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1 Introduction

Over the last several decades, quantum field theories have emerged as the central language

in which modern theoretical physics is formulated. For instance, quantum phases of matter

may succinctly be defined as equivalence classes of quantum field theories, and a given

quantum model is a concrete realization of a phase. Topological quantum field theories

(TQFTs) form a subclass of quantum field theories that are particularly tractable. Indeed,

topological theories are much simpler than conventional theories as they associate finite

dimensional Hilbert spaces to codimension-one submanifolds and have trivial Hamiltonian

evolution. From a mathematical point of view, TQFTs can usually be reformulated al-

gebraically in terms of finite sets of data. Such a reformulation, which bears a strong

category theoretical flavour, was initially pioneered by Atiyah in [1] who defined a TQFT

as a symmetric monoidal functor from a certain category of bordisms to the category of

finite dimensional vector spaces.1 This proposal was further developed by Baez and Dolan

in [2] who suggested that higher category theory was the correct framework to capture the

local structure inherent to quantum theory. More precisely, they proposed that a (d+1)-

dimensional fully extended TQFT, which is capable of capturing locality all the way down

to points, should be understood as a (d+1)-functor between a higher (d+1)-category of

bordisms2 and a higher symmetric monoidal (d+1)-category. This came to be known as

the cobordism hypothesis [3–5]. These mathematical definitions that are motivated by topo-

logical invariance on the one hand and locality on the other hand severely constrain the

structure of TQFTs, and can therefore be used as a classifying tool for topological theories

in a given spacetime dimension.

1For example, a (d+1)-dimensional TQFT Z is a symmetric monoidal functor that assigns to every

oriented closed d-manifold M a vector space Z[M] over the field k and to every bordism B : M1 → M2

between two oriented closed d-manifolds a linear map of vector spaces Z[B] : Z[M1] → Z[M2], together

with the following isomorphisms

Z[∅] ' k , Z[M1 tM2] ' Z[M1]⊗Z[M2] .

This data is subject to some coherence relations that ensure the topological nature of the theory. Moreover,

it can be readily generalized to accommodate manifolds with additional structure such as spin structure or

framing by suitably replacing the category of oriented bordisms.
2It is a category of extended bordisms whose objects are points, 1-morphisms are 1-bordisms between

disjoint union of points, 2-morphisms are bordisms between 1-bordisms, and so on and so forth.
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It is believed that at long wavelengths gapped phases of matter, i.e. phases that have

a spectral gap above the ground state that persists in the thermodynamics limit, are de-

scribed by equivalence classes of topological quantum field theories.3 Therefore, the above

mentioned mathematical constraints turn out to have profound physical consequences and

serve as an organizational tool for the space of gapped phases of matter. Furthermore,

given a TQFT describing deep infrared physics, it is often possible to construct an exactly

solvable model in terms of a lattice Hamiltonian projector. The model may then be de-

formed away from its exactly solvable projector in order study dynamical properties within

the corresponding phase. This is one of the reasons why understanding topological theories

and building the corresponding exactly solvable models is a worthwhile endeavor.

Naturally, the map from the space of ultraviolet models to the space of TQFTs is

surjective. Since quantum models are understood in terms of correlation functions of the

observables that they furnish, going from the ultraviolet to the topological infrared is

performed by a map that only retains the topological part of the correlation functions. As

a matter of fact, it is a defining feature of topological theories to be blind to operators

that are irrelevant under the renormalization group. Therefore, perturbing a TQFT away

from its deep infrared fixed point, while maintaining its gap, may be thought of as going

towards the ultraviolet regime.

There is a particular class of fully extended TQFTs, known as Dijkgraaf-Witten the-

ories [7], that are mathematically well-defined in all dimensions. These theories are con-

structed from finite groups and have a topological gauge theory interpretation. Given a

(d+1)-manifold M and a finite group G, they depend on a single datum, namely a co-

homology class [ω] ∈ Hd+1(BG,R/Z) where BG is the classifying space of the group G,

which has the property that its only non-vanishing homotopy group is the fundamental

group and it equals the group G itself. Dijkgraaf-Witten theories can be cast in two equiv-

alent ways: (i) as topological sigma models whose target space is BG and the sum in

the partition function being performed over homotopy classes of maps from the spacetime

manifold M to BG, (ii) as topological lattice gauge theories defined on a triangulation of

the spacetime manifold together with a G-coloring, i.e. an assignment of group elements in

G to every 1-simplex of the triangulation that satisfies compatibility conditions. Although,

the first approach (i) is more mathematically succinct, the latter point of view (ii) has

the advantage of being more physically transparent, i.e the fields, observables and gauge

transformations can be more explicitly defined and studied. This happens to be very useful

when studying for instance the excitations of the theory and their properties.

The equivalence between the two aforementioned approaches is conceptually straight-

forward and yet slightly subtle: the topological action for the sigma model approach is

provided by integrating the pullback of the cohomology class [ω] onto the manifold M,

while in the lattice gauge theory picture, the topological action is provided by evaluating

the cocycle on each G-colored (d+1)-simplices of the triangulation. But this relies implic-

itly on the fact that for discrete groups the cohomology Hd+1(BG,R/Z) as an algebraic

3Nevertheless, it is not completely clear whether there is a bijection between physically realizable gapped

phase of matter and TQFTs. The subtle relation between TQFTs and gapped phases was carefully studied

in [6] for theories displaying a global symmetry.
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description. More precisely, it uses the fact there is an equivalence between the cohomol-

ogy Hd+1(BG,R/Z) of simplicial cocycles of BG and the cohomology Hd+1(G,R/Z) of

algebraic group cocycles of G. Instead of representing (d+1)-cochains as simplices, they

are then defined as functions from Gd+1 to R/Z, and the coboundary operator is modified

accordingly. This second approach in terms of group cohomology is naturally the one used

in order to construct exactly solvable models that are lattice Hamiltonian realizations of

Dijkgraaf-Witten theories [8, 9]. It turns out that a similar correspondence can also be

established for topological theories that have a higher gauge theory interpretation. It is

however not as straightforward as we explain at length in the present manuscript.

It is possible to define different sigma models that generalize the Dijkgraaf-Witten

construction by choosing different target spaces. The most natural generalization is ob-

tained by replacing the classifying space BG of the discrete group G by the q-th classifying

space BqG.4 The q-th classifying space BqG is an example of Eilenberg-MacLane space

K(G, q) which has the property that only its q-th homotopy group is non-vanishing and

equals the group G itself, i.e. πn(K(G, q)) = δq,nG [10, 11].5 Interestingly, the same way

Dijkgraaf-Witten theories have a lattice gauge theory interpretation, a topological sigma

model whose target space is an Eilenberg-MacLane space K(G, q) can be interpreted as

a q-form topological lattice gauge theory, i.e. a theory that contains (q−1)-dimensional

symmetry operators instead of point-like ones. Theories displaying a (q−1)-form gauge

invariance have a gauge field that is locally described by a q-form. A further generalization

involves building topological sigma models whose target spaces are provided by Postnikov

towers. A Postnikov tower is a topological space constructed as a sequence of fibrations

of simpler topological spaces. For instance Postnikov towers can be built as fibrations of

Eilenberg-MacLane spaces. In analogy to Dijkgraaf-Witten theories, these may be under-

stood as topological higher group gauge theories that contain several gauge fields. More

specifically, for every Eilenberg-MacLane space K(G, q) contained in the Postnikov tower,

the gauge theory will include a corresponding q-form gauge field. In the lattice gauge the-

ory picture, a q-form gauge field is defined by coloring the q-simplices of the triangulation

with elements of the group G that satisfy some consistency criteria in the form of cocycle

conditions. The precise form of these cocycle conditions is obtained from the data that

goes into building the Postnikov tower. The corresponding gauge transformations are built

from the same data. These different generalizations are presented in section 2.

Throughout this manuscript, we focus most of our attention on (3+1)d topological

sigma models with the second classifying space B2G as the target space where G is a finite

abelian group, or equivalently discrete (3+1)d 2-form topological lattice gauge theories. As

explained above, such higher form gauge theories arise naturally from a mathematical point

of view. But they also happen to be physically motivated. For instance, it is known that

Yang-Mills theory is confining and the gauge bosons are gapped at long wavelengths, and

it was argued in [12] that the infrared physics of the confining phase is captured by a non-

trivial 2-form topological gauge theory. The gauge group of this 2-form gauge theory is the

4Since the partition sum is built by summing over homotopy classes of maps to BqG, we really mean

BqG up to homotopy equivalence here.
5The classifying space BG is thus an example of Eilenberg-MacLane space K(G, 1).

– 3 –



J
H
E
P
0
5
(
2
0
1
9
)
0
6
4

magnetic gauge group that survives in the infra red [13, 14]. These 2-form gauge theories

have also appeared in various other contexts in the literature [15–25]. One particular

reason for the interest in such TQFTs resides in the fact that they host a topologically

ordered surface.

Given a finite abelian group G, 2-form topological theories are classified by a single

datum, namely a cohomology class [ω] ∈ H4(B2G,R/Z). It was shown by Eilenberg and

MacLane in a series of seminal papers [10, 11] that the cohomology group H4(B2G,R/Z)

is isomorphic to the group of (possibly degenerate) R/Z-valued quadratic functions on G.

This result allows for an explicit expression of the topological action in terms of a quadratic

form and a quadratic operation known as the Pontrjagin square on H2(M, G) that is the

space of fields of the 2-form theory [14, 26]. Moreover, the topological order living at the

surface can be described in terms of a categorical structure whose input data is the same

as the one labeling the bulk theory, namely a finite abelian group and a quadratic form. If

the quadratic form is degenerate, then the topological order is non-trivial.6 Furthermore,

abelian Chern-Simons theories are labeled by precisely the same data. As a matter of fact,

it was shown in [16] that the 2-form theory is precisely the anomaly theory for the framing

anomaly within the abelian Chern-Simons theory. Therefore, we may interpret abelian

Chern-simons as a framed topological quantum field theory or as a TQFT along with the

corresponding (3+1)d 2-form topological gauge theory.

Besides topological gauge theories, there exist other TQFTs which have been exten-

sively studied. For instance, in (2+1)d it is possible to define a topological theory from any

modular tensor category using the Turaev-Viro construction [27–29] and the corresponding

Hamiltonian realization is provided by the Levin-Wen models [30]. Similarly, in (3+1)d

it is possible to define a topological theory for any premodular tensor category7 using the

Crane-Yetter construction [31–33] and the corresponding Hamiltonian realization is pro-

vided by the Walker-Wang models [17]. But, when the input data of the premodular

category is a finite abelian group and a quadratic form, the Walker-Wang model provides

a Hamiltonian realization of a 2-form gauge theory that describes the topological order

mentioned above.

It is often possible to embed discrete gauge theories, especially the ones built from

abelian groups, into continuous gauge theories. This embedding, if possible, is such that

partition function of the discrete gauge theory and the one of the continuous theory are

equal. A well-known example of such a procedure is the embedding of a Zn-gauge theory in

(d+1)-dimensions into a BF theory with a U(1)-connection 1-form A and a U(1)-dynamical

field (d−1)-form B.8 A special example of this scenario is the embedding of the toric code

model, i.e. a Z2-gauge theory, into a U(1) BF theory. Similarly, discrete 2-form gauge

theories may also be embedded into continuous U(1) gauge theories. But in this case the

6We define non-trivial topological orders as the ones that have long-range entanglement, non-trivial

ground state degeneracy that depends on the topology and fractionalized excitations.
7By premodular category we mean a braided fusion category. A premodular category is then modular if

its S-matrix is non-degenerate.
8The action of the continuous BF theory reads S = 2πin

∫
B ∧ ddRA where ddR is the usual exterior

derivative on forms so that ddRA is the curvature 2-form.
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gauge structure is not the usual one. Indeed, gauge connections are now locally described

by some number of 1-form and 2-form fields that do not transform independently under 0-

form and 1-form gauge transformations. We review the construction of such gauge bundles

in appendix E and show that they form so-called strict 2-group bundles [34–37]. This can

be done carefully by constructing the configuration space of q-form U(1) connections using

the technology of Deligne-Beilinson cohomology [38–40] and then building the configuration

space of strict 2-group bundles by taking a certain twisted product of 1-form and 2-form

gauge bundles. Although the continuous formulation thus obtained gives access to powerful

tools familiar to quantum field theories, it is sometimes more convenient to work in the

discrete within the Hamiltonian formalism. This takes us to the approach followed in

this paper.

Our approach involves defining a 2-form gauge model Hamiltonian realization directly

in terms of a cocycle in H4(B2G,R/Z). More precisely, the model is defined in terms of a

cocycle in a cohomology that is the algebraic analogue of H4(B2G,R/Z), i.e. a cohomology

of algebraic cocycles on G that is in one-to-one correspondence with the cohomology of

simplicial cocycles on B2G. We dubbed this cohomology of algebraic cochains 2-form

cohomology and its definition relies on the so-called W -construction of Eilenberg-MacLane

spaces K(G, 2). After reviewing basic facts regarding Eilenberg-MacLane spaces as well

as the general W -construction in section 3, we define precisely this 2-form cohomology

in section 4. The 2-form Hamiltonian model is finally constructed in section 5. Using

solely the cocycle conditions, it is possible to show explicitly how a 2-form 4-cocycle can be

reduced to a group 3-cocycle α and a group 2-cochain R that satisfies the so-called hexagon

equations. Together, α and R define an associator and a braiding, respectively, which are

precisely the isomoprhisms entering the definition of a certain premoludar category, namely

the premodular category of G-graded vector spaces. As a matter of fact, it can even be

shown that the set of equivalence classes of pairs (α,R) is isomorphic to the cohomology

H4(B2G,R/Z).

The algebraical correspondence mentioned above between a pair (α,R) of associator

and braiding on one side, and a 2-form 4-cocycle on the other, can also be displayed

graphically: in the lattice Hamiltonian picture, the 2-form cocycle arises as the amplitude

of local unitary transformations performed on fixed point ground states. In (3+1)d, these

local unitary transformations are expressed in terms of 2–3 and 1–4 Pachner moves [41].

But we show in section 5 how these moves reduce to the moves defined in the context of

the Walker-Wang model whose amplitudes are provided by the associator and the braiding

isomorphisms. This algebraical and geometrical correspondence can then be used to show

explicitly how our Hamiltonian model is related to the Walker-Wang model for the category

of G-graded vector spaces. This is the purpose of section 6. Most interestingly, we can

display how the ad hoc splitting into three-valent vertices required for the definition of the

Walker-Wang Hamiltonian is now directly encoded in the definition of the 2-form cocycle

itself. This makes the definition of our model more compact and more systematic.

Organization of the paper. In section 2, we first review the definition of the Dijkgraaf-

Witten model both as a sigma model and as a lattice gauge theory. We then present a

– 5 –
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generalization obtained by choosing the target space to be the q-th classifying space of a

discrete abelian group. In particular, we briefly review known material about sigma models

whose target spaces are provided by the second classifying space of a finite abelian group

and review their classification. We then move on to the study of the lattice realization of a

2-form topological gauge theory. In section 3, we review the theory of Eilenberg-MacLane

spaces as well as their so-called W -construction. We use the W -construction in section 4

to define the 2-form cohomology. The lattice Hamiltonian of the (3+1)d 2-form model is

defined in section 5 and the excitations yielded by the Hamiltonian are briefly discussed.

Finally, in section 6 our lattice model is compared to the Walker-Wang model for the cate-

gory of G-graded vector spaces. The paper also contains several appendices: in particular,

appendix D provides further detail regarding the operators, the quantization and the in-

vertibility of 2-form theories. In appendix E, we introduce Deligne-Beilinson cohomology

and show that the q-th Deligne-Beilinson cohomology group is isomorphic to the space of

gauge inequivalent q-form U(1) connections. This is then used to construct strict 2-group

connections that naturally appear when trying to embed theories based on finite abelian

groups into continuous toric gauge theories. In appendix F we propose explicit expressions

of q-form topological actions using the language of Deligne-Beilinson cohomology.

2 Topological gauge theories as topological sigma models

In this section, we introduce different topological theories as sigma models. We also explain

how these can be formulated as lattice (higher) gauge models. This lattice interpretation

will be at the heart of the study carried out in section 3 onwards.

2.1 Dijkgraaf-Witten theory

Dijkgraaf and Witten defined in [7] a topological gauge theory for a finite group G in general

spacetime dimension (d+1).9 They showed that different topological G-gauge theories were

classified by a single datum, namely a cohomology class

[ω] ∈ Hd+1(BG,R/Z) (2.1)

where BG is the classifying space of the group G that has the distinguished property that

its only non-vanishing homotopy group is the fundamental group π1(G), and π1(G) equals

the group G itself. The gauge theory is built as a sigma model with the target space being

BG. The partition sum is performed over homotopy classes of maps [γ] :M→ BG where

M is an oriented (d+1)-manifold. To each map γ, we associate a topological action that

is the integral over M of the pull-back γ?ω ∈ Hd+1(M,R/Z) of ω. The partition function

takes a simple form

ZBGω [M] =
1

|G|b0
∑

[γ]:M→BG
e2πi〈γ?ω,[M]〉 (2.2)

9Although their paper only discusses (2+1)d, generalization to any dimension is very straightforward.

– 6 –
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where b0 is the 0-th Betti number, [M] ∈ Hd+1(M,Z) the fundamental homology cycle

of M and 〈•, •〉 the canonical pairing defined as 〈γ?ω, [M]〉 =
∫
M γ?ω. Since the only

non-vanishing homotopy group of BG is its fundamental group, homotopy classes of maps

from M to BG are homomorphisms Hom(π1(M), π1(BG) = G)/ ∼ where the equiva-

lence relation ∼ is generated by null homotopic maps. The partition sum can therefore

be rewritten

ZBGω [M] =
1

|G|b0
∑

A∈Hom(π1(M),G)/∼
e2πi〈ω(A),[M]〉 (2.3)

where A is a representative in a homotopy class [γ] and ω(A) the evaluation of γ∗ω on A.

When the group G is abelian the partition sum is over a cohomology group which is the

natural abelianization of the homotopy group. In other words, maps γ become G-valued

1-cocycles and the null homotopic maps are G-valued 1-coboundaries (written as dφ) so

that the configuration space of the sigma model is H1(M, G).

Alternatively, (2.3) can be recast as a lattice gauge theory. In order to do so, let

us endow M with a triangulation 4. Thanks to the path-connectedness of BG, one can

smoothly deform maps γ so that the space of paths in BG that is G up to homotopy can be

mapped to the 1-simplices of 4. The contractible paths are then mapped to the identity

group element. In practice, this means that we assign to every 1-simplex (xy) ⊂ 4 a

group element gxy such that for every 2-simplex (xyz) whose boundary is associated with

a contractible path, the flatness condition (or 1-cocycle condition) 〈dg, (xyz)〉 ≡ gyz · g−1
xz ·

gxy = 1 is imposed. This is merely the statement that a flat G-connection can have non-

trivial holonomies along non-contractible closed paths only. Non-trivial group elements are

thus assigned to non-contractible cycles of M so that each assignment is an element of

Hom(π1(M), G). We refer to such an assignment of group elements as a G-coloring and

we denote by Col(M, G) the set of G-colorings. The Dijkgraaf-Witten partition function

then reads

ZBGω [M] =
1

|G||40|
∑

g∈Col(M,G)

∏
4d+1

e2πiSω [g,4d+1] (2.4)

where |40| is the number of 0-simplices. The topological action is given by Sω[g,4d+1] :=

ε(4d+1)〈ω(g),4d+1〉 such that ε(4d+1) = ±1 is determined by the orientation of the

(d+1)-simplex and 〈ω(g),4d+1〉 is the evaluation of the cocycle ω on the colored simplex

4d+1.

So there are multiple constructions of the Dijkgraaf-Witten partition: (i) As a topo-

logical sigma model with target space the classifying space BG which gives the formu-

lation (2.2). (ii) Upon noticing that the homotopy classes of maps satisfy [M, BG] '
H1(M, G), one obtains (2.3). (iii) After endowing the space-time manifold M with a

triangulation, a lattice construction can be obtained which leads to (2.4). The relation be-

tween g ∈ Col(M, G) and A ∈ Hom(π1(M), G)/ ∼ is that A corresponds to an equivalence

class of g’s where the equivalence relations are gauge transformations.

– 7 –
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2.2 Generalized topological gauge theories

The compact expression (2.2) for the Dijkgraaf-Witten partition function can be readily

generalized to the scenario where BG is replaced by some other space X. For several

different choices of X, the space of homotopy classes of maps [M, X] is isomorphic to a

generalized cohomology group onM. One then may study topological sigma models, with

the space X as the target space, that provides generalizations of conventional topological

gauge theories. Similar to the Dijkgraaf-Witten partition functions above (2.2)–(2.4), such

generalized gauge theories can also be built as lattice (higher) gauge theories on triangulated

space-time manifolds. We first describe the construction of these generalized gauge theories

as sigma models and then as topological lattice theories.

A topological sigma model can be constructed by generalizing the Dijkgraaf-Witten

partition function as follows:

ZXω [M] =
1

NX

∑
[γ]∈π0[Map(M,X)]

e2πi〈γ?ω,[M]〉 , (2.5)

where ω ∈ Cd+1(X,R/Z) is a (d+1)-cochain, M is a compact oriented (d+1)-manifold,

[M] ∈ Hd+1(M,Z) its fundamental homology cycle and NX is a normalization constant

that depends on the manifold and the choice of target space X. The sum in the partition

function is over homotopy classes [γ] of maps γ from M to X.

