3−
(k+2)w3

2 +j3−1)⟨00−⟩
]

+α+

[
P 2
w1−1,w2,w3+1(h3−

(k+2)w3

2 −j3+1)⟨−0+⟩

+2Pw1−1,w2,w3−1Pw1−1,w2,w3+1(h3−w3)⟨−00⟩ (3.33)

+P 2
w1−1,w2,w3−1(h3−

(k+2)w3

2 +j3−1)⟨−0−⟩
]}
×(anti-homomorphic part).

where (α−, α3, α+) = (j1 − m1, 0, j1 + m1), up to the spurious polarization
(α−, α3, α+)spurious = (m1− j1 +1,−2m1−w1k,m1 + j1− 1). Again the “anti-homomorphic
part” is an expression obtained by replacing all h in the brace above by h̄.
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3.2.2 E-E-E

In this case, there are 2 possibilities:

1. One “E” is in the NS sector ((2.57), (2.64)) and the other two “E” are in the R sector
((2.67), (2.68));

2. All three “E” are in the NS sector ((2.57), (2.64)).

We choose to calculate the case 1 with the “E” in the NS sector being the special physical
operator (2.64). In fact, the calculation of the second case is similar with the case 1 in
the type of E-O-O.14 So we omit the calculation for the case 2 here. Concretely, the three
operators we choose are:

O
w1(−1)
j1,h1

= e−ϕ(α−V
w1
j1,h1+1ψ

−,w1 + α+V
w1
j1,h1−1ψ

+,w1 + α3V
w1
j1,h1

ψ3,w1)

O
w2(− 3

2 )
j2,h2

= e−
3ϕ
2 Sw2

++++−V
w2
j2,h2

, O
w3(− 3

2 )
j3,h3

= e−
3ϕ
2 Sw3

+−−−+V
w3
j3,h3

.
(3.34)

Again we choose the first operator to be in picture (−1) and the other two lie in picture (−1
2)

(see (3.14)). Then there are 12 correlators of the fermionic multiplets we need to calculate〈
ψe,w1(0; 0)Sw2

a+b+−(1; 1)S
w3
c−d−+(∞,∞)

〉
, e = ±, 3, (a, b) = (±,∓), (c, d) = (±,±) .

(3.35)
Now we have ∑iwi ∈ 2Z and j1 = −1, j2 = j3 = −1

2 and the correlator in the y-basis is

X12X13 = (Pw1+1,w2+1,w3 + Pw1−1,w2+1,w3y1 + Pw1+1,w2−1,w3y2 + Pw1−1,w2−1,w3y1y2) (3.36)
× (Pw1+1,w2,w3+1 + Pw1−1,w2,w3+1y1 + Pw1+1,w2,w3−1y3 + Pw1−1,w2,w3−1y1y3) .

We have respectively the following contributions (in the following, we omit the same overall
factor

√
k for all the correlators)

• e = −, (a, b) = (−,+), (c, d) = (−,−)〈
ψ−,w1Sw2

−+++−Sw3
−−−−+

〉
= (X12X13)|yi=0 = Pw1+1,w2+1,w3Pw1+1,w2,w3+1 . (3.37)

• e = −, (a, b) = (−,+), (c, d) = (+,+)〈
ψ−,w1Sw2

−+++−Sw3
+−+−+

〉
= ∂y3(X12X13)|yi=0 = Pw1+1,w2+1,w3Pw1+1,w2,w3−1 . (3.38)

• e = −, (a, b) = (+,−), (c, d) = (−,−)〈
ψ−,w1Sw2

++−+−Sw3
−−−−+

〉
= ∂y2(X12X13)|yi=0 = Pw1+1,w2−1,w3Pw1+1,w2,w3+1 . (3.39)

• e = −, (a, b) = (+,−), (c, d) = (+,+)〈
ψ−,w1Sw2

++−+−Sw3
−−−−+

〉
= ∂y2∂y3(X12X13)|yi=0 = Pw1+1,w2−1,w3Pw1+1,w2,w3−1 .

(3.40)
14There is a special case where all the three operators are the special one (2.64). While in other cases one

can always avoid to calculate correlator with the picture 0 version of (2.64) (by using a suitable picture choice),
in this case one must calculate such correlators. These correlators are more complicated because they are
correlators of spectrally flowed operators with descendant insertions. See the last paragraph in section 3.3.
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• e = 3, (a, b) = (−,+), (c, d) = (−,−)〈
ψ3,w1Sw2

−+++−Sw3
−−−−+

〉
= ∂y1(X12X13)|yi=0 (3.41)

= Pw1+1,w2+1,w3Pw1−1,w2,w3+1 + Pw1−1,w2+1,w3Pw1+1,w2,w3+1 .

• e = 3, (a, b) = (−,+), (c, d) = (+,+)〈
ψ3,w1Sw2

−+++−Sw3
+−+−+

〉
= ∂y1∂y3(X12X13)|yi=0 (3.42)

= Pw1−1,w2+1,w3Pw1+1,w2,w3−1 + Pw1+1,w2+1,w3Pw1−1,w2,w3−1 .

• e = 3, (a, b) = (+,−), (c, d) = (−,−)〈
ψ3,w1Sw2

++−+−Sw3
−−−−+

〉
= ∂y1∂y2(X12X13)|yi=0 (3.43)

= Pw1+1,w2−1,w3Pw1−1,w2,w3+1 + Pw1−1,w2−1,w3Pw1+1,w2,w3+1 .

• e = 3, (a, b) = (+,−), (c, d) = (+,+)〈
ψ3,w1Sw2

++−+−Sw3
−−−−+

〉
= ∂y1∂y2∂y3(X12X13)|yi=0 (3.44)

= Pw1−1,w2−1,w3Pw1+1,w2,w3−1 + Pw1+1,w2−1,w3Pw1−1,w2,w3−1 .

• e = +, (a, b) = (−,+), (c, d) = (−,−)

〈
ψ+,w1Sw2

−+++−Sw3
−−−−+

〉
= 1

2∂
2
y1(X12X13)|yi=0 = Pw1−1,w2+1,w3Pw1−1,w2,w3+1 . (3.45)

• e = +, (a, b) = (−,+), (c, d) = (+,+)

〈
ψ+,w1Sw2

−+++−Sw3
+−+−+

〉
= 1

2∂
2
y1∂y3(X12X13)|yi=0 = Pw1−1,w2+1,w3Pw1−1,w2,w3−1 .

(3.46)

• e = +, (a, b) = (+,−), (c, d) = (−,−)

〈
ψ+,w1Sw2

++−+−Sw3
−−−−+

〉
= 1

2∂
2
y1∂y2(X12X13)|yi=0 = Pw1−1,w2−1,w3Pw1−1,w2,w3+1 .

(3.47)

• e = +, (a, b) = (+,−), (c, d) = (+,+)

〈
ψ+,w1Sw2

++−+−Sw3
−−−−+

〉
= 1

2∂
2
y1∂y2∂y3(X12X13)|yi=0 = Pw1−1,w2−1,w3Pw1−1,w2,w3−1 .

(3.48)

Now we can straightforwardly write MEEE , similar as the other 3 cases discussed above.
Since the expression is lengthy and not instructive, we omit it here.
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3.3 Picture choices and recursion relations

In this section, we discuss the equivalence of different choices of pictures in supersymmetric
correlators. In fact, these equivalences can be verified by the recursion relations of the
bosonic SL(2, R) WZW model found in [13], which relates three point functions with different
hi(i = 1, 2, 3) (we will review their detailed form soon). Conversely, one may understand the
recursion relations in [13] from the equivalence of the different picture choices. In the following,
we will first review and complete the recursion relations in [13, 55, 57] by introducing several
new ones in the “edge” cases (see (3.50) for details). As we will see later, in the special case
when wi are all odd and satisfy wi + wj = wk − 1 for one (i, j, k) (see case II below), the
recursion relations are the same as the equivalence of different choices of pictures (while
generally they are only related but not the same). We expect the equivalence of different
choices of pictures for arbitrary n-point correlators are also related to the recursion relations,15

although here we only focus on the case of 3-point correlators.
Firstly, let’s describe the recursion relations for all possible configurations of wi, i =

1, 2, 3. Recursion relations generally exist for (depending on the total parity of the spectral
parameter ∑iwi)

When
3∑
i=1

wi ∈ 2Z+ 1 :
∑
i ̸=j

wi ≥ wj − 1 (j = 1, 2, 3) ,

When
3∑
i=1

wi ∈ 2Z :
∑
i ̸=j

wi ≥ wj (j = 1, 2, 3)
(3.49)

since correlators that violate this condition simply vanish [6, 13]. For each case of the total
parity ∑iwi, we further break our discussion into 2 cases, depending on the saturation
of (3.49) [57]:

I :
3∑
i=1

wi ∈ 2Z+1, wi+wj ≥wk+1 for all triples (i, j, k), this is the general cases,

II :
3∑
i=1

wi ∈ 2Z+1, wi+wj =wk−1 for one triple (i, j, k), this is the edge cases,

III :
3∑
i=1

wi ∈ 2Z, wi+wj ≥wk+2 for all triples (i, j, k), this is the general cases,

IV :
3∑
i=1

wi ∈ 2Z, wi+wj =wk for one triple (i, j, k), this is the edge cases. (3.50)

For the general cases I and III, closed formulas of differential equations satisfied by correlators
in the y basis are obtained in [57] (eq. (3.14), (3.32), (3.33), (3.34) there). One can easily

15Notice that while it is known that recursion relations also exist for n ≥ 4-point correlators, analytic closed
forms for them are not known.
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transform them into recursion relations using the following rules [13]16

(
hi −

k + 2
2 wi + ji − 1

)
⟨hi − 1⟩ ←→ yi(yi∂yi + 2ji)⟨. . .⟩y

hi⟨. . .⟩ ←→
(
yi∂yi + ji +

k + 2
2 wi

)
⟨. . .⟩y(

hi −
k + 2
2 wi − ji + 1

)
⟨hi + 1⟩ ←→ ∂yi⟨. . .⟩y ,

(3.51)

where the level of the model is k + 2 and we use a subscript “y” to denote the corresponding
correlator in the y basis. Thus, the recursion relations for the case I are17

a−1
i

(
hi−

(k+2)wi
2 +ji−1

)
⟨hi−1⟩=

(
wi
N
−1
)
ai

(
hi−

(k+2)wi
2 −ji+1

)
⟨hi+1⟩

+
∑
l=1,2

wi
N
ai+l

(
hi+l−

(k+2)wi+l
2 −ji+l+1

)
⟨hi+l+1⟩+

(
−wi
N

3∑
l=1

hl+2hi
)
⟨. . .⟩ . (3.52)

where indices are understood to be mod 3, N = 1
2
∑
i(wi − 1) + 1 and ai are related to the

functions P and can be written as:

ai = −
Pw+ei

Pw−ei

=


1
2(wi + wi+1 + wi+2 − 1)

1
2(−wi + wi+1 + wi+2 − 1)



1
2(−wi + wi+1 − wi+2 − 1)
1
2(wi + wi+1 − wi+2 − 1) .


