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1 Introduction

Two-dimensional conformal field theories (CFTs) are usually defined in terms of the data

of local “bulk” point-like operators, namely the spectrum of Virasoro primaries and their

structure constants, subject to the associativity of operator product expansion (OPE) and

modular invariance. It is well known that there are extended objects, or “defects”, such

as boundary conditions [1–4] and line defects/interfaces [5–27], in the CFT that can be

characterized in terms of the response of bulk local operators in the presence of the defect,
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but typically obey strong notions of locality that do not obviously follow from those of the

bulk local operators.1

A basic example is a global symmetry element g, which by definition is a linear trans-

formation on the bulk local operators that preserve their OPEs: the action of g on a bulk

local operator may be viewed as the contraction of a loop of a topological defect line (TDL)

on the bulk local operator [13, 32–34]. A TDL that corresponds to a global symmetry will

be referred to as an invertible line in this paper, for the reason that such a line is associ-

ated to a symmetry action and therefore its inverse must exist.2 In all known examples

of global symmetries in a CFT, the corresponding invertible lines are subject to a strong

locality property, namely, that it can end on defect operators, which obey an extended set

of OPEs.3 In the case of a continuous global symmetry such as U(1), Noether’s theorem

states that there must be an associated conserved spin-one current jµ. The contour inte-

gral of this conserved current eiθ
∫
dsµjµ then defines a family of invertible TDLs labeled by

θ ∈ S1, where the topological property follows from the conservation equation. In the case

of discrete global symmetry such as ZN , the existence of the associated invertible TDLs

with the above-mentioned properties can be thought of as a discrete version of Noether’s

theorem. It has nontrivial implications on the action of g on the bulk local operators that

do not obviously follow from the standard axioms on the bulk local operators.

Interestingly, there are TDLs that do not correspond to any global symmetries, and

they are ubiquitous in 2d CFTs [2, 7, 13, 19, 25]. This is possible because the general

TDLs need not obey group-like fusion relations, but instead form a (semi)ring (generally

non-commutative) under fusion. Though invariant under isotopy transformations (by def-

inition), a general TDL cannot simply be reconnected within the same homological class;

rather, it obeys nontrivial crossing relations under the splitting/joining operation, and

consequently, the action of a general TDL on bulk local operators by contraction need not

preserve the OPE as a global symmetry action would.

A special class of TDLs (not necessarily invertible) are known as Verlinde lines [2,

7, 35, 36]. They exist in rational CFTs defined by diagonal modular invariants. The

fusion ring generated by the Verlinde lines in an RCFT is formally identical to that of

the representations of the chiral vertex algebra (although the physical interpretation of the

fusion of Verlinde lines is entirely different from the OPEs). In particular, such a fusion ring

is commutative and admits braiding, which is not the case for the most general system of

TDLs. The fusion of general TDLs may not be commutative (as is the case for nonabelian

global symmetry), and even when they are commutative, they may not admit braiding.

The structure of fusion and crossing relations of the Verlinde lines is captured by what

is known as a modular tensor category [37–40], which requires the crossing relations to

1See [28–31] for the lattice realization of some topological line defects and their constraints on in-

frared phases.
2Here the inverse L−1 of a line L is defined such that their fusion relation is LL−1 = L−1L = 1. For a

more general TDL L (such as the N line in the critical Ising model), its inverse might not exist.
3In the absence of an ’t Hooft anomaly, such defect operators are related to orbifold twisted sector states

upon a symmetry-invariant projection, but the existence of the defect operator Hilbert space is more general

and applies to global symmetries with an ’t Hooft anomaly as well.
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obey the pentagon identity, and braiding relations to further obey the hexagon identity.

The general TDLs of interest in this paper are models of a more general mathematical

structure known as fusion category [41, 42] (at least when there are finitely many simple

lines), which still requires the crossing relations to obey the pentagon identity, but does

not require braiding. In a sense, fusion categories modeled by TDLs unify and generalize

the notions of both nonabelian symmetry groups and modular tensor category (modeled

by Verlinde lines). See [27, 43] for physicists’ expositions on this subject, and [27] in

particular for the relation to gauging and the ’t Hooft anomaly. The goal of this paper

is to explore the possible types of TDLs realized in unitarity, compact 2d CFTs, and

their implications on renormalization group (RG) flows by a generalization of the ’t Hooft

anomaly matching [44, 45].

We will begin by describing a set of physically motivated defining properties of TDLs

in section 2, and discuss their relations to the notion of fusion category in section 3. In the

context of global symmetry groups corresponding to group-like categories, we will discuss

’t Hooft anomalies, orbifolds, and discrete torsion [46, 47] in relation to invertible TDLs in

section 4.

In section 5, we discuss TDLs in rational CFTs that are generally not invertible.

In particular, we review Verlinde lines in section 5.1, and describe the explicit crossing

relations of Verlinde lines in diagonal Virasoro minimal models. Next, in section 5.2, we

will discuss examples of TDLs in rational CFTs that are neither Verlinde lines nor invertible

lines. The first example is a set of TDLs in the three-state Potts model that preserves the

Virasoro algebra but not the W3 algebra, found in [7]. The second example is given by the

topological Wilson lines in WZW and coset models, generalizing the construction of [48].

The third example is a set of TDLs in the non-diagonal SU(2)10 WZW model of E6 type (or

in the (A10, E6) minimal model), which realizes the so-called 1
2E6 fusion category [49, 50].

This fusion category consists of just three simple lines, has commutative fusion relation,

and yet does not admit braiding [49].

The primary interest of this paper is to explore the constraints of TDLs on the dynamics

of QFTs when the fusion and crossing relations of TDLs are known. A consequence of these

relations of TDLs is the restriction on the spin content of defect operators at the end of

the TDLs. Typically, only specific fractional spins are allowed for the defect operators at

the end of a given type of TDLs. This is the subject of section 6.

When certain TDLs are preserved along an RG flow, say the ones that commute with

the relevant deformation of the UV CFT, these TDLs will survive in the IR. The IR TDLs

obey the same fusion and crossing relations as in the UV. Physically, this follows from

the topological property of the TDL as there is no intrinsic scale associated to it. More

rigorously, the consistent solutions of the fusion and crossing relations are discrete and

therefore cannot be deformed continuously under RG flows. This is known as the Ocneanu

rigidity in category theory [42]. This basic observation has interesting implications on an

RG flow to a massive phase, where the IR dynamics is described by a topological quantum

field theory (TQFT) [51]. The TDLs of the TQFT inherited from the UV CFT will

constrain and often allow us to completely determine the fully extended TQFT [52–55],

i.e. with all lines and defect operators included. In particular, we show that if a TDL L with
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non-integral vacuum expectation value 〈L〉 (defined in section 2.2.4) is preserved along the

flow, then the vacuum cannot be a non-degenerate gapped state. We will analyze various

explicit RG flows in section 7, for the tricritical Ising model deformed by the second energy

operator ε′, the tricritical Ising model deformed by the second spin operator σ′, and the

(A10, E6) minimal model deformed by φ2,1. In addition, we consider UV CFTs realizing

twisted siblings of the Rep(S3) fusion category, and rule out the possibility of flowing to

IR TQFTs with unique vacuum.

More generally, it is a priori not obvious whether a fusion category of TDLs can always

be realized by some TQFT, as the latter requires the construction of defect operators

and is subject to modular invariance, neither of which is directly captured by the fusion

category structure. The analogous question for the ’t Hooft anomaly of a global symmetry

has recently been answered in [56–58]. There, it was shown that in general spacetime

dimensions, given an ’t Hooft anomaly of a finite group specified by the group cohomology,

there always exists a TQFT realizing this anomaly. It would be interesting to either prove

this statement or find a counter example for the more general fusion category beyond

invertible lines associated with global symmetries.

Finally, we will describe a class of TDLs in potentially irrational unitary compact

CFTs, as RG fixed points of coupled minimal models, in section 7.4. We conclude with

some future prospectives in section 8. Some further details of the H-junction crossing

kernels and explicit solutions to the pentagon identities are given in appendices A and C.

2 Definition and properties of topological defect lines

Topological defect lines (TDLs) comprise a special class of extended objects, that are

defined along an oriented path, in a two-dimensional quantum field theory. To motivate

the formal definitions, let us begin by considering topological defect loops on a cylinder,

extended along the compact direction. Such a TDL L can be regarded as a linear operator

L̂ acting on the Hilbert space on a circle, that commutes with the left and right Virasoro

algebras. This last property implies that the exact location and shape of L is irrelevant.

As depicted in figure 1, the composition of linear operators L̂ can be understood as the

fusion of TDLs, a notion we presently define. Primary of TDLs are those associated to

global symmetries [33, 34] — which we will call invertible defect lines (see section 4.1) —

acting by symmetry transformations, such that the set of L̂ form a representation of the

symmetry group.

The set of TDLs are equipped with an algebraic structure — the fusion ring — com-

prised of two operations: direct sum + and fusion ..4 Direct sum is associative and

commutative, and fusion is associative but not necessarily commutative. Moreover, fusion

is distributive with respect to direct sum, (L1+L2) . L3 = (L1 . L3)+(L2 . L3). For the

class of TDLs we will be investigating, every one of them has a unique decomposition into

a direct sum of simple objects (precise definition given later), which cannot be decomposed

further. There is an identity object I among the simple objects, such that L.I = I .L = L.

4More precisely, these binary operations define a semiring which can be canonically extended to a ring.
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L1

L2

= L1L2

Figure 1. Fusion of a pair of TDLs L1 and L2 wrapping the spatial loop on the cylinder.

Figure 2. An admissible configuration of TDLs with endpoints (purple dots), joined by T-junctions

(black dots).

For every TDL L, there exists an orientation reversed TDL L. Under direct sum and fu-

sion, L1+L2 = L1+L2, and L2 . L1 = L1 . L2. In the following, the fusion operator will

often be omitted, with the fused TDL L1 . L2 simply abbreviated as L1L2.

To construct more general correlation functions with TDL insertions, such as the one

involving the TDL configuration shown in figure 2, the fusion ring alone is insufficient.

More specifically, TDLs can end on points or join at junctions, and these points and

junctions must be equipped with additional structures. The topological nature of TDLs

means that observables only depend on the homotopy class of the TDL configuration,

and this property may be formulated more precisely in terms of isotopy invariance. We

now define these structures and properties, and discuss several corollaries. Many of these

structures have already been defined and explored in both the mathematics and physics

literature, such as in the context of modular tensor category [37–40], and in the works

of [21, 22, 26, 27, 41–43, 59]. We hope to first recast them in a language natural for

quantum field theory, and then derive various new consequences.

2.1 Defining properties

We formulate the defining properties of TDLs in CFTs, and comment on the generalization

to non-conformal theories in section 2.3.

1. Isotopy invariance. On a flat surface, all physical observables (including in par-

ticular the correlation functional defined in Property 4) are invariant under continuous

deformations of TDLs that are ambient isotopies of the graph embedding, and preserves

the positions of endpoints and junctions as well as the angles of the TDLs coming out of

endpoints and junctions. This is the key property that distinguishes TDLs from conformal
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or more general defect lines. It follows from isotopy invariance that TDLs commute with

the stress-energy tensor.

2. Defect operator. A TDL L comes with a space HL of possible point-like defect

operators at its end, from which the TDL is outgoing in our convention (ingoing is given

by the orientation reversal HL). By the state/operator mapping, HL is the Hilbert space

of theory on a circle with a single L-defect point (future-oriented). For the trivial TDL I,

HI is the same as the Hilbert space of bulk local operators in theory.

TDLs can join at point-like junctions, and we adopt the convention that every line

is outgoing. Each junction comes with an ordering (as opposed to cyclic ordering) of the

lines attached to the junction.5 A k-way junction is equipped with a junction Hilbert

space HL1,L2,··· ,Lk of possible defect operators at the junction. Under cyclic permutations

of L1,L2, · · · ,Lk, the junction Hilbert spaces are isomorphic under possibly nontrivial

cyclic permutation maps.

It also follows from isotopy invariance that (i) the Hilbert space HL1,L2,··· ,Lk of defect

operators at a k-way junction is a representation of the holomorphic and anti-holomorphic

Virasoro algebras, though the states generally have non-integer spins, and (ii) the con-

traction of a TDL loop encircling a local (bulk or defect) primary operator produces a

local primary of the same conformal weight. We will discuss this in more detail later in

this section.

3. Junction vector. In a CFT with a unique vacuum, the junction vector space

VL1,L2,··· ,Lk is the space of weight-(0, 0) states in HL1,L2,··· ,Lk , which may be zero, one, or

more than one-dimensional. Cyclically permuted junction vector spaces (such as VL1,L2,L3

and VL2,L3,L1) are isomorphic via a cyclic permutation map (that may act nontrivially even

when Li are of the same type).

A junction associated to a junction vector is call a topological junction. For TDL

configurations with topological junctions, the isotopy invariance is extended to ambient

isotopy that need not preserve the positions of topological junctions and the angles of the

TDLs coming out of topological junctions. We refer to a three-way topological junction as a

T-junction, and a four-way topological junction as an X-junction. In the rest of this paper,

we take all the k-way junctions for k > 1 to be topological. This restriction is without the

loss of generality, since by the locality property introduced in the later part of this section,

any TDL configuration can be written equivalently as a sum of TDL configurations with

only topological junctions.

In this paper, we will use TDLs and their junction vector spaces to constrain various

CFTs and TQFTs. We will restrict ourselves to TQFTs that arise at the end of massive RG

flows from CFTs. Typically, the space of topological defect operators at a junction in the

5Equivalently, we can simply mark the last line Lk entering a k-way junction to specify the ordering of

the lines L1, · · · ,Lk that meet at the vertex of an embedded graph. The physical motivation for such an

ordering prescription comes from the microscopic description of the junction (say in a lattice model), where

the lines entering the junction are a priori distinguished even if they are of the same type. We will see later

that this is essential for allowing for TDLs that correspond to global symmetries with ’t Hooft anomalies.
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L1

L3
L2

Figure 3. A correlation functional (on the plane), where the TDLs are joined by a T-junction

(black dot) with the order of lines specified (last leg marked by the “×”), and ending on defect

operators (purple dots). It is a linear function on the junction vector space VL1,L2,L3
.

IR TQFT becomes larger than in the UV CFT.6 For such a TQFT, we define the junction

vector space VL1,L2,··· ,Lk as the subspace of weight-(0, 0) topological defect operators that

are inherited from those in the UV CFT.7

4. Correlation functional. An admissible configuration of TDLs on an oriented surface

is an embedded oriented graph possibly with endpoints and junctions. We associate to each

endpoint a defect operator and each junction (with an ordering of lines) a junction vector.

The correlation functional of a TDL configuration, along with a given set of defect operators

and bulk local operators, is a multi-linear complex-valued function on the tensor product

of junction vector spaces. An example is depicted in figure 3.

The isotopy invariance of a correlation functional can be extended to curved surfaces,

but with an important subtlety — the isotopy anomaly: under deformation of a TDL,

the correlation functional may acquire a phase that is proportional to the integral of the

curvature over the region swept by the deformation. If the TDL L is of a different type

from its orientation reversal, L, then the isotopy anomaly can be absorbed by a finite

local counter term on the TDL that involves the extrinsic curvature. If L is a TDL of the

same type as L, consistency with unitarity and modular invariance sometimes requires a

non-vanishing isotopy anomaly on a curved surface, which also introduces an orientation-

reversal anomaly. These anomalies are explored and discussed in section 2.4.

5. Direct sum. Given two TDLs L1 and L2, there exists a direct sum TDL L1 + L2,

such that HL1+L2 = HL1 ⊕ HL2 . Furthermore, junction vector spaces and correlation

functionals are additive with respect to the direct sum of TDLs. A TDL L is called simple

if the junction vector space VL,L is one-dimensional. It follows that a simple TDL cannot be

further written as a positive sum of other simple TDLs, by additivity of the junction vector

space. A TDL is called semi-simple if it is a direct sum of finitely many simple TDLs.

We further introduce two notions for the set of TDLs in a theory. Semi-simiplicity :

every TDL in theory is semi-simple. Finiteness : the number of types of simple TDLs in

theory is finite. In this paper, we assume semi-simplicity, but not finiteness, even though

the latter is typically assumed in the literature on fusion category.8

6For instance, the bulk Hilbert space, regarded as the Hilbert space at a junction of trivial TDLs, often

develops degenerate vacua in the IR.
7The complete structure of defect operators in general TQFTs is rather rich and can be captured by a

pivotal 2-category [60, 61].
8The finiteness condition clearly fails for TDLs associated to continuous global symmetries.
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L2
L1

L3

O2(z2,z2)

O3(z3,z3)

O1(z1,z1)
v =


L3

L1

L2

O3(z3,z3)

O2(z2,z2)

O1(z1,z1)
v



∗

Figure 4. Conjugation map in a correlation function. Here, Oi with i = 1, 2, 3 denote defect

operators in HLi , and Oi ≡ ι(Oi) denote their conjugates, which are defect operators in HLi .
Similarly, v is a junction vector in VL1,L2,L3

, and v ≡ ι(v) ∈ VL3,L2,L1
.

6. Conjugation. The two-point function of a pair of defect operators in HL and HL
connected by a straight L gives a bilinear map h : HL ×HL → C. There is an antiunitary

conjugation map ι : HL → HL, such that h is related to the inner product 〈 , 〉 on HL by

h(v1, ι(v2)) = 〈v1, v2〉 for v1, v2 ∈ HL. We define the conjugation map from HL1,L2,··· ,Lk to

HLk,Lk−1,··· ,L1
in a similar fashion. Acting the conjugation map on all defect operators in

a correlation function, further combined with a parity action on their locations, zi 7→ z̄i, is

equivalent to complex conjugation.

7. Locality. A TDL configuration on a Riemann surface is equivalent to one obtained

by cutting the TDLs transversely along a circle and inserting a complete orthonormal basis

of operators in HL1L2···Lk , where L1, · · · ,Lk are the TDLs that are cut along the circle.

In particular, the locality property encompasses the notion of OPEs between operators in

HL1 and HL2 . See figure 5 for an illustration.

When only junction vectors are present inside the cut, the insertion of states in

HL1,L2,··· ,Lk reduces to the insertion of junction vectors in VL1,L2,··· ,Lk . In particular, in

this case, the TDL graph on a disc with L1, · · · ,Lk crossing the boundary of the disc gives

a multi-linear map from the tensor product of junction vector spaces associated with the

graph to VL1,L2,··· ,Lk . Such maps on junction vector spaces are represented by gray circles,

as illustrated on the right of figure 5.

8. Partial fusion. A pair of TDLs L1 and L2 wrapping the compact direction on a

cylinder fuses to a single (not necessarily simple) TDL L1L2 when there is no other TDL

or local operator inserted between them, as shown in figure 1. Fusion endows the set of

TDLs with a ring structure. The defect Hilbert space HL1,··· ,Li,Li+1,··· ,Lk of a k-way junction

is isomorphic to the defect Hilbert space HL1,··· ,(LiLi+1),··· ,Lk of a (k−1)-way junction under

the fusion between Li and Li+1.

On a local patch, a pair of TDLs L1 and L2 can be partially fused to a TDL L1L2, as

shown in figure 6, with a set of junction vectors vi ∈ VL1,L2,L1L2
and ṽi ∈ VL2,L1,(L1L2) in-

serted at the T-junctions. Moreover,
∑

i vi⊗ ṽi is uniquely determined in the partial fusion.

9. Modular covariance. The torus one-point functional of a primary defect operator

Ψ ∈ HL attached to a TDL graph Γ transforms covariantly under the modular group

– 8 –
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ψ2

ψ1

ψ3

L2

L1

L3

L1

L2 L3

L4

L5 ψ4ψ1

ψ3ψ2

Figure 5. Left: cutting a TDL graph along the gray circle and inserting a complete basis of states

in HL1,L2
is equivalent to replacing the defect operators Ψ1 and Ψ2 by their OPE, which is a defect

operator in HL1,L2
. Right: a similar cut-and-insert procedure, where the defect operators inside

the circle are all junction vectors. The graph inside the smaller gray circle implements the map

VL1,L2,L5
⊗ VL3,L4,L5

→ VL1,L2,L3,L4
.

L1

L2 L2

L1

L1

L2
=
∑
i

vi v˜i

L1

L2 L2

L1

L1L2

Figure 6. Partial fusion of a pair of TDLs L1 and L2.

PSL(2,Z). Namely, under the modular T transformation that sends the torus modulus

τ → τ + 1, Γ is mapped to a new graph ΓT (with the same set of junction vector spaces)

attached to the same defect operator Ψ, while preserving the torus correlation functional〈
Ψ(ΓT )

〉
τ+1,τ̄+1

= 〈Ψ(Γ)〉τ,τ̄ . (2.1)

Under the modular S transformation (as shown in figure 7), τ → −1/τ , Γ is mapped to

ΓS attached to the same Ψ, with〈
Ψ(ΓS)

〉
−1/τ,−1/τ̄

= e
πi
2

(h−h̃)(−iτ)h(iτ̄)h̃ 〈Ψ(Γ)〉τ,τ̄ , (2.2)

where (h, h̃) are the conformal weights of Ψ.

We will argue below that the modular covariance of a graph with TDLs on a gen-

eral punctured Riemann surface follows from the modular covariance of torus one-point

functions and the crossing invariance of sphere four-point functions of defect operators

(connected via H-junctions), generalizing the results of [37, 38, 62–64]. Here the punctures

include both local and defect operators. The notion of modular invariance in the pres-

ence of TDLs/defect operators is such that the partition function on a general punctured

Riemann surface can be unambiguously computed by any choice of pairs-of-pants decom-

position. The boundaries of the pairs-of-paints will generally intersect TDLs, and each

pair-of-pants corresponds to a state in the tensor product of three defect Hilbert spaces.

The partition function is then given by the contractions of these states in the defect Hilbert

spaces. Now to show that such a definition of the partition function with defect operators is
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−→S

Figure 7. The modular S transform of the torus one-point function of a defect operator (purple

dot) attached to a TDL graph (consisting of red, blue, and dotted lines, representing TDLs of

different types).

unambiguous, one simply needs to know that two different pairs-of-paints decompositions

give the same answer. Once we know that two different decompositions can be related by

a unique sequence of simple moves, i.e. the sphere four-point crossing and torus one-point

S-transform, it suffices to know that the state on the boundary of a four-punctured sphere

or a one-punctured torus in the presence of TDLs is invariant under the simple move.

These follow from two of our axioms, namely the H-junction crossing and torus one-point

modular covariance. We emphasize that in our argument, the simple moves do not depend

on the location of TDL junction operators. This is because we are free to slide a loop

joining two pair-of-pants along the surface past any topological junctions.

2.2 Corollaries

Let us now derive a number of important corollaries of the defining properties of TDLs.

Again, we restrict to CFTs and comment on the non-conformal case at the end.

2.2.1 H-junction crossing relation

By the locality property, an H-junction involving four external TDLs L1, · · · ,L4 and an

internal TDL L5 is a bilinear map

HL1,L4

L2,L3
(L5) ≡

L1

L2 L3

L4

L5
: VL1,L2,L5

⊗ VL3,L4,L5 → VL1,L2,L3,L4 . (2.3)

Given four simple TDLs L1, · · · ,L4, the direct sum of all possible H-junctions gives a map

HL1,L4

L2,L3
≡

⊕
simple L5

HL1,L4

L2,L3
(L5) :

⊕
simple L5

VL1,L2,L5
⊗ VL3,L4,L5 → VL1,L2,L3,L4 . (2.4)

An inverse map H
L1,L4

L2,L3
can be constructed by combining partial fusion and locality,

as illustrated in figure 8. By the assumption of semi-simplicity, L1L2 is a finite sum of

simple TDLs. Let L6 be a simple line in this sum, and define H
L1,L4

L2,L3
(L6) as the projection

of H
L1,L4

L2,L3
to the subspace VL1,L2,L6

⊗ VL3,L4,L6 .
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L1

L2 L3

L4

=
∑
i

L1

L2 L3

L4

L1L2 L1

L2
vi

v˜i
=

L1

L2 L3

L4

L1L2
◦HL1,L4

L2,L3

Figure 8. The inverse map H
L1,L4

L2,L3
. By the locality property, each graph inside each gray circle

represents a multilinear map from the unspecified junction vectors inside the graph to the junction

vector space of the lines intersecting the circle. In particular, the graph inside the smaller gray circle

in the second graph represents a function that we denote by fṽi : VL1,L2,L3,L4 → VL3,L4,(L1L2). Then

the inverse map is H
L1,L4

L2,L3
≡
∑
i vi ⊗ fṽi : VL1,L2,L3,L4

→ VL1,L2,L1L2
⊗ VL3,L4,(L1L2).

L1

L2 L3

L4

=

L1

L2 L3

L4

◦ CL1,L2,L3,L4

Figure 9. The cyclic permutation map on an X-junction.