Naturally, the choice of (d+1)-cochain ω is constrained: given an oriented (d+2)-

bordism W :M1 tM2 →M3, it is required that [7, 42]

0 = 〈γ?ω, [M1]〉+ 〈γ?ω, [M2]〉 − 〈γ?ω, [M3]〉
= 〈γ?ω, [∂W]〉
= 〈γ?dω, [W]〉 (2.6)

where d : Cd(X,R/Z) → Cd+1(X,R/Z) is the coboundary operator on the space of

cochains. Condition (2.6) is required to hold for every bordism W which implies that

ω must be a cocycle in Zd+1(X,R/Z). When M is closed, modifying the cocycle ω by a

coboundary dφ where φ ∈ Cd(X,R/Z) has clearly no effect. However, when M is an open

manifold, this alters the action by a boundary term that can be absorbed into a U(1) phase

upon quantization of the theory. Correspondingly, the redefined Hilbert space preserves am-

plitudes and as such describes the same theory. Putting everything together, we obtain that

distinct topological sigma models are classified by cohomology classes [ω] ∈ Hd+1(X,R/Z).

Let us now consider several examples of sigma models that correspond to different

choices of target space X:

Example 2.1 (X is the q-th classifying space BqG of a finite abelian group G). This exam-

ple is the immediate generalization of the Dijkgraaf-Witten theory obtained by considering

the target space X to be the so-called q-th classifying space BqG of a finite abelian group G

for q > 1.10 This space satisfies the defining property πn(BqG) = δn,qG. Similarly to the

10Explicit constructions of classifying spaces are provided in section 3.
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above construction, one can build models which have a higher-form topological gauge the-

ory interpretation by providing a cohomology class [ω] ∈ Hd+1(BqG,R/Z). The partition

sum looks almost identical to the Dijkgraaf-Witten partition function:

ZBqG
ω [M] =

1

|G|b0→q−1

∑
[γ]:M→BqG

e2πi〈γ?,[M]〉 (2.7)

where b0→q−1 :=
∑q−1

i=0 bq−i(M)(−1)i and bi(M) is the i-th Betti number of the manifold

M. Like the classifying space BG, the q-th classifying space BqG can be constructed as a

simplicial complex so that the simplicial map γ :M→ BqG is furnished by a G-valued q-

cocycle A. The null homotopic maps can be extended to a cone above M and take the form

dφ ∈ Bq(M, G). These null homotopies represent the (q−1)-form gauge transformations

in the q-form gauge theory, i.e A ∼ A + dφ. Hence the homotopy classes of maps are

isomorphic to the cohomology classes [M, BqG] ' Hq(M, G).

In the following sections, we restrict ourselves to the study of the sigma models whose

target space are provided by the second classifying space B2G of a finite abelian group G.

Such models have a natural interpretation in terms of 2-form gauge theories. Nevertheless,

before going into the details of these theories, it is enlightening to sketch out some further

generalizations.

Example 2.2 (X is a two-stage Postnikov tower). Following the theory of Postnikov

towers [43], let us denote the q1-th classifying space of a finite abelian group G1 by E1 :=

Bq1G1. As described in the previous example, a topological (q1-form) gauge theory can

be built wherein the local fields are cocycles A1 ∈ Zq1(M, G1) which represent maps from

γ : M → E1. Furthermore, the null homotopic maps are captured by coboundaries dφ1 ∈
Bq1(M, G1). Since the partition sum is over homotopy classes of maps, we must identify

A1 ∼ A1 + dφ1 which we recognize as the (q1−1)-form gauge invariance so that gauge

inequivalent configurations are isomorphic to Hq1(M, G). The target space E1 is referred

to as a one-stage Postnikov tower. Things get more interesting if we consider a 2-stage

Postnikov tower E2 = E1 oα2 B
q2G2 where [α2] ∈ Hq2+1(E1, G2) such that E2 fits in the

exact sequence

0→ Bq2G2 → E2 → E1 → 0 (2.8)

whose extension class is [α2]. A map from M to E2 is furnished by a tuple of local data A2

defined as A2 = {(A1, A2) ∈ Cq1(M, G1)× Cq2(M, G2)}. Furthermore, it is required that

A2 is in the kernel of a differential operator denoted by DE2, i.e. DE2A2 = 0, such that

DE2 : Cq1(M, G1)× Cq2(M, G2) −→ Cq1+1(M, G1)× Cq2+1(M, G2)

(A1, A2) = A2 7−→ DE2A2 := (dA1, dA2 − α2(A1)) . (2.9)

In other words, A1 and A2 satisfy some cocycle conditions twisted by the extension class

[α2]. Similarly, a null homotopy is provided by the image of an operator D[
E2

that acts on
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a tuple Φ2 =
{

(φ1, φ2) ∈ Cq1−1(M, G1)× Cq2−1(M, G2)
}

via

D[
E2

: Cq1−1(M, G1)× Cq2−1(M, G2) −→ Cq1(M, G1)× Cq2(M, G2)

(φ1, φ2) = Φ2 7−→ D[
E2
Φ2 := (dφ1, dφ2 + ζ2(A1, φ1)) (2.10)

where ζ2(A1, φ1) is a descendant of α2 satisfying

α2(A1 + dφ1)− α2(A1) = dζ2(A1, φ1) . (2.11)

We can easily check that DE2 ◦D[
E2

= 0 so that one can define a cohomology H~q
E2

(M) :=

kerDE2/imD[
E2

where ~q = (q1, q2). Homotopy classes of maps [γ] :M→ E2 are in one-to-

one correspondence with the equivalence classes of the cohomology we just defined. Given

a class [ω] ∈ Hd+1(E2,R/Z), we can thus define a topological gauge theory whose partition

function reads

ZE2
ω [M] =

1

|G1|b0→q1−1 |G2|b0→q2−1

∑
[A2]∈H~q

E2
(M)

e2πi〈ω(A2),[M]〉 . (2.12)

In the case where q1 = 1 and q2 = 2, the previous construction reduces to a (weak) 2-

group bundle which has been recently studied in several papers, see for instance [20, 21, 44,

45]. Topological gauge models built from 2-group connections can be found in [20, 44, 46–

49]. This construction can be even further generalized to so-called k-stage Postnikov towers

(see appendix A).

2.3 Topological lattice (higher) gauge theories

In order to build a lattice (higher) gauge theory which corresponds to a certain topological

sigma model described above, we can proceed as follows: let the target space of the sigma

model be X and let us endow the space-time manifoldM with a triangulation 4. For each

non-vanishing homotopy group πqi(X) = Gi, we introduce a Gi-valued qi-cochain on M.

Locally, this amounts to labeling the qi-simplices of the triangulation with elements in Gi.

Furthermore, we introduce constraints on the labelings of the different simplices that are

analogous to the cocycle conditions satisfied by the data representing a homotopy class of

a map from M to X. Labelings satisfying such constraints are referred to as X-colorings

of the triangulation M and the set of all colorings is denoted by Col(M, X).11 Denoting

a given coloring by g ∈ Col(M, X), the partition function takes the form

ZXω [M] =
1

N4X

∑
g∈Col(M,X)

∏
4d+1

e2πiSω [g,4d+1] (2.13)

where N4X is a normalization constant and Sω[g,4d+1] is the topological action whose value

depends on the local data g as well as a representative of the class [ω] ∈ Hd+1(X,R/Z).

11Actually this set has a monoidal structure which makes it a group or a generalization thereof.
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Example 2.3 (q-form lattice gauge theories). Let us construct the lattice realization of a

q-form topological gauge theory that corresponds to a topological sigma model with target

space BqG. Flat q-form connections (dubbed flat G[q]-connections) can have non-trivial

q-holonomies along non contractible closed q-paths only. Therefore, a flat G[q]-connection

can be defined as a homomorphism from the q-th homotopy group πq(M) to G. Locally,

this means that a flat G[q]-connection is fully characterized by a q-cochain valued in G

satisfying dg = 0, with 0 ∈ G the unit element. In practice, we assign to every q-simplex

4q = (v0 . . . vq) ⊂ 4 a group element gv0...vq = 〈g, (v0 . . . vq)〉 such that for every (q+1)-

simplex 4q+1 = (v0 . . . vq+1) ⊂ 4, we impose the q-flatness condition

〈dg, (v0 . . . vq+1)〉 =

q∑
i=0

(−1)i+1gv0...v̂i...vq+1 = 0 (2.14)

where the notation •̂ indicates that the corresponding vertex is omitted from the list. Such

a labeling is referred to as a G[q]-coloring and the set of G[q]-colorings is denoted by

Col(M, G[q]). Note that a (q−1)-form gauge transformation is defined as a gauge pa-

rameter φ which acts on such colorings as

φ . gv0...vq = gv0...vq + 〈dφ, (v0 . . . vq)〉 . (2.15)

The topological action is provided by pulling back a class representative in a cohomology

class [ω] ∈ Hd+1(G[q],R/Z) ≡ Hd+1(BqG,R/Z) and evaluating it on a choice of G[q]-

coloring g ∈ Col(M, G[q]). The partition function finally looks like

ZG[q]
ω [M] =

1

|G||40→q−1|
∑

g∈Col(M,G[q])

∏
4d+1

e2πiSω [g,4d+1] (2.16)

where |40→q−1| :=
∑q−1

i=0 |4q−i(M)|(−1)i such that |4i(M)| is the number of i-simplices

in the triangulation 4 of M.

In the following sections, we focus our attention on 2-form topological gauge theories

and their lattice realization as defined in the previous example. More specifically, in sec-

tion 3, we carefully build the cohomology group Hd+1(BqG,R/Z) for the case q = 2 so as

to provide a more explicit expression for (2.16) which can be used to construct a lattice

Hamiltonian realization of this topological theory. As before, this lattice construction can

be readily generalized to sigma models whose target space is provided by a Postnikov tower

(see appendix A).

2.4 2-form topological action

Let us explore in a little bit more detail topological sigma models that have a 2-form

gauge theory interpretation. In particular, we wish to emphasize the role played by the

classification of the relevant cohomology group in terms of quadratic forms.

We explained above how 2-form topological gauge theories for a finite abelian group

G can be built as topological sigma models with target space the second classifying space

X = B2G of G. Homotopy classes of maps [M,B2G] can be labeled by B ∈ H2(M, G) and
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the homotopies of these maps are gauge transformations B ∼ B+dφ where φ ∈ C1(M, G).

The partition function is provided by (2.7) which we repeat below:

ZB2G
ω [M] =

1

|G|b1(M)−b0(M)

∑
B∈H2(M,G)

e2πi〈ω(B),M〉 . (2.17)

Restricting to (3+1)d, the topological actions are classified by [ω] ∈ H4(B2G,R/Z). But,

since H3(B2G,Z) = 0, we may write

H4(B2G,R/Z) = Hom
(
H4(B2G),R/Z

)
= Hom (Γ(G),R/Z)

where Γ(G) ' H4(B2G,Z) is known as the universal quadratic group for G [10, 11]. Before

stating the defining property of Γ(G), let us first recall the definition of a quadratic form:

Definition 2.1 (Quadratic form). A quadratic form on a finite abelian group G valued in

R/Z is a function q : G→ R/Z such that q(g) = q(−g) and

b : (g, h) 7→ q(g) + q(h)− q(g + h)

is bilinear, i.e. b(g1 + g2, h) = b(g1, h) + b(g2, h), ∀g1, g2, h ∈ G.

Conversely, any lattice with a symmetric bilinear form b defines a quadratic form via

q(x) := 1
2b(x, x). Furthermore, it can be checked that the value of b and q on the generators

of G completely determine these forms.

The universal quadratic group Γ(G) is uniquely defined by the property that any

quadratic function q : G → R/Z may be written as the composition q = q̃ ◦ γ where

γ : G→ Γ(G) and q̃ ∈ Hom(Γ(G),R/Z). For instance, the universal quadratic group of Zn
is Γ(Zn) = Zn or Z2n for n an odd integer or an even integer, respectively. The universal

quadratic group of any finite abelian group of the form G = ⊕IZnI is then

Γ(G) =

[⊕
I

Γ(ZnI )

]
⊕

[⊕
I<J

Zgcd(nI ,nJ )

]
(2.18)

where gcd(nI , nJ) is the greatest common divisor of nI and nJ . It was shown by Eilenberg

and MacLane [11] that the cohomology group H4(B2G,R/Z) is isomorphic to the group of

quadratic functions. Following the above discussion, the topological action in (2.17) can

thus be defined as the composition of a canonical quadratic operation P : H2(M, G) →
H4(M,Γ(G)) known as the Pontrjagin square, with a homomorphism q̃ from Γ(G) to

R/Z, i.e. ω(B) ≡ q̃∗P(B) ∈ H4(M,R/Z) (see [12, 14, 16] for more details). The form of

the topological action ω(B) ≡ q̃∗P(B) ∈ H4(M,R/Z) naturally depends on a choice of

homomorphism q̃ ∈ Hom(Γ(G),R/Z). Since the universal quadratic group for Zn depends

on whether n is even or odd, without loss of generality let us write our gauge group

G =
⊕

I ZnI such that nI is even if I ≤ K and odd for I > K. An element of a ∈ Γ(G)

takes the form a ≡ {aI , aIJ} where

aI ∈

{
{0, . . . , 2nI − 1} , if I ≤ K
{0, . . . , nI − 1} , if I > K

aIJ ∈ {0, . . . , gcd(nI , nJ)− 1} . (2.19)
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Similarly, a homomorphism q̃ ∈ Hom(Γ(G),R/Z) ' Γ(G) is prescribed by {pI , pIJ}

pI ∈

{
{0, . . . , 2nI − 1} , if I ≤ K
{0, . . . , nI − 1} , if I > K

pIJ ∈ {0, . . . , gcd(nI , nJ)− 1} (2.20)

via the map

q̃(a) =
∑
I≤K

pIaI
2nI

+
∑
I>K

pIaI
nI

+
∑
I<J

pIJaIJ
gcd(nI , nJ)

. (2.21)

Then, for a field configuration BI ∈ Z2(M,ZnI ) the action takes the form

Sp[BI ,M] = 2πi

∫
M
q̃∗P

(∑
I

BI

)
=
∑
I≤K

2πipI
2nI

∫
M

P(BI) +
∑
I>K

2πipI
nI

∫
M

P(BI)

+
∑
I<J

2πipIJ
gcd(nI , nJ)

∫
M
BI^BJ . (2.22)

It can be checked that P(BI + dλI)−P(BI)
d
= 0 (mod nI or 2nI) when nI is odd or even,

respectively. There is also a 2-form global symmetry BI 7→ BI+βI where βI ∈ Z2(M,ZnI )

and Sq2(βI) = 0.12 The partition function for the above topological gauge theory was

computed in [14, 16] for the case whereM has vanishing torsion in all its homology groups.

In that case, we may write

BI =

b2(M)∑
a=1

bIaha
nI

(2.23)

where ha is a basis element in H2(M,Z). The topological action evaluates to

Sp[~bI ,M] =
∑
I≤K

πipI(b
I)> I bI

nI
+
∑
I>K

2πipI(b
I)> I bI

nI
+
∑
I<J

2πipIJ(bI)> I bJ

gcd(nI , nJ)
(2.24)

where ~bI ∈ (Z/2nIZ)b2(M) when nI is even and ~bI ∈ (Z/nIZ)b2(M) when nI is odd. The

object I defined as (I)ab =
∫
M ha ^ hb is the intersection pairing in H2(M,Z). The

partition function finally reads

ZB2G
p [M] =

1

(
∏
I nI)

b1(M)−b0(M))

∑
~bI

eSp[~bI ,M] . (2.25)

So we reviewed the derivation of the partition function of 2-form topological theories,

where the classification in terms of quadratic forms plays a prominent role. Since this

model is constructed from a finite group, it is most naturally defined on a lattice as we are

12Sq2 : H2(M,ZnI ) → H4(M,ZnI ) as [βI ] → [βI ] ^ [βI ]. Therefore we need to impose that [βI ] ^

[βI ] = 0 ∈ H4(M,ZnI ) so that the action is invariant under the global symmetry transformation.
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about to see in the next sections. More precisely, in the following we construct the lattice

Hamiltonian realization of the theory, where the classification of the relevant cohomology

group also plays a fundamental role. Nonetheless, it is often desirable to have a continuous

formulation of a theory. Such a formulation, if it exists, may give one access to powerful

and sometimes familiar tools of quantum field theory. We review this point as well as some

other aspects of the theory in appendices C, D and E.

3 Eilenberg-MacLane spaces

This section provides some review material for algebraic topology in order to motivate the

construction of the 2-form cohomology presented in the next section. More specifically, we

review the algebraic structure of Eilenberg-MacLane spaces that are defined as:

Definition 3.1 (Eilenberg-MacLane space). Let q ∈ N and G a group (abelian if q ≥
2), then an Eilenberg-MacLane space K(G, q) is a connected topological space such that

πq(K(G, q)) ' G and πn(K(G, q)) ' 0 if n 6= q, where πn denotes the n-th homotopy group.

Eilenberg-MacLane spaces satisfy the following fundamental property:

Property 3.1. Eilenberg-MacLane spaces are unique up to homotopy equivalence.

Therefore, we will often abusively refer to any Eilenberg-MacLane space K(G, q) as

K(G, q) and, in particular, we identify thereafter the q-th classifying space Bq(G), which is

a space K(G, q), with K(G, q). There exists different constructions of Eilenberg-MacLane

spaces [10, 11, 43, 51–54]. In this paper, we define them as simplicial abelian groups and

we focus specifically on the so-called W -construction. This is the formulation we will use

in section 4 in order to define the 2-form cohomology.

3.1 Abelian simplicial groups

Let us first present the general definition of an abelian simplicial group and then illustrate

it by constructing the space K(G, 1), with G a finite group. An abelian simplicial group

can be succinctly defined as a simplicial object in the category of abelian groups [53].

Nevertheless, we provide below a more explicit definition. Let us first introduce the notion

of simplicial set:

Definition 3.2 (Simplicial set). A simplicial set X is a collection {Xn}n∈N of sets, together

with homomorphisms

∂i = ∂
(n)
i : Xn → Xn−1 , i = 0, . . . , n , n > 0 , (3.1)

ηi = η
(n)
i : Xn → Xn+1 , i = 0, . . . , n , n > 0 , (3.2)
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subject to the identities

∂i∂j = ∂j−1∂i , if i < j , (3.3)

ηiηj = ηj+1ηi , if i ≤ j , (3.4)

∂iηj = ηj−1∂i , if i < j , (3.5)

∂iηi = ∂i+1ηi = id , (3.6)

∂iηj = ηj∂i−1 , if i > j + 1 . (3.7)

The maps ∂i and ηi are referred to as face and degeneracy operators, respectively.

The elements of Xn are usually referred to as n-simplices and i, j in the equations above

label the faces of these simplices. Given a simplicial set X, we define the boundary map

∂ = ∂(n) : Xn → Xn−1 as ∂(0) ≡ 0 for n = 0, and for n > 0 as

∂(n) = ∂0 − ∂1 + · · ·+ (−1)n∂n . (3.8)

From the identity (3.3) follows the usual rule ∂ ◦∂ ≡ 0. The simplest example of simplicial

set is provided by the standard n-simplex :

Example 3.1 (Standard n-simplex ). Let us first define an n-simplex 4n as the smallest

convex set in Rn containing n+1 points denoted by v0, . . . , vn such that they do not lie in a

hyperplane of dimension less than n. The points vi are 0-simplices and are identified with

the vertices of the n-simplex. In the following, we denote such n-simplex by (v0 . . . vn).

Furthermore, the vertices are endowed with an ordering which induces an orientation of

the edges (vi vj), i < j, according to increasing subscripts. We then define a face of an

n-simplex 4n as a subsimplex defined by the vertices which form a subset of {v0, . . . , vn}.
The i-th face of the n-simplex can be defined as the image of the map ∂i such that

∂i(v0 . . . vn) = (v0 . . . v̂i . . . vn) := (v0 . . . vi−1 vi+1 . . . vn) , (3.9)

where the notation •̂ indicates that the corresponding vertex is omitted from the list. The

oriented boundary of an n-simplex is then obtained as the image of the operator ∂ defined

according to (3.8) as

∂(n)(v0 . . . vn) :=
n∑
i=0

(−1)i(v0 . . . v̂i . . . vn) . (3.10)

Furthermore, the i-th degenerate simplex of an n-simplex is obtained as the image of the

map ηi defined as

ηi(v0 . . . vn) := (v0 . . . vi−1 vi vi vi+1 . . . vq) . (3.11)

The set of n-tuples (v0 . . . vn) together with the face and degeneracy maps introduced above

naturally form a simplicial set that is referred to as the standard n-simplex.

We can now straightforwardly define a simplicial group:

Definition 3.3 (Simplicial group). A simplicial group is a simplicial set X such that each

Xn is a group and the degeneracy and face operators are homomorphisms between them. If

all the Xn are abelian, then X is an abelian simplicial group.
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Given a simplicial group X, since the face and degeneracy maps are group homo-

morphisms, the boundary map ∂ defined as in (3.8) is also a homomorphism. Therefore,

together with the property ∂ ◦ ∂ ≡ 0, the simplicial group X defines a chain complex

with chain groups {Xn}n∈N [51]. This last remark is the main reason why the study of

Eilenberg-MacLane spaces, which are examples of abelian simplical groups, is relevant to

group cohomology and its generalizations.

3.2 Classifying space BG

Let us now illustrate the concepts introduced above with the construction of the classifying

space BG ≡ B(G) of a finite group G that is an Eilenberg-MacLane space K(G, 1), i.e.

its fundamental group π1(BG) is equal to G and every other homotopy group vanishes.

We follow an admittedly minimal (but hopefully pedagogical) approach to define such

classifying space, however this is enough for the purpose at hand. More details can be

found in [10, 11, 43, 51–54].

The construction of the classifying space B(G) of a finite group G mimics the con-

struction of the standard n-simplex such that the n-simplices are now abstract simplices

whose vertices are labeled by group variables:

Definition 3.4 (Classifying space). Let G be a finite group and E(G) the simplicial set

such that E(G)n = Gn+1. The n-simplices of E(G) are therefore identified with the ordered

(n+1)-tuples (g0, . . . , gn), with gi ∈ G. The boundary of an n-simplex (g0, . . . , gn) reads

∂(n)(g0, . . . , gn) :=

n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn) , (3.12)

and the i-th degenerate simplex of an n-simplex reads

ηi(g0, . . . , gn) := (g0, . . . , gi−1, gi, gi, gi+1, . . . , gq) . (3.13)

The group G has a left action on E(G) by left multiplication such that for all g ∈ G,

g . (g0, . . . , gn) = (gg0, . . . , ggn) . (3.14)

The classifying space B(G) of G is finally defined as the quotient space B(G) = E(G)/G.