(3.53)

In fact, ai are the Taylor coefficients (see (D.3)) of the unique covering map that appears in
the three-point function case [13, 55](see also [69] for the explicit construction of the covering
map with three ramified points). Similarly, the recursion relation for the case III is (for i = 1)

a1[Γ−
3 ]−1(h1−

(k+2)w1
2 +j1−1)⟨h1−1⟩=

(
w1
N ′ −1

)
a1[Γ−

3 ](h1−
(k+2)w1

2 −j1+1)⟨h1+1⟩

+w1
N ′a2[Γ

−
3 ](h2−

(k+2)w2
2 −j2+1)⟨h2+1⟩ (3.54)

−w1
N ′a3[Γ

−
2 ](h3−

(k+2)w3
2 −j3+1)⟨h3+1⟩+

[
−w1
N ′ (h1+h2−h3)+2h1

]
⟨. . .⟩ .

where N ′ = 1
2(w1 + w2 − w3) and ai[Γ−

j ] is the ai coefficients of the covering map Γ with
wj shifted to be wj − 1 [57]. Recursion relations for i = 2, 3 can be obtained by changing
all the subscripts as 1 ↔ 2 and 1 ↔ 3 respectively.

Now there remains two edge cases II and IV. In [57], differential equations are also
obtained for these cases. However, these equations are for the correlators with a different

16These rules can be read from the definition of the OPEs in y-basis, or by using integration by parts based
on the (inverse) y-transform [55].

17See eq. (3.15) in [55]. However there are typos in eq. (3.15) in [55], which is corrected in eq. (3.14) in [57]
(there is a typo even in this equation: − k

2 → + k
2 ). In the following equation, We have corrected the typos.
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configuration of xi: (x1, x2, x3) = (0, 0,∞). Here we will give differential equations or
recursion relations for the standard configuration (x1, x2, x3) = (0, 1,∞), just as in the cases
I and III. Firstly, notice that the reason why the edge cases are special is that the recursion
relations for the general cases are not well-defined for the edge cases. Let’s consider the case
II for an illustration. Without loss of generality, we assume w1 + w2 = w3 − 1, then we have:

Pw1−1,w2,w3 = Pw1,w2−1,w3 = Pw1,w2,w3+1 = 0 (3.55)

Since ai = −
Pw+ei
Pw−ei

, the denominators of ai or 1/ai will be zero, and both of them cause
ill-definedness.18 Nevertheless, we observe that the singular terms in each equation are at
the same order, which means we can multiply a denominator to make all the singular terms
finite. However, the vanishing denominators could be anyone of the 3 cases in (3.55). Thus
in practice, we can multiply all terms with a factor: w1Pw1−1,w2,w3Pw1+1,w2,w3 . This works
nicely because of the following observed identity (which can be easily proven by showing
the quotient of any two terms in the following is 1)

w1Pw1−1,w2,w3Pw1,w2+1,w3 = w2Pw1,w2−1,w3Pw1,w2+1,w3 = w3Pw1,w2,w3−3Pw1,w2,w3+1 (3.56)

which means the multiplied factor is symmetric in the three indices (this fact will also be
very useful in other places in this work). Then we can freely choose the form of this factor
to cancel any vanishing denominators. The resulting recursion relations are

For i = 1 :

0 = P 2
w1+1,w2,w3

(
h1 −

k + 2
2

w1 − j1 + 1
)
⟨h1 + 1⟩ − P 2

w1,w2+1,w3

(
h2 −

k + 2
2

w2 − j2 + 1
)
⟨h2 + 1⟩ ,

For i = 2 :

0 = P 2
w1,w2+1,w3

(
h2 −

k + 2
2

w2 − j2 + 1
)
⟨h2 + 1⟩ − P 2

w1+1,w2,w3

(
h1 −

k + 2
2

w1 − j1 + 1
)
⟨h1 + 1⟩ ,

For i = 3 :

P 2
w1,w2,w3−1

(
h3 −

k + 2
2

w3 + j3 − 1
)
⟨h3 − 1⟩ =

w1

w1 + w2
P 2
w1+1,w2,w3

(
h1 −

k + 2
2

w1 − j1 + 1
)
⟨h1 + 1⟩

+
w2

w1 + w2
P 2
w1,w2+1,w3

(
h2 −

k + 2
2

w2 − j2 + 1
)
⟨h2 + 1⟩ . (3.57)

It is obvious that i = 1 and i = 2 give the same equation. So there are 2 independent
equations. One can also do the same calculation for the case IV. Again without loss of
generality, we assume w1 +w2 = w3. There is a difference in this case: from (3.54) (for i = 1)
one can see that the divergence on the right hand side comes form the factor N ′, rather
than a1[Γ−

3 ], a2[Γ−
3 ] or a3[Γ−

2 ] (they are finite, in particular, a3[Γ−
2 ] = 0). The same type of

divergence happens for i = 2, while for i = 3, the divergences come from a3[Γ−
1 ]−1, a2[Γ−

3 ] and
a3[Γ−

2 ] (similar with the one in the edge case II). Again with the help of the identity (3.56),

18This means the corresponding covering map does not exist. Thus, the method making use of the
covering map in [57] does not work and the author of [57] choose to consider a different configuration
(x1, x2, x3) = (0, 0,∞).
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we can multiply a factor to cancel all the divergences in the recursion relations. The result are

For i = 1 :

0 = w1a1[Γ−
3 ]
(
h1 −

k + 2
2

w1 − j1 + 1
)
⟨h1 + 1⟩ − w1a2[Γ−

3 ]
(
h2 −

k + 2
2

w2 − j2 + 1
)
⟨h2 + 1⟩

+ w1(h1 + h2 − h3)⟨. . .⟩ ,

For i = 2 :

0 = w2a2[Γ−
3 ]
(
h2 −

k + 2
2

w2 − j2 + 1
)
⟨h2 + 1⟩ − w2a1[Γ−

3 ]
(
h1 −

k + 2
2

w1 − j1 + 1
)
⟨h1 + 1⟩

+ w2(h1 + h2 − h3)⟨. . .⟩ ,

For i = 3 :

w3P
2
w1−1,w2,w3−1

(
h3 −

k + 2
2

w3 + j3 − 1
)
⟨h3 − 1⟩ = w3P

2
w1−1,w2+1,w3

(
h2 −

k + 2
2

w2 − j2 + 1
)
⟨h2 + 1⟩

− w3Pw1+1,w2−1,w3Pw1−1,w2+1,w3

(
h1 −

k + 2
2

w1 − j1 + 1
)
⟨h1 + 1⟩ . (3.58)

Similar with the edge case II, the first two equations are equivalent and we only obtain two
independent recursion relations for the edge case IV. For both the two edge cases II and
IV, we have checked that the above recursion relations or their corresponding differential
equations are indeed satisfied by the 3-point function (A.1). Our analysis here shows that
the edge cases can be seen as the limiting cases of the general cases.19

Now we discuss the relation between the choices of pictures in the superstring correlators
and the recursion relations of correlators in the bosonic SL(2, R) WZW model. Firstly,
consider the case of O-O-O. Substitute (3.52) into (3.11) (with i = 3), we can write the
three point correlator O-O-O as

MOOO =
CS2

k

{
P 2
w1,w2,w3−1a3

[(
w3

N
− 1
)
a3(h3 −

(k + 2)w3

2
− j3 + 1)⟨h3 + 1⟩3

+
w3

N
a1(h1 −

(k + 2)w1

2
− j1 + 1)⟨h1 + 1⟩3 +

w3

N
a2(h2 −

(k + 2)w2

2
− j2 + 1)⟨h2 + 1⟩3

+

(
−
w3

N

3∑
l=1

hl + 2h3

)
⟨. . .⟩3

]
+ (h3 −

(k + 2)w3

2
− j3 + 1)P 2

w1,w2,w3+1⟨h3 + 1⟩3 + 2(h3 − w3)Pw1,w2,w3−1Pw1,w2,w3+1.⟨. . .⟩3

}
× (anti-homomorphic part). (3.59)

Using the relation (3.53), one finds

MOOO = CS2

k

{
w3
N
Pw1,w2,w3−1Pw1,w2,w3+1

[
−

3∑
i=1

ai

(
hi −

kwi
2 − ji + 1

)
⟨hi + 1⟩3

+ (h1 + h2 + h3 − 2N)⟨. . .⟩3
]}
× (anti-homomorphic part).

(3.60)

The above expression is clearly symmetric in the 3 subscripts 1, 2, 3 (recall the identities (3.56)).
So no matter which of the first, second or third operator to be in its picture 0 version, we
will get the same result for the correlator.

19This should be expected because the 3-point functions in the edge cases, being solutions of the recursion
relations, have the same form as the one in the general cases.
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One can try to reverse the above discussion. In the following, we will keep the right-moving
dependence to be arbitrary (as long as satisfying the level-matching), so that we can obtain
equations that only depend on the left-moving part. In fact, for the general case I, equivalence
of different picture choices is simply the difference of two recursion relations. Explicitly, by
this we mean that the equality of the correlator MOOO (3.11) (where the third operator is in
the picture 0) and the one that with the second operator in the picture 0 can be written as:(
h2−

(k+2)w2
2 +j2−1

)
P 2
w1,w2−1,w3⟨h2−1⟩−

(
h3−

(k+2)w3
2 +j3−1

)
P 2
w1,w2,w3−1⟨h3−1⟩

=
(
h3−

(k+2)w3
2 −j3+1

)
P 2
w1,w2,w3+1⟨h3+1⟩−

(
h2−

(k+2)w2
2 −j2+1

)
P 2
w1,w2+1,w3⟨h2+1⟩

+2(h3Pw1,w2,w3−1Pw1,w2,w3+1−h2Pw1,w2−1,w3Pw1,w2+1,w3)⟨. . .⟩ (3.61)

where we have used (3.56). Then after dividing the two sides by the factor (3.56) (notice
that it is symmetric in the 3 indices) and use the relation between ai and P (3.53), the
above equation just becomes

1
w3
× (3.52)(for i = 3)− 1

w2
× (3.52)(for i = 2) . (3.62)

A similar relation holds if we choose the first operator in picture 0. This is reasonable that
reversely one cannot obtain the recursion relations but only their difference: from equality
of different picture choices one get 2 independent equations, while there are 3 independent
recursion relations for the case I. Since we are considering the case of O-O-O, the edge case
III is also possible. Superstring correlators of this edge case is simpler: for each picture
choice, only one term in (3.11) does not vanish. Since there are only 2 independent recursion
relations in the case III, one can check that the equalities of different picture choices are
precisely the recursion relations (3.57) in the edge case III.