L1

L2 L3

L4

L5
=

∑
simple L6

L1

L2 L3

L4

L6 ◦ KL1,L4

L2,L3
(L5,L6)

Figure 10. The H-junction crossing relation. Note that the crossing kernel KL1,L4

L2,L3
(L5,L6) is

defined such that the internal line is marked as the last leg on both T-junctions.

To formulate the crossing kernel, it is useful to define the cyclic permutation map9

CL1,L2,··· ,Lk : VL1,L2,··· ,Lk → VL2,L3,··· ,Lk,L1
(2.5)

on a k-way junction vector spaces, as in figure 9 for the case of k = 4.

The composition of the map H
L2,L1

L3,L4
(L6), the cyclic permutation map CL1,L2,L3,L4 , and

the map HL1,L4

L2,L3
(L5) leads to an overall map

KL1,L4

L2,L3
(L5,L6) ≡ HL2,L1

L3,L4
(L6) ◦ CL1,L2,L3,L4 ◦H

L1,L4

L2,L3
(L5)

: VL1,L2,L5
⊗ VL3,L4,L5 → VL2,L3,L6

⊗ VL4,L1,L6 ,
(2.6)

where L5 and L6 are any pair of simple TDLs. We refer to such a linear relation as an

H-junction crossing relation, depicted in figure 10, and KL1,L4

L2,L3
(L5,L6) as the H-junction

9This is not to be confused with a rotation. In particular, its action on the junction vectors is in general

nontrivial, whereas a rotation acts trivially since junction vectors are topological operators of weight (0,0).
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L1

L2

L4

L3

L6

L5

Figure 11. The H-junction crossing kernel KL1,L4

L2,L3
(L5,L6) represented as the correlation functional

of the Mercedes graph.

L1

L3
L2

=

L1

L3
L2

◦ CL1,L2,L3

Figure 12. The cyclic permutation map on a T-junction.

crossing kernels that relate H-junctions in the 12 → 34 channel to those in the 23 →
41 channel.

The map KL1,L4

L2,L3
(L5,L6) regarded as a multi-linear complex-valued function on

VL5,L1,L2
⊗ VL5,L3,L4 ⊗ VL3,L2,L6

⊗ VL1,L4,L6
, is the same as the correlation functional of

the Mercedes TDL graph in figure 11.

2.2.2 Pentagon identity

It follows from the locality property applied to a TDL graph on the disc with five external

lines crossing the boundary that the H-junction crossing relations must obey the pentagon

identity. Using the cyclic permutation map

CL1,L2,L3 : VL1,L2,L3 → VL2,L3,L1
(2.7)

on T-junction vector spaces as in figure 12, the permuted H-junction crossing kernels K̃ is

related to K by

K̃L1,L4

L2,L3
(L5,L6) ≡ CL4,L1,L6 ◦K

L1,L4

L2,L3
(L5,L6) ◦ CL5,L3,L4

: VL1,L2,L5
⊗ VL5,L3,L4 → VL2,L3,L6

⊗ VL1,L6,L4 ,
(2.8)

such that they appear in the H-junction crossing relations as depicted in figure 13.

As illustrated by the following commuting diagram,

Vj1,j2,j
⊗ Vj,j4,j3 ⊗ Vj3,k4,k1

V
j2,j4,j

′ ⊗ Vj1,j′,j3 ⊗ Vj3,k4,k1
Vj1,j2,j

⊗ Vj4,k4,k2
⊗ Vj,k2,k1

V
j2,j4,j

′ ⊗ Vj′,k4,k3 ⊗ Vj1,k3,k1
Vj2,k2,k3 ⊗ Vj4,k4,k2

⊗ Vj1,k3,k1

K̃
j,k1
j4,k4

(j3,k2)

K̃
j1,j3
j2,j4

(j,j′)

K̃
j1,k1
j′,k4

(j3,k3) K̃
j1,k1
j2,k2

(j,k3)

K̃
j2,k3
j4,k4

(j′,k2)
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L1

L2 L3

L4

L5
=

∑
simple L6

L1

L2 L3

L4

L6 ◦ K̃L1,L4

L2,L3
(L5,L6)

Figure 13. The permuted crossing kernel K̃. Note that the last legs at the T-junctions are marked

differently in comparison to the crossing kernel K defined in figure 10.

the permuted crossing kernels K̃ satisfy the pentagon identity

K̃
Lj1 ,Lk1
Lj2 ,Lk2

(Lj ,Lk3) ◦ K̃Lj ,Lk1
Lj4 ,Lk4

(Lj3 ,Lk2)

=
∑
j′

K̃
Lj2 ,Lk3
Lj4 ,Lk4

(Lj′ ,Lk2) ◦ K̃Lj1 ,Lk1
Lj′ ,Lk4

(Lj3 ,Lk3) ◦ K̃Lj1 ,Lj3Lj2 ,Lj4
(Lj ,Lj′).

(2.9)

In the above diagram, we abbreviated K̃
Lj1 ,Lj4
Lj2 ,Lj3

(Lj5 ,Lj6) by K̃j1,j4
j2,j3

(j5, j6), and VLj1 ,Lj2 ,Lj3
by Vj1,j2,j3 .

The admissible crossing relations are classified by the solutions to the pentagon identity.

The solutions are rigid in the sense that they admit no continuous deformation, modulo the

gauge transformations corresponding to the change of basis vectors in each junction vector

space (see appendix A). This is a proven property in category theory known as Ocneanu

rigidity [42]. Since the solution set is discrete, a solution cannot change continuously under

the RG flow, and hence the crossing relations should match between the UV and the IR

theories. This is a key property that will be used later to constrain various RG flows.

2.2.3 Action on bulk local operators and defect operators

Given a TDL L, let L̂ : H → H be the linear operator on the bulk Hilbert space H
of the CFT on the cylinder defined by wrapping an L loop around the spatial circle.

Assuming no isotopy anomaly, we can think of L̂ as an operation on a bulk local operator

φ by contracting an L loop encircling φ.10 As already mentioned, the isotopy invariance

property implies that L̂ preserves the conformal weight of φ. More generally, as shown

in figure 14, contracting a TDL L loop on a bulk local operator φ, where L has another

TDL L′ attached to it with a junction vector v, produces a defect operator (L̂v · φ) in

HL′ of the same conformal weight as φ. We refer to this operation as “lassoing” for its

resemblance. Note that the information of L′ is implicit in the notation of L̂v : H → HL′ ,
since v ∈ VL′,L,L. A similar lassoing can be performed when the TDL loop circles a defect

operator, as in figure 15. Combined with crossing (partial fusion), passing a bulk local

operator (or a defect operator) through a TDL L generally introduces a T-junction that

ends on a defect operator, as shown in figure 16.

10In the presence of isotopy anomaly, L̂ differs from the left of figure 14 by a phase, a scenario which we

ignore for the moment, and return to in section 2.4.
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L

ϕ

^

= L̂ · φ
L′ ϕ

v L =
L′ L ϕ

v^

^

Figure 14. Left: Contracting a TDL L loop on a bulk local operator φ produces another bulk

local operator (L̂ · φ) of the same weight. Right: “Lassoing” the bulk local operator φ with an L
loop attached to the L′ line produces a defect operator in HL′ .

L1 ϕ
v1 v2

L3

L2

L4

Figure 15. “Lassoing” the defect operator φ in HL4
by the TDLs L2 and L3 joined by T-junctions

with L1 and L4 produces a defect operator in HL1 .

=

Figure 16. Moving a TDL L (blue) past a bulk local operator leaves behind another (possibly non-

simple) TDL (red) attached to a defect operator and a T-junction (with a specified junction vector).

2.2.4 Vacuum expectation value 〈L〉 and defect Hilbert space HL

If theory has a unique vacuum, which we denote by |0〉, then we can define

〈L〉 ≡ 〈0|L̂|0〉 (2.10)

as the expectation value of an empty L loop on a cylinder. 〈L〉 is a fundamental quantity

for a TDL that we will repeatedly make use of.

We first show that 〈L〉 ≥ 0 in a unitary theory with a unique ground state. Define the

L-twisted torus character with L̂ acting on the bulk Hilbert space,

ZL(τ, τ̄) ≡ tr L̂ qL0− c
24 q̄L̄0− c̃

24 , (2.11)

where q = e2πiτ . This is related to the torus partition function of the Hilbert space HL by

a modular S transformation

ZL(−1/τ,−1/τ̄) = ZL(τ, τ̄) ≡ trHLq
L0− c

24 q̄L̄0− c̃
24 . (2.12)

Let us take τ = −τ̄ = it and send t → 0, then ZL(−1/τ,−1/τ̄) only picks up the contri-
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bution 〈L〉e
πc
12t from the one ground state.11 In this limit, (2.12) reduces to

〈L〉 = lim
t→0

e−
πc
12t trHLe

−2πt(L0+L̄0− c
12

) ≥ 0 . (2.13)

An important corollary of the locality property is that the set of 〈L〉 satisfies a system

of polynomial equations with positive integer coefficients, given by the abelianization of

the fusion ring. In a unitary, compact CFT, this leads to the stronger constraint

〈L〉 ≥ 1, (2.14)

since by compactness we expect 〈L〉 for all TDLs L to be bounded below by a positive

number.12 Had there been any L with 〈L〉 < 1, the sequence of TDLs Ln with n ∈ N
would go to zero and hence violate this condition.

Furthermore, since 〈L〉 satisfies the polynomial equations, it is protected under RG

flow. In the case where there are degenerate vacua in the IR, 〈L〉 is defined as the cylinder

expectation value in the vacuum inherited from the UV.

Given the expectation (2.14), we can run the modular invariance argument in reverse

to argue that in a unitary, compact CFT with a unique vacuum, the Hilbert space HL of

defect operators at the end of a TDL L must always be non-empty,

HL 6= ∅. (2.15)

Importantly, if we relax the condition of a unique vacuum, then there could be TDLs on

which no defect operator can end. We will encounter such an example in some TQFTs

with degenerate vacua in section 7.2.3.

Let us also introduce the expectation value of an empty clockwise L loop on the plane,

which we denote by R(L), and the expectation value of a counterclockwise L loop, which we

denote by R(L). The expectation value on a plane R(L) might not equal to the expectation

value on a cylinder 〈L〉. Their relation will be discussed in section 2.4.

A bulk local operator φ is said to commute with a TDL L if they commute as operators

on the cylinder. In particular, this requires

L̂|φ〉 = 〈L〉|φ〉 . (2.16)

In unitary theories, (2.16) further implies that L̂v · φ = 0. To see this, we start with the

configuration in figure 17. Next we glue two copies of the diagrams in figure 17 together

by summing over the states in HL,L and obtain the relation in figure 18. The correlation

11This argument also holds in non-unitary CFTs, where the ground state may not correspond to the

identity operator, as long as the degeneracies are non-negative (e.g., no ghost). For example, in the Lee-

Yang model, a.k.a. the (2,5) minimal model, the limit t → 0 of ZL(−1/τ,−1/τ̄) is dominated not by the

identity operator, but by the primary of weight (− 1
5
,− 1

5
).

12Using the folding trick, one can relate the TDL L in a CFT T to a boundary state B in the tensor

product CFT T ⊗ T . Furthermore 〈L〉 maps to the g-function of B (log g being the boundary entropy).

When T ⊗T is described by a nonlinear sigma model, for instance, B corresponds to a D-brane wrapping a

submanifold of the target space whose mass is proportional to the g-function. Thus a vanishing g can only

occur in a singular sigma model. More generally, we expect the g-function, and hence 〈L〉, to be bounded

from below by a positive number in any unitary, compact CFT.
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= +
v

L
v
·ϕ

Figure 17. Moving a TDL L (blue) past a bulk local operator φ (purple) that satisfies (2.16).

The third diagram captures all the contributions involving non-identity TDLs attached to L via a

junction vector v.

= +
v v

L
v
·ϕ L

v
·ϕ

Figure 18. Gluing two copies of the diagrams in figure 17 by conjugation. Here we have dropped

diagrams on the l.h.s. that vanish by the tadpole condition (see next subsection).

function of the TDL configurations in figure 18 is such that the first diagram on the r.h.s.

saturate the contribution from the l.h.s. . Consequently, the last diagram in figure 18

must vanish as a two point function of L̂v · φ and its conjugate. By unitarity we conclude

L̂v · φ = 0. In other words, the TDL L does not “feel” the insertion of such a bulk local

operator φ when they pass through each other (the last diagram in figure 17 vanishes).

This is sufficient to ensure that φ commutes with L.13

2.2.5 Vanishing tadpole

Under some mild assumptions that we will specify below, one can show that a TDL config-

uration containing a tadpole — that is, a nontrivial simple TDL L′ ending on a loop L, as

shown on the left of figure 14, with the operator φ chosen to be the identity — has vanishing

correlation functional. We will refer to this property as the vanishing tadpole property.

In order to argue the vanishing tadpole property, let us first prove a lemma: if the

collection of all TDLs acts faithfully on the bulk local operators, i.e., the only TDL that

commutes with all bulk local operators is the trivial TDL, then VL′ is an empty set.

We prove by contradiction. Since VL′,L′ is one-dimensional, the OPE of a pair of defect

operators in VL′ should be proportional to inserting the trivial defect operator in VL′,L′ ,

which is equivalent to inserting nothing on L′ (see figure 19). In other words, such an

L′ line can be “opened up” with the weight-(0,0) defect operators in VL′ inserted at the

two endpoints. It then follows that L′ commutes with all bulk local operators, and hence

must be a trivial line by our assumption of faithfulness. This contradicts with the initial

assumption that L′ is nontrivial. Note that in a TQFT that arises at the end of an RG

flow from a CFT, the Hilbert space HL′,L′ is generally multi-dimensional, but the junction

vector space VL′,L′ inherited from the CFT is one-dimensional.

To argue that tadpoles vanish, we use the locality property to cut a disk that contains

the tadpole, and replace the TDL configuration by L′ ending on a particular defect operator

in VL′ . The latter is an empty set by our lemma. Hence, the vanishing tadpole property

holds for a CFT that satisfies the faithfulness assumption.

13We thank Davide Gaiotto for discussion on this point.
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∝

Figure 19. The OPE of a pair of weight-(0, 0) topological defect operators in VL′ gives the simple

TDL L′.

=

Figure 20. Removal of a trivial junction (with identity junction vector).

The faithfulness assumption is typically true in a compact CFT with a unique vacuum,

but is generally not preserved under RG flows. For example, consider the Z2 line which acts

nontrivially in the critical Ising model, and the RG flow triggered by the energy operator

ε. Since ε commutes with the Z2 line, the latter is preserved along the entire RG flow.

For one sign of the coupling, the IR theory has a unique vacuum on which the Z2 acts

trivially [65, 66], and hence violates the faithfulness assumption in the IR. Nonetheless,

since the vanishing tadpole property holds true in the UV, it must persist under the RG

flow. Therefore, we can still constrain the IR TQFT arising at the end of a massive RG

flow from a CFT with vanishing tadpoles. Various concrete examples will be given in

section 7.2.

2.2.6 Trivial junctions

The fusion of a simple TDL L with its orientation reversal L (which may or may not be

equivalent to L) contains the trivial TDL I as a direct summand with multiplicity 1. A pri-

ori, according to the ordering of the legs, there are three “trivial junction” vector spaces

VL,I,L, VI,L,L, and VL,L,I , all of which are isomorphic to C. However, there exist canonical

choices for these junction vectors, which we denote by 1L,I,L, 1I,L,L, and 1L,L,I , such that

the correlation functional of a TDL graph that contains a trivial junction evaluated on the

identity junction vector is equivalent to that of the TDL graph where the trivial junction

is forgotten (figure 20). It follows from this definition that the identity junction vectors

map to themselves under the cyclic permutation maps,

CL,I,L(1L,I,L) = 1I,L,L, CI,L,L(1I,L,L) = 1L,L,I , CL,L,I(1L,L,I) = 1L,I,L. (2.17)

The two-point functions of the canonical identity junction vectors are

h(1L,I,L, 1L,I,L) = R(L), h(1L,L,I , 1I,L,L) = R(L). (2.18)

By Property 6, the antiunitarity of the conjugation map implies that the norm of an identity

junction vector is equal to
√
|R(L)| =

√
〈L〉 (see section 2.4 for the relation between R(L)

and 〈L〉).
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When evaluating on the identity junction vectors, the crossing kernels with a trivial

external line in three of the four positions become

K̃I,L4

L2,L3
(L2,L4) : 1I,L2,L2

⊗ vL2,L3,L4 7→ vL2,L3,L4 ⊗ 1I,L4,L4
,

K̃L1,L4

I,L3
(L1,L3) : 1L1,I,L1

⊗ vL1,L3,L4 7→ 1I,L3,L3
⊗ vL1,L3,L4 ,

K̃L1,L4

L2,I
(L4,L2) : vL1,L2,L4 ⊗ 1L4,I,L4

7→ 1L2,I,L2
⊗ vL1,L2,L4 ,

(2.19)

for arbitrary junction vectors vLi,Lj ,Lk ∈ VLi,Lj ,Lk . Those involving a trivial external line

in the fourth position act by

K̃L1,I
L2,L3

(L3,L1) : vL1,L2,L3 ⊗ 1L3,L3,I
7→ CL1,L2,L3(vL1,L2,L3)⊗ 1L1,L1,I

, (2.20)

where CL1,L2,L3 is the cyclic permutation map (2.7).

The expectation values R(L) and R(L), defined earlier in this section, can be deter-

mined by splitting empty L loops using the crossing relations, and applying the vanishing

tadpole property. More explicitly, they are related to the crossing kernels by

K̃L,LL,L (I, I) : 1L,L,I ⊗ 1I,L,L 7→ R(L)−1 × 1L,L,I ⊗ 1L,I,L, (2.21)

and there is a similar relation between K̃L,LL,L (I, I) and R(L).

2.2.7 Fusion coefficients

The fusion coefficients are related to the dimensions of junction vector spaces as

L1L2 =
∑
Li

dim(VL1,L2,Li)Li, (2.22)

where Li are simple TDLs.14 This relation can be derived by applying the H-junction

crossing relations and the cyclic permutation maps on the TDL configuration on the l.h.s.

of figure 1. The detailed derivation is given in appendix B. A similar derivation shows that

R(L), with the gauge choice defined in appendix A, obeys the polynomial equations given

by the abelianization of the fusion ring, just as 〈L〉 does.

2.2.8 Rotation on defect operators

As already stated, a defect primary operator Ψ ∈ HL of weight (h, h̃) generally have non-

integer spin s = h− h̃. This phase rotation is relevant for the monodromy property of the

two-point function of defect operators, as we presently explain.

We may normalize Ψ so that the two-point function of a pair of Ψ’s connected by L
takes the form

〈Ψ(z1, z̄1)Ψ(z2, z̄2)〉 = z−2h
12 z̄−2h̃

12 . (2.23)

In order to define the two-point function unambiguously, it is necessary to specify the

direction in which the L line is attached to Ψ at the ends. The zi dependence is such that

14A simple consequence of (2.22) is that, if every line is the orientation reversal of itself, then the fusion

ring is commutative.
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ψψ

=⇒
ψψ

=⇒
ψψ

Figure 21. Monodromy operation on a two-point function of the defect operator Ψ ∈ HL: moving

one Ψ around the other.

if we translate one of the Ψ’s, the direction of the L line at its end must remain fixed. For

instance, if we bring z2 around z1 in the counterclockwise direction while maintaining the

angles of L at the ends, as shown in figure 21, the two-point function picks up a phase

e−4πis. We can then perform a 2π rotation on each defect operator, giving another phase

factor e4πis, after which the TDL configuration returns to the initial one in figure 21,

consistent with the expected monodromy property of the two-point function.

2.3 Generalization to non-conformal case

Many of the definitions and properties above admit straightforward generalizations to non-

conformal theories. Of particular interest are CFTs coupled to a gauge theory or deformed

by a marginal or relevant operator, in which case the TDLs that commute with the gauge

current or deformation operator will retain its isotopy invariance property in the gauged

or deformed theory (and will still be referred to as TDLs). The major difference in the

non-conformal case is the following. Without the state/operator mapping, whenever we

spoke of bulk local operators or defect operators in the above, we should replace them by

states radially quantized on a circle of some radius. We can speak of correlators of these

states as functions of the positions and radii of the circles. The locality property should be

understood as the cutting and sewing using the Hilbert space of states on the cut circle.

Junction vector spaces are states on a cut circle whose correlation functions are invariant

under isotopy that need not preserve the location or size of the circle.

The key property that we need is the existence of crossing relations by the modified

notion of locality. The crossing kernels are still classified by the solutions to the pentagon

identity, and are rigid up to the freedom of choosing junction vectors.

These extended definitions and properties will not be explicitly used in non-conformal

theories, but only serve to demonstrate that the notions of TDLs and crossing kernels are

well-defined along RG flows, and can interpolate between the UV and IR theories. This

preservation is a generalization of the ’t Hooft “anomaly” matching, and will be used in

section 7 to constrain various RG flows. Until then, we restrict our discussions to CFTs.

2.4 Isotopy anomaly and orientation-reversal anomaly

The isotopy invariance of a TDL on the plane is equivalent to the statement that the TDL

commutes with the stress-energy tensor T (z) and T̃ (z̄). This property extends to TDLs

on a curved surface, up to a possible isotopy anomaly due to a contact term in the OPE

of the stress tensor with the TDL, of the form T (x+ iy) ∼ iαL∂yδ(y), in the presence of a
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TDL extended along y ≡ Imz = 0 on the plane.15 As a result, on a curved surface, when

a TDL L is deformed to sweep past a domain D, its correlation functional may change by

a phase factor

exp

[
iαL
4π

∫
D
d2σ
√
gR(g)

]
, (2.24)

where g is the metric on the surface, and R the scalar curvature, normalized such that∫
d2σ
√
gR(g) = 8π on a unit two-sphere. Note that (2.24) is the only possible form of

the isotopy anomaly that is compatible with locality and conformal invariance.16 For the

orientation reversed TDL L, we have αL = −αL.

The isotopy anomaly can also be detected by the phase in the expectation value of

an empty clockwise L loop on the plane, R(L). Recall that the vacuum expectation value

of L̂ on the cylinder, denoted by 〈L〉, is a positive real number in a unitary theory. 〈L〉
can also be thought of as the expectation value of an L loop on the equator of the sphere.

Contracting this loop to near the south pole or the north pole, we have

R(L) = eiαL〈L〉, R(L) = e−iαL〈L〉, (2.26)

where αL is the isotopy anomaly coefficient in (2.24).

The isotopy anomaly is not entirely physical because it may be absorbed by introducing

a finite local counter term on the TDL that is proportional to the extrinsic curvature. That

is, we can redefine the TDL by including the factor

exp

[
iα̃L
2π

∫
L
dsK

]
, (2.27)

where K is the extrinsic curvature of the line, normalized such that the counter-clockwise

integral
∫
dsK along the boundary of a flat disc is 2π. While this term with α̃L = αL would

cancel the isotopy anomaly (2.24) by the Gauss-Bonnet theorem (except when L = L as we

will discuss shortly), it would also rotate the junction vectors involving L or defect operators

at the end of L by certain angle dependent phases, and correspondingly the crossing kernels

involving L undergo a “gauge” transformation while preserving the pentagon identity. For

instance, consider the removal of a trivial junction as in figure 20. If we modify the TDL

by the extrinsic curvature counter term (2.27), the right graph in figure 20 would acquire

an extra phase due to the extrinsic curvature at the kink. To maintain the equivalence in

figure 20, in the left graph, the extra phase would be interpreted as a phase rotation of the

trivial junction vector.

There is one exception to this, namely, when L is a TDL of the same type as its

orientation reversal L. In this case, insisting on the equivalence of L and L on the plane

15More precisely, the contact terms for all components of the stress tensor are constrained by conservation

to be Tzz, Tz̄z̄, Tzz̄ ∼ iαL∂yδ(y).
16The formula (2.24) is determined by diffeomorphism and conformal invariance, and to reproduce the

stress-tensor contact terms in the presence of line defect L,

〈∂yT (iy)L〉 = − δ

δgzz(0, y)

iαL
4π

∫
y=0

dx
√
gR(g)〈L〉g

∣∣∣
g=δ

= − iαL
16π

∂2
yδ(y)〈L〉. (2.25)
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would require R(L) = R(L), and forbid modifying L by an extrinsic curvature term of the

form (2.27). In this case, a nonzero αL would imply an orientation-reversal anomaly for L,

as correlation functions involving L on curved surfaces would differ by a phase depending

on the choice of orientation of L.17 However, R(L) = R(L) is still consistent with an

isotopy anomaly (2.24) if αL is a multiple of π (rather than 2π), since a small clockwise

L loop at the north pole of the sphere can be deformed to a small clockwise L loop at

the south pole of the sphere, differing by the phase e2iαL . This leaves the possibility of

R(L) differing from 〈L〉 by a sign, namely, αL = π.18 This is necessary for consistency, for

instance, if L is a Z2 invertible line with an ’t Hooft anomaly, in which case R(L) = −1

(as determined by the crossing kernel K̃L,LL,L (I, I) = −1) while 〈L〉 = 1.