The simplical set structure of B(G) is inherited from the one of E(G). Furthermore, because

of the homeomorphism between B(G × G) and B(G) × B(G), the classifying space B(G)

inherits the multiplication rule on G as the composite B(G×G) ' B(G)×B(G)→ B(G),

so that B(G) is a simplicial group.

By definition, the n-simplices of B(G) satisfy the equivalence relation (g0, . . . , gn) ∼
(gg0, . . . , ggn) which implicitly identifies all the 0-simplices (or vertices) of B(G) so that

it only contains a single 0-simplex, namely (g). The presentation of B(G) as constructed

above is sometimes referred to as the homogeneous one as opposed to the non-homogeneous

one that we will now present.
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Let us consider n-tuples [g1, . . . , gn] of elements gi ∈ G. To each such tuple, we

associate an n-simplex of the simplicial group B(G) as follows

[g1, . . . , gn] −→ (1, g1, g1g2, . . . , g1 · · · gn) (3.15)

where 1 denotes the group identity. Conversely, to each n-simplex (g0, . . . , gn), we can

assign an n-tuple according to

(g0, . . . , gn) −→ [g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn] (3.16)

which provides a one-to-one correspondence between the n-simplices (g0, . . . , gn) and the

n-tuples [g1, . . . , gn]. In the following, we regard each n-simplex of B(G) as such an n-tuple

so that ordered products of gi variables label the 1-simplices of B(G). It is straightforward

to see that the action of the boundary map ∂ can now be rewritten

∂(n)[g1, . . . , gn] = [g2, . . . , gn] +
n−1∑
i=1

(−1)i[g1, . . . , gi−1, gigi+1, gi+2, . . . , gn]

+ (−1)n[g1, . . . , gn−1] . (3.17)

Since the definition of the classifying space mimics the one of the standard n-simplex, it is

easy to see how we can represent geometrically the relations presented above by drawing

simplices and labeling their edges with group variables and product of group variables

(when working with the non-homogeneous presentation). Note that given a 2-simplex, the

oriented product of the group variables labeling its boundary 1-simplices is always equal to

the identity,13 hence the correspondence with (1-form) flat connections on the lattice. The

fact that we can represent n-simplices of B(G) graphically will turn out to be very useful

in the following when dealing with more complex formulas.

As we alluded earlier, a simplicial group together with a boundary homomorphism

satisfying ∂ ◦ ∂ ≡ 0 forms a chain complex whose chain groups are given by Gn in the case

of B(G). Consequently, we can think of an n-tuple [g1, . . . , gn] as an n-chain which we

choose to be valued in a G-module A, which is an abelian group, defining the space of n-

chains Cn(B(G),A). We obtain the dual cohomology by defining an n-dimensional cochain

over the group A as a function which associates to each n-simplex of the simplicial group an

element of the group A, so that an n-cochain can be thought of as a function of n variables

on G valued in A, and by dualizing the boundary operator. The resulting cohomology

turns out to be identified with the so-called group cohomology whose definition is recalled

below so that algebraic cocycles on G are equivalent to simplicial cocycles on B(G):

13This follows directly from the definition of the non-homogeneous presentation. Let us consider the

2-simplex [g1, g2]. By applying the boundary map (3.17), we obtain

∂(2)[g1, g2] = [g2]− [g1g2] + [g1] (3.18)

which informs us that the 1-simplices bounding [g1, g2] are labeled by g2, g1g2 and g1, respectively. Note

that the orientation of [g1g2] is opposite to the one of [g1] and [g2] so that the oriented product is indeed

g2 · g−1
2 g−1

1 · g1 = 1.
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Definition 3.5 (Group cohomology). Let G be a finite group and A a G-module which is an

abelian group. The group G has an action . on A which commutes with the multiplication

rule of A. We call an n-cochain a function ωn : Gn → A and we denote by Cn(G,A) the

space of n-cochains. We define the coboundary operator d(n) : Cn(G,A)→ Cn+1(G,A) via

d(n)ω(g1, . . . , gn+1) (3.19)

= g1 . ω(g2, . . . , gn+1)ω(g1, . . . , gn)(−1)n+1
n∏
i=1

ω(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)(−1)i

where we chose to write the product rule in A multiplicatively. An n-cocycle is then defined

as an n-cochain that satisfies

d(n)ωn = 1 . (3.20)

In the following, we refer to (3.20) as the group n-cocycle condition and the subgroup of n-

cocycles is denoted by Zn(G,A). Given an (n−1)-cochain ωn−1, we define an n-coboundary

as an n-cocycle of the form

ωn = d(n−1)ωn−1 . (3.21)

The subgroup of n-coboundaries is denoted by Bn(G,A). We finally construct the n-th

(group) cohomology group as the quotient space of n-cocycles defined up to n-coboundaries:

Hn(G,A) :=
Zn(G,A)

Bn(G,A)
=

ker(d(n))

im(d(n−1))
. (3.22)

It turns out that the construction of the classifying space B(G) as presented above is

not confined to finite groups. Indeed, it is possible to generalize it so as to assign to each

abelian simplicial group X a classifying space B(X). This generalization is usually referred

to as the bar construction [10] of the classifying space of a simplicial group. In the case

where X is chosen to be a finite abelian group, B(X) is itself an abelian simplicial group so

that the procedure can be iterated. More precisely, starting from the canonical simplicial

group constructed out of a finite abelian group G, and under this bar construction, it is

therefore possible to define the q-th classifying space Bq(G) of G recursively as

B0(G) = G , Bq(G) = B(Bq−1(G)) (3.23)

which is an Eilenberg-MacLane space K(G, q), i.e.

πn(Bq(G)) = πn−1(Bq−1(G)) = . . . = πn−q(G) =

{
G if q = n

0 otherwise
. (3.24)

We do not expose the details of this bar construction here since it does not serve our purpose

well. Instead, we will make use of an alternative construction which we now present.

3.3 W -construction

In this section, we introduce a construction where the Eilenberg-MacLane space Bq+1(G)

(or K(G, q + 1)) is obtained recursively from Bq(G) via a uniform process denoted by
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W . This construction is different but equivalent to the bar construction mentioned

above. It provides us with a specific presentation for the n-cycles of the homology group

Hn(Bq(G),A) which, after dualization, will be used to define what we will call the q-form

cohomology group Hn(G[q],A). This cohomology group is identified with the cohomology

group Hn(Bq(G),A) the same way as the cohomology of a finite group is identified with the

cohomology its classifying space.14 The reason why this W -construction is more relevant

than the bar construction is because the corresponding n-cochains are naturally defined

as functions of a certain number of variables that is equal to the number group variables

necessary to define a flat q-form connections on an n-simplex. More specifically, under this

construction a 2-form n-cochain depends on n(n−1)
2 group variables as expected from the

study of 2-form flat connections.15

In general, given a simplicial group X, we define a new simplicial group denoted by

W (X) via the recursive formulas

W (X)0 = {〈 〉} , W (X)n+1 = Xn ⊗W (X)n (3.25)

where 〈 〉 denotes the single element of W (X)0 and W (X)n the set of n-simplices of W (X).

It is also possible to define W (X)n directly without recursion. Indeed, we have

W (X)n = Xn−1 ⊗Xn−2 ⊗ · · · ⊗X0 . (3.26)

We denote the elements of an n-fold product by

〈xn−1, xn−2, . . . , x0〉 = xn−1 ⊗ xn−2 ⊗ · · · ⊗ x0 ⊗ 〈 〉 (3.27)

such that xi ∈ Xi. Furthermore, the face and degeneracy operators W (X)n satisfy the

following properties

η0〈 〉 = 〈10〉
∂i〈x0〉 = 〈 〉

∂0〈xn−1, . . . , x0〉 = 〈xn−2, . . . , x0〉
∂i〈xn−1, . . . , x0〉 = 〈∂i−1xn−1, ∂i−2xn−2, . . . , ∂1xn−i+1, xn−i−1 · ∂0xn−i, xn−i−2, . . . , x0〉

(3.28)

∂n〈xn−1, . . . , x0〉 = 〈∂n−1xn−1, ∂n−2xn−2, . . . , ∂1x1〉
η0〈xn−1, . . . , x0〉 = 〈1n−1, xn−2, . . . , x0〉
ηi〈xn−1, . . . , x0〉 = 〈ηi−1xn−1, . . . , η0xn−i,1n−i, xn−i−1, . . . , x0〉

14Note that the group does not need to be abelian as long as we are only interested in the (first) classifying

space and, a fortiori, the group cohomology.
15Recall that given a finite abelian group G and a manifoldM equipped with a triangulation4, we defined

a flat 2-form connection by assigning to every 2-simplex (012) ⊂ 4, a group element g012 = 〈g, (012)〉 such

that for every 3-simplex (0123) ⊂ 4, the cocycle condition 〈dg, (0123)〉 = g123 − g023 + g013 − g012 = 0 is

imposed. It follows that given an n-simplex of 4 and a flat 2-form connection, only n(n−1)
2

variables are

independent.
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where 1i denotes the identity element of Xi. Regarding B0(G) = G as a simplicial group

where the n-simplices are identified with the elements gi ∈ G, such that ∂ig = g = ηig,

then W (B0(G)) ' B(G) is the simplicial group whose n-simplices are the n-tuples

〈gn−1, . . . , g0〉 ≡ [gn−1, . . . , g0] (3.29)

which matches exactly the non-homogeneous bar construction of the classifying space

sketched earlier (this equality is only valid for BG). Applying the uniform process W

one more time then provides B2(G). It follows directly from the definition (3.26) that

an element of (B2(G))n explicitly depends on
∑n−1

i=0 i = n(n−1)
2 =

(
n
2

)
variables in G, as

expected. Let us now illustrate these definitions by looking at the first 2, 3, 4-simplices

of B2(G):

Example 3.2. Let us first consider a 3-simplex 43 := 〈〈g3, g2〉, 〈g1〉, 〈 〉〉 ∈ (B2(G))3 =

BG2 ⊗ BG1 ⊗ BG0. The boundary of this simplex is obtained via ∂(3) =
∑

i(−1)i∂i us-

ing (3.28) such that

∂043 = 〈g1, 〈 〉〉 , ∂143 = 〈g2 + g1, 〈 〉〉 , ∂243 = 〈g3 + g2, 〈 〉〉 , ∂343 = 〈g3, 〈 〉〉
(3.30)

where we chose to write the product rule in G additively since the group is abelian. It

follows that the boundary of the 3-simplex 〈〈g3, g2〉, 〈g1〉, 〈 〉〉 reads

∂(3)43 =
4∑
i=0

(−1)i∂i〈〈g3, g2〉, 〈g1〉, 〈 〉〉 (3.31)

= 〈g1, 〈 〉〉 − 〈g2 + g1, 〈 〉〉+ 〈g3 + g2, 〈 〉〉 − 〈g3, 〈 〉〉 .

Example 3.3. Let us now consider a 4-simplex 44 := 〈〈g6, g5, g4〉, 〈g3, g2〉, 〈g1〉, 〈 〉〉 ∈
(B2(G))4 = BG3 ⊗ BG2 ⊗ BG1 ⊗ BG0. The boundary of this simplex is obtained via

∂(4) =
∑

i(−1)i∂i such that

∂044 = 〈〈g3, g2〉, 〈g1〉, 〈 〉〉 (3.32)

∂144 = 〈〈g5 + g3, g4 + g2〉, 〈g1〉, 〈 〉〉 (3.33)

∂244 = 〈〈g6 + g5, g4〉, 〈g2 + g1〉, 〈 〉〉 (3.34)

∂344 = 〈〈g6, g5 + g4〉, 〈g3 + g2〉, 〈 〉〉 (3.35)

∂444 = 〈〈g6, g5〉, 〈g3〉, 〈 〉〉 . (3.36)

For the sake of clarity, let us develop one of the computations. For instance, we have

∂2〈〈g6, g5, g4〉, 〈g3, g2〉, 〈g1〉, 〈 〉〉 = 〈∂1〈g6, g5, g4〉, ∂0〈g3, g2〉 · 〈g1〉, 〈 〉〉 (3.37)

= 〈〈∂0g6 + g5, g4〉, 〈g2〉 · 〈g1〉, 〈 〉〉 (3.38)

= 〈〈g6 + g5, g4〉, 〈g2 + g1〉, 〈 〉〉 (3.39)

where we used the fact that ∂ig = g.
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Example 3.4. Let us consider a 5-simplex 45 := 〈〈g10, g9, g8, g7〉, 〈g6, g5, g4〉, 〈g3, g2〉,
〈g1〉, 〈 〉〉 ∈ (B2(G))5 = BG4 ⊗ · · · ⊗ BG0. The boundary of this simplex is obtained via

∂(5) =
∑

i(−1)i∂i such that

∂045 = 〈〈g6, g5, g4〉, 〈g3, g2〉, 〈g1〉, 〈 〉〉 (3.40)

∂145 = 〈〈g9 + g6, g8 + g5, g7 + g4〉, 〈g3, g2〉, 〈g1〉, 〈 〉〉 (3.41)

∂245 = 〈〈g10 + g9, g8, g7〉, 〈g5 + g3, g4 + g2〉, 〈g1〉, 〈 〉〉 (3.42)

∂345 = 〈〈g10, g9 + g8, g7〉, 〈g6 + g5, g4〉, 〈g2 + g1〉, 〈 〉〉 (3.43)

∂445 = 〈〈g10, g9, g8 + g7〉, 〈g6, g5 + g4〉, 〈g3 + g2〉, 〈 〉〉 (3.44)

∂545 = 〈〈g10, g9, g8〉, 〈g6, g5〉, 〈g3〉, 〈 〉〉 . (3.45)

As for the classifying space B(G), since ∂ is a homomorphism of the group struc-

ture of B(G) inherited from G and since ∂ ◦ ∂ ≡ 0, we can define a homology theory

of the simplicial group by considering finite chains valued in a G-module A which we

identify with the n-simplices. More specifically, we assign for instance to a 4-simplex

〈〈g6, g5, g4〉, 〈g3, g2〉, 〈g1〉, 〈 〉〉 a 4-chain. Similarly, we can define a cohomology theory by

defining an n-dimensional cochain over the G-module A as a function which associates to

each n-simplex of B2(G) an element of the G-module A and by defining the coboundary

map d dual to ∂. Using the W -construction of B2(G), this provides n-cochains as functions

of n(n−1)
2 =

(
n
2

)
variables on G valued in A, as required from the definition of flat 2-form

connections. We refer to this cohomology as the 2-form cohomology whose fundamental

properties are explored in the next section.

4 2-form (co)homology

In the previous section, we recalled the construction of the classifying space of a finite group

G as a simplicial group, and explained how this becomes a chain complex when identifying

the n-simplices with n-chains, from which we can define the cohomology Hn(BG,A) of

simplicial cocycles that is equivalent to the cohomology Hn(G,A) of algebraic cocycles.

In this section, we use the W -construction of the second classifying space B2(G) of a

finite abelian group G in order to define the so-called 2-form cohomology Hn(G[2],A) that

is the cohomology of algebraic cocycles identified with the cohomology Hn(B2(G),A) of

simplicial cocycles.

4.1 Definition and 2-form cocycle conditions

Let G be a finite abelian group and A an abelian group that is a G-module whose product

rule is written multiplicatively. We assume for notational convenience that G has a trivial

action on the abelian group A.16 We call a 2-form n-cochain a function ωn : G(n2) → A.

We denote by Cn(G[2],A) the space of 2-form n-cochains. Given a 2-form n-cochain ω ∈
Cn(G[2],A), we make use of the following notation

ω(g(n2)
, g(n2)−1, . . . |g(n−1

2 ), . . . | . . . |g3, g2|g1) ∈ A (4.1)

16Relaxing this assumption could allow to explore orientation-reversing elements.
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where the presence of bars | is there to remind of the underlying tensor product structure

of the corresponding n-simplices according to (3.26). We find this notation convenient in

order to make the algebraic structure more manifest but this can easily be omitted as well.

We then define the 2-form coboundary operator d(n) : Cn(G[2],A) → Cn+1(G[2],A)

as the canonical dual of the boundary operator ∂ on the space of 2-form n-chains, where

∂ is inherited from the boundary operator of the simplicial group B2(G) as provided by

the W -construction. More precisely, we think of a given evaluation of the n-cochain ω ∈
Cn(G[2],A) as a pairing between ω and the corresponding n-simplex in B2(G) identified

with the relevant n-chain, i.e.

ω(g(n2)
, g(n2)−1, . . . |g(n−1

2 ), . . . | . . . |g3, g2|g1) =: 〈ω ,4n〉

with

4n := 〈〈g(n2), g(n2)−1, . . .〉, 〈g(n−1
2 ), . . .〉, . . . , 〈g3, g2〉, 〈g1〉, 〈 〉〉

∈ (B2(G))n = BGn−1 ⊗ · · · ⊗BG0 (4.2)

so that the action of the coboundary operator can be defined directly in terms of the

boundary operator on the n-simplex via Stoke’s theorem

〈 d(n)ω , 4n+1 〉 = 〈ω , ∂(n+1)4n+1 〉 . (4.3)

In particular, it follows from ex. 3.2, 3.3 and 3.4 the action of the 2-form coboundary

operator d(2):

d(2)β(a, b|c) :=
〈
d(2)β, 〈〈a, b〉, 〈c〉, 〈 〉

〉
=
〈
β, ∂(3)〈〈a, b〉, 〈c〉, 〈 〉

〉
=
β(c)β(a+ b)

β(b+ c)β(a)
, (4.4)

the action of the 2-form coboundary operator d(3):

d(3)α(a, b, c|d, e|f) =
α(d, e|f)α(a+ b, c|e+ f)α(a, b|d)

α(b+ d, c+ e|f)α(a, b+ c|d+ e)
, (4.5)

and the action of the 2-form coboundary operator d(4):

d(4)ω(a, b, c, d|e, f, g|h, i|j)

=
ω(e, f, g|h, i|j)ω(a+ b, c, d|f + h, g + i|j)ω(a, b, c+ d|e, f + g|h+ i)

ω(b+ e, c+ f, d+ g|h, i|j)ω(a, b+ c, d|e+ f, g|i+ j)ω(a, b, c|e, f |h)

, (4.6)

respectively, where a, b, . . . , i, j ∈ G. Using the general recursive definition (3.28) together

with the correspondence spelled out above, we can then find the defining formula of any

2-form coboundary operator d(n). Nevertheless, we will only make use of the previous

three formulas in this work. A 2-form n-cocycle is then defined as a 2-form n-cochain

that satisfies

d(n)ωn = 1 . (4.7)

The subgroup of 2-form n-cocycles is denoted by Zn(G[2],A). Given a 2-form (n−1)-cochain

ωn−1, we define an n-coboundary as a 2-form n-cocycle of the form

ωn = d(n−1)ωn−1 . (4.8)
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The subgroup of 2-form n-coboundaries is denoted by Bq(G[2],A). We finally construct

the 2-form q-th cohomology group as the quotient space of 2-form n-cocycles defined up to

2-form n-coboundaries:

Hn(G[2],A) :=
Zn(G[2],A)

Bn(G[2],A)
=

ker(d(n))

im(d(n−1))
. (4.9)

4.2 Geometric realization

We mentioned above how we can think of a given evaluation of the cocycle ω as a pair-

ing between ω and the corresponding n-simplex identified with the relevant n-chain so

that a 2-form n-cocycle assigns to each n-simplex of B2(G) an element of the group A.

This can be used in order to provide a geometric interpretation to the cocycle conditions

presented above.

In order to do so, we need the geometric realization of B2(G) which is, loosely speaking,

obtained by identifying a given n-simplex of B2(G) with a standard n-simplex together with

a G[2]-coloring, i.e. an assignment of group elements g ∈ G to every 2-simplex such that for

every 3-simplex the 2-cocycle constraint dg = 0 is satisfied. Let us for instance consider

the 3-simplex 〈〈g3, g2〉, 〈g1〉, 〈 〉〉 ∈ (B2(G))3. Recall that its boundary reads

∂(3)〈〈g3, g2〉, 〈g1〉, 〈 〉〉 = 〈g1, 〈 〉〉 − 〈g2 + g1, 〈 〉〉+ 〈g3 + g2, 〈 〉〉 − 〈g3, 〈 〉〉 (4.10)

so that 〈g1, 〈 〉〉, 〈g20 + g1, 〈 〉〉, 〈g21 + g20, 〈 〉〉 and 〈g21, 〈 〉〉 are 2-simplices. Let us now think

about the 3-simplex 〈〈g3, g2〉, 〈g1〉, 〈 〉〉 ∈ (B2(G))3 as a standard 3-simplex (0123) so that 0,

1, 2 and 3 label its vertices, together with a G[2]-coloring which assigns to every face (xyz)

the group element gxyz = 〈g, (xyz)〉. From the expression of the boundary of the 3-simplex

〈〈g3, g2〉, 〈g1〉, 〈 〉〉, we read-off the correspondence

g123 = g1 , g023 = g2 + g1 , g013 = g3 + g2 , g012 = g3 . (4.11)

We can check that this coloring automatically satisfies the cocycle constraint dg = 0 since

〈dg, (0123)〉 = g123 − g023 + g013 − g012 = g1 − (g2 + g1) + (g3 + g2)− g3 = 0. So given a 3-

simplex of B2(G), we can assign to it a standard 3-simplex whose G[2]-coloring is provided

by (4.11). Conversely, given a standard 3-simplex (0123) with a given G[2]-coloring, we

assign to it a 3-simplex of B2(G) which reads 〈〈g012, g013 − g012〉, 〈g123〉, 〈 〉〉. Since a 2-

form 3-cocycle assigns to a 3-simplex of B2(G) an element of the group A, we can use the

previous correspondence to further assign to the standard 3-simplex (0123) the evaluation

〈α, (0123)〉 ≡ α(g012, g013 − g012|g123) . (4.12)

Note that we use a slightly abusive notation since we treat the standard 3-simplex (0123)

as 〈〈g012, g013 − g012〉, 〈g123〉, 〈 〉〉 in light of the identification we have just made. The same

procedure can be iterated so as to assign to a given standard n-simplex together with a G[2]-

coloring the evaluation of a 2-form n-cocycle. For instance, we will make extensive use of the

following correspondence between a 2-form 4-cocycle and the standard 4-simplex (01234):

〈ω, (01234)〉 = ω(g012, g013 − g012, g014 − g013|g123, g124 − g123|g234) . (4.13)
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Similarly, the evaluation of a 2-form 5-cocycle assigned to the standard 5-simplex

(012345) reads

〈π, (012345)〉 = π(g012, g013 − g012, g014 − g013, g015 − g014|g123,

g124 − g123, g125 − g124|g234, g235 − g234|g345)

from which we can easily read-off the structure underlying this construction and therefore

‘guess’ the subsequent formulas.