We expect that similar relations between recursion relations and equalities of different
picture choices hold for the cases E-E-O, E-O-O, E-E-E, and even for arbitrary n-point
functions as well. In these cases, however, their relation will not be as clear as in the case of
O-O-O. The reason is two-folded; on the one hand, correlators in these three cases include
more bosonic correlators (of the SL(2, R) WZW model) than in the case of O-O-O, which
indicates that more sophisticated use of recursion relations is required to get them straight.
As an illustration, we demonstrate this analysis with an example in appendix B; on the
other hand, picture changing sometimes leads to correlators of spectrally flowed operators (of
long strings) with descendant insertions. For example, the picture 0 version of the physical
operator (2.64) is (written in the m-basis and omitting the z coordinate)

O
w(0)
j,m (z) = 1

k

{
α−

[
(m+j)V w

j,mψ
+,wψ−,w+k(j−,wV w

j,m+1)−2
(
m+1+ wk

2

)
V w
m+1ψ

3,wψ−,w
]

+α3

[
(m−j+1)V w

j,m+1ψ
−,wψ3,w+(m+j−1)Vj,m−1ψ

−,wψ3,w+k(j3,wV w
j,m)+

k2w

2 V w
j,m

]

+α+

[
(m−j)V w

j,mψ
−,wψ+,w+k(j+,wV w

j,m−1)−2
(
m−1+ kw

2

)
V w
m−1ψ

3,wψ+,w
]}

, (3.63)
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where operators ja,wV w
j,m−a appear. Three point correlators involving such operators cannot

be read off directly from the closed formula in [55]. The computation for them is probably
not easy: for short strings, see [59, 63] for the calculation of such correlators using the series
identifications. In the case at hand for long strings, the equivalence conditions of different
picture choices give some relations or constraints among correlators of this type. For example,
other than (3.33) we can alternatively choose the first operator in picture 0 and the other two
in picture (−1). The fact that these two choices of picture numbers give identical correlators
indicates the existence of non-trivial relations among correlators in the SL(2, R) WZW model
that cannot be derived from the recursion relations in [13]. To summarize, equivalence of
supersymmetric correlators with different picture choices will give various linear relations
among correlators in the bosonic SL(2, R) WZW model. The explicit form of these linear
relations depends on the surperstring correlator that one consider. In particular, some of
these relations are closely related to the recursion relations found in [13].

3.4 In the y-basis

We have seen that a superstring correlator can be expressed in different but equivalent
forms, which can be related by the recursion relations (for example, (3.11) and (3.60) are
two equivalent forms for one correlator). Using (A.1), one can always write them as integrals
over yi (i = 1, 2, 3), with different integrands. Generally, this integrands depends on (one
or some of) hi (i = 1, 2, 3). Nevertheless, one can always act the y-transform [55] on the
correlator in the h-basis to obtain the corresponding one in the y-basis, which by definition
will not depend on any hi. Then one can write the correlator in the h-basis as integrals
over yi (that is, the inverse y-transform), where now the integrand become the correlator
in the y-basis and is unique.

Next we show that starting from any choice of pictures of the various operators, one
can obtain this unique integrand without really doing any integral transformations.20 Thus
this procedure gives an alternative (and perhaps simpler) way to show the equivalence of
different picture choices. However, we stress that the notion of “(super)string correlator in
the y-basis” is improper because physical operators in string theory should be on-shell (thus
h is fixed) while in the y-basis one needs to sum and/or integrate over all h. Nevertheless,
there is no problem to express a string correlator as yi integrals of the corresponding y-basis
correlator (in particular, hi are all fixed by the on-shell condition).

The idea to proceed is simply to use the rules (3.51). As an illustration, consider the
correlator (3.11) for the case of O-O-O. It can be written as

MOOO = CS2

k
N (j1)D

(
k + 2
2 − j1, j2, j3

)

×
∫ 3∏

i=1

d2yi
π

∣∣∣∣∣
3∏
i=1

y
(k+2)wi

2 +ji−hi−1
i F(y1, y2, y3)By(y1, y2, y3)

∣∣∣∣∣
2

,

(3.64)

where By(y1, y2, y3) is the bosonic correlator in the y-basis without any normalization factor

20Both the y-transform and inverse y-transform are hard to perform. For the inverse y-transform, see [55]
(appendix D) for some examples of the calculation. The final results are complicated.
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(see [55] or (A.1)),

By(y1, y2, y3) = X
k+2

2 −j1−j2−j3
123

3∏
i=1

X
− k+2

2 +j1+j2+j3−2ji
i , (3.65)

and F(y1, y2, y3) is

F(y1, y2, y3) = Pw1,w2,w3+1Pw1,w2,w3−1

[(
2− y3

a3
− a3
y3

)
h3 +

(
k + 2
2 w3 − j3 + 1

)
y3
a3

+
(
k + 2
2 w3 + j3 − 1

)
a3
y3
− 2w3

]
.

(3.66)

Thus, the integrand F(y1, y2, y3)By(y1, y2, y3) depends on h3 so it is not yet a correlator in
the y-basis. However, using (3.51) we can eliminate the h3 dependence and change F to

Fy(y1, y2, y3) = Pw1,w2,w3+1Pw1,w2,w3−1w3k +
(
j1 + j2 + j3 −

k + 2
2

)
X1X2X3
X123

. (3.67)

Then Fy(y1, y2, y3)By(y1, y2, y3) has no hi dependence so can be the correlator in the y-basis
up to normalization. Moreover, it is symmetric in the index 1, 2, 3 (again thanks to the
identities (3.56)). This makes it clear that different picture choices lead to the same correlator.
Finally, we stress that writing a correlator into this form depends on the normalization
(which could have h dependence) of the operators. Thus it is unique provided that the
normalization of every operators are fixed.

3.5 Two point correlators and the normalization

In this section, we calculate the string two point function, which will determine the normal-
ization of the vertex operators. Firstly, notice that to obtain the string two point function,
one should divide the worldsheet two point function by the volume of the subgroup of the
Möbius transformation that fixes two-points (similar to the flat space case [70]). While this
volume is infinite, the two point function of the worldsheet SL(2, R) WZW model is also
divergent under the mass-shell condition. These two divergent quantities cancel with each
other and leaves a finite result, denoted as MB

MB ≡ CS2 ×
Two point functions in the bosonic SL(2, R) WZW model

Volume of the Möbius (sub)group

= CS2 ×
NB(w, j)NB(w, 1− j)

CS2,B
δw1,w2

(
R(j1, h1, h̄1)δ(j1 − j2) + δ(j1 + j2 − 1)

)
= wCS2

8π δw1,w2

(
R(j1, h1, h̄1)δ(j1 − j2) + δ(j1 + j2 − 1)

)
,

(3.68)

where R(j1, h1, h̄1) is the reflection coefficient (A.9) and NB(w, j) and CS2,B are the nor-
malizations of the vertex operators and the string path integral constant in the case of
bosonic string respectively. They are determined in eq. (5.18) in [30], using the matching
of the 3 and 4 point correlators.

Notice that in (3.68), there are two terms, including δ(j1+j2−1) and δ(j1−j2) respectively
with relative normalization denoted by the reflection coefficient R(j1, h1, h̄1). When discussing
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the superstring two point functions in the following, we normalize the term proportional to
δ(j1+ j2−1). This is not only because (3.68) canonically normalizes this term (the coefficient
is a constant) but also the fact that on the dual CFT side, only this term is unchanged in
the conformal perturbation theory. This means

bδ(α1 + α2 −Q) = δ(j1 + j2 − 1) , (3.69)

where the left-hand-side (l.h.s.) is the charge conservation of the two point function in the
linear dilaton theory (see appendix C for more details) and we have used the map (C.12)
here. In fact, the matching of the term proportional to δ(j1 − j2) with the CFT side is a
non-trivial test of the proposed CFT dual of the bosonic string theory on AdS3 ×X [29].

For the full string two point function, we should additionally calculate the fermionic
contribution and count the effect of picture changing (the ghost part is always canonically
normalized). We now calculate the two point functions of the physical vertex operators
one by one.

• w odd, NS sector: the physical operator (with picture number −1) is (2.29). The
fermionic two point function is ⟨1w1

ψ (x1; z1)1w2
ψ (x2; z2)⟩, which is unit normalized. Thus,

omit the coordinate dependence the string two point function is simply ⟨Ow1
j1,h1

Ow2
j2,h2
⟩ =

MB. Assume the normalization to be N(w, j), then we have

N(w, j)N(w, 1− j) = wCS2

8π . (3.70)

Notice that this condition cannot uniquely determine N(w, j),21 one can always multiply
it by an extra factor fj satisfying fjf1−j = 1 to get another solution. Just as in
the bosonic case [29], the normalization N(w, j) can be fixed only after we identify
the operator (2.29) with the canonically normalized operator in the CFT side (see
section 4.3).

• w odd, R sector: the physical operators (with picture number −1
2) are (2.51)

and (2.52). To have the total picture number −2, we need one operator in picture (−1
2)

and the other in picture (−3
2). As an illustration, we choose the first operator Ow1

j1,h1
,

in picture (−3
2), to be a specific one in (2.50)

Õw1
j1,h1

(x; z) = e−
3ϕ(z)

2 V w1
j1,h1

(x; z)Sw1
+++++(x; z) . (3.71)

Accordingly, we choose the second operator to be the conjugate of the first one, in the
m-basis, it is (we use −w2 instead of w2 to label it and keep j2,m2 not specified)

Õw2=−w1
j2,−m2

(z) = e−
3ϕ(z)

2 V −w1
j2,−m2

(z)S−w1
−−+−−(z) . (3.72)

Notice that ϵ3 is not changed since H†
i = Hi for i = 1, 2, 4, 5 but H†

3 = −H3 [1]. Recall
that we always label x-basis operators with positive w (so w1 > 0), thus the above

21This is not strange. Notice that the reflection coefficient R(j1, h1, h̄1) itself is not fixed uniquely but with
a free parameter ν, which can be viewed as the worldsheet cosmological constant. See e.g. [55].
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m-basis operator is in fact collected into the following x-basis operators with positive
w2 = w1

Õw2=w1
j2,m2

(x; z) = e−
3ϕ(z)

2 V w1
j2,m2

(x; z)Sw1
+−−−−(x; z) . (3.73)

Then we let the first operator lie in the picture (−1
2), that is, it becomes the one

in (2.51) with ϵ2 = ϵ4 = ϵ5 = 1. Then the worldsheet two point function is

⟨Ow1
j1,h1

(x1; z1)Ow2
j2,h2

(x2; z2)⟩

= h1 − w1√
k
⟨Sw1

++−++(x1; z1)Sw1
+−−−−(x2; z2)⟩⟨V w1

j1,h1
(x1; z1)V w2

j2,h2
(x2; z2)⟩ .