3 Relation to fusion categories

Our definition of TDLs encompasses the structure of a fusion category, at least in the case

where the number of simple TDLs is finite. This dictionary between the TDLs and the

fusion category, together with various physical applications and consequences, has recently

been discussed in great detail in [27]. Below we review and elaborate on part of this

dictionary that is relevant for our discussion.

An object in the fusion category corresponds to the Hilbert space HL associated to

the endpoint of a TDL L. A morphism between the objects HL1 and HL2 is a weight-(0,0)

topological defect operator m between the TDLs L1 and L2, which gives a linear map

between the Hilbert spaces,

m : HL1 → HL2 . (3.1)

The existence of the trivial line and the additive structure with respect to direct sum are

evident. The tensor structure of the fusion category is specified by the junction vector

v ∈ VL1,L2,L3 , which defines a linear map,

v : HL1 ⊗HL2 → HL3 , (3.2)

subject to the H-junction crossing relations which are equivalent to associators in fusion

category. Simple objects are the Hilbert spaces of defect operators at the end of simple

TDLs, and the semi-simplicity of all objects is assumed, that is every TDL can be decom-

posed as direct sum of finitely many simple ones. The finiteness of simple objects is not a

necessary assumption for our purpose, and may not hold for TDLs (such as invertible lines

associated with continuous global symmetries). The number of simple objects is called the

rank of a fusion category. The fusion ring is the Grothendieck ring of a fusion category

(see [41]).

In this paper, we prefer to work with a definition of TDLs with H-junction crossing

relations that are independent of the angles at the junctions, which leads to the possibility

of isotopy anomalies. As will be discussed in the next section, it is possible to eliminate

17We thank L. Bhardwaj and Y. Tachikawa for correspondence on this point.
18This particular phase from the isotopy anomaly corresponds to the (second) Frobenius-Schur indicator

for the TDL L in the fusion category language (see [40] for a discussion).
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fusion category TDLs

object Hilbert space HL of defect operators

simple object HL for a simple (indecomposable) L
rank number of simple TDLs

morphism junction vector in VL1,L2

(as linear map HL1 → HL2).

tensor structure junction vector spaces VL1,L2,L3

(co-)evaluation identity junction vectors 1L,I,L, 1I,L,L, 1L,L,I

associator H-junction crossing kernel

dual object orientation reversal L
quantum dimension cylinder vacuum expectation value 〈L〉
Grothendieck ring fusion ring

Table 1. Summary of the relations between fusion category and TDLs.

the isotopy anomaly by choosing a finite counter term in the definition of the TDL that

involves the extrinsic curvature of the TDL; however, one may then need to keep track of

the angle dependence in the H-junction crossing relations, which is implicitly allowed in

the notion of the associator of a fusion category.

The dual object corresponds to the orientation reversal of the TDL L. The (co-

)evaluation maps are related to the identity junction vectors 1L,I,L, 1I,L,L, and 1L,L,I . The

vacuum expectation value 〈L〉 is the “quantum dimension” of the corresponding object.

Note however that in our definition of TDLs, the expectation value of an empty L loop on

the plane may differ from 〈L〉 by a phase, due to the isotopy anomaly.

We summarize the relations discussed above in table 1.

3.1 On fusion categories of small ranks

Fusion categories containing only two simple objects were classified in [67]. In the TDL

language, there is only one nontrivial TDL X in addition to the trivial line I, with the

fusion relation X2 = I + aX, where a = 0 or 1. In the a = 0 case, X corresponds to

a Z2 global symmetry, while in the a = 1 case, X is a more general TDL that does not

correspond to any global symmetry. In each of these cases, there are two sets of solutions

of the H-junction crossing kernels to the pentagon identity.

For a = 0, the crossing phase K̃X,X
X,X (I, I) is either 1 or −1. As discussed in the

previous section, K̃X,X
X,X (I, I) = −1 occurs if X corresponds to a Z2 symmetry with an ’t

Hooft anomaly. Note that such a crossing phase also implies that an empty X loop on

the plane has expectation value −1, and an isotopy anomaly is required for this to be

compatible with unitarity.

For a = 1, the two solutions to the pentagon identity lead to the empty X loop

expectation values R(X) = 1±
√

5
2 [37]. Since the isotopy anomaly is a phase, and that

– 22 –



J
H
E
P
0
1
(
2
0
1
9
)
0
2
6

there is only a binary choice 〈X〉 = 1±
√

5
2 to solve the abelianization of the fusing ring,

it follows that 〈X〉 = R(X). The choice 〈X〉 = 1−
√

5
2 is incompatible with unitarity, and

is realized by the nontrivial TDL in the Lee-Yang model M(2, 5). The case 〈X〉 = 1+
√

5
2

occurs in many examples, such as in certain TDLs in the tricritical Ising model, three-state

Potts model, and WZW models.

The impossibility of a ≥ 2 was proven in [67] by indirect arguments. We formulate

the pentagon identity with the gauge condition in appendix A using Mathematica, and

directly verify in the a = 2 case (the junction vector space VX,X,X is two-dimensional) that

indeed a solution to the pentagon identity does not exist.

Fusion categories containing three simple objects have been classified in [50] (assuming

pivotal structure), and their fusion rings are all commutative. Let the two nontrivial TDLs

be X and Y , the possible fusion relations are

(i) X2 = Y , Y 2 = X, XY = 1. Here, X and Y are the invertible lines associated with a

Z3 global symmetry. There are three solutions to the pentagon identity: one is non-

anomalous, while the other two have ’t Hooft anomalies (discussed in section 4.2).

(ii) X2 = I, Y 2 = I + X, XY = Y . There are two solutions to the pentagon identity.

One of them is realized by the TDLs in the critical Ising model, while the other one

is realized by the tensor product theory of the critical Ising model and the SU(2)1

WZW model. In the latter case, the Z2 line X is realized by the product of the Z2

line in the critical Ising model, and that associated with the center of the left SU(2)

symmetry in the SU(2)1 WZW model (see section 6.1.1 for more details). These

two fusion categories are in fact the Tambara-Yamagami extensions [68] (discussed

in more detail in section 4.3.1) of the (non-anomalous) Z2 fusion category.

(iii) X2 = I, Y 2 = I + X + Y , XY = Y . This is the representation ring RC(S3) of the

permutation group S3. There are three solutions to the pentagon identity [69]. One

of them gives the Rep(S3) fusion category, which is realized by a subset of TDLs

in either the tetracritical Ising model or the SU(2)4 WZW model. The other two

solutions are referred to as twisted Rep(S3) fusion categories in this paper.

(iv) X2 = I + Y , Y 2 = 1 +X + Y , XY = X + Y . This is the representation ring of the

integrable highest-weight representations of the affine Lie algebra ŝu(2)5, restricted

to integral spins. We denote this fusion ring by RC(ŝo(3)5). There are three solutions

to the pentagon identity (see appendix C.1). One of them is the Rep(ŝo(3)5) fusion

category, which is realized by a subset of TDLs in either the pentacritical Ising

model or the SU(2)5 WZW model. The other two categories do not admit unitary

realizations.

(v) X2 = I, Y 2 = I + X + 2Y , XY = Y . This fusion category, known as “ 1
2E6”, does

not admit braiding [49, 70]. There are four solutions to the pentagon identity (see

appendix C.2). Two of them are realized by (subsets of) the TDLs in the (A10, E6)

minimal model and by the TDLs in the E6 type non-diagonal SU(2)10 WZW model.

The other two categories do not admit unitary realizations.
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rank fusion ring # categories TDL models in CFTs section see also

2

Z2 2
Ising 5.1.1

SU(2)1 WZW 4.4.1

Lee-Yang 2
Lee-Yang 5.1.5

6.2
tricritical Ising 5.1.2

3

Z3 3
three-state Potts 5.2.1

SU(2)1 WZW 4.4.1

Z2 TY 2 Ising (⊗SU(2)1) 5.1.1, 4.3.1 6.1.1

RC(S3) 3

tetracritical Ising 5.1.3

SU(2)4 WZW 5.2.2 6.3

Z2 orbifold of S3

RC(ŝo(3)5) 3
pentacritical Ising 5.1.4

SU(2)5 WZW 5.2.2

1
2E6 4

(A10, E6) minimal model 5.2.3
6.4

non-diagonal SU(2)10 WZW 5.2.3

4 Z3 TY 2 three-state Potts (⊗SU(2)1) 5.2.1, 4.3.1 6.1.2

Table 2. Fusion rings of small ranks, the corresponding number of fusion categories (solutions to

the pentagon identity), and some examples of CFTs in which the fusion categories are realized by (a

subset of) the TDLs. TY stands for Tambara-Yamagami. Note that not all the categories counted

in the third column are realized in the models given in the fourth column.

Let us comment here, that a basic difference between a fusion category of TDLs and the

OPEs of bulk local operators (say in rational CFTs) is that the former does not require the

existence of braiding, while the latter does. This is evident for the invertible lines associated

with a (discrete) nonabelian global symmetry. We will see later (in the examples of WZW

models) that there are more general simple TDLs that admit nonabelian fusion relations.

4 Invertible lines, ’t Hooft anomalies, and orbifolds

This section is devoted to a discussion of the most familiar class of topological lines —

the invertible lines associated with global symmetries. Familiar concepts such as ’t Hooft

anomalies and orbifolds are recast in the formalism of TDLs, and allow us to derive selection

rules for the spin content of defects operators at the end of these TDLs.

4.1 Global symmetries and invertible lines

The simplest class of simple TDLs are the ones associated with global symmetries, which

we refer to as invertible lines. For every symmetry group element g, there is an invertible

line Lg such that L̂g acts on the states/bulk local operators of the CFT according to the

action of g itself, namely L̂g|φ〉 = ĝ|φ〉 [13, 32–34]. The invariance of the vacuum implies

that 〈Lg〉 = 1. In a unitary, compact CFT, a typical simple TDL L that is not an invertible

line has 〈L〉 > 1.
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The fusion relation of the invertible lines takes the same form as the group multiplica-

tion, namely LgLh = Lgh. The T-junction vector space VLg1 ,Lg2 ,Lg3 is one-dimensional if

g1g2g3 = 1, and trivial otherwise. The orientation reversal Lg is a TDL of the same type

as Lg−1 . The identity junction vector in VLg ,Lg ,I has unit norm. Note that for general

g1, g2, g3 = (g1g2)−1, there need not be a canonical choice for a (unit norm) T-junction

vector in VLg1 ,Lg2 ,Lg3 .

4.2 ’t Hooft anomaly

The ’t Hooft anomalies for global symmetries/invertible lines may be classified by phases

in the H-junction crossing relation that solve the pentagon identity [71]. Namely, given

four symmetry group elements g1, g2, g3, g4 with g1g2g3g4 = 1, and choices of T-junctions

vectors with unit norm in VLg1 ,Lg2 ,Lg1g2
, VLg3 ,Lg4 ,Lg3g4

, VLg2 ,Lg3 ,Lg2g3
, VLg4 ,Lg1 ,Lg4g1

, the

crossing kernels K̃
Lg1 ,Lg4
Lg2 ,Lg3

(Lg1g2 ,Lg2g3) may be nontrivial phases. Let us define

eiθ(g1,g2,g3) = K̃
Lg1 ,Lg1g2g3
Lg2 ,Lg3

(Lg1g2 ,Lg2g3), (4.1)

which can be viewed as a 3-cochain C3(G,U(1)), i.e.,

θ : G3 → U(1). (4.2)

The pentagon identity can be written as

θ(g1, g2, g3g4) + θ(g1g2, g3, g4) = θ(g2, g3, g4) + θ(g1, g2g3, g4) + θ(g1, g2, g3), (4.3)

which is precisely the cocycle condition on the cochain. A phase rotation of the junction

vector in VLg1 ,Lg2 ,Lg1g2
by eiϕ(g1,g2) results in a shift of θ(g1, g2, g3) by the coboundary

δθ(g1, g2, g3) = ϕ(g2, g3) + ϕ(g1, g2g3)− ϕ(g1g2, g3)− ϕ(g1, g2). (4.4)

We see that the inequivalent crossing phases precisely correspond to the group cohomology

H3(G,U(1)). The non-anomalous case corresponds to the trivial element of H3(G,U(1)),

which has a representative where all the phases vanish.

4.3 Orbifolds

If a CFT has a global symmetry group G that is free of an ’t Hooft anomaly, we can con-

struct a G-orbifold CFT whose space of bulk local operators is the G-invariant projection

of
⊕

g∈GHLg .19 This construction requires defining 4-way junctions of Lg1 ,Lg2 ,Lg1 ,Lg2 ,

each of which can be split into an H-junction in two different ways. While the absence

of an ’t Hooft anomaly means that the two ways of splitting are equivalent, there is the

freedom to rotate the set of T-junction vectors in VLg1 ,Lg2 ,Lg1g2
a phase eiα(g1,g2), such that

α(g2, g3) + α(g1, g2g3)− α(g1g2, g3)− α(g1, g2) = 0. (4.5)

19The generalization of the orbifold construction beyond invertible topological defects has been proposed

in [72].
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Namely, α(g1, g2) is a cocycle in C2(G,U(1)). Furthermore, a change in the phase of the

trivial junctions by

δα(g1, g2) = β(g2)− β(g1g2) + β(g1) (4.6)

does not affect the orbifold partition function. Thus, inequivalent orbifolds by G are

classified by H2(G,U(1)), known as the discrete torsion [46, 47].

Next, we can ask which TDLs of the CFT survive or give rise to TDLs in the orbifolded

theory. A potential candidate is a TDL W (which is typically not an invertible lines) that

commutes with G, in the sense of fusion product, i.e., WLg = LgW for all g ∈ G. If W

does not commute with G, we can consider the sum of its G-orbits

WG =
∑

[g]∈G/GW
LgWLg, (4.7)

where GW is the commutant of W in G and G/GW denotes the set of right cosets. The

answer does not depend on the choice of the representative g in the summand for [g]. Note

that WG is non-simple in the original CFT but could give rise to a simple TDL in the

orbifold theory.

The G-invariance of W does not guarantee that W defines a TDL in the orbifold

CFT. For example, if there is a nontrivial crossing phase K̃
Lg ,W
W,Lg

, then W would a pri-

ori be ill-defined in the orbifold theory. However, in the next section, we discuss one

important exception.

4.3.1 Duality defects and Tambara-Yamagami categories

Suppose g is a Zn group generator that is free of an ’t Hooft anomaly, and suppose there

is an unoriented TDL N that commutes with g and obeys the following fusion relation

NLg′ = Lg′N = N , ∀ g′ ∈ Zn,

N 2 =
∑
g′∈Zn

Lg′ .
(4.8)

Note that while Lgk are invertible, N is not because N 2 contains the trivial line I but also

other lines. The fusion relation also implies that N̂ annihilates any state that transforms

with nontrivial Zn charge. Choosing the basis junction vectors in VN ,N ,Lgm to have the

same norm n
1
4 for all m, and applying the H-junction crossing relation to N loops connected

by Lgm lines, we can determine the crossing kernels to be

K̃
Lgm ,N
N ,L

gk
(N ,N ) = ωmk, K̃N ,NN ,N (Lgm ,Lgk) = ± 1√

n
ωmk, (4.9)

where ω = e
2πi
n . The crossing kernels involving only the Zn group elements are trivial,

since the symmetry is non-anomalous.

In fact, the TDL N described above is a duality defect relating a 2d CFT T with a

non-anomalous Zn symmetry to its orbifold T /Zn. It generalizes the well-known order-

disorder duality (Kramers-Wannier duality) in the critical Ising model [73]. Consider the
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=

n−1∑
m,k=0

1

n

Lgm Lgm

Lgk

Lgk

Figure 22. Fusing an 8-way junction of N (blue) lines into a 4-way intersection of invertible

(red) lines.

8-way junction of N as shown in figure 22, where the N lines may be fused pairwise by

applying the H-junction crossing relations (4.9) to produce a 4-way intersection of the TDL∑n−1
m=0 Lgm . This relation can be used to show that the CFT is isomorphic to its orbifold

by the Zn. For example, on the l.h.s. , if we put this 8-way junction on a torus, the network

of TDLs can be shrunk to a contractible circle of N , giving the torus partition function of

T times the expectation value of N on the torus. On the r.h.s. , summing over all the Zn
invertible lines gives the torus partition function of the orbifold theory T /Zn, again times

the expectation value of N on the torus. The equivalence of these two networks of TDLs

on the torus then proves the equality between the torus partition functions of T and T /Zn.

In the next section, we will see examples of N , such as the TDLs N in the critical and

tricritical Ising models, which are isomorphic to their respective Z2 orbifolds, as well as the

TDLs N and N ′ in the three-state Potts model, which is isomorphic to its own Z3 orbifold.

The construction described above is a special case of a Tambara-Yamagami cate-

gory [68], which is a fusion category whose simple objects are the invertible lines associated

with an abelian group (taken to be Zn above), plus an additional TDL N obeying the fu-

sion relations (4.8), such that the crossing kernels depend on a choice of the symmetric

non-degenerate bicharacter of the abelian group, and a choice of sign. In the Zn case,

there is a unique symmetric non-degenerate bicharacter because H2(Zn,U(1)) = 1. Our

conclusion above can then be rephrased as follows: a 2d CFT T with a non-anomalous

abelian finite group global symmetry G is isomorphic to its G-orbifold theory T /G, if T
contains a Tambara-Yamagami extension of the G fusion category [13]. The choice of the

bicharacter of G in defining the Tambara-Yamagami extension physically corresponds to a

choice of the discrete torsion in orbifolding.

4.4 Cyclic permutation map and spin selection rule

Given an order-n element g of the symmetry group, i.e., gn = 1, and the corresponding

invertible line Lg, we can deduce a spin selection rule on the defect operators in VLg , as

follows. On the n-way junction vector space VLg ,Lg ,··· ,Lg , we can define the cyclic permu-

tation map Ĉ ∈ Aut(VLg ,Lg ,··· ,Lg) by the TDL graph on the cylinder that connects the i-th

Lg defect point to the (i+ 1)-th, i = 1, · · · , n, as shown in figure 23, and restricted to the

junction vector space VLg ,Lg ,··· ,Lg . Note that Ĉn is the identity map, and thus Ĉ acts by a

phase that is an n-th root of unity.

In the presence of an isotopy anomaly, the cyclic permutation map Ĉ defined on the
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L2 L3

L1

L3 L1

L2

Figure 23. The cyclic permutation map from VL1,L2,L3 to VL2,L3,L1 . The ordering of the defect

points is such that the purple dot is the last one.

isotopy

−→

Figure 24. The cyclic permutation map on the cylinder (left) is related to the cyclic permutation

map on the junction vector (right) by an isotropy transformation of the TDLs, sweeping through

the upper hemisphere.

cylinder differs from the cyclic permutation map C on a junction of Lg lines by the phase

eiαg . This can be seen either by applying a set of H-junction crossing relations, or by

deforming the TDLs on a hemisphere as in figure 24. While both the isotopy anomaly

and the cyclic permutation map C are a priori dependent on the choice of the extrinsic

curvature counter term (2.27) in the definition of the TDLs, the cyclic permutation map

Ĉ on the cylinder is free of such ambiguity.

There is a direct relation between the cylinder cyclic permutation map Ĉ and the H-

junction crossing kernels, that can be derived through a sequence of crossing and isotopy

transformations (recall from section 2.2.6 that trivial junctions admit canonical junction

vectors where the cyclic permutation map is trivial, and hence the ordering of lines is imma-

terial), as illustrated in figure 25 for the Z3 case. Given a Z3 element g, the cylinder cyclic

permutation map Ĉ acts on VLg ,Lg ,Lg by the product of the crossing phase K̃
Lg ,Lg
Lg ,Lg

(I, I)

with the cyclic permutation map CLg ,Lg ,Lg on the T-junction, the latter being equivalent

to the crossing kernel K̃
Lg ,I
Lg ,Lg(I, I) by (2.20). In other words, the phase arising from the

isotopy anomaly of figure 24 is precisely K̃
Lg ,Lg
Lg ,Lg

(I, I). One can indeed verify that gauge-

equivalent solutions to the pentagon identity belonging to the same cohomology class in

H3(Z3,U(1)) give rise to the same phase for Ĉ.

We now derive a selection rule on the spin content of the defect Hilbert space HLg at

the end of the invertible line Lg. Let ZLg be the partition function of HLg , i.e., the space
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crossing

−→
isotopy

=

K̃
Lg ,Lg
Lg ,Lg
−→

=

permutation

−→
crossing−1

−→

Figure 25. Relating the cyclic permutation map Ĉ on the cylinder to the H-junction crossing

kernels. The crossing transformation in the first and last steps are precisely the inverse of one

another, with the specified ordering of legs specified by the “×”. Note that in the first and the last

step, a certain crossing kernel involving trivial junction and its inverse are applied, respectively.

In going to the second line, the horizontal loop is removed because it acts trivially on the bulk

ground state.

of defect operators on which Lg may end. Suppose gn = 1, then consider the modular Tn

transformation of ZLg . We can bring it back to ZLg by a sequence of H-junction crossing

relations, which accumulate to an overall phase γ, namely,

TnZLg(τ, τ̄) = γZLg(τ, τ̄). (4.10)

One may try to compute γ from the crossing relations, but it is simpler to determine

the answer by considering the modular S-transformation of (4.10), and restricting to the

junction vector space VLg ,...,Lg , as in figure 26. We find

Ĉ = γ. (4.11)

Since Ĉ acts by a phase e
2πik
n , where k is an integer that labels a class in H3(G,U(1))

representing the ’t Hooft anomaly, we learn that the states in HLg have spin

s ∈ k

n2
+

1

n
Z. (4.12)

In particular, this is the spin selection rule inHLg for a TDL Lg generating the Zn symmetry

with an anomaly [k] ∈ H3(Zn,U(1)) = Zn where [k] = k mod n.

This is indeed the case in many known examples of ’t Hooft anomalies, such as the

chiral U(1) rotation associated with a current algebra at nonzero level.

4.4.1 Example: chiral U(1) rotation in free compact boson

Let us consider the explicit example of the chiral U(1) symmetry in the free boson CFT

at the self-dual radius R = 1, generated by the current j = −2∂X, where X is normalized

such that20

X(z, z̄)X(0) ∼ −1

2
ln |z|2. (4.13)

20At a generic radius R, the chiral current generates a noncompact R symmetry, instead of U(1).
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−→Tn −→S

Figure 26. Relation between the spins of states in HLg and the cyclic permutation map Ĉ, for an

order n = 3 element g.

Let Lα be the invertible line associated with the shift symmetry XL → XL + α. An Lα
loop may be written explicitly as

Lα =: exp

[
−2α

∮
dz

2πi
∂X(z)

]
:, (4.14)

with : · · · : the standard normal ordering of free fields. This definition is such that the

expectation value of an empty Lα loop on the plane is equal to 1, and that there is no

isotopy anomaly. At the self-dual radius, the line L2π is equivalent to the trivial line. The

ground state in HLα is a defect operator that may be written as

Ψα(z) =: e
iα
π
XL(z) : , (4.15)

with an implicit Lα line attached. When Ψα(z) is inserted in a correlator, the location of

the Lα line is equivalent to a choice of branch cut in z.

The lines I ≡ L0 and L± 2π
3

form the elements of a Z3 fusion ring, and realize one of

the ’t Hooft anomalous solutions to the pentagon identity discussed in section 3.1. The

other ’t Hooft anomalous solution can be realized by the analogous construction to (4.14)

but with the anti-holomorphic U(1) current. Three Ψ 2π
3

’s joined by a T-junction of L 2π
3

can be expanded in terms of bulk local operators, of the form

Ψ 2π
3

(z1)Ψ 2π
3

(z2)Ψ 2π
3

(z3) = (z12z23z31)
2
9 Ψ2π

(
z1 + z2 + z3

3

)
+ · · · , (4.16)

where Ψ2π has weight (1, 0), and the omitted terms involve operators of higher weights.

Now taking zm = ze
2πim

3 , the cyclic permutation map on the junction has the same effect

as a 2π
3 rotation on the operator Ψ2π(0) appearing on the r.h.s. of the OPE, which produces

the phase e
2πi
3 since Ψ2π is a spin 1 operator. Note that the defect operator Ψ 2π

3
has weight

(1
9 , 0), which satisfies the spin selection rule (4.12) for n = 3 and k = 1.

Alternatively, we may consider a continuous deformation that moves z1 to z2, z2 to z3,

and z3 to z1, while maintaining the junction and the angles at which the L 2π
3

lines end on

Ψ 2π
3

(zi), as in figure 27. Under this transformation, the r.h.s. of (4.16) picks up a phase

e2πi 2
9 due to the prefactor (z12z23z31)

2
9 . We can deform this configuration isotopically to

the original one transformed by the cyclic permutation map on the T-junction, provided

that we also perform a 2π
3 rotation on each of the three defect operators, totaling an extra

phase e
2πi
9 . The final net effect is again such that the cyclic permutation map on the

T-junction produces the phase e
2πi
3 .
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ψ(z1)

ψ(z3)ψ(z2)

=⇒

ψ(z1)

ψ(z3)
ψ(z2)

=⇒

ψ(z1)

ψ(z3)ψ(z2)

Figure 27. Moving the defect operators Ψ(z1),Ψ(z2),Ψ(z3) cyclically and then rotating each Ψ

by 2π
3 have the same net effect as the cyclic permutation map on the T-junction, which amounts to

relabeling the last leg at the junction (marked by “×”).