Let us now use this correspondence in order to provide a geometrical interpretation

to the cocycle conditions. It turns out that an n-cocycle condition is associated with a

so-called n-dimensional Pachner move [41]. Given a piecewise linear manifold M and its

triangulation 4, a Pachner move replaces 4 by another triangulation 4′ associated with

a manifold M′ homeomorphic to M. Given two triangulations of a given manifold, it is

always possible to relate one to the other by a finite sequence of Pachner moves. In three

dimensions, we distinguish two Pachner moves, namely the 2–3 and the 1–4 move denoted

by P2 7→3 and P1 7→4, respectively. The 1–4 move subdivides a 3-simplex into four 3-simplices

by introducing an additional vertex inside, while the 2–3 move decomposes the gluing of

two 3-simplices into three 3-simplices. Graphically, this latter move can be represented as

P2 7→3 :

0

1

23

4
7−→

0

1

23

4
, (4.14)

where the initial 3-simplices (0123) and (0234) are replaced by (0124), (1234) and (0134). Let

α be a 2-form 3-cochain. Using the correspondence (4.12), we assign to each one of the five

3-simplices 43 = (wxyz) a term 〈α, (wxyz)〉, and we finally obtain the 2-form 3-cocycle

condition as
5∏
i=1

〈α,43
i 〉ε(4

3
i ) = 1 (4.15)

where ε(43) = ±1 is a sign factor which depends on the orientation of each 3-simplex as

determined by the following convention:

Convention 4.1 (Orientation convention of a 3-simplex). Pick one of the 2-simplices

bounding the 3-simplex 43 and look at the remaining vertex through this triangle. If the

vertices of the 2-simplex are ordered in a clock-wise fashion, then the orientation is positive,

otherwise it is negative. For instance, we have

ε

(
⊗
0

12

)
= +1 , ε

(
⊗
0

21

)
= −1 (4.16)

where ⊗ represent the fourth vertex as seen from behind the triangle.
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Putting everything together, the 2-form 3-cocycle condition associated with the P2 7→3

move (4.14) reads

d(3)α(g012, g013 − g012, g014 − g013|g123, g124 − g123|g234)

=
α(g123, g124 − g123|g234)α(g013, g014 − g013|g134)α(g012, g013 − g012|g123)

α(g023, g024 − g023|g234)α(g012, g014 − g012|g124)
(4.17)

which reproduces exactly (4.5) when choosing g012 = a, g013 − g012 = b, g014 − g013 = c,

g123 = d, g124−g123 = e and g234 = f . Similarly, we can provide a geometrical interpretation

for any cocycle condition. In the following, these geometrical interpretations will be put

to use in order to define our lattice Hamiltonian model.

4.3 Normalization conditions

In the following section, we construct a lattice Hamiltonian model whose input data is a

finite abelian group G and a 2-form cohomology class [ω] ∈ H4(G[2],U(1)). Before doing

so, it is convenient to derive some normalization conditions for 2-form cocycles. This will

allow us to greatly simplify some formulas but also to provide useful information regarding

the algebraic structure of the cocycles. The list of normalization conditions presented here

may not be exhaustive but these are all the ones we need for our purpose.

By definition, [ω] ∈ Hn(G[2],U(1)) is an equivalence class of 2-form n-cocycles defined

up to 2-form n-coboundaries and in order to represent the class [ω], we can choose any

cocycle ω ∈ [ω]. The purpose of this section is, given an equivalence class [ω], to find a

representative ω ∈ [ω] which satisfies as many normalization conditions as possible. Since

the data entering the definition of our lattice model is a 2-form 4-cocycle, we will focus our

attention on the cohomology group H4(G[2],U(1)) but the strategy presented here is very

general and can be applied to any 2-form cocycle.

Let [ω] be a 2-form cohomology class in H4(G[2],U(1)) and let ω, ω′ ∈ [ω] be two

different representatives of this class. By definition, 4-cocycles within the same cohomology

class are equivalent up to 4-coboundaries, and therefore there exists a 2-form 3-cochain α

such that

ω′(a, b, c|d, e|f) = ω(a, b, c|d, e|f) · d(3)α(a, b, c|d, e|f)

= ω(a, b, c|d, e|f) · α(d, e|f)α(a+ b, c, |e+ f)α(a, b|d)

α(b+ d, c+ e|f)α(a, b+ c|d+ e)
. (4.18)

In other words, given a representative ω ∈ [ω], we can obtain another representative ω′ ∈ [ω]

by choosing a 2-form 3-cochain α ∈ C3(G[2],A) and apply formula (4.18). For instance,

choosing α such that α(0, 0|0) = ω−1(0, 0, 0|0, 0|0), we obtain a representative ω′ such that

ω′(0, 0, 0|0, 0|0) = 1. Therefore, it is always possible to choose a 4-cocycle ω such that

ω(0, 0, 0|0, 0|0) = 1. This is the simplest normalization condition. We will now apply the

same strategy to derive several additional normalization conditions.
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Let us consider equation (4.18) for which a = b = c = 0:

ω′(0, 0, 0|d, e|f) = ω(0, 0, 0|d, e|f) · α(d, e|f)α(0, 0, |e+ f)α(0, 0|d)

α(d, e|f)α(0, 0|d+ e)

= ω(0, 0, 0|d, e|f) · α(0, 0, |e+ f)α(0, 0|d)

α(0, 0|d+ e)
. (4.19)

By choosing α ∈ C3(G[2],U(1)) such that α(0, 0|x) := ω(0, 0, 0|0, 0|x)−1 and using the

cocycle condition

d(4)ω(0, 0, 0, 0|0, 0, 0|h, i|j) =
ω(0, 0, 0|h, i|j)ω(0, 0, 0|h, i|j)ω(0, 0, 0|0, 0|h+ i)

ω(0, 0, 0|h, i|j)ω(0, 0, 0|0, 0|i+ j)ω(0, 0, 0|0, 0|h)
= 1 (4.20)

we obtain that ω′(0, 0, 0|d, e|f) = 1 for all d, e, f ∈ G. So we can always choose a 4-cocycle

ω which satisfies ω(0, 0, 0|d, e|f) = 1. Consider now the following equation:

ω′(0, b, c|0, 0|0) = ω(0, b, c|0, 0|0) · α(0, b|0)

α(0, b+ c|0)
. (4.21)

Choosing α ∈ C3(G[2],A) such that α(0, x|0) = ω(0, x,−x|0, 0|0)−1 and using the cocycle

condition

d(4)ω(0, b, c,−b− c|0, 0, 0|0, 0|0) =
ω(0, b,−b|0, 0|0)

ω(0, b+ c,−b− c|0, 0|0)ω(0, b, c|0, 0|0)
= 1 (4.22)

we find that ω′(0, b, c|0, 0|0) = 1. Similarly, it is always possible to find an ω which satisfies

ω(a, 0, c|0, 0|0) = 1 = ω(a, b, 0|0, 0|0).

Let ω ∈ Z4(G[2],A) be a 2-form 4-cocycle which fulfills all the normalization conditions

derived above. It then follows directly from the cocycle condition that it also satisfies

ω(a, 0, c|0, e|0) = ω(0, b, c|0, 0|f) = ω(a, 0, 0|d, 0|0) = ω(a, b, 0|d, 0|0) = 1 . (4.23)

We can find another representative of the cohomology class [ω] according to

ω′(a, 0, 0|d, e|0) = ω(a, 0, 0|d, e|0) · α(a, 0|e)α(a, 0, |d)

α(a, 0|d+ e)
. (4.24)

Choosing α ∈ C3(G[2],M ) such that α(x, 0|z) = ω(x, 0, 0|0, 0|z)−1 and using the cocycle

condition d(4)ω(a, 0, 0, 0|0, 0, 0|h, i|0) = 1, we have ω′(a, 0, 0|d, e|0) = 1 for all a, d, e ∈ G.

Similarly, considering

ω′(0, b, 0|d, 0|f) = ω(0, b, 0|d, 0|f) · α(d, 0|f)α(b, 0, |f)

α(b+ d, 0|f)
(4.25)

and choosing α(x, 0|z) = ω(x, 0, 0|0, 0|z)−1 with the cocycle condition

d(4)ω(0, b, 0, 0|e, 0, 0|0, 0|j) = 1, we have ω′(0, b, 0|d, 0|f) = 1 for all b, d, f ∈ G. Let

us also remark that the normalization conditions above imply that

ω(0, b, 0|f, g|0) = ω(b, f, g|0, 0|0)−1 and ω(0, 0, c|0, f |i) = ω(0, c, 0|f, i|0)−1 . (4.26)
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These last two identities will turn out to be very useful in the following. Putting everything

together, it is always possible to find a 2-form cocycle ω ∈ Z4(G[2],A) which satisfies the

following normalization conditions

ω(0, b, c|0, 0|0) = ω(a, 0, c|0, 0|0) = ω(a, b, 0|0, 0|0) = 1 = ω(0, 0, 0|d, e|f) (4.27)

ω(a, 0, 0|d, e|0) = ω(a, b, 0|d, 0|0) = ω(0, b, 0|d, 0|f) = 1 (4.28)

= ω(a, 0, c|0, e|0) = ω(0, b, c|0, 0|f)

for all a, b, c, d, e, f ∈ G.

Let us close this section with a few remarks regarding 2-form 3-cocycles. Let us consider

[α] ∈ H3(G[2],A) and let α ∈ [α] be a representative. By definition α satisfies the 2-form

3-cocycle condition

α(d, e|f)α(a+ b, c|e+ f)α(a, b|d) = α(b+ d, c+ e|f)α(a, b+ c|d+ e) (4.29)

from which immediately follows that α(0, 0|0) = 1. Similarly, by looking at the cocycle

conditions d(3)α(a, 0, 0|0, 0|f) = 1 and d(3)α(0, 0, c|0, 0|0) = 1, we obtain that

α(a, 0|f) = 1 = α(0, c|0) (4.30)

for all a, c, f ∈ G, respectively. Let us furthermore consider the following cocycle condition

d(3)α(a, b, c|0, 0|0) =
α(0, 0|0)α(a+ b, c, |0)α(a, b|0)

α(b, c|0)α(a, b+ c|0)
= 1 . (4.31)

Using the fact that α(0, 0|0) = 1, we deduce that β ∈ Z2(G,U(1)) where β(a, b) ≡
α−1(a, b|0). In other words, the 2-form cocycle α evaluated on 〈〈a, b〉, 〈0〉, 〈 〉〉 satisfies

the group 2-cocycle condition, i.e.

d(2)β(a, b, c) =
β(b, c)β(a, b+ c)

β(a+ b, c)β(a, b)
= 1 . (4.32)

We further deduce from the cocycle condition d(3)α(0, b, 0|0, e|0) = 1 that α(b, e|0) =

α(0, b|e)−1 which together with d(3)α(0, 0, c|d, 0|0) = 1 provides

d(3)α(0, 0, c|d, 0|0) =
α(c, d|0)

α(d, c|0)
≡ β(d, c)

β(c, d)
= 1 (4.33)

so that β defines a symmetric group 2-cocycle. This special 3-coboundary will be important

in the following.

So we have defined in detail the so-called 2-form cohomology, both algebraically and

geometrically. In the following, we use these definitions in order to construct explicitly the

lattice Hamiltonian realization of the theory.

5 Hamiltonian realization of 2-form TQFTs

In this section, we use the results of the previous section in order to construct and study

an exactly solvable model whose ground state is described by a topological lattice 2-form

gauge theory. In the next section, we will study how this model turns out to be related to

the Walker-Wang model for abelian braided fusion categories.
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5.1 Fixed point wave functions

One can in general define gapped phases of matter in terms of equivalence classes of many

body wave functions under local unitary transformations [30, 55]. Given a graph or a lattice,

these local transformations can be used so as to implement a wave function renormalization

group flow. Defining equivalence classes of wave functions under such transformations then

boils down to finding so-called fixed point wave functions. By definition, these fixed point

wave functions are expected to capture the long-range entanglement pattern which is the

defining feature of intrinsic topological order.

Levin and Wen introduced in [30] so-called string net models as a way to systematically

construct fixed point wave functions in two dimensions. A string net is essentially defined

in terms of a graph labeled by objects satisfying compatibility conditions such that each

graph with a given consistent labeling represents a state (or many-body wave function).

The linear superposition of spatial configurations of string nets define the Hilbert space of

the model. Local unitary transformations are defined at the level of the graph and uniquely

specify the fixed point wave functions. These fixed point wave functions are then found to

be ground states of given Hamiltonians.

In this section we follow an approach similar to Levin and Wen to construct an ex-

actly solvable model whose fixed point wave functions define the ground states of a lattice

Hamiltonian which has a 2-form gauge theory interpretation. Our setup is the following:

letM be a compact oriented four-manifold and Σ a closed three-dimensional hypersurface

equipped with a triangulation 4. Each 2-simplex 42 = (xyz) ⊂ 4 of this triangulation is

decorated by a group element gxyz ∈ G with G a finite abelian group such that the group

identity 0 ∈ G is the vacuum sector. Furthermore, we define compatibility conditions

referred to as branching rules at every 3-simplex of the triangulation: given a 3-simplex

43 = (wxyz) ⊂ 4, the branching rules impose that the oriented product of the super-

selection sectors labeling the 2-simplices vanishes, i.e. gxyz− gwyz + gwxz− gwxy = 0. Using

the differential on cochains and the canonical pairing between simplices and cochains, this

can be rewritten: ∀ (wxyz) ⊂ 4, 〈dg, (wxyz)〉 = 0. A labeling of the 2-simplices of 4 such

that the branching rules are everywhere satisfied is said to be consistent and we refer to it

as a G[2]-coloring. The set of G[2]-colorings is denoted by Col(Σ, G[2]) and defines a local

description of the set of flat 2-form connections.

Since the branching rules effectively reduce to the group multiplication, the input data

of our lattice Hamiltonian model is particularly simple, namely a tuple {G, [ω]} where G

is a finite abelian group and [ω] ∈ H4(G[2],U(1)) a class of 2-form 4-cocycles valued in

U(1). Since the model is defined in terms of a 2-form 4-cocycle up to 4-coboundaries, we

can choose whichever representative of the class we want to carry out our calculations:

we choose it so as to satisfy the normalization conditions (4.27) and (4.28) derived in

section 4.3. Furthermore, the fixed point wave functions are defined as the states satisfying

the following relations under the corresponding local unitary transformations:

∣∣∣∣∣
0

1

23

4

〉
=

∑
g014,g134
g124

〈ω, (01234)〉ε(01234)

∣∣∣∣∣
0

1

23

4

〉
(5.1)
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∣∣∣∣∣
0

1

2

3

4

〉
= 〈ω, (01234)〉−ε(01234)

∣∣∣∣∣
0

1

2

3

〉
(5.2)

where the G[2]-coloring is left implicit. These two equations dictate how a fixed point

wave function is modified under a 2–3 Pachner move P2 7→3 and a 4–1 Pachner move

P4 7→1, respectively. The equations associated with the opposite moves, namely P3 7→2 and

P1 7→4, are obtained in an obvious way. Both equation (5.1) and (5.2) depends on a fac-

tor 〈ω, (01234)〉±ε(01234) that is the pairing between the 2-form 4-cocycle ω and the 2-form

chain identified with the standard 4-simplex (01234) ⊂ 4 that is the 4-simplex bounded

by the 3-simplices appearing in the corresponding Pachner moves. The sign factor ε(01234)

depends on the orientation of the 4-simplex. Since the convention for the P4 7→1 follows

from the one of the P2 7→3, we only explain the latter one in detail:

Convention 5.1 (2–3 Pachner move). Pick one of the 3-simplices in the source complex

and assume that it is labeled by (wxyz) such that w < x < y < z. The remaining vertex of

the source complex is labeled by o. We denote by ε(wxyzo) the sign factor associated with the

corresponding 2–3 Pacher move. First, determine the orientation ε(wxyz) of the 3-simplex

(wxyz) according to convention 4.1, then consider the list of vertices {o, w, x, y, z}. If it

takes an even number of permutations to bring this list to the ascending ordered one, then

ε(wxyzo) = +ε(wxyz), otherwise ε(wxyzo) = −ε(wxyz). The same convention applies to

find the orientation of a 4-simplex.

Applying this convention to equation (5.1), we find that ε(01234) = ε(0123) = −1.

The constraints (5.1) and (5.2) satisfied by the wave functions under local unitary

transformations are only valid together with the corresponding consistency conditions. We

will show later that these are guaranteed by the fact that ω is a 2-form 4-cocycle, but before

doing so we are going to investigate in more detail these local unitary transformations. First

of all, let us present an alternative presentation for these mutations which is closer related

to the original formulation of Levin and Wen for 2d string net models as well as the one

of the 3d Walker-Wang model which we review in section 6. Instead of working with

the triangulation 4, we consider the one-skeleton of its dual polyhedral decomposition

denoted by Υ such that the 2-simplices 42 ⊂ 4 are dual to links l ⊂ Υ and the 3-simplices

43 ⊂ 4 are dual to nodes n ⊂ Υ. The branching rules or (compatibility conditions or

2-flatness constraints) are now encoded at every node. Because we now work on the dual

graph, it is inconvenient to keep the labeling completely implicit, thus we label each link

by its dual 2-simplex. Note, however, that it is not strictly necessary to specify explicitly

the orientation of each edge since it can be easily deduced from the definition of the

constraint 〈dg, (wxyz)〉 = gxyz − gwyz + gwxz − gwxy = 0. In terms of the dual graph Υ,

equation (5.1) becomes

∣∣∣∣∣ (023)

(234)

(123)

(034) (024)

(013) (012)

〉
=

∑
g014,g134
g124

〈ω, (01234)〉−1

∣∣∣∣∣
(034)

(013)

(014)

(134) (124)

(024)

(012)

(123)

(234) 〉
, (5.3)
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while equation (5.2) now reads

∣∣∣∣∣
(034)

(234)

(024)
(134) (124)

(013) (012)

(023)

〉
= 〈ω, (01234)〉+1

∣∣∣∣∣
(023)

(234)(034) (024) 〉
. (5.4)

Now is a good time to recall that the pairing between the 2-form 4-cocycle and the standard

4-simplex identified with the corresponding 4-chain (of the simplicial group B2(G)) is

explicitly given by

〈ω, (01234)〉 = ω(g012, g013 − g012, g014 − g013|g123, g124 − g123|g234) . (5.5)

In the following, we are interested in special cases of the equations above which correspond

to setting some of the group variables appearing in (5.5) to the identity. In particular, we

study what these special cases reveal about the algebraic structure of 2-form 4-cocycles

using arguments similar to the ones presented at the end of section 4.3. Let us for in-

stance consider the P3 7→2 move dual to the P2 7→3 move depicted in (5.3) but with different

distribution of vertices and such that g013 = g134 = g234 = g012 = 0:

∣∣∣∣∣ (123)

(124)
(023)

(024)

(014) 〉
= 〈ω, (01234)〉

∣∣∣∣∣ (034)

(014)

(024) (023)

〉

where the dashed line represents links (or 2-simplices) labeled by the vacuum sector. Fur-

thermore, we set g014 = g034 = b and g023 = g123 = g124 = a so that

〈ω, (01234)〉 = ω(0, 0, b|a, 0|0) . (5.6)

It should be obvious from this presentation that when setting g013 = g134 = g234 = g012 = 0,

the P2 7→3 move effectively reduces to a braiding move. The 2-form 4-cocycle correspondingly

reduces to a group 2-cochain R : (a, b) 7→ ω(0, 0, b|a, 0|0) such that

∣∣∣∣∣ (123)

(124)
(023)

(024)

(014) 〉
:= R(g023, g014)

∣∣∣∣∣ (034)

(014)

(024) (023)

〉
(5.7)

which can effectively be represented in terms of string diagrams as

b a

R(a,b)−→

b a

,

b a

R(b,a)−1

−→

b a

(5.8)
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where the r.h.s. corresponds to the situation where the left strand undercrosses the right

one. Note that instead of starting from the P2 7→3 move, we could have considered a special

case of the P4 7→1 move instead and it would have led exactly to the same result.

There is another interesting special case of the same P3 7→2 move that is obtained by

setting g124 = g234 = g134 = g123 = 0:17

∣∣∣∣∣
(023)

(012)
(013)

(014)

(034) 〉
= 〈ω, (01234)〉−1

∣∣∣∣∣ (024)

(034)

(014)

(023)

(012)

〉
.

Let us furthermore set g012 = a, g023 = b and g034 = c so that

〈ω, (01234)〉 = ω(a, b, c|0, 0|0) . (5.9)

It should be obvious from this presentation that when setting g124 = g234 = g134 = g123 = 0,

the P2 7→3 move effectively reduces to a 2–2 Pachner move P2 7→2 if we were to consider the

two-dimensional triangulation dual to the three-valent graph defined by the bold edges.