(3.74)

Notice that only one term in (2.51) contribute to the two point function. Thus, the
string two point function contains an additional factor h1−w1√

k
(and the corresponding

one h̄1−w1√
k

in the right moving part)

⟨Ow1
j1,h1

Ow2
j2,h2
⟩ = (h1 − w1)(h̄1 − w1)

k
MB . (3.75)

Notice that the mass-shell condition (2.49) implies

h− w = 1
kw

(
j + kw

2 − 1
)(

1− j + kw

2 − 1
)
. (3.76)

Then again normalizing the term proportional to δ(j1 + j2 − 1), one finds that the
normalization factor, denoted by N ′(w, j), of (2.51) is N ′(w, j) = wk

√
k

(j+ kw
2 −1)2N(w, j).

Notice that this solution is not uniquely determined, similar to the situation of (3.70).
Nevertheless, we will show in section 4.3 that it is indeed the correct normalization by
comparing with the CFT side.

• w even, NS sector: the physical operator (with picture number −1) are (2.57)
or (2.64). For the case (2.57), the calculation of the two point function is almost the
same as the operator (2.29), except for an additional fermionic contraction coming from
the fermion F(z). For the case (2.64), the two point function is

(j1 −m1)(j2 −m2)⟨ψ−,ω1ψ−,ω2⟩M(m1+1)
B + (j1 +m1)(j2 +m2)⟨ψ+,ω1ψ+,ω2⟩M(m1−1)

B ,

(3.77)
where we add a superscript to MB indicating the m1 dependence of the reflection
coefficient R(j1, h1, h̄1) in (3.68). The fermionic two point function are

⟨ψ−,ω1ψ−,ω2⟩ = ⟨ψ+,ω1ψ+,ω2⟩ = k . (3.78)

Again normalizing the term proportional to δ(j1 + j2 − 1), the two point coefficient is

k(j1−m1)(1− j1−m1)+k(j1+m1)(1− j1+m1) = 2k
(
m1 +

kw1
2

)2
= 2kH2

1 , (3.79)

where we have used the mass shell condition (2.55) to simplify the answer. Then
the normalization of (2.64), denoted as N ′′(w, j), could be N ′′(w, j) = 1√

2kHN(w, j).
Notice that this normalization is also not uniquely determined, which can also be fixed
when specifying the corresponding operator in the CFT side (though we will not do
such a computation in this work).
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• w even, R sector: the physical operators (with picture number −1
2) are (2.67)

and (2.68). The calculation in this case is completely analogous with the case above
when w is odd and in the R sector. Thus the normalization is also

N ′(w, j) = wk
√
k

(j + kw
2 − 1)2

N(w, j) . (3.80)

To complete the discussion, and also give a cross check, let us calculate the two point functions
involving BRST-exact operators. They are expected to vanish and we will show this explicitly
in the following. Consider the spurious operator (2.63). The two point function of (2.63)
and a physical operator (2.64) is (all other physical operators are clearly orthogonal with
the spurious operator)

−2
(
m1 +

w1k

2

)
α
(2)
3 ⟨ψ

3,ω1ψ3,ω2⟩M(m1)
B +(m1 − j1 + 1)α(2)

− ⟨ψ−,ω1ψ−,ω2⟩M(m1+1)
B

+(m1 + j1 − 1)α(2)
+ ⟨ψ+,ω1ψ+,ω2⟩M(m1−1)

B ,

(3.81)

where α(2)
3 , α

(2)
− , α

(2)
+ is the physical polarization for the second operator (so with a superscript

“(2)”). Since

⟨ψ3,ω1ψ3,ω2⟩ = −1
2⟨ψ

−,ω1ψ−,ω2⟩ = −1
2⟨ψ

+,ω1ψ+,ω2⟩ = −k2 . (3.82)

Then two point coefficient of the terms including δ(j1 + j2 − 1) is proportional to(
m2 +

w2k

2

)
α
(2)
3 + (m2 + j2)α(2)

− + (m2 − j2)α(2)
+ , (3.83)

which is zero because of the physical states condition (2.62). One can also show that again
due to the physical states condition, the terms proportional to δ(j1 − j2) vanish as well. This
result also imply that the spurious operator has a zero two point function with itself, since
spurious operator is a solution of the condition (2.62) as well.

4 Match with the CFT side

In this section, we discuss the matching of the physical operators and their correlators
calculated in the previous sections with the dual CFT side. The dual CFT was proposed to
be a deformed symmetric orbifold CFT [29, 60]. We review this proposal in the appendix C.
A crucial point is that for long strings, the spectrum will not be affected by the marginal
deformation [29, 31]. Thus the main aim here is to find operators in the symmetric orbifold
CFT that (after the marginal deformation) correspond to the physical vertex operators we
found in section 2,22 and then compare the three point correlators of the two sides at the
leading order of the conformal perturbation theory. We find the matching at this order
is already non-trivial: it predicts an interesting mathematical identity for covering maps,
which can be checked (or proved) to be correct. More physically, this means that at the
level of correlators, the picture changing effect is essential to reproduce the correct central
charge of the boundary CFT.

22The matching of the spectrum of long strings were discussed in [60], by finding all the DDF operators (see
also [71]). However, there the discussion of matching the ground states (see section (6.3) in [60]) seems not
complete. Our discussion here (matching the operators with the lowest space-time weights of the two sides)
can be viewed as a complement of [60].
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4.1 The seed theory

Since the undeformed theory is a symmetric orbifold CFT, we firstly describe the seed
theory, that is, RQ × su(2)k−2 × four free fermions×

(
U(1)(1)

)4
[29, 60] (see appendix E for

our conventions for the seed theory). As in the string side, here we mainly focus on the
holomorphic part. Denote the generating fields of this seed theory as:

∂ϕ, Ja, ψαβ , X i, X i†, λj , λj†. (4.1)

where the first three kinds of fields generate the N = 4 linear dilaton theory; ∂ϕ is the
linear dilaton with background charge Q = k−1√

k
; Ja(a = ±, 3) generate the affine algebra

su(2)k−2 and ψαβ are the 4 free fermions, with α, β = ±. These indices are in fact spinor
indices of the SU(2) R-symmetry and the SU(2) automorphism (see the next paragraph for
more explanation on SU(2)R ⊕ SU(2)outer). The remaining fields generate the torus theory;
Xi, X i†(i = 1, 2) are two complex bosons and their conjugates, λj , λj†(j = 1, 2) are two
complex fermions and their conjugates. For convenience, we can also relabel the fermions
λαβ by spinor indices α, β of SU(2)R ⊕ SU(2)outer

λ++ ≡ λ1, λ−− ≡ λ1†, λ+− ≡ iλ2, λ−+ ≡ iλ2† . (4.2)

Both the N = 4 linear dilaton and torus theory have (small) N = 4 superconformal
symmetries, see appendix E for constructions of the N = 4 superconformal generators of
the two theories.

Before proceeding, let us comment on the SU(2)outer. Generally, as an outer automorphism
of the small N = 4 superconformal algebra, SU(2)outer is not a symmetry of the theory. That
means there is no corresponding conserved currents. Nevertheless, in ether case of the N = 4
linear dilaton or the N = 4 torus theory, one can construct SU(2)outer from bilinears of the
four fermions (being the algebra of zero modes). Since bilinears of 4 fermions generate the
current algebra so(4)1 ∼= su(2)1 ⊕ su(2)1, one can choose any of the two currents su(2)1 for
the definition of SU(2)outer, and (the zero modes of) the other su(2)1 will then be the one
generate the SU(2)R (in the case of the N = 4 linear dilaton, one further needs to add the
bosonic su(2) currents to generate SU(2)R, see appendix E), then the two indices of the
fermions ψαβ, λαβ are just the spinor indices of SU(2)R ⊕ SU(2)outer. In the following, we
will organize states according to this SU(2)R ⊕ SU(2)outer.

Now we describe primary operators that have the lowest conformal weights. In the NS
sector, it is unique and is constructed in [60] (rf e.g. eq. (6.7) there),23

Vα ≡ e
√
2αϕ = e

i√
2k

(2p−ik+i)ϕ
, (4.3)

where p ∈ R and the momenta α is

α =
ip+ k−1

2√
k

=
1
2 + ip+ k

2 − 1√
k

. (4.4)

23Since we focus on the operator with lowest weight, we set l = 0 in eq. (6.7) in [60]. Besides, (4.3) including
an extra factor i in the exponent because we use a different convention of the free boson ϕ.
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Notice that we are considering the whole seed theory of the symmetric orbifold theory (not
only the N = 4 linear dilaton), so when writing (4.3), we have set the operator in the
torus theory to be the identity. This operator is a singlet (1,1) of SU(2)R ⊕ SU(2)outer
and has conformal weight

h =
1
4 + p2

k
+ k − 2

4 . (4.5)

For our purpose to find the corresponding operators of the ones in the string side, we also
needs the lowest excited states in the NS sector. They are:

Vα,F ≡ e
i√
2k

(2p−ik+i)ϕF , (4.6)

where F represents an excited fermion and we have 8 different choices for it: ψαβ , λαβ . These
8 excited states has conformal weight

h =
1
4 + p2

k
+ k − 2

4 + 1
2 , (4.7)

and they form 2 (2,2) representations of SU(2)R ⊕ SU(2)outer.
Now we turn to the Ramond sector.24 There will be an additional contribution from the

Ramond ground states of the 8 fermions. Zero modes of the 4 fermions ψαβ0 in the N = 4
linear dilaton theory result in ground states which form a (2,1)⊕ (1,2) representation of
SU(2)R ⊕ SU(2)outer. Similarly, zero modes of the 4 fermions λαβ0 in the torus theory result
in ground states which form a (2,1)⊕ (1,2) representation of SU(2)R ⊕ SU(2)outer as well.
Then we have in total 4 × 4 = 16 ground states, in the representation

[(2,1)⊕ (1,2)]ψ ⊗ [(2,1)⊕ (1,2)]λ = (3,1)⊕ (1,3)⊕ 2(1,1)⊕ 2(2,2) . (4.8)

In the above, the subscripts ψ, λ denote the fermions that produce these ground states. Notice
that there are two (1,1) and two (2,2), to distinguish them, we use the following notation:

(2,1)ψ ⊗ (1,2)λ = (2,2)ψλ, (1,2)ψ ⊗ (2,1)λ = (2,2)λψ
(2,1)ψ ⊕ (2,1)λ = (3,1)⊕ (1,1)1, (1,2)ψ ⊕ (1,2)λ = (1,3)⊕ (1,1)2 .