5 Topological defect lines in rational CFTs

Let us now discuss TDLs in rational conformal field theories (RCFTs), which are in general

not invertible lines, and examine several concrete examples. We begin with the simplest

case of diagonal modular invariant theories, where the TDLs that commute with the chiral

vertex algebra are completely classified by the Verlinde lines. We then move on to con-

sidering TDLs in more general RCFTs, and further discuss their relations to orbifolds and

dualities.

5.1 Verlinde lines in diagonal RCFTs

In an RCFT with diagonal modular invariance, there is a simple and explicit construction

for a family of TDLs, known as the Verlinde lines, that commute with not only the Virasoro

algebra but the entire (left and right) chiral vertex algebra of the RCFT [2, 7]. In fact,

modular invariance constrains the Verlinde lines in a diagonal RCFT to be in one-to-one

correspondence with the chiral vertex algebra primaries.

We begin with some general discussions of diagonal RCFTs. The partition function of

an RCFT takes the form
Z(τ, τ̄) =

∑
i,j

nijχi(τ)χ̄j(τ̄), (5.1)

where χi(τ) is the character of an irreducible representation of the chiral vertex alge-

bra, labeled by the index i. Under the modular S transformation, we have χi(−1/τ) =∑
j Sijχj(τ), where the matrix Sij is unitary and symmetric. The vacuum representation

is labeled by i = 0, and the degeneracies nij are non-negative integers, with nij = δij for a

diagonal modular invariant theory. The fusion ring takes the form

[i]× [j] =
∑
k

Nk
ij [k], (5.2)

where the fusion coefficients Nk
ij are non-negative integers that obey the Verlinde formula,

Nk
ij =

∑
`

Si`Sj`S
∗
k`

S0`
. (5.3)

Let us now review the action L̂ of a Verlinde line on the bulk Hilbert space. In a

diagonal modular invariant theory, the primaries are simply denoted by |φk〉, in correspon-

dence with irreducible representations of the chiral vertex algebra. There is a one-to-one
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correspondence between the Verlinde lines and the primaries of the chiral vertex algebra.

A Verlinde line Lk corresponding to φk is a TDL with the property

L̂k|φi〉 =
Ski
S0i
|φi〉 , (5.4)

and that it commutes with both the left and the right chiral vertex algebra. The action

L̂ on the bulk Hilbert space is highly constrained by the requirement that in the S dual

channel, the Hilbert space HLk of defect operators at the end of Lk can be decomposed

into the left and right Virasoro multiplets with non-negative integral degeneracies. Indeed,

from the modular S transformation of the torus character, we deduce the partition function

of the Hilbert space HLk of defect operators at the end of Lk,

ZLk(τ, τ̄) =
∑
i,j

N j
kiχi(τ)χ̄j(τ̄). (5.5)

Namely, HLk consists of states in the representation i of the chiral vertex algebra and rep-

resentation j of the anti-chiral vertex algebra, with degeneracy N j
ki, which are in particular

non-negative integers. For k 6= 0, states in HLk typically have non-integer spins. We will

investigate the modular T transformation of ZLk in detail later.

By the Verlinde formula, we see that the fusion ring of the Verlinde lines takes an

identical form as the fusion ring of the chiral algebra primary operators in the RCFT,

LiLj =
∑
k

Nk
ijLk. (5.6)

Interpreted as the fusion relations of TDLs, the r.h.s. is a direct sum of TDLs, where Lk
appears with multiplicity Nk

ij . Note that the Verlinde lines always generate a commutative

fusion ring.

So far, we have reviewed the action L̂k of Verlinde lines on the bulk Hilbert space.

The full fusion category of Verlinde lines in a diagonal RCFT, which can be obtained by

forgetting the braiding in the modular tensor category, has long been discussed since the

work of Moore and Seiberg [37, 38, 74]. We will review several examples in the rest of

this section.

The formula (5.4) for the Verlinde lines does not apply to non-diagonal modular in-

variant theories. There is a straightforward generalization when the non-diagonal theory is

defined through an automorphism of the fusion rules for the bulk local operators [7]. For

block-diagonal modular invariant theories, the fusion relations of TDLs can be noncommu-

tative (see, for example, [15] for related discussions).

5.1.1 Ising model

The c = 1
2 critical Ising model has three Virasoro primaries:

10,0, ε 1
2
, 1
2
, σ 1

16
, 1
16
, (5.7)

which are the identity operator, the energy operator, and the spin field, respectively, with

their conformal weights indicated in the subscripts.
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There are three simple Verlinde lines: the trivial line I, the Z2 invertible line η, and

the N line. Together they form a Z2 Tambara-Yamagami category, which is discussed in

section 4.3.1. In particular, the N line is the duality defect [12, 13, 72] for the Kramers-

Wannier duality [73]. These TDLs act on the bulk local primary operators with eigenvalues:

1 ε σ

η̂ : 1 1 −1

N̂ :
√

2 −
√

2 0

(5.8)

The fusion relations are given by

η2 = I, N2 = I + η, ηN = Nη = N, (5.9)

from which we see that η and N are both unoriented, namely, η = η, N = N . The

Hilbert spaces of defect operators at the endpoints of η and N are determined by the

fusion coefficients as in (5.5), and are spanned by

Hη : ψ 1
2
,0, ψ̃0, 1

2
, µ 1

16
, 1
16
,

HN : s 1
16
,0, s̃0, 1

16
, Λ 1

16
, 1
2
, Λ̃ 1

2
, 1
16
,

(5.10)

where we only listed the primaries. Note that the defector operator µ is the disorder

operator in the critical Ising model.

The only nontrivial T-junctions involving simple TDLs are the ones corresponding to

the junction vector space VN,N,η and its cyclic permutations. We fix a basis vector v ∈
VN,N,η, along with its permutation images CN,N,η(v) ∈ VN,η,N , CN,η,N (CN,N,η(v)) ∈ Vη,N,N .

We normalize their two-point functions to

h(v, CN,η,N (CN,N,η(v))) = h(CN,N,η(v), CN,N,η(v)) =
√

2, (5.11)

such their norm is 2
1
4 , the same as the norm of the identity junction vectors in the trivial

junction spaces VN,N,I , VN,I,N , and VI,N,N . In the following, the H-junction crossing kernels

will be written with respect to the basis vector v ∈ VN,N,η and the identity junction vector

in VN,N,I and Vη,η,I . The nontrivial crossing kernels are [37](
K̃N,N
N,N (I, I) K̃N,N

N,N (I, η)

K̃N,N
N,N (η, I) K̃N,N

N,N (η, η)

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
, K̃η,N

N,η (N,N) = −1, (5.12)

The crossing relations and some of their consequences are illustrated in figure 28 and

figure 31, respectively.

The duality defect N in the critical Ising model is one of the simplest examples of a

non-invertible line. From (5.8), we see that the spin field σ has zero eigenvalue under N̂ .

What happens when we deform the TDL N past the spin field σ then? It turns out that

as we do so, the spin field σ leaves behind the Z2 line η attached to the defect operator

µ ∈ Hη, as in figure 29. More precisely, the action N̂v : H → Hη with v ∈ Vη,N,N — defined

by the right figure of figure 14, with L = N , L′ = η, and φ(x) = σ(x) — acts on σ as

N̂v : |σ〉 7→ α |µ〉 , (5.13)
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N

N N

N

=
1√
2

N

N N

N

+
1√
2

N

N N

N

η

N

N N

N

η
=

1√
2

N

N N

N

− 1√
2

N

N N

N

η

Figure 28. The H-junction crossing relations involving the TDL N .

σ

N

=
α√
2

μ

η

N

Figure 29. In the critical Ising model, moving the TDL N past the spin field σ leaves behind the

Z2 line η attached to the defect operator µ ∈ Hη, and a T-junction. N is the order/disorder duality

defect that exchanges σ with µ.

σ σ
=

1√
2

σ σ
+

1√
2

σ η σ

Figure 30. Applying partial fusion to the two-point function of spin fields 〈σ(x)σ(0)〉 circled by

an N loop.

for some coefficient α. This is indeed what we expect of the duality defect N : it exchanges

the spin field σ (a bulk local operator) with the disorder operator µ (a defect operator) [12].

By contrast, the action N̂ : H → H, defined by the left figure of figure 14, maps within the

bulk Hilbert space, and therefore projects out σ.

Let us prove figure 29, or equivalently, (5.13) and determine the coefficient α. Since the

TDL N preserves the conformal weights, by inspecting the bulk (5.7) and defect Hilbert

spaces (5.10), we see that only the defect operator µ ∈ Hη can potentially be created, as

we move N past σ. The bulk local operator σ itself is not created because the eigenvalue

of N̂ on σ is 0. It remains to compute the coefficient α in (5.13), and show that it is

nonzero. We normalize σ(x) and µ(x) such that they have identical two-point functions.

Consider the two-point function of spin fields circled by an N loop, as in figure 30, and

apply partial fusion to a pair of N lines using figure 28. The first term on the r.h.s. is zero

since N̂ |σ〉 = 0, while the second term is 1√
2

multiplied by the two-point function of the

defect operator N̂v ·σ ∈ Hη. Matching the coefficients on the two sides, we obtain α =
√

2.

Correlation functions of defect operators. Let us consider a few examples of corre-

lation functions of defect operators (at the end of TDLs) in the critical Ising model. First

– 34 –



J
H
E
P
0
1
(
2
0
1
9
)
0
2
6

=
1√
2

+
1√
2

= 0

=
1√
2

+
1√
2

=

=
1√
2

− 1√
2

= −

Figure 31. Some consequences of the H-junction crossing relations and constraints thereof.

N N

s

s s

s

N N

s

s s

s

η

Figure 32. The four-point functions of s(x) joined by H-junctions, 〈s(x1)s(x2)s(x3)s(x4)〉IH and

〈s(x1)s(x2)s(x3)s(x4)〉ηH.

consider the four-point function of the weight-( 1
16 , 0) operator s(x) in HN , where s(x1),

s(x2) are connected by an N line, and s(x3), s(x4) connected by another N line. The

12 → 34 channel contains a single Virasoro conformal block, namely, the identity channel

block (see the left figure of figure 32). Thus, we have

〈s(x1)s(x2)s(x3)s(x4)〉IH = x
− 1

8
13 x

− 1
8

24 F
(

1

16
,

1

16
,

1

16
,

1

16
; 0;x

)
, (5.14)

where x ≡ x12x34
x13x24

is the conformally invariant cross ratio, and s(x) is normalized by

〈s(x)s(0)〉 = x−
1
8 (with the two s’s connected by an N line).

Similarly, we can consider the four-point function of s(x) joined by an H-junction where

the internal TDL is the Z2 line η rather than the trivial line I. In this case, the 12 → 34

channel contains a single conformal block corresponding to the internal primary ψ ∈ Hη
(see the right figure of figure 32). We have

〈s(x1)s(x2)s(x3)s(x4)〉ηH = C2
ssψx

− 1
8

13 x
− 1

8
24 F

(
1

16
,

1

16
,

1

16
,

1

16
;

1

2
;x

)
, (5.15)

The conformal blocks appearing in (5.14) and (5.15) are

F
(

1

16
,

1

16
,

1

16
,

1

16
; 0;x

)
= x−

1
8 (1− x)−

1
8

√
1 +
√

1− x
2

,

F
(

1

16
,

1

16
,

1

16
,

1

16
;
1

2
;x

)
= 2x−

1
8 (1− x)−

1
8

√
1−
√

1− x
2

.

(5.16)
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Under the crossing transformation that permutes x1, x2, x3, x4 cyclically, x → 1 − x, and

the blocks transform as

F
(

1

16
,

1

16
,

1

16
,

1

16
; 0; 1− x

)
=

1√
2
F
(

1

16
,

1

16
,

1

16
,

1

16
; 0;x

)
+

1

2
√

2
F
(

1

16
,

1

16
,

1

16
,

1

16
;

1

2
;x

)
,

F
(

1

16
,

1

16
,

1

16
,

1

16
;

1

2
; 1− x

)
=
√

2F
(

1

16
,

1

16
,

1

16
,

1

16
; 0;x

)
− 1√

2
F
(

1

16
,

1

16
,

1

16
,

1

16
;

1

2
;x

)
.

(5.17)

On the other hand, it follows from the H-junction crossing relation that,

〈s(x1)s(x2)s(x3)s(x4)〉I H =
1√
2
〈s(x1)s(x2)s(x3)s(x4)〉IH +

1√
2
〈s(x1)s(x2)s(x3)s(x4)〉ηH .

(5.18)

Writing the l.h.s. as a single conformal block in the 23 → 14 channel (with the identity

being the internal primary), and using the first line of (5.17), we determine Cssψ = 1√
2

(the

overall sign can be absorbed into a redefinition of ψ).

As another example, consider the torus one-point function of ψ attached to an N loop

wrapping the time direction via the NNη junction, which we denote by 〈ψ〉T 2,N . The

analogous torus one-point function with the N loop wrapping the spatial direction, related

by the modular S transform, will be denoted by 〈ψ〉NT 2 . See figure 33. It is easy to deduce

from the fusion rule that, when cut along a spatial circle, 〈ψ〉T 2,N receives contributions

from the conformal families of s 1
16
,0 and Λ 1

16
, 1
2

in HN , while 〈ψ〉NT 2 receives contribution

from the conformal family of the spin field σ 1
16
, 1
16

only. From their modular property,

together with the structure constant Cssψ derived above, we can determine21

〈ψ〉T 2,N =
1√
2
η(τ)(χ0(τ̄)− χ 1

2
(τ̄)), 〈ψ〉NT 2 = η(τ)χ 1

16
(τ̄). (5.19)

Here, η(τ) is the Dedekind eta function which represents the c = 1
2 torus conformal block

for the one-point function of a weight- 1
2 primary, and with a weight- 1

16 primary running in

the loop; and χh(τ) is the c = 1
2 (degenerate) Virasoro character associated with a primary

of weight h.

5.1.2 Tricritical Ising model

The c = 7
10 tricritical Ising model has six Virasoro primaries:

10,0, ε 1
10
, 1
10
, ε′3

5
, 3
5

, ε′′3
2
, 3
2

, σ 3
80
, 3
80
, σ′7

16
, 7
16

. (5.20)

Apart from the trivial line I and the Z2 invertible line η, there are four more simple

Verlinde lines, W ≡ Lφ1,3 , ηW , N ≡ Lφ2,1 , and WN .22 They act on the bulk local primary

21The expression for 〈ψ〉NT2 can be derived directly from the OPE coefficient Cσσψ involving the bulk

local operator σ and the defect operator ψ.
22In this paper, we follow the standard convention in [75] for φr,s with 1 ≤ r < p′, 1 ≤ s < p to label the

Virasoro primaries of the minimal model M(p, p′).
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ψ

N

η

ψ

N
η

Figure 33. The torus one-point function of ψ attached to an N loop via the NNη junction,

〈ψ〉T 2,N and 〈ψ〉NT 2 .

operators as

1 ε ε′ ε′′ σ σ′

η̂ : 1 1 1 1 −1 −1

Ŵ : ζ −ζ−1 −ζ−1 ζ −ζ−1 ζ

N̂ :
√

2 −
√

2
√

2 −
√

2 0 0

(5.21)

where ζ ≡ 1+
√

5
2 is the golden ratio. Apart from the ones we already stated, some nontrivial

fusion relations of the TDLs are

W 2 = I +W, N2 = I + η. (5.22)

The defect Hilbert space HW contains 9 primaries with spins

HW : s ∈ Z +

{
0,±2

5

}
. (5.23)

and the defect Hilbert space of HN contains 8 primaries with spins

HN : s ∈ Z
2
± 1

16
. (5.24)

Note that ε′ is the only nontrivial primary that commutes with the TDL N . Under the

RG flow generated by ε′, the tricritical Ising model flows to either the critical Ising model or

a massive phase with three degenerate vacua, depending on the sign of the deformation [76].

In the former case, both η and N survive the RG flow, and their fusion relation is preserved.

They flow to the Z2 invertible line η and the N line, respectively (denoted by the same

symbols), in the critical Ising model.

5.1.3 Tetracritical Ising model

The c = 4
5 tetracritical Ising model M(6, 5) has 10 simple Verlinde lines, which may be

labeled by

I, C ≡ Lφ1,5 , M ≡ Lφ1,3 , W ≡ Lφ2,5 , MW, CW, N, CN, WN, CWN, (5.25)

with the fusion relations

C2 = I, M2 = I +M + C, W 2 = I +W, N2 = I +M, MN = N + CN. (5.26)
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In this model, the C and M lines (along with their defect operators) generate the rank-three

fusion category Rep(S3), and they act on the bulk local primary operators as

1 φ1,2 φ1,3 φ1,4 φ1,5 φ2,1 φ2,2 φ2,3 φ2,4 φ2,5

Ĉ : 1 −1 1 −1 1 1 −1 1 −1 1

M̂ : 2 0 −1 0 2 2 0 −1 0 2

(5.27)

They are preserved by φ1,5, φ2,1, φ2,5, among which only the weight-( 2
5 ,

2
5) primary φ2,1 is

relevant. The relation between these TDLs and those of the c = 4
5 three-state Potts model

will be discussed in section 5.2.1. The defect Hilbert space HC contains 10 primaries

with spins

HC : s ∈ Z
2
. (5.28)

The defect Hilbert space HM contains 15 primaries with spins

HW : s ∈ Z±
{

0,
1

3
,

1

2

}
. (5.29)

The W line acts on the bulk local primary operators as

1 φ1,2 φ1,3 φ1,4 φ1,5 φ2,1 φ2,2 φ2,3 φ2,4 φ2,5

Ŵ : ζ ζ ζ ζ ζ −ζ−1 −ζ−1 −ζ−1 −ζ−1 −ζ−1
(5.30)

where ζ ≡ 1+
√

5
2 is the golden ratio. The defect Hilbert space HM contains 18 primaries

with spins

HM : s ∈ Z±
{

0,
2

5

}
. (5.31)

5.1.4 Pentacritical Ising model

The c = 6
7 pentacritical Ising model M(7, 6) has 15 simple Verlinde lines. Among them,

the following three lines

I, X ≡ Lφ1,5 , Y ≡ Lφ1,3
(5.32)

form a closed fusion ring with the relations

X2 = I + Y, Y 2 = I +X + Y, (5.33)

which we recognize as the representation ring RC(ŝo(3)5). The defect Hilbert space HX
contains 25 primaries with spins

HX : s ∈ Z±
{

0,
1

7
,

3

7

}
, (5.34)

and the defect Hilbert space HY contains 30 primaries with spins

HY : s ∈ Z±
{

0,
1

7
,

2

7

}
. (5.35)
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It follows from unitarity and the fusion relations that 〈X〉 and 〈Y 〉 are given by the unique

positive solution to the quadratic polynomial equations

1 + 〈Y 〉 − 〈X〉2 = 1 + 〈X〉+ 〈Y 〉 − 〈Y 〉2 = 0. (5.36)

By (5.4), the X and Y lines both commute with the bulk local primaries φ2,1, φ3,1, φ1,6,

φ2,6. In particular, the weight-( 3
8 ,

3
8) primary φ2,1 generates a relevant deformation, under

which the pentacritical Ising model is expected to flow to a TQFT that admits the TDLs

X and Y .

5.1.5 Lee-Yang model

Finally, we consider the non-unitary minimal model M(2, 5) with central charge c = −22
5 .

This theory has two simple Verlinde lines

I, W ≡ Lφ1,2 , (5.37)

which form the fusion ring with the relation

W 2 = I +W. (5.38)

The nontrivial line W has cylinder vacuum expectation value 〈W 〉 = −ζ−1, and acts on

the bulk local primary operators by

Ŵ : (1, φ1,2) 7→ (−ζ−1, ζφ1,2), (5.39)

where ζ = 1+
√

5
2 is the Golden ratio. The crossing kernels are given by [37],

K̃W,W
W,W ≡

(
K̃W,W
W,W (I, I) K̃W,W

W,W (I,W )

K̃W,W
W,W (W, I) K̃W,W

W,W (W,W )

)
=

(
−ζ −ζ
1 ζ

)
. (5.40)

Some crossing relations are illustrated in figure 36 (with ζ̃ = −ζ−1).

From (5.5), we see that the defect Hilbert space HW is spanned by three primaries of

weights (
0,−1

5

)
,

(
− 1

5
, 0

)
,

(
− 1

5
,−1

5

)
. (5.41)

5.2 More general topological defect lines

In this section, we discuss examples of TDLs that are neither invertible lines nor Ver-

linde lines.

5.2.1 Three-state Potts model

The c = 4
5 critical three-state Potts model has 12 Virasoro primaries, including eight scalar,

two spin-1, and two spin-3 primaries, as listed below:

10,0, ε 2
5
, 2
5
, X 7

5
, 7
5
, Y3,3, Φ 7

5
, 2
5
, Φ̃ 2

5
, 7
5
, Ω3,0, Ω̃0,3, σ 1

15
, 1
15
, σ∗1

15
, 1
15

, Z 2
3
, 2
3
, Z∗2

3
, 2
3

.

(5.42)
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The three-state Potts model may be regarded as either a non-diagonal Virasoro minimal

model, or a diagonal RCFT with respect to the W3 algebra generated by Ω3,0, Ω̃0,3, and the

Virasoro algebra. The model has an S3 global symmetry generated by an order-3 element

η, and a charge conjugation symmetry C. Note that η commutes with the W3 algebra, but

C, which acts on Ω3,0 and Ω̃0,3 with a minus sign, does not.

Let us first regard the model as a diagonal RCFT with respect to the W3 algebra, and

consider the Verlinde lines. There are six primaries: 1, ε, σ, σ∗, Z, Z∗, and correspondingly

six TDLs that commute with the W3. Three of them, I, η, and η = η2 are the invertible

lines for the Z3 subgroup of S3 that commutes with W3. The remaining three TDLs, which

we denote by W , ηW , and ηW , are not invertible. The W line obeys the fusion relation

W 2 = I +W. (5.43)

These are not all the simple TDLs with respect to the Virasoro algebra. Firstly, there

is the invertible line C, and its fusion product with all six simple TDLs that commute

with W3. In addition, there are four more simple TDLs [7], which we denote by N,N ′ =

CN,WN,WN ′. Note that N and N ′ are unoriented, namely, N = N , N ′ = N ′. They

obey the fusion relations

N2 = (N ′)2 = I + η + η. (5.44)

The action of the TDLs η, W , and N on the bulk Virasoro primary operators are

1 ε X Y Φ Φ̃ Ω Ω̃ σ σ∗ Z Z∗

η̂ : 1 1 1 1 1 1 1 1 ω ω2 ω ω2

Ŵ : ζ −ζ−1 −ζ−1 ζ −ζ−1 −ζ−1 ζ ζ −ζ−1 −ζ−1 ζ ζ

N̂ :
√

3 −
√

3
√

3 −
√

3
√

3 −
√

3 −
√

3
√

3 0 0 0 0

(5.45)

where ω ≡ e
2πi
3 and ζ ≡ 1+

√
5

2 . The C line acts on the first few bulk local primaries by

1 ε X Y Φ Φ̃ Ω Ω̃

Ĉ : 1 1 1 1 −1 −1 −1 −1
(5.46)

and exchanges σ with σ∗, and Z with Z∗. By the modular S transformation, one deduces

the spectra of HN and HN ′ ,

ZN (τ, τ̄) = (χ1,2 + χ1,4)(χ1,1 + χ1,5 + 2χ1,3)∗ + (χ2,4 + χ2,2)(χ2,5 + χ2,1 + 2χ2,3)∗, (5.47)

and ZN ′(τ, τ̄) = (ZN (τ, τ̄))∗. Here, we observe that the states have spins

HN : s ∈ Z
2

+

{
1

8
,− 1

24

}
, HN ′ : s ∈ Z

2
+

{
−1

8
,

1

24

}
. (5.48)

In the next section, we will see that these consistent with the spin selection rule imposed

by the fusion ring. Similarly, the spectrum of HW is

ZW (τ, τ̄) = (χ1,1 + χ1,5)(χ2,1 + χ2,5)∗ + (χ2,1 + χ2,5)(χ1,1 + χ1,5)∗ + |χ2,1 + χ2,5|2

+ 2(χ2,3χ
∗
1,3 + χ1,3χ

∗
2,3) + 2|χ2,3|2 ,

(5.49)
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whose states have spins

s ∈ Z +

{
0,±2

5

}
. (5.50)

The Z2 orbifold of the three-state Potts model by the charge conjugation symmetry

C is isomorphic to the diagonal modular invariant tetracritical Ising model M(6, 5). The

TDLs M = η + η and W commute with C, and the crossing phases between M,W and

C are trivial. They survive the orbifold and give rise to TDLs in the tetracritical Ising

model M(6, 5). In particular, M = η+ η becomes a simple TDL in M(6, 5), and obeys the

fusion relation

M2 = I +M + C̃, (5.51)

where C̃ is the invertible line associated with the dual Z̃2 symmetry that assigns −1 to the

twisted sector states. The fusion product MW is also simple. N and N ′ give rise to the

same simple TDL in M(6, 5), which we denote by Ñ and obeys the fusion relations

MÑ = Ñ + C̃Ñ , Ñ2 = I +M. (5.52)

Altogether, the fusion among M, C̃,W, Ñ generate the 10 simple Verlinde lines of M(6, 5),

as discussed in section 5.1.3.