Indeed, the 2-form 4-cocycle reduces to a group 3-cochain α : (a, b, c) 7→ ω−1(a, b, c|0, 0|0)

such that

∣∣∣∣∣
(023)

(012)
(013)

(014)

(034) 〉
= α(g012, g023, g034)

∣∣∣∣∣ (024)

(034)

(014)

(023)

(012)

〉

which can effectively be represented in terms of string diagrams as

a b c

α(a,b,c)−→

b ca

. (5.10)

What we have just shown, from a graphical point of view, is how the local unitary trans-

formation associated with a 2-form 4-cochain reduces to a braiding move or a 2–2 Pachner

move. In the following subsection, we study the coherence relations of these transforma-

tions which allows us to make this correspondence more precise.

17Note that we use yet another distribution of vertices compared to the one in (5.3). Nevertheless, it

obviously does not matter how we choose such labeling and we could have performed the same analysis

with any other. However, we always choose the one which makes the evaluation 〈ω, (01234)〉 as simple as

possible. In general, because of the inherent redundancy of the algebraic structure underlying the 2-form

4-cocycle, there are many ways to write the same thing. We tried to choose our examples so as to make

the results as manifest as possible.
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5.2 Consistency conditions

We presented earlier the equations that fixed wave functions must satisfy under local uni-

tary transformations. However, for these equations to be self-consistent, some coherence

relations must be satisfied. We are now going to study these coherence relations with an

emphasis on the correspondence put forward at the end of the previous subsection.

Let us consider the union of three 3-simplices. There are two different sequences of

three P2 7→3 moves which lead to the same complex that is the union of six 3-simplices. This

situation is represented in figure 1 where the direction of the arrows is decided according

to convention 5.1. According to equation (5.3), the amplitude of the map performing

each P2 7→3 move is given in terms of the 2-form 4-cochain ω or its inverse. Applying

this definition to the two sequences of P2 7→3 and requiring that any composition of maps

yielding the same final configuration must be identified, the coherence relation implies the

following equality:

〈ω, (02345)〉〈ω, (01245)〉〈ω, (01234)〉 = 〈ω, (01235)〉〈ω, (01345)〉〈ω, (12345)〉 . (5.11)

It turns out that this equality is nothing else than the 2-form 4-cocycle condition and

figure 1 its graphical interpretation. The coherence of the local unitary transformation is

therefore ensured by the fact that ω ∈ Z4(G[2],U(1)). To check explicitly that this is indeed

the cocycle condition d(4)ω(a, b, c, d|e, f, g|h, i|j) = 1 as written in (4.6), we just need to

use (4.13) and label the face variables as follows: g012 = a, g013 = a + b, g014 = a + b + c,

g015 = a + b + c + d g123 = e, g124 = e + f , g125 = e + f + g, g234 = h, g235 = h + i

and g345 = j. Note that there is another way to interpret the 2-form 4-cocycle condition

following the lines of section 4.2. Indeed, considering a 3–3 Pachner move and identifying

each one of the oriented six 4-simplices with a 2-form 4-cocycle, we would obtain (5.11) as

well. This relies on the fact that there is a canonical way to assign a cyclic sequence of five

P2 7→2 moves to a P2 7→3 move, a cyclic sequence of six P2 7→3 moves to a P3 7→3 move, and so

on and so forth, as exploited in [20].

In the same way we investigated earlier special cases of the P2 7→3 move, we will now

study special cases of the cocycle condition d(4)ω(a, b, c, d|e, f, g|h, i|j) = 1. In particu-

lar, we are interested in the graphical interpretation of these special cases in light of the

correspondence between (5.11) and figure 1.

Let us consider the 4-coboundary d(4)ω(a, b, c, d|0, 0, 0|0, 0|0) which yields the cocy-

cle condition

ω(0, 0, 0|0, 0|0)ω(a+ b, c, d|0, 0|0)ω(a, b, c+ d|0, 0|0)

ω(b, c, d|0, 0|0)ω(a, b+ c, d|0, 0|0)ω(a, b, c|0, 0|0)
= 1 . (5.12)

First of all, according to the normalization conditions satisfied by ω, one has

ω(0, 0, 0|0, 0|0) = 1. It then follows straightforwardly that the group 3-cochain α defined

as α : (a, b, c) 7→ ω−1(a, b, c|0, 0|0) is a group 3-cocycle in H3(G,U(1)) satisfying the group

3-cocycle condition

α(a+ b, c, d)α(a, b, c+ d) = α(b, c, d)α(a, b+ c, d)α(a, b, c) (5.13)
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Figure 1. Consistency condition of the 2–3 Pachner move whose amplitude is given by the 2-form

4-cocycle ω ∈ Z4(G[2],U(1)). Starting from the union of three 3-simplices, there exist two different

successions of 2–3 Pachner moves which lead to the same union of six 3-simplices. On each arrow

we indicate the 4-simplex bounded by the five 3-simplices involved in the Pachner move, on which

the 2-form cocycle is evaluated.

also referred to as the pentagon relation in the context of monoidal category theory. To-

gether with the relations (4.26) derived directly from the normalization conditions, this

yields the following set of equalities

α(a, b, c) = ω(a, b, c|0, 0|0)−1 = ω(0, a, 0|b, c|0) = ω(0, 0, a|0, b|c)−1 (5.14)

which we use several times below. Equation (5.14) is a good example of the inherent

redundancy underlying the W -construction of B2(G). This redundancy is the main reason

why we need to choose carefully our examples and our conventions in order for the results

to be manifest and not to be lost in the redundancy of the description.

Let us now consider the 4-coboundary d(4)ω(0, 0, c, d|e, 0, 0|0, 0|0) which yields the co-

cycle condition

ω(e, 0, 0|0, 0|0)ω(0, c, d|0, 0|0)ω(0, 0, c+ d|e, 0|0)

ω(e, c, d|0, 0|0)ω(0, c, d|e, 0|0)ω(0, 0, c|e, 0|0)
= 1 . (5.15)

Firstly, it follows from the normalization conditions (4.27) satisfied by ω that

ω(e, 0, 0|0, 0|0) = 1 and ω(0, c, d|0, 0|0) = 1. Secondly, we recognize terms which reduce

to the group 2-cochain R and the group 3-cocycle α. Thirdly, we define a group 3-cochain

denoted by c as c : (a, b, c) 7→ ω(0, a, b|c, 0|0). Putting everything together, the cocycle

condition 〈d(4)ω, (012345)〉 := d(4)ω(0, 0, c, d|e, 0, 0|0, 0|0) = 1 reads

R(e, c+ d)α(e, c, d)

c(c, d, e)R(e, c)
= 1 (5.16)
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such that 〈ω, (02345)〉 = α(e, c, d)−1, 〈ω, (01245)〉 = c(c, d, e), 〈ω, (01235)〉 = R(e, c + d) and

〈ω, (01234)〉 = R(e, c). In figure 2 (top panel), we provide a graphical interpretation to

this 2-form 4-cocycle condition. In order to obtain this figure, we proceed as follows: (i)

Reproduce figure 1 but for the one-skeleton of the polyhedral decomposition Υ dual to

the triangulation 4 and for a different (judicious) numbering of the vertices. (ii) Identify

the 2-simplex variables from (5.15) using the correspondence (4.13) and draw the dual

links with a dashed line when the corresponding labeling vanishes. Focusing on the bold

edges appearing in figure 2, we can draw several remarks: firstly, as expected, the two

P2 7→3 moves associated with the 4-cocycle evaluations normalized to one do not modify the

combinatorics of the diagram. Secondly, two P2 7→3 effectively reduce to a braiding move

which is consistent with the fact two R-matrices appear in equation (5.16). Thirdly, one

P2 7→3 effectively reduces to a P2 7→2 which is consistent with the presence of the group 3-

cocycle α in equation (5.16). Finally, there is the move corresponding to the term c(c, d, e).

Putting everything together, the 2-form 4-cocycle condition can effectively be graphically

interpreted in terms of string diagrams as

ec d ec d c d e c d e

R−1(e,c) α(e,c,d) R(e,c+d)

c(c,d,e)

(5.17)

where we omitted the trivial maps. Note that this equation makes sense on its own,

independently from figure 2, according to (5.8) and (5.10).

We will now repeat the previous analysis starting from a different cocycle condition

in order to provide an alternative decomposition for the map c. Let us consider the cocy-

cle condition

〈d(4)ω, (012345)〉 := d(4)ω(0, 0, c, 0|0, 0, g|h, 0|0)

=
ω(0, 0, g|h, 0|0)ω(0, c, 0|h, g|0)ω(0, 0, c|0, g|h)

ω(0, c, g|h, 0|0)ω(0, c, 0|0, g|0)ω(0, 0, g|0, 0|h)

=
R(h, g)α(c, h, g)

c(c, g, h)α(c, g, h)
= 1 (5.18)

such that 〈ω, (12345)〉 = R(h, g), 〈ω, (02345)〉 = c(c, g, h), 〈ω, (01345)〉 = α(c, h, g) and

〈ω, (01235)〉 = α(c, g, h)−1. We made use between the first and the second line of the

normalization conditions as well as (5.14). As before, this cocycle condition can be repre-

sented graphically (see lower panel of figure 2) by identifying all the 2-simplex variables and

make a judicious choice of numbering of the vertices which dictates, among other things,

which P2 7→3 move each term of (5.18) corresponds to. In terms of string diagrams, this
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effectively boils down to:18

hc g c g h g hc c g h

α(c,h,g) R(h,g) α−1(c,g,h)

c(c,g,h)

(5.19)

where we omitted as before the trivial maps.

Let us summarize what we have shown so far: using two special cases of the 2-form

4-cocycle condition, together with their geometrical interpretation that relies on the fact

that the map performing a 2–3 Pachner move evaluates to a 2-form 4-cocycle, we have

obtained two different decompositions for the map c : (a, b, c) 7→ ω(0, a, b|c, 0|0) in terms

of the group 2-cochain R and the group 3-cocycle α, both algebraically and geometrically.

Equating these two decompositions, we obtain

α(a, b, c)R(c, a+ b)α(c, a, b) = R(c, a)α(a, c, b)R(c, b) (5.20)

which is nothing else than one of the hexagon relations appearing in the definition of a

(abelian) braided monoidal category. This equation is the consistency condition for the

braiding move whose amplitude is provided by the 2-cochain R, the same way (5.13)

is the one for the P2 7→2 move. We can deduce very easily the corresponding graphical

interpretation in terms of string diagrams and it reads:

a b c ca b

a b c ca b

b ca a b c

R(c,a+b)

α(a,b,c)

α(c,a,b)

R(c,b)

R(c,a)

α(a,c,b)

18The correspondence between figure 2 and the effective string diagrams is not as obvious as earlier

where it was directly provided by the bold links of the dual complex. Indeed, because of the presence

of additional links labeled by non-trivial group variables, the correspondence is not quite as transparent.

However, by looking carefully at the value of each 2-simplex (or dual link) variables, the reader should be

able to convince itself that it does reduce to the equation in terms of string diagrams. First of all, it should

be clear that the links labeled by (014) and (024) are irrelevant from a combinatorial point of view in the

top-left, top-right and right complexes (of the lower panel). Furthermore, from 〈ω, (01245)〉 = ω(g012, g014−
g012, g015 − g014|g124, g125 − g124|g245) = ω(0, c, 0|0, g|0), we read off in particular that g014 = g015 = c and

g045 = g145 = g so that we can effectively ‘forget’ about the links labeled by (014) and (015) in the left and

bottom-left complexes.
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It turns out, there is another hexagon equation which can be obtained similarly starting

from two others special cocycle conditions:

R(c+ a, b)α(c, b, a) = α(b, c, a)R(c, b)α(c, a, b)R(a, b) (5.21)

whose graphical interpretation can be derived by proceeding as before.

Thinking of ω, R and α as isomorphisms, what we have essentially shown in this part

is that the input data of our model, namely {G,ω}, reduces to the input data of an abelian

braided monoidal category, namely {G,R, α}, and that the consistency conditions of the

constraints satisfied by the fixed point wave functions under P2 7→3 moves reduce to the

consistency conditions of R and α. Note that a similar analysis has been carried out for

instance in [56–58] but using the bar construction of B2(G) instead of the W -construction as

we did. The computations are in this case more straightforward. However, because the bar

presentation does not yield a geometrical interpretation in terms of 2-form flat connections

defined on a triangulation, it is neither possible to show this correspondence from an

intuitive simplicial point of view, nor to define the corresponding lattice Hamiltonian model

as we are doing. We will provide more category theoretical details in section 6 and exploit

this result to show to which extent our model is related to the Walker-Wang model.

5.3 Lattice Hamiltonian

In this subsection, we introduce our lattice model which is an Hamiltonian realization

of the 2-form topological invariant (2.16) whose ground states are described by the fixed

point wave functions satisfying (5.1) and (5.2). These ground states correspond to the

physical states (as defined in appendix D) that span the Hilbert space HΣ obtained upon

quantization of the 2-form TQFT on a manifold of the form M = Σ× R.

We introduced in section 2.3 a general formula (2.16) for the partition function of

topological q-form lattice gauge theories. We reproduce below this formula for the case

q = 2 in a slightly different form:

ZG[2]
ω [M] =

1

|G||41|−|40|
∑

g∈Col(M,G[2])

∏
44

〈ω,44〉ε(44) (5.22)

where ω ∈ Z4(G[2],U(1)) is the 2-form 4-cocycle, 〈ω,44〉ε(44) ≡ Sω[44] is the topological

action such that ε(44) = ±1 is determined according to conv. 5.1, and Col(M, G[2]) is the

set of G[2]-colorings of M, i.e. an assignment of group elements g ∈ G to every 2-simplex

which satisfy the 2-cocycle condition dg = 0 where 〈dg, (wxyz)〉 = gxyz−gwyz+gwxz−gwxy.
Note that we are now considering cocycles valued in U(1) instead of cocycles valued in R/Z,

this is merely a choice of convention. Furthermore, we now pick a cocycle in the cohomology

H4(G[2],U(1)) instead of H4(B2(G),U(1)), which is the same by construction. The 2-form

4-cocycle condition ensures the topological invariance of the partition function.

Let us now define an Hamiltonian realization of this topological field theory on a space-

like three-dimensional hypersurface Σ endowed with a triangulation 4 whose 2-simplices

are labeled by group variables in the finite abelian group G. To every 3-simplex of 4, we

associate a projector B(43) which enforces the zero-flux condition. To every 1-simplex of
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Figure 2. Graphical depiction of the 2-form cocycle condition d(4)ω(0, 0, c, d|e, 0, 0|0, 0|0) = 1 and

d(4)ω(0, 0, c, 0|0, 0, g|h, 0|0) = 1. The dashed line are labeled by the identity group element 0 ∈ G.

Each arrow of the diagram is labeled by a 4-simplex (abcde) such that 〈ω, (abcde)〉 is the evaluation

of the 2-form 4-cocycle ω that is the amplitude of the corresponding 2-3 Pachner move, as well as a

symbol α, R or id depending on whether the 2-3 Pachner move effectively reduces to a 2-2 Pachner

move, a braiding move or a trivial move, respectively. Together, these two consistency conditions

effectively reduce to a so-called hexagon relation.

4, we associate a projector A(41) which enforces the twisted 1-form gauge invariance. The

zero-flux condition is particularly simple for our model since it boils down to the branching

rules. In other words, it enforces the fact that the labeling of the 2-simplices define a G[2]-
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coloring, i.e. a local description of a flat 2-form connection. Given a state | (0123) 〉 that is

the state of a labeled 3-simplex whose vertices are numbered 0, 1, 2 and 3, the action of

the operator B(43) explicitly reads

B (0123) . | (0123) 〉 = δg123−g023+g013−g012,0| (0123) 〉 . (5.23)

The action of the operator A(41) is a little more subtle but there is a particularly convenient

way of defining it via a so-called tent move in terms of the state-sum invariant. Given a

2-simplex (xy) ⊂ 4, the operator A(xy) acting on (xy) can be written succinctly as19

A(xy) =
1

|G|
∑
gxyz

Sω[(z) tj cl(xy)] (5.24)

where Sω[4] =
∏
44⊂4〈ω,44〉ε(44) is the topological action, cl(xy) is the minimal sub-

complex of 4 that contains all the simplices such that (xy) is one of their subsimplices,

and tj denotes the join operation [59].

Let us illustrate the definitions of cl(•) and tj with a simple example in one lower

dimension. Let (0) be a 0-simplex shared by only three 2-simplices, namely (012), (023) and

(013). The operation (0′) tj cl(0) then reads

(0′) tj

2

1
3

0
=

2

1
3

0

0′

.

Let us now consider the situation where one 1-simplex is shared by three 3-simplices.20

Let us write down the action of the operator A(xy) =: 1
|G|
∑

gxyz
Agxyz(xy) which enforces at this

1-simplex the twisted 1-form gauge invariance. Using (5.22), one obtains

A(04) .

∣∣∣∣∣
0

2

3

1

4

〉
=
∑
g045

Sω

[ 0

2

3

1

5

4

]∣∣∣∣∣
0

2

3

1

5

〉
(5.25)

=
∑
g045

〈ω, (02345)〉 〈ω, (01245)〉
〈ω, (01345)〉

∣∣∣∣∣
0

2

3

1

5

〉
(5.26)

19Instead of defining the operator A in terms of the topological action and an explicit sum, it would have

been possible to define it directly in terms of the partition function so that only the group variables labeling

faces in the bulk of the simplicial complex obtained via the join operation tj are summed over.
20We focus our definition of the Hamiltonian model on this special example in order to show later on how

it is related to the Walker-Wang model. We postpone a more through study of this lattice Hamiltonian to

another paper.
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where g245 = g345 = g145 = 0.21 It is not obvious from the drawing but the complex

(5) tj cl(04) does not contain the 2-simplex (123) and as such it only contains three 4-

simplices, namely (02345), (01245) and (01345).

Let us further suppose w.l.o.g that we have the following initial G[2]-coloring: g012 = a,

g013 = a + b, g014 = a + b + c, g123 = e, g124 = e + f and g234 = h and we denote the

1-form gauge parameter by g045 = d. Denoting the initial state in (5.25) by |ψinit.〉 and

the final state in (5.26) by |ψfin.〉, the amplitude of the operator Ad(04) for such coloring

explicitly reads

〈ψfin.|Ad(04) |ψinit.〉 =
〈ω, (02345)〉 〈ω, (01245)〉

〈ω, (01345)〉

=
ω(b+ e, c+ f, d|h, 0|0)ω(a, b+ c, d|e+ f, 0|0)

ω(a+ b, c, d|f + h, 0|0)

where we used the correspondence (4.13). As it turns out, we could have anticipated this

result. Indeed, if we embed the initial complex made of four 3-simplices meeting at (4) in

a four-dimensional manifold, we can think of it as a 4-simplex (01234). But the topological

action assigns to this 4-simplex an amplitude

〈ω, (01234)〉 = ω(g012, g013 − g012, g014 − g013|g123, g124 − g123|g234)

= ω(a, b, c|e, f |h) (5.27)

together with the G[2]-coloring defined above. Upon 1-form gauge transformation at the

edge (04), one has g014 → g014 − θ04, g024 → g024 − θ04 and g034 → g034 − θ04 so that the

topological action transforms as

ω(a, b, c|e, f |h)→ ω(a, b, c+ d|e, f |h) (5.28)

where θ04 = −d. We can then deduce from the 2-form 4-cocycle condition

d(4)ω(a, b, c, d|e, f, 0|h, 0|0) = 1 that the topological action is modified under this trans-

formation by the following factor

ω(a, b, c|e, f |h)→ ω(b+ e, c+ f, d|h, 0|0)ω(a, b+ c, d|e+ f, 0|0)

ω(a+ b, c, d|f + h, 0|0)
· ω(a, b, c|e, f |h) (5.29)

which is exactly the amplitude of the operator as obtained above from the tent move.

It follows from the 2-form 4-cocycle condition that the operators A(41) and B(43) as

defined above commute22 and the lattice Hamiltonian projector finally reads

H = −
∑
41

A(41) −
∑
43

B(43) . (5.30)

21The operator A acts on the 1-simplex (04) only so that we must have g025 = g024+g045, g035 = g034+g045
and g015 = g014 + g045. It then follows from the 2-cocycle condition dg = 0 that g245 = g345 = g145 = 0.

22The only non-trivial case occurs when the operator A acts consecutively on two 1-simplices that bound

the same 2-simplices. The amplitude of these consecutive actions is obtained as the partition function for

the simplicial complex obtained via two consecutive join operations. Depending on the ordering of these

consecutive actions, the corresponding simplicial complexes differ but they share the same boundary. It is

therefore possible to go from one simplicial complex to another via a sequence of three-dimensional Pachner

moves. The topological invariance of the partition function then ensures that the amplitude of the action

of the operator A is the same for both cases, hence the commutativity.
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The fact that the ground states of this Hamiltonian satisfy equations (5.1) and (5.2) under

local unitary transformations follows directly from the topological invariance of (5.22), or

more precisely from the 2-form 4-cocycle condition.

5.4 Excitations

Given a closed three-dimensional hypersurface Σ endowed with a triangulation 4, the

lattice Hamiltonian is provided by (5.30), the states are defined as superpositions of labeled

graph states, and the ground states of the Hamiltonian are defined as states |ψ〉 satisfying

A(41) . |ψ〉 = |ψ〉 and B(43) . |ψ〉 = |ψ〉 for each 41,43 ⊂ 4. The Hilbert space of ground

states on Σ endowed with the triangulation 4 is denoted by H4.

Recall that the two conditions enforced by the operators B(43) and A(41) are the 2-form

flatness condition and the twisted 1-form gauge invariance, respectively. But, flat 2-form

connections on Σ can be defined as homomorphisms from the second homotopy group π2(Σ)

to G, so that non-trivial 2-holonomies can only be found along non-contractible 2-paths.

This means that by imposing the 2-form flatness condition at every 43 ⊂ 4, we make

the implicit assumption that each 43 is associated to a contractible 2-path. We define an

excitation as a local neighborhood of the triangulation where the energy density is higher

than that of the ground state, i.e. a state for which the conditions A(41) . |ψ〉 = |ψ〉 and

B(43) . |ψ〉 = |ψ〉 are violated in a local neighborhood. We refer to a state for which one

constraint A(41). |ψ〉 = |ψ〉 is violated as an electric charge excitation and a state for which

one constraint B(43) . |ψ〉 = |ψ〉 is violated as a magnetic flux excitation.