(4.9)

All these 16 states have conformal weight h = 1
4 × 2 = 1

2 . To write down the spin fields which
generate the above 16 Ramond ground states, we firstly bosonize the 8 fermions25

i∂B̂1 = ψ++ψ−−, i∂B̂2 = −ψ+−ψ−+, i∂B̂3 = λ++λ−−, i∂B̂4 = −λ+−λ−+ . (4.10)

Accordingly, the fermions can be written as

ψ++ = eiB̂1 , ψ−− = e−iB̂1 , ψ+− = ieiB̂2 , ψ−+ = ie−iB̂2

λ++ = eiB̂3 , λ−− = e−iB̂3 , λ+− = ieiB̂4 , λ−+ = ie−iB̂4 .
(4.11)

24Notice that we will always concern the NS sector of the symmetric orbifold theory, since states in the
Ramond sector cannot be treat perturbatively on the string side [72]. Here we need the Ramond sector because
when the cycle length (of a single cycle-twisted sector) is even, states (in the NS sector) will effectively lie in
the Ramond sector when lift up to the covering surface [65].

25As usual, we use a hat to denote the bosons with cocycles: B̂i = Bi+π
∑

j<i
Nj , Bi(z)Bj(w) ∼ −δij log(z−

w), Ni = i
∮
∂Hi.
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(3,1) (1,1)1 (1,3) (1,1)2 (2,2)ψλ (2,2)λψ

S++++

S++−− + S−−++

S−−−−
S++−− − S−−++

S+−+−

S+−−+ + S−++−

S−+−+
S+−−+ − S−++−

S+++−

S++−+

S−−+−

S−−−+

S+−++

S+−−−

S−+++

S−+−−

Table 3. The spin fields.

Then one can easily write down the 16 spin fields as in table 3 where the spin field Sϵ1ϵ2ϵ3ϵ4

are defined as

Sϵ1ϵ2ϵ3ϵ4 = e
i
2
∑4

i=1 ϵiB̂i . (4.12)

Then the U(1)R and U(1)outer charges of a spin field Sϵ1ϵ2ϵ3ϵ4 are 1
4
∑
i ϵi and 1

4
∑
i(−1)i+1ϵi

respectively. One can easily check that fields in table 3 have the correct charges, and to
verify the full representations in table 3, the cocycles should be counted carefully. The vertex
operators that have the lowest conformal weight in the Ramond sector are:

Vα,S ≡ e
i

2k (2p−ik+i)ϕS , (4.13)

where S can be any of the 16 spin fields in table 3. Then the conformal weight of these
operators are:

h =
1
4 + p2

k
+ k − 2

4 + 1
2 . (4.14)

Notice that it coincides with (4.7) of excited states in the NS sector.

Summary. The operators constructed in the seed theory are summarized in the following
table 4. The numbers and representation contents of operators in this table are the same
as the ones in the table 1 and table 2. In the symmetric orbifold theory discussed in the
following section, we will make this agreements more precise. In particular, the “NS sector”
and “R sector” of the seed theory in the table 4 are related to the “odd” and “even” parities
of w in the table 1 (and the table 2) respectively.

Finally, we comment on the identification of the SU(2)outer here and the one on the string
side. On the string side, we have mentioned that one has alternative choices for the definition
of SU(2)outer, where one can choose any operators in (2.57) with F = ηi(i = 1, 2, 3, 4) to be a
singlet (1,1). Correspondingly, on the CFT side one also has alternative definitions of the
SU(2)outer; when combining the SU(2)ψouter and SU(2)λouter constructed from the fermions ψαβ
and λαβ respectively to generate the full SU(2)outer, one can modify the way combining them
by applying the following relative automorphisms ρi between SU(2)ψouter and SU(2)λouter

ρ1(J3) = J3, ρ1(J+) = J+, ρ1(J−) = J−

ρ2(J3) = J3, ρ2(J+) = −J+, ρ2(J−) = −J−

ρ3(J3) = −J3, ρ3(J+) = J−, ρ3(J−) = J+

ρ4(J3) = −J3, ρ4(J+) = −J−, ρ4(J−) = −J+ ,

(4.15)

which is the counterpart of the degrees of freedom of defining the SU(2)outer. Note that then the
meaning of the spinor indices of the fermions changes accordingly. Thus different definitions
of SU(2)outer are just conventions and will never change the total representation contents.
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Sectors Ground Excited

NS sector (1,1) (in (4.3)) 2(2,2) (in (4.6))
R sector 16 in total (in (4.13)) · · ·

Table 4. The operators constructed in the seed theory.

4.2 The symmetric orbifold

Now we describe the symmetric orbifold theory

SymN (Seed CFT) (4.16)

where “seed CFT” is the one described in the precious section. In general, the Hilbert space
of a symmetric orbifold CFT is a direct sum of twisted sectors, with each sector labeled by a
conjugacy class of SN . We will be interested in the large N limit of the symmetric orbifold
CFT, since they describes perturbative string theory on AdS3 backgrounds. Furthermore,
we will restrict to twisted sectors described by conjugacy classes of single cycles (which are
interpreted as single string states on the string side), labeled by the cycle lengths w.

In the following, we describe operators in twisted sectors as in the bosonic case [29]. For
every vertex operator Vh,h̄ with weights (h, h̄) satisfying h− h̄ ∈ wZ (which is the physical
condition comes from the orbifold invariance) in the seed theory, there is a corresponding
vertex operator Vhw,h̄w in the w-twisted sector with weight

hw = c(w2 − 1)
24w + h

w
, h̄w = c(n2 − 1)

24w + h̄

w
, (4.17)

where c is the central charge of the seed theory. In fact, lift Vhw,h̄w up to a covering surface
(which is locally a w-folded cover at the insertion point) we will get Vh,h̄. For a supersymmetric
symmetric orbifold CFT, there is a difference between the two parities of w [65] (due to the
fermions in the seed theory); Vh,h̄ should be in the NS sector when w is odd and in the R
sector when w is even. In the present case, we consider Vh,h̄ to be the ones in the table 4,
that is, operators (4.3), (4.6) in the NS sector for w odd and operators (4.13) in the R sector
for w even. Then we denote the corresponding vertex operators in the w-twisted sector as

w odd : V(w)p ≡ e
i

2k (2p−ik+i)ϕΣw, V(w)p,F ≡ e
i

2k (2p−ik+i)ϕFΣw
w even : V(w)p,S ≡ e

i
2k (2p−ik+i)ϕSΣw,

(4.18)

where Σn is the twist fields of the w-twisted sector. Now using (4.17), (4.5), (4.7), (4.14)
and c = 6k, one can check that their conformal weights agree with the corresponding ones
in the string side (anti-holomorphic part is similar):

h(V(w)p ) = HNS,odd, h(V(w)p,F ) = HR,odd

h(V(w)p ) = HNS,even = HR,even
(4.19)

Notice that this matching of weights was found in [60] for some operators in (4.19). The
matching of weights (4.19), combined with the agreement between the representation contents
of operators in the table 2 and 4, show the matching of the operators on the two sides.
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4.3 Matching the correlators at the leading order

It was shown in [29] that in the bosonic case, the three point function in the string side has
the same poles as one in the CFT side.26 Besides, the corresponding residues of the two sides
are also remarkably matched (up to the forth order). This matching of poles also extend to
the superstring case (just shift the level of the bosonic model as k → k + 2). Therefore to
further match the correlators, we need to compare the corresponding residues of the poles,
that is, verify the following equation (eq. (3.1) in [29]):

Res∑
i
ji=2− k

2+
mk

2

M3
?= Res

2b(
∑

i
αi−Q)=m

M3 , (4.20)

where M3 on the left hand side is a string correlator and M3 on the right hand side is the
corresponding correlator on the CFT side. The residues for the r.h.s. can be calculated
using the conformal perturbation theory [29] and m ∈ N is the perturbation order. The
positions of the poles are the same as in the bosonic case [29] (with the shift k → k + 2,
also see the appendix C).

In this section, we will match the two sides of (4.20) at the leading order i.e. m = 0.
Before that, we should mention that for correlators in the symmetric orbifold (we review
the covering map method in the appendix D), there is a qualitative difference depending
on the parity of ∑i(wi − 1). The Riemann-Hurwitz formula (D.6) implies that a covering
map only exists when ∑i(wi − 1) is even. Since the marginal operator lies in the 2-twisted
sector, every insertion of it change the parity of ∑i(wi − 1). Therefore, we refer to the three
operators as X-Y-Z according to the parity of their twists, where X ,Y , Z can be E(even)
or O(odd). There are then the following cases

• For ∑3
i=1(wi − 1) even, only even orders in conformal perturbation theory can be

non-zero. There are two cases: O-O-O and O-E-E.

• For ∑3
i=1(wi−1) odd, only odd orders in conformal perturbation theory can be non-zero.

There are two cases: E-O-O and E-E-E.

These different cases are just the counterparts of the string correlators we have discussed in
the previous sections. Since we focus on the order m = 0, there are thus two possibilities:
O-O-O or O-E-E.

Firstly, we consider the case of O-O-O, where the left hand side of (4.20) being the string
correlator MOOO in (3.11). For the residue of the l.h.s. (string side), using the result for
m = 0 in the bosonic case [29] (eq. (3.20)), we have:

Res∑
i
ji=2− k

2

⟨V w1
j1,h1,h̄1

(0; 0)V w2
j2,h2,h̄2

(1; 1)V w3
j3,h3,h̄3

(∞;∞)⟩

= ν
k
2−1

2π2k2γ(k+1
k )

∣∣∣∣∣
3∏
i=1

a
k+2

4 (wi−1)−hi
i w

− k+2
4 (wi+1)+1−ji

i Π− k+2
2

∣∣∣∣∣
2

.

(4.21)

26These includs the “bulk” poles and the “LSZ” poles. For our propose, we focus on the (residue of) bulk
poles.
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where γ(x) = Γ(x)/Γ(1− x) and Π is the product of residues of the relevant covering map
(see (D.5)) and its explicit form is complicated (see (4.25)). Notice that in the above the
level is shifted to be k + 2. Using this result and (3.11), we obtain

l.h.s.= ν
k
2 −1CS2

2π2k3γ(k+1
k )

∣∣∣∣∣[(h3−
(k+2)w3

2 +j3−1)P 2
w1,w2,w3−1a3+(h3−

(k+2)w3

2 −j3+1)P 2
w1,w2,w3+1a

−1
3

+2(h3−w3)Pw1,w2,w3−1Pw1,w2,w3+1

] 3∏
i=1

a
k+2

4 (wi−1)−hi

i w
− k+2

4 (wi+1)+1−ji

i Π− k+2
2

∣∣∣∣∣
2

(4.22)

= ν
k
2 −1CS2

2π2kγ(k+1
k )

∣∣∣∣∣w3Pw1,w2,w3−1Pw1,w2,w3+1

3∏
i=1

a
k+2

4 (wi−1)−hi

i w
− k+2

4 (wi+1)+1−ji

i Π− k+2
2

∣∣∣∣∣
2

.

As a cross check, one can check that this result is symmetric in the three index 1, 2, 3. Besides,
if one were starting with the form (3.60) for MOOO, one will find the same result.