5.2.2 Topological Wilson lines in WZW and coset models

The WZW model as a diagonal modular invariant theory with respect to the Gk current

algebra admits a continuous family of invertible lines associated with the (G×G)/Z(G)

global symmetry, where Z(G) is the center of G that acts axially on G×G.23 In addition,

there are also the Verlinde lines LR of the current algebra, one for each G×G representation

(R,R) that appears in the spectrum of current algebra primaries. It was observed in [48, 77]

that the Verlinde lines of the WZW model coincide with a family of topological Wilson

lines that are defined by holomorphic flat connections, of the form

WR(G) = trR P exp

[
− i
k
ta
∮
dzja(z)

]
, (5.53)

where ta are the generators of G. The regularization used to define WR(G) is compatible

with the isotopy invariance only when the coefficient of the connection is fixed as in (5.53)

(up to a finite renormalization).

We can generalize (5.53) to topological Wilson lines of holomorphic flat connections

built out of the currents of a subgroup H ⊂ G, and traced over the representations R of

H, which we denote by WR(H). The analogous topological Wilson lines constructed out of

the anti-holomorphic currents of H will be denoted by WR(H). Note that while previously

WR(G) and WR(G) act on WZW primaries in identical ways and are isomorphic to the

Verlinde line LR, the generalizations WR(H) and WR(H) are generally different and do

not correspond to Verlinde lines. When H is a U(1) subgroup, WR(H) and WR(H) are

23Note that in the diagonal Gk WZW model, an axial center symmetry transformation (g, g−1) ∈ G×G
with g ∈ Z(G) commutes with the current algebra, and acts trivially on all bulk operators. It follows that

there is only one copy of the Z(G) global symmetry present in theory.
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the invertible lines corresponding to the left and right H symmetries. The set of invertible

lines associated to all U(1) subgroups of G generates the left and right G symmetries.

Given a subgroup K of G with H ⊂ K ⊂ G, and representation R of K, the topological

Wilson lines WR(K) and WR(K) commute with all currents of H, and therefore are TDLs

of the G/H gauged WZW model. Thus, WR(K) and WR(K) flow to TDLs in the G/H

coset CFT [78].

As a simple example, the SU(2)3 WZW model admits three topological Wilson (Ver-

linde) lines Wj , where j = 0, 1
2 , 1,

3
2 labels the spin of the SU(2) representation. Upon

gauging the U(1) subgroup, the gauged WZW model flows to the SU(2)3/U(1) coset which

is isomorphic to the three-state Potts model. Indeed, W 3
2

flows to the Z2 invertible line

C, while W1 flows to the W line of the three-state Potts model, with their fusion relations

preserved by the RG flow.

More generally, the SU(2)k WZW model admits topological Wilson lines Wj , with

j = 0, 1
2 , · · · ,

k
2 . In particular, C ≡ W k

2
is an invertible line corresponding to the Z2

center symmetry. The Wj lines remain in the SU(2)k/U(1) coset CFT, and commute with

the parafermion algebra. In particular, SU(2)k/U(1) deformed by the weight-( k−1
k , k−1

k )

parafermion bilinear e
πi
k ψ1ψ̃1 + e−

πi
k ψ1ψ̃1 flows to the (Ak, Ak+1) minimal model [79]. The

Wj ’s are preserved along the RG flow and become a subset of the Verlinde lines of the

(Ak, Ak+1) minimal model.

Next, let us consider the c = 6
5 coset model SU(3)2

U(1)×U(1) . The TDLs of the SU(3)2 WZW

model that commute with the U(1) × U(1) current algebra survive the gauging and give

the TDLs of the coset CFT. These include the topological Wilson lines W`1,`2 associated

with the representations [`1, `2], `1, `2 = 0, 1, 2, `1 + `2 ≤ 2, that obey the fusion relations

W1,0W1,0 = W0,1 +W2,0, W1,0W0,1 = I +W1,1, W 2
1,1 = I +W1,1,

W2,0W2,0 = W0,2, W2,0W0,2 = I, W2,0W1,1 = W0,1.
(5.54)

In fact, we see that W2,0,W0,2 are the invertible lines associated with the Z3 center symme-

try, which commute with W1,1. There are also invertible lines of the coset model associated

with the S3 Weyl group symmetry. Furthermore, given a subgroup H ' SU(2) × U(1) of

SU(3), we have the topological Wilson lines Wj(H) and W j(H), where j = 1
2 , 1 labels the

spin of an SU(2)2 representation. There are three such subgroups H1, H2, H3 that contain

a given maximal torus U(1) × U(1), permuted by the Weyl group action; they lead to the

Wj(Hi) and W j(Hi) lines in the coset CFT. Note that the j = 1 Wilson lines W1(Hi) and

W 1(Hi) correspond to the Z2 center symmetry of the SU(2) in Hi, acting left and right re-

spectively. While W 1
2
(Hi) obeys the SU(2)2 fusion relation W 1

2
(Hi)W 1

2
(Hi) = I +W1(Hi),

W 1
2
(Hi)W 1

2
(Hj) is a simple TDL for i 6= j.

5.2.3 Models with 1
2
E6 fusion ring

The “1
2E6” fusion ring contains three simple objects, I,X, Y , with the fusion relations

X2 = I, Y 2 = I +X + 2Y, XY = Y X = Y. (5.55)

The H-junction crossing kernels that solve the pentagon identity were obtained in [49]. This

set of TDLs has the peculiar property that it does not admit braiding, despite the fusion
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ring being commutative. Note that the junction vector space VY,Y,Y is two-dimensional,

and the cyclic permutation map acts nontrivially on one of the two basis junction vectors

in VY,Y,Y .

Consider the non-diagonal SU(2)10 WZW model of E6 type [75], whose torus partition

function is

Z = |χ0 + χ3|2 + |χ 3
2

+ χ 7
2
|2 + |χ2 + χ5|2, (5.56)

where χj(τ) is the spin-j affine SU(2) character. Now, consider the TDLs X and Y that

preserve the SU(2) current algebra, and act on the SU(2) primaries according to the fol-

lowing twisted partition functions

ZX = |χ0 + χ3|2 − |χ 3
2

+ χ 7
2
|2 + |χ2 + χ5|2,

ZY = ((1 +
√

3)χ0 + (1−
√

3)χ3)(χ0 + χ3) + ((1−
√

3)χ2 + (1 +
√

3)χ5)(χ2 + χ5).

(5.57)

Indeed, they obey the fusion relation (5.55), and in particular the modular S transform of

ZY gives the partition function of the defect operator Hilbert space HY ,

ZHY = (χ1 + χ2 + χ3 + χ4)(χ̄0 + χ̄2 + χ̄3 + χ̄5)

+ (χ 1
2

+ χ 3
2

+ 2χ 5
2

+ χ 7
2

+ χ 9
2
)(χ̄ 3

2
+ χ̄ 7

2
).

(5.58)

Here, we observe that the spins of states in HY obey

s ∈ Z +

{
0,

1

6
,

5

12
,

1

2
,

2

3
,

3

4

}
. (5.59)

We can construct analogous TDLs obeying the same fusion relations (5.55) in the

(A10, E6) minimal model [75]. The torus partition function is

Z =

9∑
r=1 step 2

|χr,1 + χr,7|2 + |χr,4 + χr,8|2 + |χr,5 + χr,11|2. (5.60)

The TDLs X and Y act on the Virasoro primaries according to the twisted characters

ZX =

9∑
r=1 step 2

|χr,1 + χr,7|2 − |χr,4 + χr,8|2 + |χr,5 + χr,11|2,

ZY =

9∑
r=1 step 2

((1 +
√

3)χr,1 + (1−
√

3)χr,7)(χr,1 + χr,7)

+ ((1−
√

3)χr,5 + (1 +
√

3)χr,11)(χr,5 + χr,11).

(5.61)

After performing the modular S transform on ZY , one sees that once again, the spins of

states in HY obey (5.59). In fact, we will see in section 6.4 that such a spin selection rule

follows entirely from the crossing relations of the X and Y lines.

Note that in either the non-diagonal SU(2)10 WZW model of E6 type or the (A10, E6)

minimal model, there is also a “conjugate” TDL Ỹ , whose action on the primaries is that

of the parity reversal of Y . The X and Ỹ lines generate a fusion ring that is identical to

that of X and Y , but as we will see later, the crossing kernels involving X and Ỹ belong

to a different solution to the pentagon identity than that of X and Y . In particular, the

spin selection rule of the states in H
Ỹ

is minus the spin content of (5.59).
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6 Crossing kernels and spin selection rules

For a given TDL L in a CFT, we would like to understand the general constraints on

the spins of states in HL, based on the fusion relations involving L, by considering the

modular T transformation property of the two-point function of defect operators in HL.

For some of the fusion rings considered, we provide alternative derivations of the crossing

kernels without having to explicitly solve the pentagon identity. We repeatedly use the fact

mentioned in section 2.2.7, that in the gauge choice defined in appendix A, R(L) obeys the

system of polynomial equations given by the abelianization of the fusion ring.

6.1 Tambara-Yamagami categories

As discussed in section 4.3.1, a Tambara-Yamagami (TY) category is an extension of an

abelian invertible fusion category by an additional TDL N , whose self-fusion gives a sum

over all TDLs in the invertible fusion category [68]. By definition, a TY category has trivial

cyclic permutation map; hence, we do not need to mark the ordering on the junctions (see

section 2.2.6). Its relation to duality defects is discussed in section 4.3.1. Below, we study

the TY categories associated to the abelian finite groups Z2 and Z3, and derive their spin

selection rules.

6.1.1 Z2 symmetry

Consider the fusion ring of the Z2 Tambara-Yamagami category, with the commutative

relations

η2 = I, N 2 = 1 + η, ηN = N . (6.1)

There are two solutions of the crossing kernels to the pentagon identity [37]. In the basis

specified in appendix A, the nontrivial crossing kernels are24

K̃N ,NN ,N ≡

(
K̃N ,NN ,N (I, I) K̃N ,NN ,N (I, η)

K̃N ,NN ,N (η, I) K̃N ,NN ,N (η, η)

)
=

ε√
2

(
1 1

1 −1

)
, K̃η,N

N ,η (N ,N ) = −1. (6.2)

For any pair of states |ψ〉, |ψ′〉 ∈ HN with equal conformal weight, let us consider the

matrix element of the cylinder propagator

〈ψ′|qL0− c
24 q̄L̄0− c̃

24 |ψ〉. (6.3)

As shown in figure 34, we can perform the modular T 2 transformation, and then apply the

H-junction crossing relation involving K̃N ,NN ,N , resulting in

e4πis〈ψ′|ψ〉 =
ε√
2
〈ψ′|1 + η̂−|ψ〉, (6.4)

where s is the spin h − h̃ of ψ, and η̂− is the operator acting on HN defined by an η line

wrapping the spatial circle, that is split over the temporal N line. We denote by η̂+ another

operator on HN defined by a spatial η line split over a temporal N line, with the opposite
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=
ε√
2

+
ε√
2

Figure 34. Applying the H-junction crossing relations to the T 2 transformation of N line in time

direction.

Figure 35. The action of η̂− (left) and η̂+ (right) on HN .

ordering of the pair of T-junctions. Both operators η̂− and η̂+, depicted in figure 35, are

special cases of the more general “lasso” diagrams shown in figure 15.

The operator η̂− is topological in the sense that it commutes with the Virasoro al-

gebra, and thus preserves the weights. Applying the H-junction crossing relation (more

specifically, K̃η,N
N ,η (N ,N ) = −1) to 〈ψ′|η̂2

−|ψ〉 allows us to determine η̂2
− = −1. Now, (6.4)

demands that 1+η̂−√
2

is a phase, but this is precisely the case for η̂− = ±i. Thus, we learn

that the spins of states in HN must obey

s ∈ 1

2
Z +


± 1

16
for ε = 1,

± 3

16
for ε = −1.

(6.5)

Indeed, the spins in the ε = 1 case are realized in the defect Hilbert space HN of the

N line TDL in either the critical Ising model (5.10) or the tricritical Ising model (5.24),

and we see here that it is a general consequence of the fusion relations of the TDLs. On

the other hand, the ε = −1 case is realized, for instance, in the tensor product of the

critical Ising model (similarly for tricritical Ising) with the SU(2)1 WZW model, which has

in particular a Z2 invertible line Lπ given in (4.14) (associated to the center of the left

SU(2) global symmetry) with an ’t Hooft anomaly. In this case, the identity and η lines

are realized by the Z2 lines of critical Ising model as before, but N is instead taken to be

the tensor product N ⊗ Lπ. The defect Hilbert space factorizes as HN⊗Lπ = HN ⊗HLπ ,

because the two TDLs belong to two decoupled theories. The defect Hilbert space HLπ
for the anomalous Z2 line Lπ obeys the spin selection rule (4.12) with k = 1 and n = 2,

which when considered together with the content (5.10) or (5.24) of HN gives the same

spin selection rule for HN⊗Lπ as in (6.5) with ε = −1.

24Here and in the rest of the main text, we abuse the notation by writing K̃ as K̃. Their relation is

spelled out in appendix A.
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6.1.2 Z3 symmetry

Our next example is the Z3 Tambara-Yamagami category, with the commutative fusion

relations

η2 = η, η̄2 = η, ηη = I, N 2 = I + η + η, ηN = ηN = N . (6.6)

There are two solutions of the crossing kernels to the pentagon identity. In the basis

specified in appendix A, the nontrivial crossing kernels are

K̃N ,NN ,N ≡


K̃N ,NN ,N (I, I) K̃N ,NN ,N (I, η) K̃N ,NN ,N (I, η)

K̃N ,NN ,N (η, I) K̃N ,NN ,N (η, η) K̃N ,NN ,N (η, η)

K̃N ,NN ,N (η, I) K̃N ,NN ,N (η, η) K̃N ,NN ,N (η, η)

 =
ε√
3

1 1 1

1 ω ω2

1 ω2 ω

 ,

K̃N ,ηη,N (N ,N ) = K̃N ,η̄η̄,N (N ,N ) = K̃η,N
N ,η̄ (N ,N ) = ω,

K̃η,N
N ,η (N ,N ) = K̃ η̄,N

N ,η̄ (N ,N ) = K̃N ,η̄η,N (N ,N ) = ω̄,

(6.7)

where ω is a third root of unity that is not one, and ε = ±1. Up to exchanging η with η,

we may take ω = e
2πi
3 .

Applying the modular T 2 transformation to the cylinder matrix element 〈ψ′|ψ〉, with

|ψ〉, |ψ′〉 ∈ HN , we deduce that

e4πis〈ψ′|ψ〉 =
ε√
3
〈ψ′|1 + η̂− + η̂−|ψ〉, (6.8)

where the topological operators η̂− and η̂− are defined as spatial η− and η− lines split off

a temporal N line, acting on HN . The property that K̃N ,η̄η,N (N ,N ) is a third root of unity

allows us to deduce that η̂3
− = η̂

3
− = 1, and that η̂− commutes with η̂−. Now, suppose

η̂−|ψ〉 = ωa|ψ〉, η̂−|ψ〉 = ωb|ψ〉, (6.9)

where a, b = 0, 1, or 2, then (6.8) demands that 1+ωa+ωb√
3

must be a phase. This is possible

for (a, b) = (1, 0), (2, 0), (1, 1) or (2, 2), and correspondingly we have the spin selection rule

for the states in HN ,

s ∈ 1

2
Z±


1

24
,

1

8
for ε = 1,

5

24
,

1

8
for ε = −1.

(6.10)

Strikingly, the ε = 1 case is indeed satisfied by (5.48) for HN and HN ′ in the three-state

Potts model. The ε = −1 case can be realized by tensoring these N and N ′ lines with the

Z2 line Lπ in the SU(2)1 WZW model.

6.2 Categories with Lee-Yang fusion ring

Consider the Lee-Yang fusion relation,

W 2 = I +W. (6.11)
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= ζ̃−1 + ζ̃−1

= ζ̃−1 + ζ̃−1

= − ζ̃−1

= ζ̃ = −

Figure 36. Some useful crossing relations involving W lines.

There are two solutions of the crossing kernels to the pentagon identity [37]. In the basis

specified in appendix A, the nontrivial crossing kernels are

K̃W,W
W,W ≡

 K̃W,W
W,W (I, I) K̃W,W

W,W (I,W )

K̃W,W
W,W (W, I) K̃W,W

W,W (W,W )

 =

(
ζ̃−1 ζ̃−1

1 −ζ̃−1

)
. (6.12)

Some other useful corollaries of the crossing relations are that, a W bubble on a W line can

be collapsed while introducing a factor of ζ̃, and a W triangle with a W prong attached

to each vertex can be collapsed into a WWW T-junction while introducing a factor of −1.

These identities are depicted in figure 36.

Let |ψ〉, |ψ′〉 ∈ HW . Applying a modular T 2 transformation and then the crossing

relations to the matrix element 〈ψ′|ψ〉 as in figure 37 give the relation

e4πis = ζ̃−1 + ζ̃−1Ŵ− = ζ̃−1 + e−2πisζ̃−1 − ζ̃−2Ŵ+, (6.13)

where Ŵ± are the operators acting on HW defined by splitting a spatial W line off a

temporal W line. Similarly, considering a modular T−2 transformation on the matrix

element 〈ψ′|ψ〉 gives

e−4πis = ζ̃−1 + ζ̃−1Ŵ+, (6.14)

The solutions to (6.13) and (6.14) with real s are

s ∈ Z +


0,±2

5
for ζ̃ =

1 +
√

5

2
,

0,±1

5
for ζ̃ =

1−
√

5

2
.

(6.15)

In the ζ̃ = 1+
√

5
2 case, the spin selection rule (6.15) is indeed confirmed by the operator

content of HW in the tricritical Ising model (5.23), in the tetracritical Ising model (5.31),

or in the three-state Potts model (5.50). The spins in the defect Hilbert space (5.41) of

the nontrivial Verlinde line in the Lee-Yang model precisely satisfy the ζ̃ = 1−
√

5
2 rules.
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= ζ̃−1 + ζ̃−1

= − ζ̃−1

Figure 37. Applying the H-junction crossing relations to the T 2 transformation of W line in time

direction.

6.3 Categories with RC(S3) fusion ring

Consider the fusion ring with the same relations as the decomposition rules for the tensor

product of S3 representations,

X2 = 1, Y 2 = I +X + Y, XY = Y X = Y. (6.16)

There are three solutions of the crossing kernels to the pentagon identity [69]. In the basis

specified in appendix A, the nontrivial crossing kernels are

K̃Y,Y
Y,Y ≡


K̃Y,Y
Y,Y (I, I) K̃Y,Y

Y,Y (I,X) K̃Y,Y
Y,Y (I, Y )

K̃Y,Y
Y,Y (X, I) K̃Y,Y

Y,Y (X,X) K̃Y,Y
Y Y (X,Y )

K̃Y,Y
Y,Y (Y, I) K̃Y,Y

Y,Y (Y,X) K̃Y,Y
Y,Y (Y, Y )

 =

1
2

1
2

ω
2

1
2

1
2 −

ω
2

1 −1 0

 ,

K̃Y,I
Y,Y (Y, Y ) = ω−1,

(6.17)

where ω is a third root of unity. There is a nontrivial cyclic permutation map CY,Y,Y given

by CY,Y,Y = K̃Y,I
Y,Y (Y, Y ) = ω−1. Note that all the crossing kernels involving an X external

line are trivial.

Let |ψ〉, |ψ′〉 ∈ HY . Consideration of modular T 2 and T−2 transformations on the

matrix element 〈ψ′|ψ〉 and applying cyclic permutation map and crossing relations as in

figure 38 gives the equations

e4πis =
1

2

[
1 + X̂− + e−2πisω

(
1− X̂−

)]
,

e−4πis =
1

2

[
1 + X̂− + e2πisω2

(
1− X̂−

)]
,

(6.18)

where X̂− : HY → HY is defined on the lower right of figure 38, similar to the η̂− operator

in section 6.1.1.

We find the spin selection rules

s ∈ Z +



0,
1

2
,

1

3
,

2

3
for ω = 1,

0,
1

2
,

1

9
,

4

9
,

7

9
for ω = e

2πi
3 ,

0,
1

2
,

2

9
,

5

9
,

8

9
for ω = e−

2πi
3 .

(6.19)
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=
1

2
+

1

2
+
ω

2

=
1

2
+

1

2
+
ω

2

= −

= ω = ω − ω

Figure 38. Derivation of the spin selection rules for the RC(S3) fusion ring. We apply the H-

junction crossing relations to the T 2 and T−2 transformations of a temporal Y line. The blue

and red-dashed lines are used to denote the Y and X lines respectively. The black-dotted lines

representing the trivial lines, and the crosses marking the ordering at trivial junctions are in fact

unnecessary. We include them to make explicit the particular crossing kernels that are applied here.

However, it is important to keep track of the marks on the Y Y Y junctions due to the nontrivial

cyclic permutation map acting on VY,Y,Y .

The spins (5.29) in the defect Hilbert space HM of the tetracritical Ising model precisely

satisfy the ω = 1 rules.

In the ω 6= 1 cases, which correspond to the twisted Rep(S3) fusion categories, the

spin selection rules are realized by the Z2 orbifold of CFTs with ’t Hooft anomalous S3

symmetry [27]. A particular example would be the Z2 orbifold of the tensor product of

the tetracritical Ising model with SU(2)1 WZW model where the Z3 subgroup of the S3

symmetry is taken to be the diagonal combination which has an ’t Hooft anomaly.

6.4 Categories with 1
2
E6 fusion ring

For TDLs X and Y that generate the fusion ring of the 1
2E6 fusion category (5.55), there

are four possible sets of crossing kernels that solve the pentagon identity, related by Ga-

lois group action [49]. The explicit formulae of the crossing kernels are summarized in

appendix C.2. The spin selection rule on states in HY can be derived from (figure 39)

e4πis = K̃Y,Y
Y,Y (I, I) + K̃Y,Y

Y,Y (I,X)X̂− + K̃Y,Y
Y,Y (I, Y )ij(Ŷ−)ij ,

(Ŷ−)ij = e−2πis
[
K̃Y,Y
Y,Y (Y, I)ji + K̃Y,Y

Y,Y (Y,X)jiX̂− + K̃Y,Y
Y,Y (Y, Y )ji,kl(Ŷ−)kl

]
,

(6.20)

together with the property X̂2
− = −1 which follows easily from the crossing relations.

The subscripts i, j = 1, 2 labels the two basis junction vectors of VY,Y,Y . The topological
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= K̃Y,Y
Y,Y (I, I) + K̃Y,Y

Y,Y (I,X) + K̃Y,Y
Y,Y (I, Y )ij

i

j

i

j
= K̃Y,Y

Y,Y (Y, I)ji + K̃Y,Y
Y,Y (Y,X)ji + K̃Y,Y

Y,Y (Y, Y )ji,kl
k

l

Figure 39. Derivation of the spin selection rules for the 1
2E6 fusion ring. We apply the H-junction

crossing relations to the T 2 and T−2 transformations of a temporal Y line. The blue- and red-

dashed lines are used to denote the Y and X lines, respectively. Again, the black-dotted line with

crosses labeling the (marked) trivial line in the top left diagram merely keeps track of the crossing

kernel applied here, and may be omitted. However, it is important to keep track of the marks on

the Y Y Y junctions due to the nontriviality of the cyclic permutation map on VY,Y,Y .

operator (Ŷ−)ij acting on HY is defined in the upper right figure of figure 39 with the

marked legs specified.

The resulting selection rule on s corresponding to the four sets of solutions to pentagon

identity are

s ∈ Z +



0,
1

6
,

1

4
,

1

2
,

2

3
,

11

12
. (a)

0,
1

4
,

1

3
,

1

2
,

7

12
,
5

6
, (b)

0,
1

12
,

1

3
,
1

2
,

3

4
,
5

6
, (c)

0,
1

6
,

5

12
,
1

2
,

2

3
,
3

4
, (d)

(6.21)

The case (d) is precisely the spin content of HY in the non-diagonal SU(2)10 WZW model

of E6 type, and in the (A10, E6) minimal model. The case (b) is the spin content of H
Ỹ

in

these models, where Ỹ is related to Y by parity. The spin selection rule provides a highly

nontrivial check of the existence of the TDLs generating the 1
2E6 fusion ring in these CFTs.