Let us first focus on magnetic excitations. By definition, these excitations occur when

a given state violates the 2-form flatness condition at one or several 3-simplices. But, if we

want the 2-form connection interpretation to persist, this violation must be associated with

a non-contractible closed 2-path. Given a closed three-dimensional manifold Σ, such a non-

contractible 2-path can be produced by removing an appropriate three-manifold B from Σ,

hence turning Σ into an open manifold Σ\B whose boundary is given by the boundary ∂B
of the three-manifold B. For instance, this can be done by removing a solid two-torus or

a solid two-sphere from Σ. The resulting manifold would then have a torus boundary or a

sphere boundary, respectively, that can support point-like magnetic flux excitations.

So we constrain the magnetic excitations to occur at boundary components of the three-

manifold. Similarly, we restrict the electric charge excitations to occur at the boundary.

More specifically, we endow each component of ∂Σ that has at least one non-contractible 1-

cycle with a marked link for each non-contractible 1-cycle and allow for the 1-form twisted

gauge invariance at a 1-simplex to be violated if and only if it coincides with a marked

link. So the lattice Hamiltonian yields point-like magnetic flux excitations and string-like

electric charge excitations, both located at the boundary of the manifold. Given a closed

three-manifold Σ equipped with a triangulation, we can remove three-manifolds from it

and we think of the states defined on the resulting manifold as being excited with respect

to the ground states defined on Σ.

It is well-known that in such context manifolds of the form N × [0, 1] play a spe-

cial role [37, 60–64]. For instance, in two dimensions, the Hamiltonian realization of the

3d Dijkgraaf-Witten TQFT yields point-like electric and magnetic excitations located at
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punctures. The twice-punctured two-sphere (or cylinder), i.e. T[S1] ≡ S1 × [0, 1] is then

the simplest topology supporting both type of excitations. Moreover, the gluing of two

cylinders results in a manifold homeomorphic to a cylinder, hence defining an algebra on

the Hilbert space of states that is referred to as Ocneanu’s tube algebra [65, 66]. By defin-

ing specific excited states on the cylinder, we can confirm explicitly that this algebra is

equivalent to the twisted Drinfel’d double of the gauge group G [67–71]. The irreducible

representations of the twisted Drinfel’d double then classify the anyonic excitations of

the theory. Similarly, in three dimensions, the Hamiltonian realization of the 4d Dijkgraaf-

Witten TQFT yields point-like charge excitations and string-like flux excitations supported

for instance by torus-boundaries. The manifold T[T2] ≡ T2×[0, 1] obtained by cutting open

the three-torus supports states satisfying a higher-dimensional version of Ocneanu’s tube

algebra which yields an extension of the twisted Drinfel’d double referred to as the twisted

quantum triple [37, 72, 73]. The irreducible representations of this algebraic structure then

label the excitations of the theory.

It turns out that the number of independent excited states on a manifold of the form

N × [0, 1] corresponds to the ground state degeneracy on the manifold N × S1. Therefore,

there is a systematic way to compute the ground state degeneracy of a given lattice Hamil-

tonian on a manifold of the form N × S1: consider the tube algebra of T[N ] ≡ N × [0, 1],

derive its irreducible representations, and find the ground states degeneracy as the number

of such irreducible representations.

The strategy outlined above has been extensively employed to study gauge models of

topological phases. But it can also be used in the context of 2-form topological models. We

briefly sketch such strategy here and postpone to another paper a more thorough treatment.

Let us first consider the manifold T[S2] ≡ S2 × [0, 1]. The two-sphere S2 has the following

Betti numbers: b0 = 1, b1 = 0 and b2 = 1. In other words, S2 has a single connected

component, zero non-contractible 1-cycle and one non-contractible 2-cycle. In our context,

this means that the tube T[S2] can only support a single point-like magnetic excitation.

In order to have a manifold that supports both electric and magnetic excitations, it is

necessary to introduce non-contractible 1-cycles. The natural choice would be to consider

the manifold T[T2] ≡ T2 × [0, 1] obtained by cutting open the three-torus. This manifold

would actually support one type of magnetic excitation and two types of electric excitations.

However, the structure of the excitations associated with this manifold is rather involved.

Therefore, as an intermediary step, we could focus instead on the three-pseudo-manifold

T[S2
no.] ≡ S2

no. × [0, 1] where S2
no. is the nodal sphere obtained after identifying two points

of the two-sphere S2. This pseudo-manifold is homeomorphic to a pinched two-torus and

can be graphically depicted as

−→ ←→ ←→ .

The manifold S2
no. that possesses one non-contractible 2-cycle and one non-contractible
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1-cycle (as opposed to the manifold T[T2] that possesses two non-contractible 1-cycles)

supports one point-like flux and string-like charge. As a matter of fact, we can think of

T[S2
no.] as a special case of T[T2] in the sense that some of the excitations supported by

T[T2] are condensed. As such, the study of the algebra associated to this tube cannot reveal

as much information about the excitation content of the theory. It is however considerably

simpler and constitutes an interesting intermediary case. We will compute in a follow-

up work such tube algebras for several boundary manifolds and derive the ground state

degeneracy on the corresponding closed manifolds. But let us conclude this section by

computing explicitly the tube algebra for the nodal sphere in the case where the 2-form

cocycle is trivial.

So we are interested in the algebraic structure underlying the states defined on the

manifold T[S2
no.] ≡ S2

no. × [0, 1]. Let us first find a basis for these states. To do so, we

need to introduce a presentation of this pseudo-manifold. Since the two-sphere can be

discretized by a 2-gon whose edges are identified, we can present the nodal sphere as a

2-gon whose edges and vertices are identified from which a discretization of T[S2
no.] can

easily be obtained. Representing identified edges and identified vertices by an identical

arrow and an identical dot, respectively, we have the following presentation:

←→

a

a

b .

Each nodal two-sphere bounding T[S2
no.] corresponds to a non-contractible 2-cycle, hence

supporting a flux excitation. Furthermore, each nodal sphere is equipped with a marked

closed link which coincides with the edges of the discretization so that the 1-form gauge

invariance is there relaxed. The electric excitation is captured by the face variable b ∈ G,23

while the magnetic excitation on the upper nodal sphere is captured by the face variable

a ∈ G. It follows from the 2-flatness condition imposed on the 2-cycle ‘between the two

spheres’ that the face variable labeling the bottom sphere is also a ∈ G. This defines a

basis of states associated with the manifold T[S2
no.] that is labeled by two group elements.

Let us denote by HT[S2
no.]

the Hilbert space spanned by these states. We can decompose

this Hilbert space in terms of boundary colorings as follows

HT[S2
no.]

=:
⊕

a∈Col(S2
no.×{0},G[2])

HT[S2
no.]

[a, a]

23If we were to enforce the gauge invariance at the edges located at the boundary, we could ‘gauge fix

away’ the degree of freedom materialized by b ∈ G. This confirm that the variable b ∈ G indeed captures

an electric excitation, i.e. a violation of the 1-form gauge invariance.
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where we implicitly made use of the fact that the 2-form flatness condition implies

Col(S2
no. × {0}, G[2]) = Col(S2

no. × {1}, G[2]). The Hilbert space HS2
no.×[0,1][a, a] is therefore

spanned by states labeled by one group variable and is denoted by (a
b−→a) ∈ HT[S2

no.]
[a, a].

In general, the tube algebra for a manifold T[N ] is defined by gluing two copies of T[N ]

along one of the boundary components. This gluing operation must be performed such that

the marked links on the boundary are identified. The result is a manifold homeomorphic

to the initial one. This yields an algebra product denoted by ? which consists of two

operations: (i) A gluing map G which identifies the boundary configurations, (ii) the

projection via A(41) onto the subspace of states satisfying the 1-form gauge invariance

everywhere but at the marked links on the boundary.24 The projection step (ii) is required

since after gluing there are new bulk 1-simplices, namely the ones that coincide with the

marked links that are identified, which are not located at the boundary anymore and thus

at which the 1-form gauge invariance must be enforced. Once the gauge invariance is

enforced, the constraints are everywhere satisfied in the bulk of the resulting manifold

so that the corresponding states satisfy the equations (5.1) and (5.2) under local unitary

transformations. It is therefore possible to perform P2 7→3 moves in order to simplify the

triangulation of the resulting manifold so as to obtain a state living in T[N ] again. Putting

everything together, this definition in the case of T[S2
no.] reads

? : HT[S2
no.]
⊗HT[S2

no.]
G−−→ Hext.

T[S2
no.] ∪S2no.

T[S2
no.]

A−−→ HT[S2
no.]/∼

(a1
b1−→a1)⊗ (a2

b2−→a2) 7−→ δa1,a2(a1
b1−→a1)⊗ (a1

b2−→a1) 7−→ δa1,a2A . (a1
b1−→a1)⊗ (a1

b2−→a1)

where Hext.
T[S2

no.] ∪S2no.
T[S2

no.]
is the Hilbert space of states defined on the pseudo-manifold

resulting from the gluing such that the 1-form gauge invariance is not yet enforced at the

new bulk 1-simplex. Since the cocycle is taken to be trivial, both steps in the definition of

the algebra product are particularly simple and the algebra simply reads

(a1
b1−→a1) ? (a2

b2−→a2) = δa1,a2(a1
b1+b2−−−→a1) . (5.31)

Finding the irreducible representations is immediate and the ground state degeneracy on

the manifold S2
no. × S1 is thus |G|2 as expected. Naturally, the situation is considerably

more complicated when the 2-form 4-cocycle is not trivial and this will be the subject of a

follow-up work.

6 Correspondence with the Walker-Wang model

We exposed in the previous section how the local unitary transformations whose ampli-

tudes are given in terms of a 2-form 4-cocycle can be reduced to a 2–2 Pachner move

or a braiding move. Furthermore, we showed, algebraically and geometrically, how the

2-form 4-cocycle condition yields the so-called pentagon and hexagon relations which are

24A technicality we omitted is that for this gluing operation to be well-defined the two submanifolds

which are identified must have opposite orientations and, correspondingly, the state spaces associated with

these boundary submanifolds must be dual to each other.
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the defining equations of a certain braided monoidal category. But it turns out that this

braided monoidal category is the input data of another lattice Hamiltonian model, namely

the Walker-Wang model [17].25 In this section, we first provide further detail regarding

the interplay between the 2-form cohomology group H4(G[2],U(1)) and abelian braided

monoidal categories, then we study to which extent our 2-form gauge model is related to

the Walker-Wang model.

6.1 Braided monoidal categories

First let us provide some basic definitions of category theory. More details can be found

for instance in [74]:

Definition 6.1 (Monoidal category). A monoidal category is a sextuple (C,⊗,1, `, r, α)

where:

◦ C is a category whose collection of objects is denoted by Ob(C) and for x, y ∈ Ob(C),

the collection of morphisms between them is denoted by HomC(x, y).

◦ ⊗ is a bifunctor ⊗ : C × C → C referred to as the tensor product.

◦ 1 ∈ Ob(C) is a unit object.

◦ α, ` and r are natural isomorphisms:

αx,y,z : (x⊗ y)⊗ z ∼−→ x⊗ (y ⊗ z)

`x : 1⊗ x ∼−→ x

rx : x⊗ 1 ∼−→ x

referred to as the associator, the left unitor and the right unitor, respectively. These

natural isomorphisms are subject to some coherence relations that we omit for now,

namely the pentagon relation and the triangle relation.

In this article, we are only interested in a specific monoidal category, namely the

category C–VecG of G-graded vector spaces over the field of complex numbers, where G

is a finite abelian group.26 We define a G-graded vector space as a vector space V which

satisfies V =
⊕

g∈G Vg and the tensor product of two G-graded vector spaces reads

(V ⊗W )g =
⊕
h,k∈G
h+k=g

Vh ⊗Wk .

The category C–VecG has finitely many simple objects provided by the 1-dimensional G-

graded vector spaces which are in one-to-one correspondence with group elements g ∈
25More precisely, the input data of the Walker-Wang model is a unitary fusion braided category. It is

possible to endow the monoidal category we are interested in, namely the category of G-graded vector

spaces, with the structures necessary to turn it into a unitary fusion braided category. However, for this

specific example, it is not required to do so as far as the definition of the Hamiltonian is concerned.
26As mentioned earlier, the category C–VecG is actually an example of fusion category but we do not

need the corresponding additional structures in order to define the Walker-Wang model and show the

correspondence with our 2-form gauge model.
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G. We denote these simple objects by δg∈G and they satisfy by definition End(δg) = C,

Naturally, the tensor product of simple objects boils down to the group multiplication:

δg ⊗ δh ∼= δg+h. Since it is enough to define the associator of the category on the simple

objects, we are looking for an isomorphism determined by a function α : G3 → C× such that

αg,h,k = α(g, h, k) · idδg+h+k
: (δg ⊗ δh)⊗ δk

∼−→ δg ⊗ (δh ⊗ δk) .

The pentagon relation then implies that α is a group 3-cocycle in H3(G,C×) (which is the

same as H3(G,U(1)) ). The triangle relation implies that if the left and the right unitors

are trivial, then the 3-cocycle α is normalized, i.e. α(g,1, h) = 1, ∀g, h ∈ G. We will now

turn the category C–VecG into a braided monoidal category:

Definition 6.2 (Braided monoidal category). Given a monoidal category C, a braiding on

C is a natural isomorphism Rx,y : x ⊗ y ∼−→ y ⊗ x that is subject to the so-called hexagon

relations. A braided monoidal category is then defined as a pair {C, R}.

In order to turn C–VecG into a braided monoidal category, we only need to add a

braiding, i.e a group 2-cochain R ∈ C2(G,C×), satisfying the hexagon equations which

are exactly (5.20) and (5.21). Interestingly, the set of associators and braidings as defined

above enters the definition of the following cohomology:

Definition 6.3 (Abelian cohomology group). Pairs {α,R} satisfying (5.13), (5.20)

and (5.21) are referred to as abelian cocycles on G and we denote the set of all abelian

cocycles on G by Z3
ab(G,C×). Let β ∈ C2(G,C×), we call an abelian coboundary a pair

{α,R} such that

α(a, b, c) =
β(b, c)β(a, b+ c)

β(a+ b, c)β(a, b)
, R(a, b) =

β(a, b)

β(b, a)
. (6.1)

The set of all abelian coboundaries is denoted by B3
ab(G,C×). We finally define the abelian

cohomology group as the quotient space:

H3
ab(G,C×) =

Z3
ab(G,C×)

B3
ab(G,C×)

. (6.2)

It results from the definitions above that isomorphism classes of braided monoidal

categories whose simple objects form an abelian group G are classified by H3
ab(G,C×).

Using these definitions, we can rephrase our previous result: given a 2-form 4-cocycle

ω, the group cochains α : (a, b, c) 7→ ω(a, b, c|0, 0|0)−1 and R : (a, b) 7→ ω(0, 0, b|a, 0|0)

form an abelian cocycle. Furthermore, it follows from (4.31) and (4.33) that the pair

{d(3)α(a, b, c|0, 0|0), d(3)α(0, 0, a|b, 0|0)} forms an abelian coboundary. Putting everything

together, it should not surprise the reader that there is a bijection between H4(G[2],U(1))

and H3
ab(G,U(1)).27

If the relationship between H4(G[2],U(1)) and H3
ab(G,U(1)) is natural in light of our

derivations in the previous section, a complete proof of this bijection would require more

27Here we are implicitly making use of the fact that when the group is finite, there is no difference between

the cohomology of abelian cocycles valued in U(1) and in C×.
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care. Since our work does not strictly rely on this bijection, we refer the reader to [56]

instead. Nonetheless, let us assume this result until the end of this subsection and let

us pursue our analysis. Recall that we defined earlier quadratic forms on a finite abelian

group G valued in C× as a function q : G→ C× such that q(g) = q(−g) and

b : (g, h) 7→ q(g) q(h)

q(g + h)

is bilinear. We denote the group of quadratic forms on G by Quad(G). Given a braided

monoidal category whose simple objects form the abelian group G (such as C–VecG), we

can construct easily a quadratic form q : G→ C× such that for all g ∈ G, q(g) = R(g, g) ∈
AutC(g ⊗ g) = C×. It follows directly that

H3
ab(G,C×)→ Quad(G)

{R,α} 7→ q(g) = R(g, g)

is a homomorphism. But, and this is a result by Eilenberg and MacLane presented in a

succinct way in [74], this homomorphism turns out to be an isomorphism. This means

that abelian cocycles are classified by quadratic forms. Since we assumed that there was a

bijection between H4(G[2],U(1)) and H3
ab(G,U(1)), this also proves that H4(G[2],U(1)) is

classified by quadratic forms on G. Despite the numerous gaps we left, we hope this brief

review provides some intuition as to why this is the case. This analysis thus completes the

study initiated in section 2 where we made use of the same bijection in order to write down

explicitly the action of a 2-form gauge theory in terms of a quadratic function q and the

Pontrjagin square P. In any case, we do not need this result to display how our 2-form

gauge model is related to the Walker-Wang model for the braided monoidal category of

G-graded vector spaces.

6.2 Walker-Wang model for the category of G-graded vector spaces

The Walker-Wang model was first introduced in [17] as a generalization of Levin-Wen

models to 3+1 dimensions. In general, the input data for the Walker-Wang model is a

unitary braided fusion category. Crucially, the properties of the corresponding topological

phase depends on whether the category is modular. Indeed, if the category is modular,

then the model is trivial in the sense that it displays neither ground state degeneracy nor

fractionalized excitations. In this section, we are only interested in the Walker-Wang model

based upon the braided (fusion) monoidal category of G-graded vector spaces whose input

data is a finite abelian group G, a group 3-cocycle α and a group 2-cochain R which together

satisfy the pentagon and the hexagon relations. In light of the correspondence between

abelian braided monoidal categories and the cohomology class of 2-form 4-cocycles, we

want to emphasize how our 2-form gauge model is related to this Walker-Wang model.

The lattice Hamiltonian introduced by Walker and Wang was originally defined on a

cubic lattice such that all the nodes are six-valent. Crucially, in order to define the action

of the commuting operators, it is necessary to split the six-valent nodes into three-valent

ones so that the action of the plaquette operator can be expressed in terms of 2–2 Pachner
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moves (or F-moves) and braiding moves. The Hilbert space of the model is then spanned by

all graph states obtained by labeling the edges of the graph obtained after such splitting.

Different splittings must lead to equivalent models as they all match in the continuum

limit, but a specific choice needs to be made nonetheless and it is referred to as a choice

of resolution of the vertices. Note that this model can be generalized to richer input data

such as G-crossed braided fusion categories, see [59].

In this section, we study the Walker-Wang model based upon the monoidal braided cat-

egory of G-graded vector spaces. However, instead of working with a cubic discretization,

we define the model on the one-skeleton of the 2-complex Υ dual to the triangulation 4.

Naturally, since 4 is obtained as a gluing of 3-simplices all the nodes of the one-skeleteon

of Υ are four-valent. Therefore, it is still necessary to perform a (single) splitting of the

nodes in order to obtain a graph whose nodes are all three-valent. The lattice Hamiltonian

is given by

HWW = −
∑
n

An −
∑
p

Bp (6.3)

such that to each three-valent node, we assign an operator An which enforces the oriented

product of the group variables labeling the edges meeting at the node n to vanish, and to

each plaquette, we assign an operator Bp which modifies the group configuration of the

edges adjacent to p by ‘fusing’ a loop of defect into the boundary of p. We can define more

precisely the action of Bp using some graphical calculus in a way which is reminiscent of

(2+1)d string net models. To do so, we consider a special example, namely the triangular

plaquette that is the one-skeleton of the dual graph of the union of the three 3-simplices

(0134), (0124) and (0234) as depicted in (5.25) so that we have the correspondence:

0

2

3

1

4 ←→

(012)

(124)
(024)

(023)

(234)

(014)
(013)

(134)

(034)

(6.4)

where the 2-simplex (123) is not part of the 2-complex on the left-hand-side. Without loss

of generality, we make the following choice of splitting into three-valent nodes:

a

e+f
b+c+e+f

e+b

h

a+b+c
a+b

f+h

c+f+h

s7−→

a

b+c

c+fc

e+b

h

a+b

f+h
(6.5)

where in the second drawing we kept some labeling implicit as they can be deduced from the

branching rules implemented at each node by the operator An. Furthermore, the orientation

of the edges is also kept implicit, however it is always such that the group variable associated

with an unlabeled link is obtained as the sum of the group variables labeling the other two
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links meeting at this node. We write the plaquette operator Bp = 1
|G|
∑

d∈G Bdp where the

action of Bdp is defined graphically via the insertion of a loop of defect d as follows:

Bdp .

∣∣∣∣∣
a

b+c

c+fc

e+b

h

a+b

f+h

〉
=

∣∣∣∣∣
a

b+c

c+fc

e+b

h

a+b

f+h

d

〉
(6.6)

=

∣∣∣∣∣
a

b+c

c+fc

e+b

h

a+b

f+h

d

〉
(6.7)

where the last state is obtained by fusing the loop defect labeled by d into the plaquette

via trivial P2 7→2 moves.