As for the CFT side, since the deformation is turned off for m = 0, the result can be
easily written down as in the bosonic case [29]:

r.h.s. = 1
π
√
N

3∏
i=1

N(wi, ji)w
1
2
i

∣∣∣∣∣
3∏
i=1

a
k
4 (wi−1)−Hi
i w

− k
4 (wi+1)

i Π− k
2

∣∣∣∣∣
2

, (4.23)

where N(wi, ji) are the normalization factors of the vertex operators on the string side
(see (3.70)), since in the CFT side, vertex operators are already canonically normalized.
Notice that the above equation is not obtained by replacing k by k + 2 in equation (3.21)
in [29], because the central charge of the seed theory is 6k instead of 6(k + 2) [60, 73]
(see (C.11)). However, the corresponding formula on the l.h.s. in (4.22) is based on the
decoupled bosonic WZW level k + 2. This causes a disagreement in the power of ai, wi and
Π between the l.h.s. and r.h.s., with the difference being:27

Π2
3∏
i=1

(wiai)wi+1 (4.24)

where we have used Hi = hi−wi. Crucially, (4.24) cannot be compensated by just modifying
the normalization N(wi, ji) of each vertex operators because Π(w1, w2, w3) and ai(w1, w2, w3)
cannot be factorized into products of factors that only depends on one of wi. Thus, to
make the two sides match, additional factors |w3Pw1,w2,w3−1Pw1,w2,w3+1|2 in (4.22), coming
from the fermionic parts and picture changing, should be taken into account and cure the
non-factorizing behaviour in (4.24). This is indeed the case, as we show below.

Recall that covering maps for 3 ramified points can be explicitly constructed by Jacobi
polynomials [69]. Accordingly, the associated quantity Π can also be explicitly written

27In the following, we do not include the term w1−ji
i in (4.22) since this term is not caused by the difference

of levels, and can be compensated by modifying the normalization N(wi, ji) as in the bosonic case [29].
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down.28 The formula is (see eq. (5.30) in [69]):29

Π = 2−2d2(d2−1)wd2
1 D

2(d2!)−3d2+4
(

d1!
w1!(d1 − w1)!

)d2 ( (w1 − 1)!
(w1 − d2 − 1)!

)w1+d2−1

×
((d1 − d2)!

d1!

)d1−d2+3 ((d! + d2 − w1)!
(d1 − w1)!

)d1+d2−w1

w−w3−1
3 ,

(4.25)

where d1 = 1
2(w1 + w2 + w3 − 1), d2 = 1

2(w1 + w2 − w3 − 1) and D is the discriminant of
Jacobi polynomials

D = 2−d2(d2−1)
d2∏
j=1

jj+2−2d2(j − w1)j−1(j − d1 − d2 + w1 − 1)j−1(j − d1 − 1)d2−j . (4.26)

With this expression for Π, one can find the following somewhat surprising mathematical
identities for covering maps

(w3Pw1,w2,w3−1Pw1,w2,w3+1)2 = Π2
3∏
i=1

(wiai)wi+1 . (4.27)

The above identities can be verified by comparing the total power of every integers on the
two sides. Eq. (4.27) gives a concise way to express the covering map data Π. One can also
rewrite (4.27) in terms of Xi (recall the identities (3.56)):

(wj∂yj (X2
j ))2 = Π2

3∏
i=1

(wiai)wi+1, j = 1, 2, 3 . (4.28)

Then these identities are analogous to various identities found in matching the bosonic
correlators in [29], that is, eq. (3.26a), (3.29a), (3.31a) and (3.34b) in [29]. In [29], there
is another identity (3.19b) that plays a role in the matching of the bosonic correlators at
the leading order. The identity (4.27) is in fact a refined version of the identity (3.19b).
While in [29] these identities are only verified numerically since the relevant covering map
has more than 3 ramified points. Here we can directly prove the identity (4.27) using the
explicit expression for Π.

Because of (4.27), the r.h.s. agrees with the l.h.s. provided that

N(wi, ji) = N0w
3
2−2ji
i , (4.29)

and
CS2 = 2πkν1−

k
2 γ

(
k + 1
k

)
N3

0N
− 1

2 , (4.30)

28It is very hard to give closed formulas for general n(n > 3) points ramified covering maps. Subsequently,
the associated Π is not known.

29Notice that comparing with eq. (5.30) in [69], we have included an additional factor w−w3−1
3 in the

following equation. This factor comes from the difference between treating the point at infinity symmetrically
or not (see footnote 6 in [29]).
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where N0 is an undetermined k-dependent function. The above relations, together with (3.70),
determine N0, which leads to

N(w, j) = 4
√
Nν

k
2−1w

3
2−2j

kγ
(
k+1
k

)
CS2 = 128πNνk−2

k2γ
(
k+1
k

)2 .
(4.31)

Notice that the above N(w, j) and CS2 are not the same as the corresponding constants in
the bosonic string case (eq. (5.18) in [30]) with a simple shifted level k → k + 2.

Next we discuss the case O-E-E, where the correlator on the l.h.s. is the MOEE in (3.21).
As shown below, the matching in this case is guaranteed by the same covering map identities,
which also gives us a cross-check for the normalization factors. With the help of (4.21)
and (3.53), the l.h.s. becomes

l.h.s. = ν
k
2−1CS2

2π2k2γ(k+1
k )

∣∣∣∣∣
(
kw2
2 + j2 − 1

)(
kw3
2 + j3 − 1

)
Pw1,w2−1,w3Pw1,w2,w3−1

×
3∏
i=1

a
k+2

4 (wi−1)−hi
i w

− k+2
4 (wi+1)+1−ji

i Π− k+2
2

∣∣∣∣∣
2

.

(4.32)

The r.h.s. is almost the same as (4.23), except the full space-time weight becomes Hi = hi −
w1 + 1

2 and the normalization (denoted as N ′(wi, ji) in (3.80))

r.h.s. = 1
π
√
N

3∏
i=1

N ′(wi, ji)w
1
2
i

∣∣∣∣∣
3∏
i=1

a
k
4 (wi−1)−Hi
i w

− k
4 (wi+1)

i Π− k
2

∣∣∣∣∣
2

. (4.33)

Since the constant CS2 is already determined in (4.31), then the two sides match provided that

N ′(wi, ji) =
k
√
kwi

(ji + kwi
2 − 1)2

N(wi, ji) , (4.34)

and

(Pw1,w2−1,w3Pw1,w2,w3−1)2 = Π2
3∏
i=1

(wiai)wi+δ1,i . (4.35)

The normalization (4.34) is just the one that we have already announced in (3.80), and it
uniquely determines the normalization that satisfies the string two point function (3.75).
The equation (4.35) is also an identity for covering maps. In fact, with the help of (3.56)
and (3.53), it is easy to see that it coincides with the identities (4.27).

In conclusion, the lessons one learns from matching the leading ordering correlators is
that the fermionic part and picture changing are essential for the dual CFT to be a (deformed)
symmetric orbifold CFT with the correct central charge 6k.30 Besides, comparing the

30The issue of how the central charge of the dual CFT should be the correct one 6k instead of 6(k + 2) was
also recently studied in [40] using the near-boundary approximation (and for some simple cases of wi). Here
we directly calculate the three point superstring correlator with general wi to fix this issue.
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matching in the case O-O-O and O-E-E also gives a cross-check of the difference between the
2 normalization factors N(w, j) and N ′(w, j). Notice that this cross-check crucially depends
on the mass-shell condition (2.48). This means, even though we only consider the 3-point
correlators (where no moduli integral is needed to do), the matching of the two sides makes
it clear that the bulk side is a bona fide string theory (instead of being simply the worldsheet
CFT), since we really need to count the picture changing and use the mass-shell condition.31

We believe they will also be important for the matching of the two sides at higher orders [74].

5 Discussion

In this work, we calculate the superstring correlators of long strings on AdS3×S3×T4. Firstly,
we construct the relevant physical vertex operators. To avoid complexity from extra worldsheet
excitations, we choose the physical operators to be the ones that represent (a continuum of)
long strings with the lowest space-time weights for a given w, in both the NS and R sectors.
Because of the GSO projection, the construction depends on the parity of w so we discuss
the cases with parity even and odd separately. The final result for the space-time theory
is: for w odd, there is a unique ground state comes from the NS sector and 8 excited states
come from the R sector; for w odd, there are in total 16 ground states, with 8 come from
the NS sector and the other 8 come from the R sector.

Then, we calculate correlators of these physical operators. Since a closed formula for the
three point functions in the bosonic SL(2, R) WZW model is derived in [55, 57], we only need
to calculate the fermionic correlators (together with the picture changing effects). Though
they are simply correlators in the free fermion theory ψa(a = ±, 3), the calculation could
be very complicated if one use the free field technique, since the construction of spectrally
flowed operators is not simple [27]. A simpler and systemic method is to view the fermion
theroy ψa as a special SL(2, R) WZW model, then the fermionic correlator can be obtained
by the closed formula in [55]. Since the formula depends on the total parity ∑

iwi, we
calculate 4 representatives of correlators with different parities wi. As a byproduct, we find
the equivalence of different picture choices gives relations among correlators in the bosonic
SL(2, R) WZW model, some of which are related to the recursion relations found in [55].

In the discussion of the dual CFT, which is a deformed symmetric orbifold CFT, we
found the ground states of the w-twisted sector (and the lowest excited states when w is
odd) match precisely with the results obtained from the string side. For the correlators, we
show that at the leading order in the conformal perturbation, the fermionic contributions,
together with the picture changing effects, modify the central charge on the boundary side
to be the correct one, i.e. c = 6k. This matching is guaranteed by interesting identities of
covering maps with three ramified points. As a cross-check, we also find the normalizations
of 2 string vertex operators determined holographically from the CFT side agree with the
results from the two point string correlators.

There are several interesting questions and open problems for future studies. Firstly,
since our leading order matching of the correlators does not involve the marginal deformation

31Note that the mass-shell condition seems not crucial in the matching of correlators in the bosonic case [29].
However, we believe it could be crucial when considering correlators of more general operators, e.g. some
descendants.
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operator, it is rewarding to test the proposed deformation in [29] by matching the correlators
at higher orders. One can do this either using the exact 3 or 4 point functions of the bosonic
SL(2, R) WZW model as in [29, 30], or using the near-boundary approximation as in [37, 39]
(see also [38]), where the residues can be obtained for general n-point functions (see [40] for
some related discussions). With the results of this work, there are various correlators one
can choose to compare with the CFT side at higher orders. A natural one is to choose (3.11)
for ∑iwi odd and (3.33) for ∑iwi even, both of which in fact only depend on the N = 1
supersymmetric AdS3 part. It is very likely that the matching at higher orders are also related
to some mathematical identities of covering maps. This is currently under investigation [74].