7 Constraints on RG flows

In this section, we discuss the constraints from TDLs on RG flows. In the case when the

RG flow ends in a massive phase, using modular invariance, we derive simple sufficient

conditions for degenerate vacua in the IR. Furthermore, for certain massive flows, the

IR TQFTs can be completely determined from the consideration of TDLs, together with

modular invariance.

We begin with a general discussion on TDLs along RG flows. Recall that in unitary

theories, a bulk local operator φ commutes with a TDL L if and only if L̂|φ〉 = 〈L〉|φ〉,
where 〈L〉 ≡ 〈0|L̂|0〉 is the expectation value of an empty L loop on the cylinder, as defined
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in section 2.2.4. If φ is a relevant conformal primary, then it triggers an RG flow, and all

the TDLs that commute with φ will be preserved along the entire RG flow. The fusion

ring, the spin selection rules, and the H-junction crossing relations of the TDLs are also

preserved, imposing nontrivial constraints on the IR theory. Furthermore, if the UV CFT

has a unique vacuum, the vanishing tadpole property of a nontrivial TDL, as discussed in

section 2.2.5, is expected to hold along the entire RG flow.

The constraints on the Hilbert space HL of defect operators at the end of L can be

readily translated into constraints on the bulk Hilbert space by modular invariance. If the

spin selection rule on HL is such that only non-integer spins are allowed, then L can never

flow to the trivial line in the IR. This implies the following two possibilities about the

IR theory:

1. HL is non-empty, and obeys the same spin selection rule as in the UV. This can only

happen if the flow ends on a nontrivial CFT.

2. HL is empty. Modular invariance then implies that the trace of L̂ over the bulk

primaries of every conformal weight is also zero, i.e.,

0 = trHL q
L0−c/24q̄L̄0−c/24 = tr L̂ q̃L0−c/24 ¯̃q

L̄0−c/24
, (7.1)

where q̃ is the S-transform of q. This turns out to be a strong constraint on the bulk

spectrum in the IR. In particular, there must be degenerate vacua.

A simple application is the ’t Hooft anomaly matching of Zn symmetry. Consider a

massive RG flow from a CFT with an anomalous Zn symmetry to an IR TQFT, triggered

by a relevant Zn singlet operator. As shown in section 4.4, the Hilbert space HLg for a

nontrivial element g ∈ Zn contains only states with non-integer spins. Hence, by the above

analysis, the Hilbert space HLg of the IR TQFT must be empty. Consequently, there must

be degenerate vacua, such that the trace of L̂g over the Hilbert space of vacua is zero.

In addition to constraints on the IR theory from the TDLs that are preserved under

the RG flow, we may also learn something from those TDLs that are broken. Generally, if

φ is not charged under any Z2 symmetry, the RG flows generated by φ with different signs

of the coupling end on different IR theories T+ and T−. Now, if there is a TDL L′ that

anticommutes with φ in the UV CFT, i.e.,

L̂′|φ〉 = −〈L′〉|φ〉 , (7.2)

then L′ will survive the RG flow as a topological interface between T+ and T−. Note that

L′ is not a TDL in either T+ or T− itself because it does not commute with the deformation

φ. In particular, the existence of such a topological interface implies that T+ and T− must

have the same central charge (but can be different CFTs). For instance, if one of the flows

ends up in a massive phase, then so must the other, even though the two flows could end

up in different TQFTs.
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7.1 A diagnostic for degenerate vacua

As a first example, let us apply the above strategy to argue the degeneracy of vacua in

the IR using TDLs and modular invariance. Consider a massive RG flow from a CFT to

an IR TQFT, triggered by a relevant operator φ. The CFT need not be unitary, as long

as the degeneracies are not negative like in theories with ghosts. If there is a TDL L that

commutes with φ, then L is preserved along the entire RG flow. Let us further assume

that its loop expectation value 〈L〉 is not a non-negative integer. It can then be argued

that there must be degenerate vacua in the IR TQFT.

We prove by contradiction. Suppose that there is a unique vacuum in the IR TQFT.

It follows that

tr L̂ = 〈L〉 , (7.3)

where here and in the rest of this section, tr denotes a trace over the IR TQFT Hilbert

space, unless otherwise specified. Now, by modular invariance, we must also have

trHL1 = 〈L〉. (7.4)

This is a contradiction, because the l.h.s. in the above equation is manifestly a non-negative

integer. We have thereby proven the following theorem: if a TDL with loop expectation

value 〈L〉 that is not a non-negative integer is preserved along a massive RG flow, then the

IR theory must have degenerate vacua.

Note that if we have more than one vacuum in the IR, their eigenvalues under L̂ can

add up to a non-negative integer, even if each one is not, to be consistent with modular

invariance. As we will see below, this is indeed the case in various massive flows in the

minimal models.

This argument can be thought of as a generalization of the ’t Hooft anomaly matching

condition for global symmetry [34, 44, 45, 80]: the nontrivial crossing relations of TDLs in

the UV have to be captured by certain degrees of freedom in the IR.

7.2 Constraints on TQFTs in specific flows

In this section, we will use TDLs to constrain various massive flows. For certain flows, one

can bootstrap the IR TQFT completely using the data of TDLs that are preserved along

the flows. This can be thought of as a generalized ’t Hooft “anomaly” matching condition,

where the IR degrees of freedom are constrained to be consistent with the crossing relations

of TDLs inherited from the UV. We will only consider TQFTs that arise at the endpoints

of RG flows from unitary, compact CFTs (with a unique vacuum).

There is one important subtlety to clarify here. As already mentioned in section 2.1,

we define the junction vector space VL1,··· ,Lk of the IR TQFT as the Hilbert space of

weight-(0,0) defect operators that are flowed from the UV CFT. In particular, VL1,··· ,Lk is

a subspace of all the weight-(0,0) operators at the junction in the IR TQFT. The reason for

this restriction is because the TDLs of the UV CFT that are not broken by the flow have

crossing kernels that are preserved on these subspaces VL1,··· ,Lk . This is analogous to the

usual constraint on an RG flow by matching the ’t Hooft anomaly of a global symmetry.
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In the following, every fusing ring considered is commutative. In such a case, the rep-

resentations of the TDL actions on the degenerate bulk local operators of a fixed conformal

weight can be diagonalized. In this diagonal basis, the set of eigenvalues must solve the

polynomial equations given by the abelianization of the fusion ring, just as 〈L〉 does. We

will always work in such a basis.

7.2.1 Ising model deformed by ε

Consider the critical Ising model (section 5.1.1) deformed by the energy operator ε. De-

pending on the sign of the deformation, we either flow to a TQFT T+ with only one vacuum,

or to T− with two vacua [65, 66]. In the latter case, the Z2 global symmetry is sponta-

neously broken by the degenerate vacua. According to the general arguments given above,

since the N line anticommutes with the relevant deformation ε, it flows to a topological

interface between the two TQFTs T+ and T−. In fact, as discussed in section 4.3.1, the N

line in the critical Ising model is a duality defect [12] that implements the Kramers-Wannier

duality [73].25

7.2.2 Tricritical Ising model deformed by σ′

Let us now consider a simple example where a non-invertible TDL is preserved along a

massive flow, and study how the TDL constrains the IR TQFT. Consider the σ′ deformation

of the tricritical Ising model (section 5.1.2), which breaks the Z2 invertible line η and the

N line, but preserves the W line, which has the fusion relation

W 2 = I +W . (7.5)

This RG flow is expected to end up in a massive phase, described by a TQFT [81, 82].

Modular invariance demands that

tr Ŵ = dimHW , (7.6)

where the trace on the l.h.s. is over the vacua of the IR theory. The possible eigenvalues

of Ŵ are ζ = 1+
√

5
2 and −ζ−1 = 1−

√
5

2 , and their corresponding eigenstates must come in

pairs for tr Ŵ to be an integer. Thus, we learn that the number of vacua must be even, and

is twice the dimension of HW . Recall that the spin selection rule (6.15) on HW is s ∈ Z or

s ∈ ±2
5 + Z, which indeed allows for a nonempty HW in the TQFT.

Suppose tr Ŵ = 1, namely, that there are two vacua. Let 1 be the canonical vacuum

inherited from the CFT vacuum through the RG flow. Recall that the cylinder vacuum

expectation value of W is 〈W 〉 = ζ, i.e., Ŵ |1〉 = ζ|1〉. The other vacuum vx obeys

Ŵ |vx〉 = −ζ−1|vx〉 , (7.7)

with the OPE v2
x = 1 + αvx, for some constant α. Let vµ be the unique defect operator

in HW . Then it must obey OPEs of the form vµvx = βvµ ,
︷︸︸︷
vµvµ = 1 + γvx. Finally,

we demand that a W tadpole diagram enclosing vx produces δvµ, for some constant δ.

25See [33] for discussion on a subtlety with the Kramers-Wannier duality on general Riemann surfaces.
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vμ

vx
= β vμ

vμ vμ
= 1 + γvx

vx
= δ vμ

Figure 40. Some OPEs in the IR TQFT.

vx vx
= ζ−1 vx vx

+ ζ−1 vx vx

Figure 41. Applying partial fusion to Ŵ (v2x).

vμ
= 5

1
4 vx ,

vμ
= ζ−1 vμ

Figure 42. Lassoing the defect operator vµ ∈ HW .

vμ
=

vμ
=

vμ
− ζ−1

vμ

Figure 43. Determining the lassoing of the defect operator vµ ∈ HW .

These relations are summarized in figure 40. In particular, the rightmost lasso diagram in

figure 40 defines a map Ŵ v from the bulk Hilbert space H to the defect Hilbert space HW
(see section 2.2.3), with Ŵ v : |vx〉 7→ δ|vµ〉. The junction vector v ∈ VWWW is normalized

such that the crossing kernels are given as in section 6.2, with ζ̃ = ζ.

The associativity of
︷︸︸︷
vµvµ vx gives

vx + γ(1 + αvx) = β(1 + γvx). (7.8)

Applying partial fusion to a W loop encircling vxvx, as in figure 41, gives (see (6.12) for

the crossing kernel)

Ŵ (v2
x) = Ŵ (1 + αvx) = ζ − ζ−1αvx

= ζ−3(1 + αvx) + δ2ζ−1(1 + γvx).
(7.9)

From (7.8) and (7.9), we can solve (up to signs that can be absorbed into a redefinition of

vx and vµ)

α = 1, β = γ = −ζ−1, δ = 5
1
4 . (7.10)

To complete our analysis of the IR TQFT, we also need to compute the lassoing of the

W line on the defect operator vµ as shown in figure 42. The coefficient for the left figure

is readily fixed to be the same as δ = 5
1
4 , by considering the two-point function on the

sphere of the l.h.s. with vx, and unwrapping the W line to circle vx. The coefficient ζ−1

for the right figure is fixed by the H-junction crossing relation, as illustrated in figure 43.
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=
√

2 − = 2 tr 1− tr N̂2 = tr 1− tr η̂

= =
1√
2

+
1√
2

= + = 2 tr η̂

Figure 44. The determination of tr η̂ in the IR TQFT by repeatedly applying the H-junction

crossing relations and modular invariance.

Thus, we determine the Frobenius algebra of the IR TQFT of the σ′-deformed tricritical

Ising model to be

v2
x = 1 + vx, vµvx = −ζ−1vµ,

︷︸︸︷
vµvµ = 1− ζ−1vx. (7.11)

We emphasize that the TQFT structure constant 〈vxvxvx〉 = α is fixed to be 1 only

through the consideration of TDLs. If a primary φ of the UV CFT flows to vx, it should

be possible to reproduce the structure constant α by studying the RG flow of a three-

point function, say 〈φ|φ|φ〉 on the cylinder, using the truncated conformal space approach

(TCSA) [83]. It would also be interesting to relate α to the S-matrix of the solitons

interpolating the degenerate vacua [81, 82].

7.2.3 Tricritical Ising model deformed by ε′

Let us consider a more nontrivial example: the tricritical Ising model (section 5.1.2) de-

formed by ε′, with a negative coupling such that the RG flow ends up in a massive phase.

Both the Z2 invertible line η and the N line are preserved under this RG flow. Since

〈N〉 =
√

2 is not an integer, there must be degenerate vacua by the conclusion in sec-

tion 7.1. As we demonstrate in figure 44, tr 1 = 3 tr η̂, implying that there must be at least

three degenerate vacua, one of which is η̂-odd.

The states in HN obey the nontrivial spin selection rule s ∈ ± 1
16 + 1

2Z along the entire

RG flow, so HN is empty in the IR. Following the same arguments as in section 7.1, there

must be degenerate vacua in the IR such that tr N̂ = 0 by modular invariance. The fusion

relation N2 = I + η implies that N̂ takes the eigenvalues ±
√

2 over a basis of Z2-even

states (η̂ = 1), and annihilates all Z2-odd states (η̂ = −1).

Note that the N line in this TQFT is an example of a TDL on which no defect

operator can end, i.e., HN = ∅. This is not to be confused with the N line in the critical

Ising model, since as discussed around (2.15), in a unitary, compact CFT with a unique

vacuum, we expect the defect operator Hilbert space HL to be non-empty by modular

invariance. The N line discussed above violates this expectation because the TQFT in

question has degenerate vacua.

Indeed, it is known that there are precisely three vacua [76]. From the discussions

above, we deduce from this fact that there is a unique set of assignments of the η and N
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vμvμ

Figure 45. Two vµ’s connected by an η segment.

charges

|1〉 |vε〉 |vσ〉
η̂ : 1 1 −1

N̂ :
√

2 −
√

2 0

(7.12)

where we labeled the operators corresponding to the degenerate vacua in the TQFT by

1, vε, vσ, by analogy to the critical Ising model. Under OPE, the three degenerate vacua

form a commutative Frobenius algebra, which can be fixed by the η̂- and N̂ -charges, the

emptiness of HN , and together with associativity to be

vεvε = 1, vσvσ = 1 + vε, vεvσ = vσ. (7.13)

In particular, the vεvε OPE does not contain vε because vε anticommutes with the N

line. The forms of these OPEs are formally identical to the fusion rules in the critical

Ising model.

While HN contains no state, Hη should be one-dimensional since tr η̂ = 1. The state

in Hη corresponds to a topological defect operator which we denote by vµ. We normalize

vµ such that the coefficient of 1 in the vµvµ OPE is one. In a correlation function, vµ must

appear in pairs connected by η lines. An η line segment ending on a pair of vµ’s as in

figure 45, which we denote by
︷︸︸︷
vµvµ, can be rewritten as a topological bulk local operator.

Since vσ anticommutes with η, it follows that vσvµ = 0. By associativity, we determine︷︸︸︷
vµvµ = 1− vε, vεvµ = −vµ. (7.14)

This completes the description of the IR TQFT of the deformed tricritical Ising model,

including the data of TDLs and defect operators.

7.2.4 On TQFTs admitting RC(S3) fusion ring

One way to realize TDLs of the RC(S3) fusion ring is to begin with a CFT with S3 global

symmetry, where the Z2 subgroups are free of an ’t Hooft anomaly, and orbifold by a

Z2. We have seen this in the example of the relation between the three-state Potts model

and the tetracritical Ising model. In general, depending on whether the S3 has a Z3 ’t

Hooft anomaly, the result after the Z2 orbifold would be either the Rep(S3) (with trivial

cyclic permutation map on VY,Y,Y ), or one of the two twisted Rep(S3) fusion categories

(with nontrivial cyclic permutation map) [27]. In this sense, the twisted Rep(S3) fusion

categories are analogous to situations with ’t Hooft anomalies’.

We saw in section 6.3 that the spin selection rules for the twisted Rep(S3) fusion

categories still allow integer spin states in HY . One may wonder whether the existence

of twisted Rep(S3) TDLs would still in general forbid the possibility of an RG flow to a

trivial massive phase, namely, a TQFT with a unique vacuum. We will show that this
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u

ajai

≡ Uij

ai

akaj

≡ Cijk

Figure 46. Structure constants Uij and Cijk of defect operators. Here the dotted line stands for

X and the solid line stands for Y .

trU =
u

=

u

=

u

= 0

(U2)ij =

u u

ai ai

=
ai ai

= δij

Figure 47. Some constraints on Uij . In the first line, going from the torus one-point function of u

attached to a Y loop to the u-tadpole graph on the plane, we made use of the assumption that the

TQFT has a unique vacuum, i.e., the only bulk local operator is the identity. In the second line,

we used the triviality of the crossing kernels with X external lines.

is indeed the case, even though it does not follow directly from the spin selection rule on

defect operators.

Suppose that there is a TQFT with TDLs obeying the crossing relations (6.17), and

with a unique vacuum — the identity operator. It follows from 〈X〉 = 1 and 〈Y 〉 = 2

that dimHX = 1, dimHY = 2. Let u ∈ HX and ai ∈ HY be a basis of defect operators,

normalized such that ︷︸︸︷
uu = 1,

︷︸︸︷
aiaj = δij . (7.15)

The nontrivial structure constants are depicted in figure 46. Unitarity demands that U

is a Hermitian 2 × 2 matrix. As shown in figure 47, it follows from the torus one-point

function of u attached to a Y loop, and the vanishing tadpole condition for the X line

(see section 2.2.5) that trU = 0. Furthermore, from the crossing relations, we can show

that U2 = 1.

Finally, the crossing kernel K̃Y,Y
Y,Y applied to the four-point function of ai (with a cyclic

permutation map applied to one of the YYY junctions) implies the following identity among

the structure constants (see figure 48),

δi`δjk =
1

2
δijδk` +

1

2
UijUkl +

ω2

2

∑
m=1,2

Cmij C
m
k`. (7.16)

where ω is a third root of unity coming from the cyclic permutation map on the T-junction

of Y . Note that ω = 1 for the standard Rep(S3), and ω = e
±2πi

3 for the two cases of

twisted Rep(S3).
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ai
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=
1

2
+

1

2
+

1

2
ω2

Figure 48. The crossing equation on the four-point function of the defect operator ai.

trHY X̂− = = = 0

Figure 49. Vanishing trHY X̂−. The first picture represents the torus partition function with a

temporal Y loop (solid), and a spatial X line (dashed). The second picture represents a two-point

function of the defect operator a ∈ HX connected to a Y loop through X lines. If the operator a

lying outside is brought around the circle, a minus sign is acquired when the two XY Y junctions

cross one another, due to the crossing phase K̃Y,X
X,Y (Y, Y ) = −1. Therefore, the correlator vanishes.

Given this restriction on U , one finds that only for Uij = ±iεij does there exist a

solution Cmij compatible with some cyclic permutation map on VY,Y,Y . Up to a change of

basis, the structure constants are

C1
12 = C1

21 = C2
11 = −ω−1, C2

22 = ω−1, C1
11 = C1

22 = C2
12 = C2

21 = 0. (7.17)

The non-vanishing C2
22, for instance, is only possible if the cyclic permutation map acts

trivially on VY,Y,Y , which is the case for the Rep(S3) fusion category. This shows that

the twisted Rep(S3) fusion categories admit no solution to the crossing equations of defect

operators. Thus, there must be degenerate vacua in the TQFT.

7.2.5 (A10, E6) minimal model deformed by φ2,1

As already discussed, the (A10, E6) minimal model (section 5.2.3) admits TDLs X and Y

that obey the 1
2E6 fusion ring (which is commutative),

X2 = I, Y 2 = I +X + 2Y, XY = Y. (7.18)

The X line is associated to the Z2 symmetry of the model. These TDLs commute with the

relevant operator φ2,1 of weight ( 7
22 ,

7
22). We expect the (A10, E6) minimal model perturbed

by φ2,1 to flow to a TQFT in the IR that admits the TDLs X and Y . It follows from the

fusion ring that the possible eigenvalues of (X̂, Ŷ ) are (1, 1 +
√

3), (1, 1−
√

3), and (−1, 0).

Modular invariance of the TQFT immediately implies that the bulk vacua have to be

degenerate, and the defect Hilbert space HY has to be even-dimensional.

In section 6.4, we defined the operator X̂− acting on HY as a spatial X line that

splits off the temporal Y line. It follows from the nontrivial crossing kernel between X

and Y , K̃Y,X
X,Y (Y, Y ) = −1, that X̂2

− = −1. Moreover, by modular invariance, we obtain
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+

= i

+ -

= − i

-

Figure 50. The action of X̂− on b+, b− ∈ HY .

=

= = i

Figure 51. The Z2 charge (X̂ value) of the OPE of a pair of defect operators b±, as well as three

defect operators joined by a Y Y Y junction, can be reduced to X̂− acting on the defect operators by

a sequence of crossing relations. In the bottom row, an arbitrary Y Y Y junction vector is assigned.

In deriving the second equality, we used the identity (K̃Y,X
Y,Y K̃

Y,I
Y,Y )3 = i, which follows from one set

of crossing kernels (see appendix C.2) that solve the pentagon identity (an alternative set of crossing

kernels gives the result −i, corresponding to the “charged conjugated” 1
2E6 fusion category).

trHY X̂− = 0 (figure 49), and thus X̂− must have the same number of ±i eigenstates. We

denote them collectively by b+ and b−, such that (figure 50)

X̂−|b+〉 = i|b+〉, X̂−|b−〉 = −i|b−〉. (7.19)

By crossing, we can then identify the X̂ charges of various TDL configurations ending on

defect operators (see figure 51). For example, a Y segment connecting either b+ and b+, or

b− and b−, is even under Z2, while one connecting b+ and b− is odd under Z2.26 Similarly,

a Y Y Y junction ending on either b+, b+, b+, or b+, b−, b−, is even under Z2, while the other

possibilities are odd. Since these TDL configurations ending on defect operators can be

expanded in bulk operators (by locality), the Z2-invariance put constraints on the structure

constants of the TQFT, which we exploit in the following sections to pin down the TQFT.

The remaining task is to identify the extended TQFT that is consistent with unitarity,

crossing, and modular invariance. As explained in the beginning of this subsection, the

bulk must have degenerate vacua. We will start by ruling out the two vacua possibility,

and then present a consistent solution in the three vacua case.

In the following analysis, it is convenient to work with a basis {v0, v1} of the Y Y Y

junction vector space that diagonalizes the cyclic permutation map K̃Y,I
Y,Y (Y, Y ) (see fig-

ure 52) and makes K̃Y,Y
Y,Y (I, Y ) equal to the identity matrix. In this basis, the conjugation

26We emphasize here that the subscript of b± should not be confused with their X̂ charges.
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bi

bkbj

= 〈bibjbk〉v0

bi

bkbj

= ω2

bk

bjbi

= 〈bi, bjbk〉v1

Figure 52. Three-point function of defect operators b± ∈ HY connected through a Y Y Y junction.

The unmarked junction in the first figure stands for the junction vector v0 ∈ VY,Y,Y , which is

permutation invariant. The circle junction in the second figure stands for the junction vector v1,

which transforms by the phase ω = e
2πi
3 under the cyclic permutation map.

= = 0 =

√
3− 1

2
=

√
3− 1

2
ω2

Figure 53. Identities for removing loops deduced from the crossing relations and the vanishing

tadpole property.

map acts on the junction vector space VY Y Y as

ι(v0) = v0, ι(v1) = ωv1, (7.20)

where ω = e
2πi
3 . We record below some crossing kernels written in this basis that we will

explicitly use,

K̃Y,I
Y,Y (Y, Y ) =

(
1 0

0 ω

)
, K̃Y,Y

Y,Y (Y, I) =

√
3− 1

2

(
1 0

0 ω2

)
,

K̃Y,Y
Y,Y (Y,X) =

1

3 +
√

3

(
−1

√
2√

2ω2 −ω1/2

)
,

K̃Y,Y
Y,Y (Y, Y )(v0, v0) =

(
1− 1√

3
0

0 − 1√
3

)
, K̃Y,Y

Y,Y (Y, Y )(v0, v1) =

(
0 − 1√

3

− 1√
3
−
√

2
3+
√

3

)
,

(7.21)

We also make repeated use of the vanishing tadpole property discussed in section 2.2.5 to

simplify TDL configurations. Some useful consequences of the vanishing tadpole property

are summarized in figure 53.

Ruling out 1
2
E6 TQFT with two vacua. In this case, we denote the bulk operators

of the TQFT by 1 and u, which are even under X̂ and have eigenvalues 1 +
√

3 and 1−
√

3

under Ŷ .27 Modular invariance implies that the defect Hilbert spaces for X and Y are

both two-dimensional. We label the basis elements of HX by a1,2. For HY , we use b± in

accordance with the X̂− charges as explained in the previous section.