It now remains to use local unitary transformation so as to obtain a state whose

underlying graph is identical to the initial one. To do so, we first perform three R-moves

in order to move aside the links labeled by e + f , f + h and h, so that P2 7→2 moves can

be performed (as in 2d) without worrying about non-trivial braidings. Once all the P2 7→2

moves are performed, the links labeled by e+f , f+h and h are brought back to their original

positions using three R-moves. Putting everything together, these transformations read

∣∣∣∣∣
a

b+c

c+fc

e+b

h

a+b

f+h

d

〉
(6.8)

=
R(c, f + h)

R(b+ c, e+ f)R(c+ f, h)

∣∣∣∣∣
a

f+h+c+d

e+ba+b
d

dd hf+h

e+f 〉
(6.9)

=
R(c, f + h)

R(b+ c, e+ f)R(c+ f, h)
(6.10)

· α(a, b+ c, d)α(f + h, c, d)α(e+ b, c+ f, d)

α(e+ f, b+ c, d)α(a+ b, c, d)α(h, c+ f, d)

∣∣∣∣∣
a

f+h+c+d

e+ba+b

hf+h

e+f 〉
(6.11)

=
R(b+ c+ d, e+ f)R(c+ f + d, h)R(c, f + h)

R(b+ c, e+ f)R(c+ f, h)R(c+ d, f + h)
(6.12)

· α(a, b+ c, d)α(f + h, c, d)α(e+ b, c+ f, d)

α(e+ f, b+ c, d)α(a+ b, c, d)α(h, c+ f, d)

∣∣∣∣∣
a

b+c+d

c+f+dc+d

e+b

h

a+b

f+h

〉
. (6.13)
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Denoting the initial state in (6.8) as |ψinit.〉 and the final state in (6.13) as |ψfin.〉, the

plaquette term for this configuration is 〈ψfin.|Bdp |ψinit.〉 and reads

〈ψfin.|Bdp |ψinit.〉 =
R(b+ c+ d, e+ f)R(c+ f + d, h)R(c, f + h)

R(b+ c, e+ f)R(c+ f, h)R(c+ d, f + h)

· α(a, b+ c, d)α(f + h, c, d)α(e+ b, c+ f, d)

α(e+ f, b+ c, d)α(a+ b, c, d)α(h, c+ f, d)
.

The example we chose in order to illustrate the definition of the plaquette operator is

admittedly very special but it can be generalized easily to any other situation (in particular

with a different distribution of legs pointing inward or outward the plaquette). But, since

this special configuration is the one corresponding to the situation chosen to illustrate the

definition of the operator A(41) of the 2-form gauge model in section 5.3, we are now able

to draw a correspondence between the two Hamiltonian models.

6.3 From the 2-form gauge model to the Walker-Wang model

In this section, we sketch the correspondence between the 2-form gauge model whose input

data is {G,ω ∈ Z4(G[2],U(1))} and the Walker-Wang model for the braided monoidal

category of G-graded vector spaces whose input data is {G, (α,R) ∈ Z3
ab(G,U(1))}. We

will not prove this correspondence in its full generality but merely focus on the specific

example used above to define the two models.

First of all, notice that the operator An of the Walker-Wang model and the operator

B(43) of the 2-form gauge model are essentially the same, both implement the branching

rules. Therefore, our focus is on the action of the operator Bp and A(41), More specifically,

we want to compare their amplitude in the case of the configuration (6.4). It is clear that

both of them enforce a twisted 1-form gauge invariance. Furthermore, it follows from the

duality relation between 4 and Υ that a twisted 1-form gauge transformation at the 1-

simplex (04) as performed by A(41) acts on the same 2-simplex variables as the plaquette

operator Bp via a loop of defect, namely (014), (024) and (034). However, it is not clear

how the amplitudes of these two operators match, especially in light of the fact that the

Walker-Wang model requires a splitting of nodes into three-valent ones.

We reproduce below the amplitude of the operator Ad(04):

〈ψfin.|Ad(04) |ψinit.〉 =
ω(b+ e, c+ f, d|h, 0|0)ω(a, b+ c, d|e+ f, 0|0)

ω(a+ b, c, d|f + h, 0|0)
(6.14)

where we recognize that the same term appears three times, but for different variables.

First, recall that the 2-form 4-cocycle ω ∈ Z4(G[2],U(1)) reduces to the group 3-cocycle

α ∈ Z3(G,U(1)) and the R-matrix R ∈ C2(G,U(1)) such that α(a, b, c) = ω−1(a, b, c|0, 0|0)

and R(a, b) = ω(0, 0, b|a, 0|0), respectively. Now, let us consider the cocycle condition

d(4)ω(a, 0, c, d|0, 0, 0|h, 0|0) =
ω(0, 0, 0|h, 0|0)ω(a, c, d|h, 0|0)ω(a, 0, c+ d|0, 0|h)

ω(0, c, d|h, 0|0)ω(a, c, d|0, 0|0)ω(a, 0, c|0, 0|h)
= 1 (6.15)

and let us rewrite it as follows

ω(a, c, d|h, 0|0) = s(a, c, h)α(a, c, d) c(c, d, h) s−1(a, c+ d, h) (6.16)
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Figure 3. Graphical depiction of the 2-form cocycle condition d(4)ω(a, 0, c, d|0, 0, 0|h, 0|0) ≡
〈d(4)ω, (012345)〉 = 1. This illustrates how the term ω(a, c, d|h, 0|0) = 〈ω, (01345)〉 encodes all

the defining steps of the plaquette operator in the Walker-Wang model: the splitting of the four-

valent node into three valent ones, the combination of P2 7→2 moves and braiding moves as well as

the recombination of three-valent nodes into a single four-valent one.

where we defined s(a, b, c) := ω(a, 0, b|0, 0, |c). Moreover, we showed in (5.16) that

c(c, d, h) = ω(0, c, d|h, 0|0) = R(c + d, h)α−1(h, c, d)R−1(c, h) so that (6.16) provides an-

other expression for the terms appearing in the amplitude of the operator Ad(04) in terms of

α, R and a group 3-cochain s that we have just defined. If we use equation (6.16) in (6.14),

we can rewrite the amplitude of the operator Ad(04) as

〈ψfin.|Ad(04) |ψinit.〉 =
R(b+ c+ d, e+ f)R(c+ f + d, h)R(c, f + h)

R(b+ c, e+ f)R(c+ f, h)R(c+ d, f + h)

· α(a, b+ c, d)α(f + h, c, d)α(e+ b, c+ f, d)

α(e+ f, b+ c, d)α(a+ b, c, d)α(h, c+ f, d)
(6.17)

· s(b+ e, c+ f, h) s(a, b+ c, e+ f) s(a+ b, c+ d, f + h)

s(b+ e, c+ f + d, h) s(a, b+ c+ d, e+ f) s(a+ b, c, f + h)

which reproduces exactly 〈ψfin.|Bdp |ψinit.〉 up to the s-terms.

So we are left to explain the role played by s. To do so, we use the same technique

as in section 5.2, i.e. we identify d(4)ω(a, 0, c, d|0, 0, 0|h, 0|0) with 〈d(4)ω, (012345)〉 and rep-

resent graphically the cocycle condition. However, this time the cocycle condition is not

obtained as an equality between two sequences of P2 7→3 moves but by equating two se-

quences composed of two P1 7→4 moves and one P2 7→3 move so that each term appearing in
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〈d(4)ω, (012345)〉 = 1 corresponds to a P2 7→3 move or a P1 7→4 move. The 2-simplex variables

are identified using the correspondence (4.13) and we represent by a dashed line vanishing

variables. The result is represented figure 3. We recognize that the different P2 7→3 and

P1 7→4 moves reduce to: a move which splits the 4-valent node into two 3-valent ones whose

amplitude is given by the function s, a trivial move which does not change the combina-

torics of the graph built out of the bold links, a combination of braiding moves and P2 7→2

whose amplitude is given by the function c as represented in (5.17), a P2 7→2 move, and

finally a move which puts together two 3-valent nodes into a single 4-valent one whose

amplitude is given by s−1. We deduce that the effective action of s can be graphically

interpreted in terms of string diagrams as

a

b+c

c

a+b
s(a,b,c)−→

a

a+b b

c

b+c . (6.18)

The presence of the s-terms in (6.17) is therefore explained by the fact that the definition

of the operator Bp in the Walker-Wang model requires an ad hoc splitting of the nodes into

3-valent nodes while our model is defined directly in terms of the 4-valent initial ones.

So to summarize, the analysis carried out in this part confirms two things: (i) The

correspondence between our model based on a 2-form 4-cocycle ω ∈ Z4(G[2],U(1)) and

the Walker-Wang model for the category of G-graded vector spaces, (ii) The fact that

the ad hoc resolution of the vertices required to define the plaquette term in the Walker-

Wang model is directly included in the definition of the 2-form 4-cocycle. Furthermore,

our approach makes transparent the fact that the plaquette operator of the Walker-Wang

model for the case of the category C–VecG actually implements the invariance under twisted

1-form gauge transformations at the 1-simplex dual to the plaquette, as it is obvious from

the definition of the operator A(41) of our 2-form gauge model.

7 Conclusion

Gauge and higher gauge models of topological phases of matter have been under intense

investigation in the past years, one reason being that they seem to encapsulate most of the

known models displaying non-trivial topological order in (3+1)d. In this paper, we studied

in detail models that have a 2-form gauge theory interpretation.

We explained that 2-form topological theories as sigma models whose target space

is provided by the second classifying space B2G of a finite abelian group G. These are

classified by cohomology classes [ω] ∈ H4(B2G,R/Z). It turns out that this cohomology

group is isomorphic to the group of (possibly degenerate) quadratic functions on R/Z
allowing for a more explicit expression of the partition function. Then, we defined a

lattice Hamiltonian realization of a 2-form gauge theory. To do so, we introduced the 2-

form cohomology of an abelian group that is isomorphic to the cohomology of its second

classifying space as provided by the W -construction, and derived its properties. We showed

in particular how a 2-form 4-cocycle reduces to an abelian 3-cocycle that is the input data
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of an abelian braided monoidal category. But these monoidal categories are classified by

quadratic functions on the group, hence closing the loop with the results obtained in the

first part. Correspondingly, we explained how our 2-form gauge model is related to the

Walker-Wang model. Interestingly, we displayed how the ad hoc splitting into three-valent

vertices required for the definition of the Walker-Wang Hamiltonian is now directly encoded

in the 2-form cocycle itself.

The tools developed in this manuscript can be generalized and used for other purposes.

For instance, the strategy followed to define the 2-form cohomology can be extended to

define a weak 2-group cohomology. As a matter of fact the study of weak 2-group gauge

models of topological phases as initiated in [20] was one of the motivations for the present

work and we believe that this work is useful to study more systematically these higher group

gauge theories. Furthermore, in light of the correspondence between 2-form 4-cocycles and

abelian braided monoidal categories, we believe that the tools developed in this manuscript

could be used to study the braiding of higher-dimensional excitations from a cohomological

point of view. More specifically, we anticipate 2-form 5-cocycles to be related to the braiding

statistics of loop-like excitations [75–80].

Apart from phases displaying intrinsic topological order as studied in this manuscript,

it is possible to define symmetry protected topological phases of matter (SPTs). In gen-

eral, SPTs are gapped phases of matter that are short-range entangled and have a global

symmetry acting locally so that the phase can be adiabatically connected to the trivial one

upon breaking the symmetry. It is possible for SPTs to contain operators that are localized

on (q−1)-dimensional submanifolds (see e.g. [81, 82]), in which case the global symmetry

is referred to as a (q−1)-form global symmetry [14]. Gauging such a (q−1)-form global

symmetry requires the introduction of q-form flat connection and the resulting theory is a

q-form topological gauge theory. This gauging process was studied in [20] both at the level

of the action and in terms of its lattice realization, and could be reformulated in light of

the constructions presented in this paper.
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A Postnikov towers and sigma models

In this appendix, we present further generalizations of the sigma models introduced in

section 2 where the target space is provided by a k-stage Postnikov tower.
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As the name suggests, the k-stage Postnikov tower Ek can be built in a sequence of

k steps. The first stage is provided by a classifying space E1 = Bq1G1. The second stage

is provided by a fibration over E1 with the fiber being isomorphic to Bq2G2. This step is

captured in the sequence

0→ Bq2G2 → E2 → E1 → 0 (A.1)

whose extension class is [α2] ∈ Hq2+1(E1, G2). At the third stage, we build a space E3 as

a fibration over E2 so that

0→ Bq2G3 → E3 → E2 → 0 (A.2)

whose extension class is [α3] ∈ Hq3+1(E2, G3).28 This sequence proceeds iteratively until

0→ BqkGk → Ek → Ek−1 → 0 (A.3)

whose extension class is [αk] ∈ Hqk+1(Ek−1, Gk). A homotopy class of map from M to Ek
is provided by a k-tuple Ak

Ak = {(A1, A2, . . . , Ak) ∈ Cq1(M, G1)× Cq2(M, G2)× · · · × Cqk(M, Gk)} . (A.4)

Furthermore, we require that Ak ∈ ker(DEk
) which amounts to imposing the following

cocycle conditions

dA1 = 0

dA2 = α2(A1)

dA3 = α3(A1, A2)

...

dAk = αk(A1, A2, . . . , Ak−1) . (A.5)

There is a gauge redundancy Ak ∼ Ak + D[
Ek
Φk generated by the null homotopy D[

Ek
Φk

where Φk is the k-tuple

Φk =
{

(φ1, φ2, . . . , φk) ∈ Cq1−1(M, G1)× Cq2−1(M, G2)× · · · × Cqk−1(M, Gk)
}
. (A.6)

The definition of D[
Ek

is such that Ak ∼ Ak +D[
Ek
Φk implies

A1 ∼ A1 + dφ1

A2 ∼ A2 + dφ2 + ζ2(A1, φ1)

A3 ∼ A3 + dφ3 + ζ3(A1, φ1 ; A2, φ2)

...

Ak ∼ Ak + dφk + ζk(A1, φ1 ; A2, φ2 ; . . . ; Ak−1, φk−1) (A.7)

28Throughout we assume that q1 < q2 < n3 < . . . < qk.
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where ζj is a descendent of the j-th Postnikov class αj , i.e

dζj(A1, φ1 ; . . . ; Aj−1, φj−1) = αj(A1 + dφ1 ; . . . ; Aj−1 + dφj−1)− αj(A1 ; . . . ; Aj−1) .

One can check that DEk
◦D[

Ek
= 0 so that we can define the cohomology

H~q
Ek

(M) :=
ker(DEk

)

im(D[
Ek

)
(A.8)

where ~q = (q1, q2, . . . , qk), so that cohomology classes label isomorphism classes of data Ak.
Finally, we may build a generalized topological gauge theory by constructing a topological

action from a cohomology class [ω] ∈ Hd+1(Ek,R/Z) whose partition function reads

ZEk
ω [M] =

1∏k
j=1 |Gj |

b0→qj−1

∑
[Ak]∈H~q

Ek
(M)

e2πi〈ω(Ak),[M]〉 . (A.9)

Following the examples provided in section 2, we know that we can obtain a lattice

realization of a topological model whose target space is given by a k-stage Postnikov tower

by reproducing the construction above, except that we now work with a triangulation 4
of M and that instead of summing over cohomology classes in a generalized cohomology

group H~q
Ek

(M), we sum over colorings g ∈ Col(M, Ek). An element g = {g1, g2, . . . , gk} ∈
Col(M, Ek) is such that gi is a coloring of the qi-simplices of 4. These colorings are such

that the corresponding group variables satisfy local constraints which are the analogue of

the (twisted) cocycle conditions presented earlier that depend on the cohomology classes

αp ∈ Hqp+1(Ep−1, Gp). Using the differential on cochains, these local constraints read

〈dg1,4q1+1〉 = 0

〈dg2 − α2(g1),4q2+1〉 = 0

...

〈dgk − αk(g1, g2, . . . , gk),4qk+1〉 = 0 . (A.10)

Finally, the partition function is provided by

ZEk
ω [M] =

1∏k
j=1 |Gj ||4

0→qj−1|

∑
g∈Col(M,Ek)

∏
4d+1

e2πiSω [g,4d+1] . (A.11)

B Pontrjagin square

In this appendix, we collect some important properties of the Pontrjagin square P [83]:

Property B.1. If f ∈ Z2(M,Zn), then P(f) ∈ Z4(M,Z2n) with n even, while with n odd

we have P(f) ∈ Z4(M,Zn). An explicit expression for P(f) can then be written in terms
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of Steenrod’s higher cup products29 as

P(f) =

{
f̃ ^f̃ + f̃ ^1df̃ , if n is even

f^f, if n is odd
(B.2)

where f̃ is the integer lift of f , i.e f̃ ∈ C2(M,Z) such that df̃ = nu for u ∈ B3(M,Z) and

f = f̃ mod n.

We can check that P(f) as defined above is indeed closed. We consider the two cases

separately. When n is odd, dP(f) = df^f + f^df = 0, and when n is even

dP(f) = d
[
f̃ ^f̃ + f̃ ^1df̃

]
= ����df̃ ^f̃ + f̃ ^df̃ + df̃ ^1df̃ + f̃ ^df̃ −����df̃ ^f̃

= 2nf̃ ^u+ n2u^1u = 0 (mod 2n) . (B.3)

Property B.2. The Pontrjagin square refines the bilinear form 2f^g. Indeed, let f, g ∈
Z2(M,Zn). If n is odd, one has

P(f + g)−P(f)−P(g) = f^g + g^f

= 2f^g + d(f^1g)

d
= 2f^g (B.4)

where
d
= is an equality up to exact terms. If n is even, we write df̃ = nu and dg̃ = nv,

and we get

P(f + g)−P(f)−P(g) = f̃ ^g̃ + g̃^f̃ + n(f̃ ^1v + g̃^1u)

= 2f̃ ^g̃ + d(f̃ ^1g̃) + n [−u^1g −����f^1v + ����f^1v + g^1u]

= 2f̃ ^g̃ + d(f̃ ^1g̃)− 2nu^1g̃ − nd (u^2g)− n2u^2v

d
= 2f̃ ^g̃ (mod 2n) . (B.5)

Property B.3. For a group G =
⊕

I ZnI , we write f I ∈ Z2(M,ZnI ) and the Pontrjagin

square satisfies

P

(∑
I

f I
)

=
∑
I

P(f I) +
∑
I<J

f I^fJ . (B.6)

C Continuous embedding of topological theories for finite groups

Topological gauge theories for finite abelian groups can be naturally embedded into con-

tinuous toric gauge theories. The simplest example of this statement is the Z2 topological

gauge theory in (d+1)-dimensions, or equivalently the G = Z2 Dijkgraaf-Witten theory

with a trivial cohomology class in Hd+1(BG,R/Z).30 The continuous topological gauge

29Given f ∈ Cp(M,A) and g ∈ Cq(M,A), we write f^ig ∈ Cp+q−i(M,A) to denote Steenrod’s higher

generalization of the cup product [84] that satisfies in particular the property

f^ig − (−1)pq−ig^if = (−1)p+q−i−1 [d(f^i+1g)− df^i+1g − (−1)pf^i+1dg] . (B.1)

30In 2 + 1 dimensions, this is described by the familiar toric code Hamiltonian [85].
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theory that embeds Z2 gauge theory is the BF theory described by the action

S[A,B,M] = 4πi

∫
M
B ∧ ddRA (C.1)

where A is a 1-form U(1) gauge field, B is a (d−1)-form U(1) gauge field, and ddR is the

usual exterior derivative on differential forms. One obtains the Z2 gauge theory by simply

integrating over B in the path integral. Indeed, integrating over the globally defined field

configurations imposes that ddRA = 0, i.e A is a locally flat U(1) connection while summing

over the topological sectors (monopole configurations) of B imposes that the holonomies

of A are Z2 quantized. This makes A a Z2 gauge field and reduces the BF theory to a

cohomologically trivial Z2 gauge theory.

Such formulations of (3+1)-dimensional Dijkgraaf-Witten theories in terms of (muli-

component coupled) BF theories have been studied at length in recent years [78, 86–89].

Next we discuss embedding the above finite gauge theory into a continuous topological

gauge theory built from toric U(1) 1-form and 2-form gauge fields. See for example [14, 90]

for earlier works studying this theory. For the above parameters {pI , pIJ}, the continuous

action takes the form

Sp[AI , BI ,M] = 2πi

∫
M

(
nIδIJB

I ∧ ddRA
J +

∑
I≤K

pInI
2

BI ∧BI

+
∑
I>K

pInIB
I ∧BI +

∑
I<J

pIJ lcm(nI , nJ)BI ∧BJ

)
(C.2)

where lcm(nI , nJ) is the lowest common multiple of nI and nJ . The partition function

evaluated for (C.2) matches with (2.25). This can be shown quite explicitly, at least for

manifolds with vanishing torsion: integrating over AI enforces BI to be flat with holonomies

on closed non-contractible surfaces restricted to integer multiples of 1/NI . In other words,

BI ∈ Hom(H2(M,Z), ZNI
) which is simply a flat 2-form ZNI

-bundle. But this continuous

formulation of the 2-form gauge theory has an interesting gauge structure due to the

presence of the cohomological twist. The conserved charges (or Gauß operators) that

generate the gauge transformations take the form

QBI = 2πn1

(
ddRA

I + pIB
I +

∑
J

pIJ lcm(nI , nJ)

nJ
BJ

)
, I ≤ K

QBI = 2πn1

(
ddRA

I + 2pIB
I +

∑
J

pIJ lcm(nI , nJ)

nJ
BJ

)
, I > K

QAI = 2πnIddRB
I . (C.3)

These charges generate the non-standard U(1) 0-form and 1-form gauge transformations

AI → AI + ddR λ
I − pIθI −

∑
J

pIJ lcm(nI , nJ)

nI
θJ , I ≤ K

AI → AI + ddR λ
I − 2pIθ

I −
∑
J

pIJ lcm(nI , nJ)

nI
θJ , I > K

BI → BI + ddR θ
I (C.4)
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where λI are circle-valued scalars and θI are 1-form fields. Both these gauge transfor-

mations have quantized periods, i.e dλI ∈ Ω1
Z(M) and dθI ∈ Ω2

Z(M).31 Hence we see

that embedding the discrete 2-form theory into a continuous theory indeed has a non-

trivial effect on the gauge structure. The 1-form and 2-form fields no longer transform

independently under gauge transformations. This is due to the fact that although the

canonical commutation relations of the theory (C.2) are the usual BF type-commutation

relations, the charge operators are modified and consequently the gauge transformations

are modified as well. We may write the constraints (C.3) as dAI + [t(B)]I = 0 where

t ∈ Hom(U(1)N ,U(1)N ) ' GL(N,Z) is parametrized by {pI , pIJ} and N is the number

of flavor fields (I = 1, . . . , N). Putting all this together we realize that (C.2) actually

describes a gauge theory built from a strict 2-group rather than ordinary groups. A strict

2-group G is built from four pieces of data G = {G,H, t, .} where G,H are groups (H is

necessarily abelian), t ∈ Hom(H,G) and . : G → Aut(H). The gauge transformations of

a strict toric 2-group have exactly the form (C.4). Hence we realize a non-trivial fact that

the partition functions for topological gauge theories, one a toric strict 2-group theory and

the other a finite 2-form theory are dual to one another.