Another interesting but more difficult problem is to test this duality for higher genus
correlators. For this, one can try to firstly calculate the string correlators at higher genus.
However solving the higher genus correlators of the worldsheet bosonic SL(2, R) WZW model,
let alone doing the moduli space integral, is already a difficult task, which could be related
to covering maps from a higher genus surface to a sphere. Nevertheless, regardless of the
holographic matching, this calculation for string correlators itself is meaningful and worth
pursuing. Returning to the problem of matching the higher genus correlators of the two
sides, perhaps an easier way is to employ the near-boundary approximation, where one
bypasses both the problems of solving the worldsheet CFT as well as doing the moduli space
integral [37–39]. This is especially hopeful given the fact that in the tensionless limit the
localization of moduli space integral holds also for higher genus correlators [15, 16].

Besides, one can try to generalize the calculation here to the cases of other supersymmetric
AdS3 string background, such as AdS3×S3×K3 or AdS3×S3×S3×S1. Various properties of
the related CFT with the appropriate chiral algebra have been studied previously [75, 76]. It
will also be interesting to explore the full consequences of the equivalence of the superstring
correlators with different picture choices. A more ambitious goal is to find a non-perturbative
definition of the dual CFT, or test the proposed duality beyond the perturbative analysis.
Furthermore, it is argued in [29] that the dual theory could be a grand canonical ensemble of
CFTs (rather than a theory with fixed N), where N is no longer an independent parameter of
the theory. It will be very interesting to further explore in the supersymmetric setup whether
the dual theory is a CFT with fixed N or a grand canonical ensemble of CFTs. Finally, in a
wider context, an analogue of the tensionless limit is observed in high dimensional covariant
disordered models [77–79] where emergent higher spin symmetries are observed. It is thus
interesting to relate the long string correlators to correlators in those disordered models.
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A Three and two point functions in the SL(2, R) WZW model

In this section, we review the closed formula for the three point function of spectrally
flowed operators in the SL(2, R) WZW model in [55], as well as the form of the two point
function [6, 55]. Making use of the local Ward identities, the three point function can be
written as an integral of the correlators in the “y-basis”

⟨V w1
j1,h1,h̄1

(0; 0)V w2
j2,h2,h̄2

(1; 1)V w3
j3,h3,h̄3

(∞;∞)⟩ =
∫ 3∏

i=1

d2yi
π

3∏
i=1

∣∣∣∣y kwi2 +ji−hi−1
i

∣∣∣∣2

×


D(j1, j2, j3)

∣∣∣∣∣∣Xj1+j2+j3−k
∅

3∏
i<l

Xj1+j2+j3−2ji−2jl
il

∣∣∣∣∣∣
2

,
∑
i

wi ∈ 2Z

N (j1)D
(
k

2 − j1, j2, j3
) ∣∣∣∣∣X k

2−j1−j2−j3
123

3∏
i=1

X
− k

2+j1+j2+j3−2ji
i

∣∣∣∣∣
2

,
∑
i

wi ∈ 2Z + 1

(A.1)

where

• Both (z1, z2, z3) and (x1, x2, x3) are set to (0, 1,∞) and it is easy to get their expressions
at generic zi and xi.

• D(j1, j2, j3) is the three-point function of three unflowed vertex operators [80]

D(j1, j2, j3) = −
Gk(1− j1 − j2 − j3)

2π2νj1+j2+j3−1γ
(
k−1
k−2

) 3∏
i=1

Gk(2ji − j1 − j2 − j3)
Gk(1− 2ki)

, (A.2)

where Gk(x) is the Barnes double Gamma function. The normalization factor N (j) is
given by

N (j) = ν
k
2−2j

γ(2j−1
k−2 )

. (A.3)

where γ(x) = Γ(x)/Γ(1− x).

• For I ⊂ {1, 2, 3}, XI is defined as

XI(y1, y2, y3) =
∑

i∈I,ϵi=±1
Pw+

∑
i∈I ϵiei

∏
i∈I

y
1−ϵi

2
i , (A.4)

where P is defined by

Pw =


0, for

∑
j

wj < 2maxi=1,2,3wi or
∑
i

wi ∈ 2Z + 1

SwG(
w1 + w2 + w3

2 + 1)
3∏
i=1

G(w1+w2+w3
2 − wi + 1)
G(wi + 1) , otherwise .

(A.5)

In the above, G(n) is the Barnes G function

G(n) =
n−1∏
i=1

Γ(i) , (A.6)
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and the function Sw is a phase depending on w mod 2

Sw = (−1)
1
2x(x+1), x = 1

2

3∑
i=1

(−1)wiwi+1wi . (A.7)

We choose to normalize the vertex operators in the bosonic SL(2, R) WZW model as in [29],
thus the two point function is:

⟨V w1
j1,h1

(0; 0)V w2
j2,h2

(∞;∞)⟩ = 4iδ(2)(h1 − h2)δw1,w2

(
R(j1, h1, h̄1)δ(j1 − j2) + δ(j1 + j2 − 1)

)
(A.8)

where
R(j, h, h̄) =

(k − 2)ν1−2jγ(h− kw
2 + j)

γ(2j−1
k−2 )γ(h−

kw
2 + 1− j)γ(2j)

(A.9)

is the reflection coefficient and δ(2)(h) ≡ δ(h + h̄)δh,h̄.

B Another example of different picture choices

In this section, we give a further example to demonstrate the relation between the picture
choices and recursion relations in [13]. Since we have discussed the correlator MEOO in
section 3.3 (whose total parity ∑iwi is odd), here we discuss the correlator MEOO (whose
total parity ∑iwi is even). We will not do the calcualtion concretely but only show how to
relate the correlators with different picture choices by the recursion relations in [13]. In (3.33),
we choose the third operator in the picture 0. At the end of the section 3.3, we also comment
on the case where the first operator is in the picture 0, which turns out to be complicated.
Here, we show how to relate the two correlators with the second and third operators in the
picture 0 respectively by the recursion relations (3.54).

Since the second operator is the same as the third one, when it is in the picture 0, the
resulting correlator will be (3.33) with the exchange 2↔ 3. Since the form of (3.33) is clearly
not symmetric under this exchange, our strategy is to use the recursion relations (3.54) to
transform (3.33) into a form that is symmetric in the index 2 and 3. We transform all the
terms as follows.
For the terms proportional to α−:

⟨+0+⟩ → ⟨+0+⟩, ⟨+00⟩ → ⟨+00⟩, ⟨+0−⟩ i=3−−→ ⟨+00⟩+ ⟨200⟩+ ⟨++ 0⟩+ ⟨+0+⟩ (B.1)

For the terms proportional to α3:

⟨00+⟩ → ⟨00+⟩, ⟨000⟩ → ⟨000⟩, ⟨00−⟩ i=3−−→ ⟨000⟩+ ⟨+00⟩+ ⟨0 + 0⟩+ ⟨00+⟩ (B.2)

For the terms proportional to α+:

⟨−0+⟩ i=1−−→⟨00+⟩+ ⟨+0+⟩+ ⟨0 + +⟩+ ⟨002⟩, ⟨−00⟩ i=1−−→ ⟨000⟩+ ⟨+00⟩+ ⟨0 + 0⟩+ ⟨00+⟩

⟨−0−⟩ i=3−−→⟨−00⟩+ ⟨000⟩+ ⟨−+ 0⟩+ ⟨−0+⟩ i=1−−→ [⟨000⟩+ ⟨+00⟩+ ⟨0 + 0⟩+ ⟨00+⟩] + [⟨000⟩]

+ [⟨0 + 0⟩+ ⟨++ 0⟩+ ⟨020⟩+ ⟨00+⟩] + [⟨00+⟩+ ⟨+0+⟩+ ⟨0 + +⟩+ ⟨002⟩] (B.3)
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In the above, “A i=a−−→ B + C + . . .” means using the recursion relation (3.54) for i = a, A
can be represented by a sum of B,C, . . . without specifying the coefficients. ⟨200⟩ means
⟨V w1
j1,h1+2V

w2
j2,h2

V w3
j3,h3
⟩, and ⟨020⟩, ⟨002⟩ are similarly defined. After these transformations,

there are 4 terms containing a “2”, thus should be replaced once more as:

⟨200⟩ i=1−−→ ⟨000⟩+ ⟨+00⟩+ ⟨++ 0⟩+ ⟨+0+⟩

⟨020⟩ i=2−−→ ⟨000⟩+ ⟨0 + 0⟩+ ⟨++ 0⟩+ ⟨0 + +⟩

⟨002⟩ i=3−−→ ⟨000⟩+ ⟨00+⟩+ ⟨+0+⟩+ ⟨0 + +⟩

(B.4)

With all these replacements, one can write (3.33) as a linear combination of:

⟨000⟩, ⟨+00⟩, ⟨0 + 0⟩, ⟨00+⟩, ⟨++ 0⟩, ⟨+0+⟩, ⟨0 + +⟩ (B.5)

These 7 terms are linear independent with respect to the recursion relation (3.54) and they
transform into each other (or invariant) under the exchange 2↔ 3. Thus, transforming (3.33)
into a linear combination of these 7 terms is similar to transforming (3.11) into (3.60) in
the case of O-O-O. We have checked the coefficients of the 7 terms in (B.5) and find that
the transformed correlator is indeed invariant under the exchange 2↔ 3. While in case of
O-O-O we only need one recursion relation to make the transformation, here we need many
recursion relations. So the equivalence of the two picture choices will give an equation which
is a linear combination of more than two recursion relations.

C The proposed CFT dual

In this section, we review the dualities proposed in [29]. We describe both the perturbative
CFT dual of the bosonic string theory on AdS3×X and a similar proposal for the superstring
on AdS3×S3×T4.

The bosonic proposal. Firstly, we briefly review the bosonic duality. The perturbative
CFT dual of the bosonic string theory on AdS3 ×X is proposed to be:

SymN (RQ ×X) (C.1)

deformed by a non-normalizable marginal operator

Φ(x) ≡ σ2,α=− 1
2b
(x) (C.2)

Let’s explain the two sides more concretely. On the string side, AdS3 is described by a
SL(2, R) WZW model at level k. X is an arbitrary internal CFT of the compactification,
with central charge

cX = 26− 3k
k − 2 (C.3)

On the CFT side, RQ is a linear dilaton theory with background charge Q,32 defined by

Q ≡ b−1 − b = k − 3√
k − 2

, b ≡ 1√
k − 2

(C.4)

32See appendix E for our conventions for the linear dilaton theroy with background charge Q.
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X is the same CFT as in the string side. Then the central charge of the seed theory is:

c = 1 + 6Q2 + cX = 6k, (C.5)

as expected. The marginal operator is in the twist-2 sector and has the following dressing

σ2,α=− 1
2b
(x) = e

√
2αϕσ2 = e−

√
k−2

2 ϕσ2 (C.6)

where σ2 is the spin field generating the ground state of the twist-2 sector. One can easily
check that this operator is of dimension one so is indeed marginal. To match the spectrum of
long strings with vertex operators in the symmetric orbifold, there is also a map between
the sl(2, R) spin j on the string side and the linear dilaton momenta α:

α =
j + k

2 − 2√
k − 2

(C.7)

Notice that the marginal deformation does not affect the spectrum of long strings, thus this
matching of spectrum holds no matter whether one deforms the theory or not [29, 31].