27In light of the nontrivial crossing kernel K̃Y,X
X,Y (Y, Y ) = −1 between the X and Y lines, it is somewhat

counterintuitive to have a TQFT whose bulk states are all invariant under X̂, even though we do not

have a general argument against this possibility, and would have to analyze the full set of TQFT structure

constants to rule it out.
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We will normalize all defect operators ai, b+, b−, and u to be self-conjugate with

unit norm. Modular invariance of the torus one-point function of u with a spatial X loop

implies that

truX̂ = 〈ua1a1〉+ 〈ua2a2〉 = 〈uuu〉. (7.22)

Along with associativity and unitarity, the OPE of the bulk operator u and the defect

operators a1,2 of the X line are determined to be28

u2 = 1 + (α− α−1)u, ua1 = αa1,

ua2 = −α−1a2,
︷︸︸︷
a1a1 = 1 + αu,

︷︸︸︷
a2a2 = 1− α−1u,

︷︸︸︷
a1a2 = 0,

(7.23)

Since all the bulk operators are invariant under X̂, it follows that among the TDL config-

urations ending on defect operators, all the X̂-odd ones vanish, in particular,︷ ︸︸ ︷
b+b− = 0. (7.24)

The rest of the OPEs between u and the defect operators b± have the following two possi-

bilities (up to a redefinition of the operators),29

ub± = αb±,
︷ ︸︸ ︷
b+b+ =

︷ ︸︸ ︷
b−b− = 1 + αu, (7.25)

or

ub+ = αb+, ub− = −α−1b−,
︷ ︸︸ ︷
b+b+ = 1 + αu,

︷ ︸︸ ︷
b−b− = 1− α−1u, (7.26)

to satisfy associativity. Unitarity requires that α is a real number. We further assume

that it is positive, since its sign can be absorbed into a further redefinition of u. The

possibility (7.26) can be eliminated by modular invariance of the torus one-point function

of u with a spatial Y loop.30 In the case of (7.25), the same consideration determines α by

truŶ = 〈ub+b+〉+ 〈ub−b−〉 = (1−
√

3)〈uuu〉, (7.27)

which gives a unique positive real solution α =
√

2−
√

3. From now on, we will proceed

with the OPE (7.25) with α understood to take the aforementioned value.

Moving on to the structure constants of the TQFT that involve nontrivial junctions, we

deduce from the invariance under X̂, the consistency with the nontrivial cyclic permutation

maps, and the OPEs with u, that the non-vanishing three-point functions are 〈b+b−b−〉v0 ,

〈b+b+b+〉v0 , 〈b+, b−b−〉v1 , and 〈a1b+b−〉, together with their conjugates (recall figure 4).

In particular, our choice of junction vectors ensures that 〈b+b−b−〉v0 and 〈b+b+b+〉v0 are

self-conjugate, and

〈b+, b−b−〉∗v1
= ω2〈b+, b−b−〉v1 , 〈a1b+b−〉∗ = 〈a1b−b+〉. (7.28)

28A priori, one could also satisfy associativity with
︷︸︸︷
a2a2 = 1 + αu in (7.23), but then the modular

invariance of tr uX̂ (7.22) would imply that α = ±i, violating unitarity.
29Note that in (7.23), a1 and a2 can be exchanged by setting α→ −α−1. We fix this ambiguity here by

our ansatz for the OPE of u with b±.
30The case of (7.26) with α = ±1 needs special care. Although it satisfies the modular invariance of tr uŶ ,

it is ruled out by the crossing equations for the defect four-point functions, similar to those in figure 54.
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b+

b+ b+

b+

=

√
3− 1

2

b+

b+ b+

b+

+

b+

b+ b+

b+

Figure 54. An example of a crossing equation for the four-point function of b+ connected by an

H-junction. In this example, the internal line on the l.h.s. is the trivial line. On the r.h.s. , we have

used K̃Y,Y
Y,Y (I, I) =

√
3−1
2 , 〈aib+b+〉 = 0, and 〈b+b+b−〉v0,1 = 0, which follow from the Z2-invariance,

and 〈b+, b+b+〉v1 = 0 by the nontriviality of the cyclic permutation map when acting on v1.

a2 = a2 = a2 = a2 = 0

Figure 55. Lassoing the defect operator a2 ∈ HX . The first diagram vanishes by modular invari-

ance of the torus one point function of a2 attached to a spatial Y loop via an XY Y junction. The

second diagram vanishes as a consequence of the crossing phase K̃Y,X
X,Y (Y, Y ) = −1. The third and

last diagrams can be shown to have vanishing correlators with the defect operators b± ∈ HY using

crossing and the previous vanishing results (see figure 56). Similar arguments ensure that the first

two lasso diagrams for a1 also vanish (but not the last two).

0 =

b+ b+

a2 =

b+ b+

a2

0 =

b- b-

a2 =

b- b-

a2

+

b- b-

a2

Figure 56. Derivation of the last two lasso diagrams in figure 55. We start with three-point func-

tions of defect operators a2 and b± which vanish identically, and then pass a2 through the Y line via

crossing. We thus obtain a set of four algebraic equations involving the structure constants (7.29),

and the lasso diagrams of a2 ending on b±. Here, we display two of the four equations (the other

two are obtained by setting the pair of defect operators in HY to be b+, b− and b−, b+). The unique

solution to these equations is that all lasso diagrams of a2 involving Y Y Y junctions vanish.

From the crossing relations of all four-point functions with arbitrary H-junctions (see

figure 54 for an example), the unique solution is (up to a redefinition of b± and a1)

〈b+b+b+〉v0 =

√
3− 3√

2
, 〈b+b−b−〉v0 =

√
2−
√

3, 〈b+, b−b−〉v1 = (1−
√

3)ω2,

〈a1b+b−〉 = −
√

3−
√

3 e
πi
4 ,

(7.29)

with the rest determined by conjugation.
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a2 a2
=

a2 a2
=

√
3− 1

2

a2 a2
+

a2 a2

+
a2 a2

+
a2 a2

Figure 57. The above diagrams are related by partial fusions first between X and Y TDLs and

then between two Y TDLs. Since we obtain a combination of products of lasso diagrams of a2, the

r.h.s. vanish identically but the l.h.s. clearly does not.

Furthermore, the lassoing can be determined from the modular invariance of torus

one-point functions together with crossing. In particular, we find that all lasso diagrams of

the defect operator a2 ∈ HX vanish identically (see figure 55). This leads to an immediate

contradiction with the crossing relations in figure 57. We thus conclude that there is no
1
2E6 TQFT with two vacua.

1
2
E6 TQFT with three vacua. In this case, we label the three degenerate vacua of

the TQFT by 1, u, and w, whose eigenvalues under (X̂, Ŷ ) are (1, 1 +
√

3), (1, 1 −
√

3),

and (−1, 0), respectively. By modular invariance, the defect Hilbert space HX is one-

dimensional and generated by a, while HY is two-dimensional with basis elements b±,

labeled in accordance with their charges under X̂−.

We normalize all the defect operators a, b+, b−, u, and w to have unit norm. From the

associativity (without using the Y Y Y junction) and the selection rule by the X̂-invariance,

we deduce the following relations,

u2 = 1 + (α− α−1)u, w2 = 1 + αu, uw = αw,

ua = −α−1a, ub± = αb±,

wa = 0, wb± =
√

1 + α2b∓︷︸︸︷
aa = 1− α−1u,

︷ ︸︸ ︷
b+b+ =

︷ ︸︸ ︷
b−b− = 1 + αu,

︷ ︸︸ ︷
b+b− =

√
1 + α2w.

(7.30)

Here, α is a real number, which we further assume to be positive, since its sign can be

absorbed by a redefinition of u. By the modular invariance of the torus one-point function

truŶ as in (7.27), we determine α =
√

2−
√

3.

As before, we use the X̂-invariance to constrain the structure constants involving b±, so

that the potential non-vanishing structure constants involving XY Y and Y Y Y junctions

are 〈ab+b−〉, 〈b+b−b−〉v0 , 〈b+b+b+〉v0 , 〈b+, b+b+〉v1 , and 〈b+, b−b−〉v1 . Furthermore, the

consistency of OPEs with bulk operators requires 〈ab+b−〉 = 0, and the consistency with

the nontrivial cyclic permutation map requires 〈b+, b+b+〉v1 = 0.

To determine the rest of the structure constants, let us consider the crossing equations

of all defect operator four-point functions involving nontrivial H-junctions (see figure 54).
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= (1−
√

3)〈uuu〉
+

= 2〈b+b+b+〉v0

= 0

-

= 0 = 0

Figure 58. Some torus one-point functions of defect operators.

w w
=

√
3− 1

2

w w
+

w w
+

w w

Figure 59. An example of a crossing equation that constrains the lassoing of bulk operators. On

the right, we have dropped the contribution from the H-junction with the identity line in the middle,

because Ŷ annihilates the bulk operator w.

There exists a unique solution (up to a redefinition of b±) given by

〈b+b−b−〉v1 = 0, 〈b+b+b+〉v0 = 〈b+b−b−〉v0 =

√
3−
√

3

2
(1 + α2) =

3−
√

3√
2

. (7.31)

Next, using modular invariance of the torus one-point functions in figure 58 and cross-

ing relations such as in figure 59 we determine the lasso diagrams of bulk operators. By

similar manipulations as in figure 56 and figure 57, we also obtain the lasso diagrams of

defect operators. We summarize the full set of lassoing results in figure 60.

We provide a nontrivial consistency check by considering the genus-two partition func-

tion of the TQFT, with three Y line segments running along the three handles, joining at

a pair of Y Y Y junctions, as shown in figure 61. Using the crossing kernel K̃Y,Y
Y,Y , and the

vanishing of the torus one-point function of the defect operator a attached to a Y loop

(figure 58), we find the relation

4〈b+, b+b+〉2 = K̃Y,Y
Y,Y (Y, I)(v0, v0)

[(
tr Ŷ

)2
+
(

tr Ŷ u
)2
]

+ K̃Y,Y
Y,Y (Y, Y )(v0, v0; v0, v0)4〈b+, b+b+〉2.

(7.32)

Using tr Ŷ = 2, tr Ŷ w = 0, tr Ŷ u = (1 −
√

3)(α − α−1) (the first diagram of figure 58),

and the crossing kernels in (7.21), we find that α =
√

2−
√

3 is the unique positive real

solution for (7.32), in agreement with our previous findings.

7.2.6 Tetracritical Ising model perturbed by φ1,3

Recall that the tetracritical Ising model (section 5.1.3) admits a TDL W that obeys the

fusion relation W 2 = I + W , and commutes with the bulk local primary φ1,3 of weight
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u = 0 u =
√

3− 1
b+

u =
√

2ω2

b+

w =
√

2
a

w =

√
1 +

1√
3 b-

w = −ω2

√
1− 1√

3 b-

a2 = 0 a2 =

√
1− 1√

3 b-

a2 = ω2

√
1 +

1√
3 b-

b+ = 2− 2√
3 b+

b+ =
1−
√

3√
6 b+

b+ = 2ω2

(
1− 2√

3

)
b+

b- = 1− 1√
3 b-

b- =

√
3− 1√

6 b-

b- = ω2

(
1√
3
− 1

)
b-

Figure 60. Lassoing of bulk and defect operators in the 1
2E6 TQFT. We only include the inde-

pendent lasso diagrams here, as the rest can be obtained by unwrapping the loop on the sphere.

= K̃Y,Y
Y,Y (Y, I)(v0, v0)

+ K̃Y,Y
Y,Y (Y, Y )(v0, v0; v0, v0)

Figure 61. Crossing transformation on the genus-two partition function with two Y loops. The

Y Y Y junction only involves the junction vector v0, as the contributions involving the junction vector

v1 vanish, due to the vanishing results of the torus one-point functions in figure 58. Likewise, there

is no contribution from a pair of Y loops connected by an X segment.

(2
3 ,

2
3). When perturbed by φ1,3, theory flows to either the tricritical Ising model or a

massive phase, depending on the sign of the coupling [84–87]. The C and W lines, as

well as their crossing relations, are preserved under this RG flow. Under the flow to the

tricritical Ising model, the C and W lines flow to the Z2 invertible line η and the W line

in the tricritical Ising model, respectively. The N line in the tricritical Ising model (not

to be confused with that in the tetracritical Ising model, which is broken by the φ1,3 flow)

is emergent and is not inherited from the tetracritical Ising model. Under the flow to the
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massive phase, there is a nontrivial TQFT in the IR with at least two-fold degenerate vacua.

Note that there is no nontrivial crossing phase between C and W , and we cannot deduce

a priori whether Ĉ acts nontrivially on the vacua of the TQFT. The TCSA study of this

RG flow was carried out in [88], indicating four-fold degenerate vacua. Presumably, the IR

TQFT is a tensor product of the one described in section 7.2.2 with an extra Z2 factor.

We can also use TDLs to constrain the IR limit of this RG flow. As discussed above,

the C and W lines in the tetracritical Ising model are preserved along the entire flow.

From the viewpoint of the IR tricritical Ising model deformed by irrelevant operators, this

implies that the irrelevant operators should also commute with the C (which becomes η

in the tricritical Ising model) and the W lines. From (5.21), the unique such irrelevant

operator in the tricritical Ising model is φ3,1 = ε′′. Indeed, it was shown in [89] that the

leading irrelevant operator that should be turned on in the IR regime of this flow is φ3,1.

Similarly, the three-state Potts model perturbed by Z + Z∗ also flows to either the

tricritical Ising model or a massive phase depending on the sign of the coupling. In this

case, the flow to the massive phase again preserves the C and W lines, where C is the

charge conjugation symmetry that exchanges Z with Z∗. We expect the IR TQFT to be

the Z2 orbifold of the TQFT of M(6, 5) perturbed by φ1,3, namely, one that is identical to

the TQFT of section 7.2.2, with two-fold degenerate vacua. We can also consider the more

general perturbation by eiαZ+e−iαZ∗. When eiα is not a third root of unity, this flow is not

expected to be integrable [79]. The perturbation breaks the S3 symmetry completely, and

only the W line is preserved. Since we still expect the vacuum to be two-fold degenerate,

and the IR TQFT fixed by the W line to be that of section 7.2.2.

7.2.7 Pentacritical Ising model perturbed by φ2,1

The pentacritical Ising model (section 5.1.4) admits TDLs X and Y that generate the

Rep(ŝo(3)5) fusion category, and commute with the relevant operator φ2,1 of weight (3
8 ,

3
8).

Since this fusion category does not exist in minimal models of smaller central charges, we

expect the pentacritical Ising model perturbed by φ2,1 to flow to a nontrivial TQFT.

In the IR TQFT, in order for tr X̂ = dimHX to be an integer, there must be at least

three degenerate vacua. This indeed agrees with the TCSA results of [88], where a three-

fold vacuum degeneracy is seen numerically. Thus, we expect the IR TQFT to contain

three vacua, 1, v1, v2, one defect operator a ∈ HX , and two defect operators b1, b2 ∈ HY .

We leave the determination of the full IR TQFT to future work.

7.3 Comments on RG walls and boundary states

Let O be a relevant scalar primary, and consider the deformation of the CFT by turning on

the coupling λ
∫
D d

2zO(z, z̄) on a disc D (see section 7.2.1), with positive λ. After flowing

to the IR — which may be viewed as taking the λ→∞ limit — the boundary of the disc

∂D becomes a conformal interface between the original CFT outside the disc and a new

phase inside the disc [90], which is either a new CFT or a massive phase (TQFT). In this

section, we focus on the latter case. The RG flow inside the disc produces an Ishibashi

state on the boundary of the disc, which we denote by |O〉〉RG. However, when the massive
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Figure 62. A relevant deformation inside the disc (gray region) triggering an RG flow to a TQFT.

In the left picture, a point-like topological operator v in the TQFT is inserted inside the disc. This

construction produces an Ishibashi state on the dotted circle, which is generally not a boundary

state. In the right picture, we insert a boundary state B of the TQFT instead, which produces a

boundary state of the CFT on the dotted circle.

phase inside the disc is a nontrivial TQFT, |O〉〉RG may not be a boundary (Cardy) state.

We will illustrate this phenomenon with a few examples.

To begin with, consider the critical Ising model deformed by ε inside the disc, with

positive coupling λ. It is well known that this flow produces the Z2-invariant boundary state

|ε〉〉RG = |f〉〉 = |1〉〉 − |ε〉〉, (7.33)

where |φ〉〉 denotes the Ishibashi state corresponding to the bulk local primary φ. The

fusion of the TDL N with |f〉〉 produces a new boundary state

|Nf〉〉 = N̂ |f〉〉 =
√

2 (|1〉〉+ |ε〉〉) = |+〉〉+ |−〉〉, (7.34)

where |±〉〉 are two Cardy states, given by

|±〉〉 =
1√
2

(
|1〉〉+ |ε〉〉 ± 2

1
4 |σ〉〉

)
. (7.35)

The action of N on the boundary state |f〉〉 can be understood from its action on the

relevant deformation. When N moves past ε, it flips the sign of ε. Shrinking an N loop

encircling the disc by moving it inside the disc, we see that

| − ε〉〉RG =
1√
2
|Nf〉〉 = |1〉〉+ |ε〉〉. (7.36)

So the RG wall construction based on the deformation by −ε produces the Ishibashi state

| − ε〉〉RG, which is not a boundary state. This can only happen when the flow ends up in

a nontrivial TQFT with degenerate vacua, which is indeed the case in this example (the

TQFT being that of the Z2 fusion category).

Next, consider a relevant operator O in a CFT that commutes with a TDL L and

drives the CFT to a massive phase. Now turning on the deformation O on a disc, and

shrinking an L loop encircling the disc, we have

L̂|O〉〉RG = 〈L〉|O〉〉RG. (7.37)
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If |O〉〉RG is a boundary state, then so must be L̂|O〉〉RG, as it corresponds to fusing the

TDL L onto the boundary, but this is clearly impossible when 〈L〉 is not an integer.

As an example, consider the tricritical Ising model with O = σ′, and the TDL W that

commutes with σ′ (see section 7.2.2). Consider the following two Ishibashi states: |σ′, 1〉〉RG

and |σ′, vx〉〉RG, where 1 and vx denote the bulk operator of the IR TQFT inserted in the

disc, as depicted in figure 62. Since the two Ishibashi states have Ŵ eigenvalues ζ = 1+
√

5
2

and −ζ−1, respectively, neither is a boundary state. However, an actual boundary state

is produced if we insert a boundary state of the IR TQFT inside the disc. There are two

irreducible boundary states

B1 = 1 + vx, B2 = ζ − ζ−1vx. (7.38)

Indeed, 〈B1B1〉 = 2, 〈B2B2〉 = 3, and 〈B1B2〉 = 1 are the numbers of states in the strip

Hilbert spaces HB1B1 , HB2B2 , and HB1B2 of the TQFT, respectively. Inserting these in the

interior of the disc, we can produce the two boundary states of the tricritical Ising model

|σ′, 1〉〉RG + |σ′, vx〉〉RG and ζ|σ′, 1〉〉RG − ζ−1|σ′, vx〉〉RG. (7.39)

7.4 Coupled minimal models

We consider an RG flow that is not known to be integrable, starting from the tensor

product of n copies of the three-state Potts model, deformed by the relevant operator (see

section 5.2.1)

O =
∑

1≤i<j≤n
εiεj . (7.40)

The deformation O preserves the global symmetry Snn Sn3 , and the TDL N ≡
∏n
i=1Ni.

31

Note that O and
∑n

i=1 εi are the only relevant operators preserving all the global symme-

tries, but
∑n

i=1 εi anticommutes with N , whereas O commutes with N . Therefore, no new

relevant operator can be generated in the RG flow generated by O.

Note that in the large n limit, O may be viewed as a double trace deformation, and a
1
n expansion may be employed to compute the spectrum and correlation functions at the

fixed point. In particular,
∑

i εi flows to an operator of scaling dimension 2− 4
5 = 6

5 in the

n→∞ limit.

The spin selection rule on HN is such that the states in HN have spins,

s ∈ 1

2
Z +

n∑
i=1

ri, ri = ± 1

24
or ± 1

8
, (7.41)

derived from the single-copy selection rule (6.10). Let us consider the n = 3 case. In this

case, HN contains states of spin s ∈ 1
24 + 1

12Z.

It follows that theory must either flow to an IR fixed point that admits a TDL N that

obeys the same spin selection rule (7.41), or to a massive phase with degenerate vacua,

such that tr N̂ = 0.

31The deformation O also preserves the analogous TDLs where an arbitrary number of the Ni lines are

replaced by N ′i = CiNi.
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The flow of the three-coupled Potts model has been studied using conformal perturba-

tion theory in [91]. With positive coupling, the flow is expected to end at an IR fixed point

with central charge c ≈ 2.38. The existence of the TDL N at the IR fixed point implies

that the N-twisted character tr N̂qL0− c
24 q̄L̄0− c̃

24 is related by the modular S transformation

to a partition sum over HN , whose states obey the spin selection rule mentioned above.

The TDL N also constrains the OPE of bulk local operators along the RG flow. These

constraints should be useful for the conformal/modular bootstrap study of the CFT at the

IR fixed point.

Another example of a similar nature is the n-coupled tricritical Ising model, defined

as the tensor product of n tricritical Ising models deformed by the relevant operator (see

section 5.1.2)

O =
∑

1≤i<j≤n
σ′iσ
′
j . (7.42)

The W lines in all n copies of the tricritical Ising model, the Sn permutation symmetry,

and the overall Z2 symmetry that flips the spin fields of all n copies are preserved along

the RG flow.

In the special case of n = 2, the coupled tricritical Ising model corresponds to the

deformation of the SU(2)8/U(1) coset CFT by the parafermion bilinear and flows to the

c = 14
15 A7 minimal model in the IR. For n ≥ 3, the flow is not expected to be integrable.

In the large n limit, O can once again be viewed as a double trace deformation, and in

particular
∑

i σ
′
i flows to an operator of scaling dimension 2− 7

8 = 9
8 to leading order in 1

n .

8 Summary and discussions

8.1 On IR TQFTs

Much of this paper has been devoted to formulating the definition of TDLs, constructing

them in CFTs as models of various fusion categories, and deriving properties of defect

operators such as the spin selection rules from the crossing relations of TDLs. One par-

ticularly interesting set of results is the use of topological defect lines in constraining RG

flows, as a generalization of the ’t Hooft anomaly matching. This is particularly powerful

in constraining, and sometimes determining, the TQFT in the IR of a massive RG flow.

Curiously, our arguments made essential use of the modular invariance of the TQFT as well

as the existence of (topological) defect operators therein, ingredients that are absent in the

standard definition of fusion categories. An interesting question is whether every fusion

category can be modeled by a fully extended, modular invariant TQFT. This is a priori

not obvious, for instance, for the 1
2E6 fusion category, but as we have argued, it should be

realized in the IR TQFT of the (A10, E6) minimal model perturbed by φ2,1. Assuming a

minimal admissible number of vacua, this TQFT was constructed in section 7.2.5.

In several examples, we determined the structure constants of the IR TQFT by consid-

eration of the TDLs. We emphasize that the former is not constrained by the associativity

of the OPE of bulk local operators alone. It should be possible to check these results by

studying the RG flow of three-point functions of bulk local operators numerically using the
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truncated conformal space approach (TCSA) [83]. Note that the basis of vacua we worked

with in the TQFT may be nontrivial linear combinations of the ones that obey cluster

decomposition. It would be interesting to understand the relation between the TQFT and

the data of massive particle excitations and their S-matrix.

8.2 TDLs in irrational CFTs

We have seen that TDLs are ubiquitous in rational CFTs, including invertible lines as-

sociated with global symmetries, and in the case of diagonal modular invariant theories,

Verlinde lines associated with the chiral vertex algebra, and there are also more general

TDLs that are neither invertible lines nor Verlinde lines. A large class of non-invertible

TDLs in irrational CFTs can be constructed as Wilson lines in non-Abelian orbifold the-

ories [27, 47]. Non-invertible TDLs are also present in irrational, unitary, compact CFTs

obtained as fixed points of RG flows, such as in coupled minimal models, and would be use-

ful in bootstrapping such theories by constraining OPEs and refining modular constraints.

A natural question, to which we do not know the answer, is whether TDLs exist in “more

generic” irrational CFTs.

To illustrate with a simple (though not necessarily typical) example, consider the CFT

described by a sigma model whose target space is the rectangular torus with modulus

τ = it. For t = 1, the T 2 admits a rotation symmetry by 90 degrees, whose corresponding

invertible line is denoted by η. The sigma model with t = p/q, where p, q are a pair of

positive coprime integers, can be viewed as the Zp×Zq orbifold of a sigma model on a larger

T 2 target space with t = 1, and radius R. Denote by Tx the translation symmetry (or the

corresponding invertible line) of the latter CFT along the x direction by 2πR/p, and Ty
the translation along y direction by 2πR/q, and η the Z4 invertible line corresponding to

the 90 degree rotation thereof. The TDL

L =
∑

0≤n≤p−1,0≤m≤q−1

Tnx T
m
y ηT

−m
y T−nx (8.1)

is invariant under the Zp×Zq symmetry, and gives a simple TDL in the orbifolded theory,

i.e., the sigma model on the torus with t = p/q. However, in the limit where t becomes

irrational, the fusion relation of L would involve an infinite sum of simple TDLs, which goes

beyond the class of topological defects considered in this paper. It may be interesting to

relax the assumption that the fusion product of a pair of TDLs involves only the direct sum

of finitely many simple lines. This possibility has already been considered in the context

of Liouville and Toda CFTs [35, 92].