This proposal is confirmed by matching the three-point functions of the two sides (up
to 4th order) in [29]. This matching is remarkable since the calculation of the two sides
are quite different and both are complicated.

The supersymmetric proposal. Now we move to the supersymmetric setting. The CFT
dual of the superstring was also proposed in [29].

On the string side, we have the superstring theory on AdS3×S3×T4. In the RNS
formalism, the worldsheet CFT is described by

sl(2, R)(1)k ⊕ su(2)
(1)
k ⊕

(
U(1)(1)

)4
(C.8)

where sl(2, R)(1)k and su(2)(1)k represent N = 1 supersymmetric WZW model with affine
symmetry sl(2, R)(1)k and su(2)(1)k respectively. They describe the AdS3 and S3 factors.(
U(1)(1)

)4
represents the N = 1 supersymmetric version of T4, describing the flat torus

directions.
The candidate CFT dual is again a deformed symmetric orbifold theory, similar to the

bosonic case. The theory before deformation is the following symmetric orbifold theory:

SymN
(
RQ × su(2)k−2 × four free fermions×

(
U(1)(1)

)4)
(C.9)

where RQ is the linear dilaton direction with background charge Q:

Q = b− b−1 = k − 1√
k
, b = 1√

k
(C.10)

Then the central charge of the seed theory is:

c = 1 + 6Q2 + 3(k − 2)
k − 2 + 2 + 4× 1

2 + 6 = 6k, (C.11)
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as expected. The map from the sl(2, R) spin j on the worldsheet to the momenta α in
the linear dilaton factor is

α =
j + k

2 − 1√
k

(C.12)

Notice that (C.10) and (C.12) are simply the corresponding ones in the bosonic proposal
with the replacement k → k + 2. The first three factors in the seed theory of the symmetric
orbifold (C.9) should be thought of as an N = 4 linear dilaton theory. The spectrum of
this undeformed theory was matched with the spectrum of long strings in the superstring
theory on AdS3×S3×T4 [60].

As in the bosonic case, one needs to deform this symmetric orbifold theory by a (non-
normalizable) marginal operator. In any N = 4 theory, marginal operators are obtained
as descendants of BPS operators with h = h̄ = 1

2 . These BPS operators can be obtained
by dressing some ground states of the twist-2 sector with vertex operators in the linear
dialton theory. It was proposed in [29] that the marginal operator should lie in a singlet
(1,1) of SU(2)R ⊕ SU(2)outer. Notice that this should hold for two SU(2)outers in the left
and right moving parts respectively.

Thus, one can write the deformation as:

Φ(x, x̄) ≡ GαA− 1
2
ḠβB− 1

2
ΨαβAB(x, x̄) = ϵαγϵβδϵACϵBDG

αA
− 1

2
ḠβB− 1

2
ΨγδCD(x, x̄) (C.13)

where GαA and ḠβB are holomorphic and anti-holomorphic supercurrents respectively.
α, β, γ, δ = ± are the spinor indices of the R-symmetry SU(2)R, while A,B,C,D = ± are
the spinor indices of the outer automorphism group SU(2)outer. Ψαβ,AB are non-normalizable
BPS operators in the twist-2 sector, obtained by dressing the ground states as (we only write
the left moving part, thus only the indices α and A remain):

ΨαA = e
√
2αϕSϵ1ϵ2ϵ3ϵ4Σ2 = e−

√
k
2ϕSϵ1ϵ2ϵ3ϵ4Σ2 (C.14)

where Sϵ1ϵ2ϵ3ϵ4 are the spin fields lie in (2,2)λψ (the 4 fields in the last column of the table 3).
The superscripts of the two sides are related as: α = 1

2(ϵ1+ϵ2+ϵ3+ϵ4), A = 1
2(ϵ1−ϵ2+ϵ3−ϵ4).

Notice that the dressing in the linear dialton direction (the momenta α in (C.14)) is the
same as in the bosonic case (C.6) (again with the shift k → k + 2):

α = − 1
2b = −

√
k

2 (C.15)

Thus, this deformation is also non-normalizable. This operator creates an exponential wall
and is hence similar to the exponential operator in Liouville theory. Thus it is very different
from the deformation corresponding to RR deformation on the string side, which is a singlet
with respect to the global so(4) = su(2)R ⊕ su(2)B symmetry (where su(2)B is the residual
torus symmetry that acts on the bosonic modes) [34, 35, 81]. One can check that Ψαβ,AB

are indeed BPS:

h = c

24

(
2− 1

2

)
+ 1

2 ×
1
2 + α(Q− α)

2 = 3k
8 + 1

4 −
√
k

4

(
k − 1√
k

+
√
k

2

)
= 1

2 = |q| (C.16)
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D Correlators of symmetric orbifold CFTs

For the correlators (in the large N limit), there is a algorithm that can reduce the calculation
to the one in the seed theory. This is a method making use of the covering map, developed
by Lunin and Mathur [65, 69]. Firstly, note that the operators in the twist-n sector discussed
above are not invariant under the action of Sn. The real gauge invariant operators in the
twist-n sector can be obtained by summing over elements in the conjugacy class of the
permutation (1, 2, . . . , n) as follows:

On(x) =
√
(N − n)!n√

N !
∑

τ∈[(1,2,...,n)]
Oτ (x) (D.1)

Notice that the prefactor comes form the standard normalization. So the correlator we
concerned are of these gauge invariant operators, which can be written as [65, 69, 82]:

〈
m∏
j=1
Onj (xj)

〉
=

N
d

 m∏
j=1

√
(N − nj)!nj
√
N !

 ∑
covering map Γ

f(Γ)
〈

m∏
j=1

Oτj (zj)
〉 ∣∣∣∣∣

Γ(zi)=xi

.

(D.2)
where

• d is the number of elements that (τ1, τ2, . . . , τm) truly act on.

• The summation is over all covering map Γ with ramification indices nj at the respective
insertion points xi, that is, around zi (z is the coordinate of the covering surface) we
have:

Γ(z) = xi + ai(z − zi)ni + . . . (D.3)

• f(Γ) is a factor determined by the covering map Γ. This is in fact a Weyl factor that
accounts for the non-trivial (induced) metric on the covering space. If the covering
surface has genus 0 (we will focus on this simplest case), it can explicitly be computed
as:

f(Γ) =
∣∣∣∣∣
m∏
i=1

w
− c(wi+1)

24
i a

c(wi−1)
24 −hi

i Π− c
12

∣∣∣∣∣
2

(D.4)

where ai is the coefficient determined in (D.3) and Π is the product of the residues of
the covering map:

Π =
∏
a

Πa, Γ(z) ∼ Πa
z − za

+O(1) (D.5)

•
〈∏m

j=1Oτj (zj)
〉

is the correlator of gauge dependent operators, lifted up to the covering
surface.

The covering surfaces in the summation can have higher genus (and even be disconnected)
and its genus g can be determined by the Riemann-Hurwitz formula:

g ≡ 1− n+ 1
2

m∑
j=1

(nj − 1) (D.6)
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Then in the large N limit, the power of N is determined as:N
d

 m∏
j=1

√
(N − nj)!nj
√
N !

 ∼ N1−g−m
2 (D.7)

Thus the normalization factor results in a large N expansion controlled by the genus of
the covering surface.

E Conventions for the seed theory

In this section, we set our conventions for the seed theory:

RQ × su(2)k−2 × four free fermions×
(
U(1)(1)

)4
(E.1)

which is a product of an N = 4 linear dilaton theory and an N = 1 T4.

Bosonic linear dilaton. For a bosonic linear dilaton ϕ with background charge Q, the
defining OPE of the U(1) current i∂ϕ is:

i∂ϕ(z)i∂ϕ(w) ∼ 1
(z − w)2 (E.2)

with background charge Q, the stress-energy tensor is modified to be:

T (z) = −1
2 : ∂ϕ∂ϕ : (z)− 1√

2
Q∂2ϕ(z) (E.3)

as a consequence, the central charge is also modified:

c = 1 + 6Q2 (E.4)

A vertex operator e
√
2αϕ has conformal weight:

h(e
√
2αϕ) = α(Q− α) (E.5)

N = 4 linear dilaton. The OPEs among the generating fields: ∂ϕ, Ja, ψαβ of a N = 4
linear dilaton theory is:

i∂ϕ(z)i∂ϕ(w) ∼ 1
(z − w)2 ,

ψαβ(z)ψγδ(w) ∼ ϵαγϵβδ

z − w
,

J3(z)J3(w) ∼ k − 2
2(z − w)2 ,

J3(z)J±(w) ∼ J±(w)
z − w

,

J+(z)J−(w) ∼ k − 2
(z − w)2 + 2J3(w)

z − w
.

(E.6)
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The generators of the small N = 4 superconformal algebra are:

T =−1
2∂ϕ∂ϕ−

k−1√
2k
∂2ϕ+ 1

k

(
J3J3+ 1

2(J
+J−+J−J+)

)
+ 1
2ϵαγϵβδ∂ψ

αβψγδ

Gαβ = i√
2
(∂ϕψαβ)+ i√

k

(
−(σa)αγ

(
Ja+ 1

3J
(f,+)a

)
ψγβ+ 1

3(σ)
β
γJ

(f,−)aψαγ+(k−1)∂ψαβ
)

Ka = Ja+J (f,+)a (E.7)

with the fermionic currents defined as:

J (f,+)a = 1
4(σ

a)αγϵβδ(ψαβψγδ), J (f,−)a = 1
4(σ

a)βδϵβδ(ψαβψγδ) (E.8)

The torus theory. For the torus theory, the OPEs among its generators are:

Xa(z)Xb†(w) ∼ −δablog(z − w),

λa(z)λb†(w) ∼ δab

z − w
, a, b = 1, 2.

(E.9)

This theory has a small N = 4 superconformal symmetry with c = 6, whose generators are:

T (z) = −
∑
i=1,2

∂X i†∂X i + 1
2
∑
a=1,2

(∂λa†λa − λa†∂λa)

Ga =
√
2
[

iλ1

−λ2†

]
∂X1† +

√
2
[
iλ2

λ1†

]
∂X2†

Gā =
√
2
[
iλ1†

λ2

]
∂X1† +

√
2
[
iλ2†

−λ1

]
∂X2†

J1 = − i2
(
λ1λ2 + λ1†λ2†

)
J2 = 1

2
(
λ1†λ2† − λ1λ2

)
J3 = 1

2
(
λ1λ1† + λ2λ2†

)
.

(E.10)

The small N = 4 generators of the full seed theory will be the sum of the corresponding ones
in (E.7) and (E.10) (an appropriate scaling is also needed to have a standard normalization
of the algebra.).
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