8.3 From topological to conformal defects

The TDLs in CFTs are a special case of conformal defects, or conformal interfaces. A

general conformal interface I of a CFT M can be characterized by the interface state |I〉〉
which is equivalent to a boundary state of M ⊗M , where M is the parity reversal of M [5].

Let TL and TR be the (non-singular) limit of the stress tensor T (z) that approaches I from

the left and right, respectively. They are related to the displacement operator D by

D = TL − TR, (8.2)
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where D is a dimension-2 operator on I that generates transverse deformations of the

interface. A TDL is a conformal interface with D(x) ≡ 0. While the fusion of TDLs is

straightforward to describe, the fusion of the general conformal interfaces is much more

complicated. For instance, generically the limit of a pair of conformal interfaces approach-

ing one another is singular; viewed as two conformal defects points on the spatial circle

approaching one another, there may be a Casimir energy that diverges in the coincidence

limit. Further, the fusion of a pair of conformal interfaces may involve the direct sum of

infinitely many conformal interfaces, each deformed by an infinite set of relevant or irrele-

vant local operators on the interface. We do not know a useful formulation of the fusion

of general conformal interfaces that is analogous to the OPE of local operators.

It is possible to tame the fusion of conformal interfaces if the latter is obtained by

deforming TDLs. Such deformations could be either due to a relevant or marginal defor-

mation of a TDL L by a defect operator in HLL (of scaling dimension less than or equal

to 1), or due to a relevant or marginal deformation of the bulk CFT. In the latter case,

for instance, one may hope that the deformed conformal interface inherit certain fusion

properties of the TDL. This strategy has been applied in studying the fusion between con-

formal interfaces in the critical Ising model [93]. It would be interesting to explore the

deformation of TDLs under exactly marginal deformations along a conformal manifold of

a family of CFTs.
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A Gauge conditions on crossing kernels

To solve the pentagon identity

K̃
Lj1 ,Lk1
Lj2 ,Lk2

(Lj ,Lk3) ◦ K̃Lj ,Lk1
Lj4 ,Lk4

(Lj3 ,Lk2)

=
∑
j′

K̃
Lj2 ,Lk3
Lj4 ,Lk4

(Lj′ ,Lk2) ◦ K̃Lj1 ,Lk1
Lj′ ,Lk4

(Lj3 ,Lk3) ◦ K̃Lj1 ,Lj3Lj2 ,Lj4
(Lj ,Lj′),

(A.1)

it is practical to first remove the redundancies in the crossing kernels due to changes in the

basis junction vectors. This appendix provides a set of conditions to fix the redundancies,

that are not necessarily complete.

If all the TDLs involved in the crossing kernels are trivial, the pentagon identity

immediately implies that

K̃I,I
I,I (I, I) = 1. (A.2)

For the more general crossing kernels, we need to pick a basis for the junction vector space,

which is specified by a coordinate map

NL1,L2,L3 : VL1,L2,L3

∼−→ Cd123 , (A.3)

where d123 = dim (VL1,L2,L3) is the dimension of the junction vector space. A change of

basis in VL1,L2,L3 transforms the coordinate map by

NL1,L2,L3 ∼ML1,L2,L3NL1,L2,L3 , (A.4)

where ML1,L2,L3 is a d123×d123 matrix. In the basis specified by the coordinate map (A.3),

the crossing kernel is explicitly written as

K̃L1,L4

L2,L3
(L5,L6) = (NL2,L3,L6

⊗NL1,L6,L4) ◦ K̃L1,L4

L2,L3
(L5,L6) ◦ (N−1

L1,L2,L5
⊗N−1

L5,L3,L4
).

(A.5)

A change of basis by M leads to a transformation of K̃ by

K̃L1,L4

L2,L3
(L5,L6) ∼ (ML2,L3,L6

⊗ML1,L6,L4) ◦ K̃L1,L4

L2,L3
(L5,L6) ◦ (M−1

L1,L2,L5
⊗M−1

L5,L3,L4
),

(A.6)

where ◦ represents the suitable contraction of the matrix indices. We will refer to this

change of basis as a “gauge transformation” on the crossing kernel.

To begin with, consider the crossing kernels that involve a pair of trivial external lines,

K̃I,IL,L(L, I), K̃L,LI,I (L, I), K̃I,LI,L(I,L), K̃L,IL,I (I,L), K̃L,II,L(L,L), K̃I,LL,I (L,L). (A.7)

Using the gauge rotation MI,L,L and ML,I,L on the corresponding trivial junctions,

K̃I,IL,L(L, I) ∼ (ML,L,I ⊗MI,I,I) ◦ K̃I,IL,L(L, I) ◦ (M−1
I,L,L ⊗M

−1
L,L,I),

K̃L,LI,I (L, I) ∼ (MI,I,I ⊗ML,I,L) ◦ K̃L,LI,I (L, I) ◦ (M−1
L,I,L ⊗M

−1
L,I,L),

(A.8)

we can fix the first two crossing kernels in (A.7) to be

K̃I,IL,L(L, I) = K̃L,LI,I (L, I) = 1. (A.9)
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The pentagon identities

K̃I,II,I (I, I) ◦ K̃I,IL,L(L, I) = K̃I,IL,L(L, I) ◦ K̃I,IL,L(L, I) ◦ K̃I,LI,L(I,L),

K̃L,IL,I (I,L) ◦ K̃I,II,I (I, I) = K̃L,LI,I (L, I) ◦ K̃L,IL,I (I,L) ◦ K̃L,IL,I (I,L),

K̃I,LL,I (L,L) ◦ K̃L,LI,I (L, I) = K̃L,LI,I (L, I) ◦ K̃I,LL,I (L,L) ◦ K̃I,LL,I (L,L),

K̃L,II,L(L,L) ◦ K̃L,II,L(L,L) = K̃ILI,L(I,L) ◦ K̃L,II,L(L,L) ◦ K̃L,LI,I (L, I),

(A.10)

then determine

K̃I,LI,L(I,L) = K̃L,IL,I (I,L) = K̃L,II,L(L,L) = K̃I,LL,I (L,L) = 1. (A.11)

The following crossing kernels that involve one trivial external line,

K̃I,L4

L2,L3
(L2,L4), K̃L1,L4

I,L3
(L1,L3), K̃L1,L4

L2,I
(L4,L2) (A.12)

are fixed to be identity matrices by the pentagon identities

K̃I,L4

I,L4
(I,L4) ◦ K̃I,L4

L2,L3
(L2,L4) = K̃I,L4

L2,L3
(L2,L4) ◦ K̃I,L4

L2,L3
(L2,L4) ◦ K̃I,L2

I,L2
(I,L2),

K̃L1,L4

I,L3
(L1,L3) ◦ K̃L1,L4

I,L3
(L1,L3) = K̃I,L3

I,L3
(I,L3) ◦ K̃L1,L4

I,L3
(L1,L3) ◦ K̃L1,L1

I,I (L1, I),

K̃L1,L4

L2,I
(L4,L2) ◦ K̃L4,L4

I,I (L4, I) = K̃L2,L2

I,I (L2, I) ◦ K̃L1,L4

L2,I
(L4,L2) ◦ K̃L1,L4

L2,I
(L4,L2).

(A.13)

Next, consider the crossing kernels K̃L,LL,L(I, I), which transforms under the gauge trans-

formation as

K̃L,LL,L(I, I) ∼ (ML,L,I ⊗ML,I,L) ◦ K̃L,LL,L(I, I) ◦ (ML,L,I ⊗MI,L,L)−1. (A.14)

In the case L 6= L, i.e., L is a TDL of a different type from its orientation reversal L, using

the gauge freedom of ML,L,I , we can fix

K̃L,LL,L(I, I) = K̃L,LL,L(I, I) = |K̃L,LL,L(I, I)|. (A.15)

Note that the product K̃L,LL,L(I, I)K̃L,LL,L(I, I) is invariant under the gauge transformation

generated by ML,L,I . This gauge condition implies the relation between the empty loop

expectation values on the plane,

R(L) = R(L) = |R(L)|. (A.16)

It follows from the relation between R(L) and the vacuum expectation value 〈L〉 on the

cylinder that the isotopy anomaly coefficient αL is given by

αL =

{
0 for 〈L〉 > 0,

π for 〈L〉 < 0.
(A.17)

Note that 〈L〉 > 0 is required by unitarity. In the case L = L, K̃L,LL,L(I, I) is invariant under

the gauge transformation generated by ML,L,I , and cannot be used for gauge-fixing.
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Finally, we want to fix the gauge freedom MLi,Lj ,Lk for Li, Lj , Lk 6= I. Consider the

crossing kernels (differing from the ones in (A.12) by the position of the trivial external line)

K̃Li,ILj ,Lk(Lk,Li) for Li,Lj ,Lk 6= I, (A.18)

whose gauge transformations take the form

K̃Li,ILj ,Lk(Lk,Li) ∼ (MLj ,Lk,Li ⊗MLi,Li,I) ◦ K̃
Li,I
Lj ,Lk(Lk,Li) ◦ (M−1

Li,Lj ,Lk ⊗M
−1
Lk,Lk,I

).

(A.19)

We will fix an ordering convention on the index i that labels the type of the TDL Li. The

orientation reversal Li will be labeled by i. When the indices i, j, k satisfy

(i, j, k) /∈ I ≡ {(i, j, k)|i > j > k or i ≤ j ≤ k}, (A.20)

the crossing kernels K̃LiILjLk(Lk,Li) can be gauge-fixed to identity matrices by (A.19).

We are still left with the unfixed gauge transformations MLi,Lj ,Lk for (i, j, k) ∈ I, and

we will not attempt to fix them in the most general setting. Let us consider the special case

where all the TDLs involved are of the same type as their orientation reversals, Li = Li.
In this case, the crossing kernels

K̃Li,LiLj ,Lj (Lk, I), K̃Li,LjLi,Lj (I,Lk) for Li,Lj ,Lk 6= I (A.21)

are subject to gauge redundancies of the form

K̃Li,LiLj ,Lj (Lk, I) ∼ (MLj ,Lj ,I ⊗MLi,I,Li) ◦ K̃
Li,Li
Lj ,Lj (Lk, I) ◦ (M−1

Li,Lj ,Lk ⊗M
−1
Lk,Lj ,Li),

K̃Li,LjLi,Lj (I,Lk) ∼ (MLi,Lj ,Lk ⊗MLi,Lk,Lj ) ◦K
Li,Lj
Li,Lj (I,Lk) ◦ (MLi,Li,I ⊗MI,Lj ,Lj )

−1.
(A.22)

For i ≤ j ≤ k, we can use MLi,Lj ,Lk to gauge-fix the crossing kernel K̃Li,LiLj ,Lj (Lk, I) in the

first line above. For i > j > k, we can use MLi,Lj ,Lk to gauge-fix K̃LiLjLiLj (I,Lk) to gauge-fix

the second line.

By the gauge conditions described here, the pentagon identity can be implemented in

Mathematica to find the explicit solutions, for the fusing rings up to rank-three that are

considered in this paper.

B Recovering fusion ring from crossing kernels

In this appendix, we derive a relation between the fusion coefficients and the dimensions

of junction vector spaces. Let us start with two TDL loops on a cylinder, as shown on the

left of figure 1. The H-junction crossing gives a sum over the TDL configurations shown on

the first line of figure 63, where ◦ represents the suitable contraction of the indices. Next,

we apply a permutation on the L1,L2,Li junction, and obtain the second line of figure 63.

Finally, the third line of figure 63 is obtained by applying an H-junction crossing with the

middle line being the L2. By the vanishing tadpole property, the black dotted line can

only be the trivial TDL I, and hence, we can replace the empty L1 loop by R(L1). Using
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a specialization of the pentagon identity (2.9) — which gives the following commutative

diagram,

VL1,L1,I
⊗ VI,L2,L2

⊗ VL2,Li,L1

VL1,L2,Li
⊗ VL1,Li,L2

⊗ VL2,Li,L1
VL1,L1,I

⊗ VL2,Li,L1
⊗ VI,L1,L1

VL1,L2,Li
⊗ VLi,Li,I

⊗ VL1,I,L1
VL1,L1,I

⊗ VL2,Li,L1
⊗ VL1,I,L1

K̃
I,L1
L2,Li

(L2,L1)

K̃
L1,L2
L1,L2

(I,Li)

K̃
L1,L1
Li,Li

(L2,I) K̃
L1,L1
L1,L1

(I,I)

K̃
L1,I

L2,Li
(Li,L1)

— as well as the trivial crossing kernel (2.21), we obtain

dim(VL1,L2,Li)

R(L1)
= tr VL2,Li,L1

(
K̃L1,I

L2,Li
(Li,L1) ◦ K̃L1,L1

Li,Li
(L2, I) ◦ K̃L1,L2

L1,L2
(I,Li)

)
. (B.1)

By the relation (2.20) between the cyclic permutation maps and the crossing kernels,

we have
tr VL2,Li,L1

(
K̃L1,I

L2,Li
(Li,L1) ◦ K̃L1,L1

Li,Li
(L2, I) ◦ K̃L1,L2

L1,L2
(I,Li)

)
= tr VL2,Li,L1

(
CL1,L2,Li ◦ K̃

L1,L1

Li,Li
(L2, I) ◦ K̃L1,L2

L1,L2
(I,Li)

)
= K̃L1,L1

Li,Li
(L2, I) ◦ CL1,L2,Li ◦ K̃

L1,L2

L1,L2
(I,Li),

(B.2)

where in the second equality, we used the fact that the cyclic permutation map CL1,L2,Li

trivially commutes with K̃L1,L1

Li,Li
(L2, I). We dropped the trace in the final line since it is

a map between one-dimensional vector spaces VL1,L1,I
⊗ VI,L2,L2

and VL1,L1,I
⊗ VL1,I,L1

.

Putting everything together, we arrive at the fusion relation

L1L2 =
∑
Li

dim(VL1,L2,Li)Li. (B.3)

C Explicit solutions to pentagon identity

This appendix presents explicit solutions to the pentagon identity for several fusion rings

of rank three discussed in section 3.1. Here, K̃ is the crossing kernel K̃ in the basis specified

in appendix A.

C.1 Fusion categories with RC(ŝo(3)5) fusion ring

There are three inequivalent solutions to the pentagon identity associated to the RC(ŝo(3)5)

fusion ring defined in section 3.1 (see also section 5.1.4). We list the nontrivial crossing

kernels below, while the unlisted ones are 1 if the T-junctions involved are allowed, and 0

otherwise.

K̃Y,YY,Y (I, I) = 1−ζ2, K̃Y,YY,Y (I, Y ) = 1−ζ2,

K̃Y,YY,Y (I,X) = −ζ4 + 3ζ2−1,

K̃Y,YY,Y (Y, Y ) = ζ4−2ζ2 + 1, K̃Y,YY,Y (Y,X) = −ζ4 + 3ζ2−2, K̃Y,YY,Y (X,Y ) = ζ4−2ζ2,
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∑
Li

Li
L1

L2

◦ K̃L1,L2

L1,L2
(I,Li)

=
∑
Li

Li
L1

L2

◦ CL1,L2,Li ◦ K̃
L1,L2

L1,L2
(I,Li)

=
∑
Li

L1

Li

K̃L1,L1

Li,Li
(L2, I) ◦ CL1,L2,Li ◦ K̃

L1,L2

L1,L2
(I,Li)

Figure 63. Some steps in the derivation of the fusion relations.

K̃Y,YY,Y (X,X) = −ζ4 + 3ζ2−1, K̃Y,XY,Y (Y, Y ) = ζ4−2ζ2, K̃Y,XY,Y (Y,X) = 2ζ3−ζ5,

K̃Y,XY,Y (X,Y ) = 2ζ3−ζ5, K̃Y,XY,Y (X,X) = 2ζ2−ζ4, K̃Y,YY,X(Y, Y ) = ζ4−2ζ2,

K̃Y,YY,X(Y,X) = 2ζ3−ζ5, K̃Y,YY,X(X,Y ) = 2ζ3−ζ5, K̃Y,YY,X(X,X) = 2ζ2−ζ4,

K̃Y,XY,X (I, Y ) = 1−ζ2, K̃Y,XY,X (I,X) = 1−ζ2, K̃Y,XY,X (Y, Y ) = 2ζ3−ζ5,

K̃Y,XY,X (Y,X) = −ζ, K̃Y,YX,Y (Y, Y ) = ζ4−2ζ2, K̃Y,YX,Y (Y,X) = 2ζ3−ζ5,

K̃Y,YX,Y (X,Y ) = 2ζ3−ζ5, K̃Y,YX,Y (X,X) = 2ζ2−ζ4, K̃Y,XX,Y (Y, Y ) = 1−ζ2,

K̃Y,XX,Y (X,Y ) = 2ζ2−ζ4, K̃Y,XX,Y (X,X) = ζ2−1,

K̃Y,YX,X(Y, I) = −ζ4 + ζ2 + 1,

K̃Y,YX,X(Y, Y ) = ζ, K̃Y,YX,X(X,Y ) = −ζ, K̃X,YY,Y (Y, Y ) = ζ4−2ζ2,

K̃X,YY,Y (Y,X) = 2ζ3−ζ5, K̃X,YY,Y (X,Y ) = 2ζ3−ζ5, K̃X,YY,Y (X,X) = 2ζ2−ζ4,

K̃X,XY,Y (Y, I) = −ζ4 + ζ2 + 1, K̃X,XY,Y (Y, Y ) = ζ, K̃X,XY,Y (X,Y ) = −ζ,

K̃X,YY,X (Y, Y ) = 1−ζ2, K̃X,YY,X (X,Y ) = 2ζ2−ζ4, K̃X,YY,X (X,X) = ζ2−1,

K̃X,YX,Y (I, Y ) = 1−ζ2, K̃X,YX,Y (I,X) = 1−ζ2, K̃X,YX,Y (Y, Y ) = 2ζ3−ζ5,

K̃X,YX,Y (Y,X) = −ζ, K̃X,XX,X (I, I) = ζ2, K̃X,XX,X (I, Y ) = ζ2,

K̃X,XX,X (Y, I) = −ζ4 + ζ2 + 1, K̃X,XX,X (Y, Y ) = −ζ2, (C.1)
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where ζ = ζi for i = 1, · · · , 6 are the six roots of the equation 1 − ζ2 − 2ζ4 + ζ6 = 0. The

solutions (C.1) with ζ = ζi and ζ = −ζi are gauge equivalent by a further freedom that

rotates the junction vectors by MX,X,Y =MX,Y,X =MY,X,X = −1.

The expectation values 〈X〉 and 〈Y 〉 are

〈X〉 = ζ4 − ζ2 − 1, 〈Y 〉 = ζ2. (C.2)

Out of the three solutions, only one of them give positive values of 〈X〉 and 〈Y 〉, as is

required by unitarity.

C.2 1
2
E6 fusion category

There are four inequivalent solutions to the pentagon identity associated to the 1
2E6 fusion

ring defined in section 3.1 (see also section 5.2.3). We list the nontrivial crossing kernels

below, while the unlisted ones are 1 if the T-junctions involved are allowed, and 0 otherwise.

The first solution is

K̃X,YY,X (Y, Y ) = K̃Y,XX,Y (Y, Y ) = −1,

K̃X,YY,Y (Y, Y ) =

(
0 1

1 0

)
,

K̃Y,YY,X(Y, Y ) =

(
0 −i
i 0

)
, K̃Y,YX,Y (Y, Y ) =

(
1 0

0 −1

)
,

K̃Y,IY,Y (Y, Y ) =
1√
2
e−

πi
12

(
1 1

i −i

)
, K̃Y,XY,Y (Y, Y ) =

1√
2
e

5πi
12

(
1 −1

−i −i

)
,

K̃Y,YY,Y (I, I) = K̃Y,YY,Y (I,X) = K̃Y,YY,Y (X, I) = −1 +
√

3

2
,

K̃Y,YY,Y (X,X) =
1 +
√

3

2
,

K̃Y,YY,Y (Y, I) =

(
−1 −i
−i −1

)
, K̃Y,YY,Y (Y,X) =

(
−1 −i
i 1

)
,

K̃Y,YY,Y (I, Y ) =
1

4
(1 +

√
3)e−

πi
6

(
1 1

1 −1

)
, K̃Y,YY,Y (X,Y ) =

1

4
(1 +

√
3)e−

πi
6

(
1 1

−1 1

)
,

K̃Y,YY,Y (Y, Y ) =


(
K̃Y,YY,Y (Y, Y )11,11 K̃Y,YY,Y (Y, Y )11,12

K̃Y,YY,Y (Y, Y )11,21 K̃Y,YY,Y (Y, Y )11,22

) (
K̃Y,YY,Y (Y, Y )12,11 K̃Y,YY,Y (Y, Y )12,12

K̃Y,YY,Y (Y, Y )12,21 K̃Y,YY,Y (Y, Y )12,22

)
(
K̃Y,YY,Y (Y, Y )21,11 K̃Y,YY,Y (Y, Y )21,12

K̃Y,YY,Y (Y, Y )21,21 K̃Y,YY,Y (Y, Y )21,22

) (
K̃Y,YY,Y (Y, Y )22,11 K̃Y,YY,Y (Y, Y )22,12

K̃Y,YY,Y (Y, Y )22,21 K̃Y,YY,Y (Y, Y )22,22

)


=
1

2


(√

2 +
√

3e−
iπ
12 e−

iπ
3√

2 +
√

3e−
iπ
12 e

2iπ
3

) (
e
iπ
6

√
2 +
√

3e
5iπ
12

e
iπ
6

√
2 +
√

3e−
7iπ
12

)
( √

2 +
√

3e
5iπ
12 e

iπ
6√

2 +
√

3e−
7iπ
12 e

iπ
6

) (
e−

iπ
3

√
2 +
√

3e−
iπ
12

e
2iπ
3

√
2 +
√

3e−
iπ
12

)
. (C.3)
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The second solution is

K̃X,YY,X (Y, Y ) = K̃Y,XX,Y (Y, Y ) = −1,

K̃X,YY,Y (Y, Y ) =

(
0 1

1 0

)
,

K̃Y,YY,X(Y, Y ) =

(
0 −i
i 0

)
, K̃Y,YX,Y (Y, Y ) =

(
1 0

0 −1

)
,

K̃Y,IY,Y (Y, Y ) =
1√
2
e

7πi
12

(
1 1

i −i

)
, K̃Y,XY,Y (Y, Y ) =

1√
2
e−

11πi
6

(
1 −1

−i −i

)
,

K̃Y,YY,Y (I, I) = K̃Y,YY,Y (I,X) = K̃Y,YY,Y (X, I) = −1−
√

3

2
,

K̃Y,YY,Y (X,X) =
1−
√

3

2
,

K̃Y,YY,Y (Y, I) =

(
−1 −i
−i −1

)
, K̃Y,YY,Y (Y,X) =

(
−1 −i
i 1

)
,

K̃Y,YY,Y (I, Y ) =
1

4
(
√

3− 1)e
πi
6

(
1 1

1 −1

)
, K̃Y,YY,Y (X,Y ) =

1

4
(
√

3− 1)e
πi
6

(
1 1

−1 1

)
,

K̃Y,YY,Y (Y, Y ) =


(
K̃Y,YY,Y (Y, Y )11,11 K̃Y,YY,Y (Y, Y )11,12

K̃Y,YY,Y (Y, Y )11,21 K̃Y,YY,Y (Y, Y )11,22

) (
K̃Y,YY,Y (Y, Y )12,11 K̃Y,YY,Y (Y, Y )12,12

K̃Y,YY,Y (Y, Y )12,21 K̃Y,YY,Y (Y, Y )12,22

)
(
K̃Y,YY,Y (Y, Y )21,11 K̃Y,YY,Y (Y, Y )21,12

K̃Y,YY,Y (Y, Y )21,21 K̃Y,YY,Y (Y, Y )21,22

) (
K̃Y,YY,Y (Y, Y )22,11 K̃Y,YY,Y (Y, Y )22,12

K̃Y,YY,Y (Y, Y )22,21 K̃Y,YY,Y (Y, Y )22,22

)


=
1

2


(√

2−
√

3e−
5iπ
12 e

iπ
3√

2−
√

3e−
5iπ
12 e−

2iπ
3

) (
e

5iπ
6

√
2−
√

3e
iπ
12

e
5iπ
6

√
2−
√

3e−
11iπ
12

)
( √

2−
√

3e
iπ
12 e

5iπ
6√

2−
√

3e−
11iπ
12 e

5iπ
6

) (
e
iπ
3

√
2−
√

3e−
5iπ
12

e−
2iπ
3

√
2−
√

3e−
5iπ
12

)
 . (C.4)

The third and forth solutions are the complex conjugates of the first and second solutions.

Only the second and fourth solutions give positive values of 〈X〉 and 〈Y 〉, as is required by

unitarity.
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