D Operators, quantization and invertibility of 2-form topological theo-

ries

In this appendix, we review some of the properties of the 2-form topological theory intro-

duced in section 2. More precisely, we consider the partition function (2.25) of the 2-form

gauge theory formulated as a continuous topological field theory, construct its gauge in-

variant operators, quantize it and study its invertibility. We follow closely the analysis

of [14, 90].

In order to keep the notations lighter and focus on the physical aspects, we consider

the simpler case of a 2-form gauge theory with gauge group Zn. Let us consider the

topological action

Sp[A,B,M] = 2πi

∫
M

[
nB ∧ ddRA+

pn

2
B ∧B

]
, (D.1)

which is exactly (C.2) for G = Zn, where p prescribes a choice of homomorphism in

Hom(Γ(Zn),R/Z). Instead of differentiating the cases for n being an odd or even integer,

we work with general n and restrict the values of p. More precisely, one takes p ∈ Z when

n is even, and p ∈ 2Z when n is odd. Since p ∼ p + 2n,32 there are n distinct topological

gauge theories for n odd and 2n distinct topological gauge theories for n even. This agrees

with the order of the universal quadratic group for Zn. Usually gauge invariant operators in

(3+1)d topological gauge theories are defined on closed lines and surfaces. Such operators

31We use the notation Ωp
Z(M) to denote the space of q-forms with integer periods on any p-cycle L(p) ∈

Zp(M,Z) i.e for some ξ ∈ Ωp
Z(M),

∮
L(p) ξ ∈ Z.

32This can be seen for example by integrating over the 1-form gauge field A in the path integral which

reduces B to a 2-form Zn gauge field. Then it is apparent that the topological action for the 2-form Zn

theory evaluates to the same number in R/2πZ for the theories labeled by p and p+ 2n.
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assign topological data in the form of correlation functions to certain linked configurations

for the corresponding lines and surfaces. For example, the (3+1)d BF theory assigns a

non-trivial phase to a linked line and surface embedded in the (3+1)-dimensional spacetime

manifold. More interestingly, non-trivial discrete gauge theories, namely Dijkgraaf-Witten

theories, may have topological correlation functions associated to linked configurations of

three or four surface operators (cf. for example [76, 78, 87, 91]). Gauge invariance (C.4)

dictates that the Wilson operators of the 2-form continuous topological gauge theory (D.1)

be defined on closed surfaces L(2) and closed lines L(1), which have open surfaces ∂−1L(1)

attached to them:

UM (L(2)) := exp

{
2πiM

∮
L(2)

B

}
(D.2)

WQ(L(1), ∂−1L(1)) := exp

{
2πiQ

∮
L(1)

A+ 2πipQ

∫
∂−1L(1)

B

}
. (D.3)

It was pointed out in [14] that operators with support on open manifolds are topologically

trivial since open manifolds cannot link with other manifolds embedded in the spacetime

manifoldM. Therefore, in a topological field theory, correlation functions of such operators

with all other observables in the theory are trivial. But, for a given choice of parameter

p in (D.1), all Wilson line operators are not trivialized. In fact WQ(L(1), ∂−1L(1)) is an

inherent line operator if p · Q ∈ nZ. The reason for this is that exp
{

2πin
∫
∂−1L(1) B

}
is the identity operator so that the operator WQ does not have a surface attached to it

(or equivalently has a transparent surface attached to it) and is therefore a genuine line

operator. From the above constraint on genuine line operators, one may read off that

W̃ := Wn/gcd(n,p) is the simplest non-trivial line operator and since Wn is trivial, there are

gcd(n, p) such non-trivial operators. Similarly, some surface operators can end on closed

lines and are therefore topologically trivial. The number of surface operators that cannot

end on lines match the number of line operators, namely gcd(n, p). As a quick illustration

of this last point, let us have a look at two examples:

Example D.1 (n = 12 and p = 4). Naively, one would say that the surface operators are

UM (L(2)) with M = 0, . . . , 12, however, when M/4 ∈ Z, such a surface operator can end on

a line. For instance, if M = 4, one could have the operator exp
{

2πi
∮
∂L(2) A+ 8πi

∫
L(2) B

}
.

Therefore, the number of surface operators modulo the number of trivial surface operators

is gcd(n, p).

Example D.2 (n = 12 and p = 5). Following the above argument, we expect to get no

genuine line of surface operators in this case since n and p are coprime. This can be

explicitly checked. Any surface operator UM (L(2)) can be trivialized by attaching a line

with charge Q = 5M (mod 12) to it. Equivalently, a line with charge Q can be trivialized by

adding an open surface with flux M = 5Q (mod 12) to it. Hence, there are no non-trivial

operators in the theory when gcd(n, p) = 1.

Open non-trivial line operators create magnetic point-like excitations whereas open

non-trivial surface operators create string or loop-like electric excitations. These operators
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as well as the states they generate can be constructed explicitly within the lattice Hamil-

tonian formalism. This lattice formalism can then be used to study the braiding statistics

of the corresponding excitations. Within the partition function approach, the non-trivial

operators in the 2-form theory have correlation functions that are identical to an ordinary

BF theory. These correlation function are in turn related to the braiding statistics of the

corresponding excitations as seen from the lattice picture. This is a consequence of the fact

that the cohomological twist (∝ B∧B) does not alter the canonical commutation relations

of the theory. Therefore, the correlation functions take the form

〈UM (L(2))W̃Q(L(1)) 〉 = exp

{
2πiM · Q link(L(2),L(1))

gcd(n, p)

}
(D.4)

where link(L(2),L(1)) is the linking number of the 2-cycle L(2) and the 1-cycle L(1) embedded

in the 4-manifold M, and W̃Q(L(1)) = WQ·n/gcd(n,p). The partition function whose action

is (D.1) then takes the form [14]

ZB2G
p [M] =

(
n

gcd(n, p)

)χ(M)/2

· eiσ(M)/8 · gcd(n, p)χ(M) ·
|H1(M,Zgcd(n,p))|
|H0(M,Zgcd(n,p))|

(D.5)

where σ(M) is the signature of the manifold M and χ(M) =
∑4

i=0(−1)ibi is the Euler

characteristic of M. It is important to note that χ(M) can be written as an integral over

purely geometric data and thus it is not topological in the strict sense. It is illustrative

to split this partition function into the product of two terms: the first term Z inv incurs

contributions in the partition sum only from the trivial (transparent operators), whereas

the second term Znon-inv incurs contributions from the non-trivial operators:

Z inv
p [M] =

(
n

gcd(n, p)

)χ(M)/2

· eiσ(M)/8

Znon-inv
p [M] = gcd(n, p)χ(M) ·

|H1(M,Zgcd(n,p))|
|H0(M,Zgcd(n,p))|

= gcd(n, p)b2(M)−b1(M)+b0(M) , (D.6)

where the last equality follows from the Poincaré which implies that bk = b4−k in 4d. The

first term Z inv
p [M] is the partition function for an invertible topological theory.33 This par-

tition function can be thought of as a pure U(1) phase since the term (n/gcd(n, p))χ(M)/2

can be absorbed into a geometric counterterm χ(M)
2 ln(n/gcd(n, p)). The second term

Znon-inv
p [M] is essentially the partition function for an untwisted Dijkgraaf-Witten theory

with gauge group G = Zgcd(n,p) (equivalently a Zgcd(n,p) BF theory) up to a geometric coun-

terterm χ(M) ln(gcd(n, p)), or alternatively is the partition function of a 2-form topological

gauge theory with gauge group G = Zgcd(n,p) and trivial cohomology class.

33A (d+1)-dimensional invertible topological field theory is a TQFT that simply assigns a U(1) phase

to any closed (d+1)-manifold M so that it assigns a unique state on any d-manifold Σ. From a physical

standpoint these TQFTs describe invertible topological (gapped) phases of matter (see for example [92, 93])

that are short-range entangled phases of matter, i.e. they can be smoothly connected to a reference trivial

phase upon stacking with another invertible phase of matter. The TQFT corresponding to the trivial

reference phase assigns the number 1 to every (d+1)-manifold M. A necessary and sufficient condition for

a once-extended TQFT to be invertible is that the partition function assigned to a tori Td+1 is unity [94].

– 59 –



J
H
E
P
0
5
(
2
0
1
9
)
0
6
4

By quantizing the theory on manifolds of the form M = Σ × R, we obtain Hilbert

spaces HΣ of physical states. The dimension of these Hilbert spaces is an interesting class

of objects. Indeed, given a surface Σ, the dimensions of HΣ corresponds to the ground

state degeneracy of the lattice Hamiltonian realization of the theory on Σ. By computing

explicitly the ground state degeneracy, we can then confirm for which values of n and p

the theory is invertible.

By definition, an invertible (3+1)d TQFT assigns a single physical state to any 3-

manifold so that the dimension of the Hilbert space HΣ obtained upon quantization of the

theory on Σ×R incurs a contribution only from the non-invertible part of the theory. Since

the non-invertible part of the partition function can be mapped (dualized) to an untwisted

Zgcd(n,p) Dijkgraaf-Witten theory, one has

dimHΣ = Z[Σ× S1] = gcd(n, p)b1(Σ)=b2(Σ) . (D.7)

A basis for the Hilbert space HΣ can be labeled by non-trivial line or surface operators on

Σ. Let [L(1)]i be a basis in H1(M,Z) and [L(2)]i the dual basis in H2(M,Z) such that the

intersection pairing I([L(1)]i, [L
(2)]j) = δij . A convenient basis for the states on Σ is labeled

by the vector ~M = (M1, . . . ,Mb1(Σ)) such that

UM ([L(2)]i)|~M〉 = exp

{
2πiM i

gcd(n, p)

}
|~M〉 (D.8)

where the surface operators U are defined according to (D.2). Such a basis can be explicitly

constructed as

|~M〉 =

b1(Σ)∏
i=1

W̃M i([L(1)]i)|∅〉 (D.9)

where the vacuum is normalized to have unit eigenvalue for all the non-trivial surface

operators. A similar basis can be constructed that diagonalizes the line operators W̃

defined in (D.3). Denoting this basis by |~Q〉, one has the following overlap

〈 ~Q | ~M 〉 = exp

{
2πi~Q · ~M
gcd(n, p)

}
(D.10)

that can be viewed as the partition function on a four-sphere S4 with the line operators

W̃Qi([L(1)]i) and UM j ([L(2)]j) inserted such that the linking number link([L(1)]i, [L
(2)]j) =

δij . In order to visualize this, it is possible to start with a four-sphere and hollow out a

four manifold BΣ whose boundary is Σ. Then using standard surgery

C
Z[S4\BX ]−−−−−−→ HX

Z[S4\BX ]−−−−−−→ C (D.11)

where the surgery involves carving out BΣ from S4 and inserting line operators in the

carved out BΣ such as to create the state |~Q〉 on Σ. Similarly inserting surface operators

in Z\BΣ such as to create the state |~M〉 on ∂(Z\BΣ) = Σ. Then filling in BΣ into Z\BΣ

which amounts to the overlap 〈 ~Q | ~M 〉. But this is nothing but the S4 partition function

with linked configuration of lines and surfaces as described above.
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Since it is known that invertible topological theories are short-range entangled it is

illustrative to compute the topological entanglement entropy [95–99] to confirm this. The

computation is rather straightforward. We are interested in the situation where Σ = S3

and want to compute the topological piece in the topological entanglement entropy. We

bipartition S3 into subregions Σ1 and Σ2 such that for ∂Σ1 = ∂Σ2 = D2. Following a

well-known recipe [99–101] to compute the topological entanglement entropy, we first need

to compute the n-th Renyi entropy S
(n)
Σ1

:

S
(n)
Σ1

=
1

1− n
ln

trρnΣ1

(trρΣ1)n
= lnZ[S4] (D.12)

where we have used the result from [100] tr(ρnΣ1
) = tr(ρΣ1) = Z[S4]. Then, the topological

entanglement entropy is defined as Stopo
A := limn→1 S

(n)
A which indeed only captures the

topological piece in the entanglement entropy. This suffices for our current purpose, how-

ever computing the geometrical piece in the entanglement entropy requires more careful

considerations. Using the above expression and (D.5) one gets

Stopo
A = − ln gcd(n, p) (D.13)

where we have implicitly absorbed the terms that depends on the Euler characteristic

χ(M) into local geometric counterterms. So as expected the 2-form TQFT is short-range

entangled (or invertible) when gcd(n, p) = 1, and not otherwise.

It is known [17, 18, 90] that when gcd(n, p) = 1, i.e when the quadratic form defining

the topological action is non-degenerate, the theory admits a gapped boundary condition

with non-trivial line operators which form a modular tensor category. On the other hand

when gcd(n, p) 6= 1, there also exist gapped boundaries with non-trivial operators however

these do not form a modular category anymore but a premodular one.

E Deligne-Beilinson cohomology and higher gauge theory

In this appendix, we describe the configuration space of twisted 2-form gauge theory for

a finite abelian group G. As described in appendix C such 2-form gauge theories can be

embedded into U(1) gauge theories that involve both 1-form and 2-form U(1) gauge fields.

However, these different fields transform under gauge transformations in an unconventional

way. In order to have a better understanding of this formulation, it is necessary to have a

systematic understanding of the configuration space of gauge inequivalent configurations.

Here we develop such an understanding using the technology of Deligne-Beilinson (DB)

cohomology [38]. An alternative approach is provided by Cheeger-Simons differential co-

homology [50, 102, 103] that may be employed to systematize the configuration space of

q-form U(1) gauge theory. The two approaches of DB cohomology and Cheeger-Simons

differential cohomology are equivalent [104] however in this work we stick to the former.

In order to be self-consistent we begin by assembling the necessary ingredients to describe

q-form U(1) connections using DB cohomology [39, 40].
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E.1 Preliminaries and definitions

Let us briefly revisit the physical understanding of a 1-form U(1) connection. Locally a

1-form connection A is simply a 1-form field. There is an equivalence relation related to

gauge transformations which are redundancies of the physical description. These gauge

transformations act as A → A + dλ where dλ ∈ Ω1
Z(M). Hence the gauge invariant

information is encoded in holonomies

holA(L(1)) :=

∮
L(1)

A (mod Z) , (E.1)

or equivalently in Wilson operators WQ(L(1)) := exp
{

2πiQ
∮
L(1) A

}
where L(1) is a 1-cycle

on M. Furthermore, for topologically non-trivial bundles, i.e those with non-vanishing

Chern number, there is no globally defined 1-form connection. Instead, one has to work with

a field strength F ∈ Ω2
Z(M). On contractible patches, the field strength and holonomies

agree via

holA(L(1)) =

∫
∂−1L(1)

F (mod Z) (E.2)

where ∂−1L(1) is a surface that bounds L(1). We shall now see that all this data fits

neatly together into the Deligne-Beilinson cohomology group. In order to do so, we need

first to introduce the basic notions of oriented open cover, Čech-de Rham bicomplex and

polyhedral decomposition:

Definition E.1 (Oriented and ordered open cover). LetM be a closed smooth and oriented

manifold defined with an open cover U = {Ui}i∈I such that
⋃
i∈I Ui = M. We denote

overlaps of sets as

Ui0i1 = Ui0 ∩ Ui1
Ui0i1i2 = Ui0 ∩ Ui1 ∩ Ui2

...

Ui0i1i2...ip = Ui0 ∩ Ui1 ∩ Ui2 · · · ∩ Uip . (E.3)

The index of Ui0i1i2...ip is referred to as the Čech index of this intersection and p ∈ Z as the

Čech degree. We only consider overlaps whose indices are ordered i.e i0 < i1 < · · · < ip
and refer to U as an ordered cover of M. Let the collection of all non-vanishing overlaps

of ordered (p+1)-open sets be denoted by Up. Since M is compact, the cardinality of Up
and of U is finite.

We denote by Ωr(Up) the space of de Rham r-forms assigned to all elements in Up and

µrp ∈ Ωr(Up) a generic element. The quantity np ∈ Map(Up,Z) =: Ω−1(Up) denotes an

assignment of integers to all elements of Up. One can define two independent differential

operators that act on µrp, namely the de Rham differential drdR and the Čech differential dp

drdR : Ωr(Up)→ Ωr+1(Up)
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Figure 4. Polyhedral decomposition of a 1-cycle L(1) = Σ3
i=1l

(1)
i subordinate to a choice of open

cover U =
⋃

i=1,2,3 Ui. The 1-chains l
(1)
i ∈ Ui and 0-chains l

(0)
ij ∈ Uij .

dp : Ωr(Up)→ Ωr(Up+1) (E.4)

that satisfy the properties dr+1
dR ◦drdR = 0 and dp+1◦dp = 0. The action of drdR is simply given

by the exterior derivative that acts locally on each open set, while the Čech differential

acts as

(
dpµ

r
p

)
i0i1...ip+1

=

p+1∑
j=0

(−1)j
(
µrp
)
i0...̂ij ...ip+1

∈ Ωr(Up+1) . (E.5)

The Čech-de-Rham bicomplex is a bicomplex of cochains Ωr(Up) labeled by two indices r

and p which are the de Rham and Čech degrees, respectively. The maps between cochains

are provided by drdR and dp as described above. Furthermore, we define a completion of

the de Rham complex via the differential d−1
dR : Ω−1(Up)→ Ω0(Up) where d−1

dR is simply the

injection of integers into the space of (constant) functions.

Let Zp(M,Z) denote the space of oriented p-cycles in M. In order to integrate p-

cochains onM over p-cycles, we need to introduce the notion of polyhedral decomposition:

Definition E.2 (Polyhedral decomposition). Let L(p) be a p-cycle, then a polyhedral decom-

position of L(p) subordinate to a given open cover is given by decomposing L(p) =
∑

i0
l
(p)
i0

such that L
(p)
i0
⊂ Ui0. We define a boundary map ∂ whose action reads

∂l
(p)
i0

=
∑
i1

l
(p−1)
i1i0

− l
(p−1)
i0i1

(E.6)

where l
(p−1)
i0i1

⊂ Ui0i1. The boundary operator further acts as

∂l
(p−1)
i0i1

=
∑
i2

[
l
(p−2)
i2i0i1

− l
(p−2)
i0i2i1

+ l
(p−2)
i0i1i2

]
(E.7)

where l
(p−2)
i0i1i2

⊂ Ui0i1i2. This process is iterative and after k iterations, we obtain

∂l
(p−k)
i0i1...ik

=
k−1∑
j=1

l
(p−k−1)
i0i1...ij−1ijij+1...ik

+ l
(p−k−1)
ik+1i0i1...ik

+ l
(p−k−1)
i0i1...ikik+1

(E.8)
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Figure 5. Polyhedral decomposition of a 2-cycle L(2) = Σ4
i=1l

(1)
i subordinate to a choice of open

cover U =
⋃

i=1,2,3,4 Ui. The open cover has not been illustrated in the figure above to avoid clutter

but it is such that the 2-chains l
(1)
i ∈ Ui, the 1-chains l

(2)
ij ∈ Uij and the 0-chains l

(0)
ijk ∈ Uijk.

where as before l
(p−k−1)
i0i1...ik+1

⊂ Ui0i1...ik+1
. Note that some of the entries in this sum vanish

(e.g. l
(p−1)
i1i0

, l
(p−2)
i0i2i1

) since we only consider an ordered cover.

In the following, we work with four-manifolds, therefore we do not need to iterate this

procedure defined above more than four times. It is important to note that it is always

possible to find a good open cover with respect to which a given p-cycle admits a polyhedral

decomposition. Let us consider a few simple examples to illustrate the previous definition:

Example E.1. Let L(1) ∈ Z1(M,Z) be a given 1-cycle as shown in figure 4. The polyhedral

decomposition of L(1) can be fixed for a given open cover U = {Ui}i. We write L(1) =

l
(1)
1 + l

(1)
2 + l

(1)
3 where l

(1)
i ∈ Ui. The boundary operator acts as

∂L(1) = ∂l
(1)
1 + ∂l

(1)
2 + ∂l

(1)
3

= (l
(0)
21 − l

(0)
12 + l

(0)
31 − l

(0)
13 ) + (l

(0)
12 − l

(0)
21 + l

(0)
32 − l

(0)
23 ) + (l

(0)
23 − l

(0)
32 + l

(0)
13 − l

(0)
31 )

= (−l(0)
12 − l

(0)
13 ) + (l

(0)
12 − l

(0)
23 ) + (l

(0)
23 + l

(0)
13 )

= 0 . (E.9)

In the third equality, we used the fact that we are working with an ordered cover, therefore

0-chains of the form l
(0)
ij where j < i vanish.

Example E.2. Let L(2) ∈ Z2(M,Z) be a 2-cycle whose polyhedral decomposition is illus-

trated in figure 5. Then L(2) =
∑4

i=1 l
(2)
i and ∂L(2) =

∑4
i=1 ∂l

(2)
i , where for instance

∂l
(2)
1 = (l

(1)
21 − l

(1)
12 ) + (l

(1)
31 − l

(1)
13 ) + (l

(1)
41 − l

(1)
14 )

= − l
(1)
12 − l

(1)
13 − l

(1)
14 . (E.10)

It is easy to check that ∂L(2) = 0 as it should be.

We now have all the ingredients to introduce the Čech-de Rham construction of

Deligne-Beilinson (DB) cohomology:
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Definition E.3 (Deligne-Beilinson cohomology). We call a DB q-cochain a (q+2)-tuple

of data of the form:

(µq0, µ
q−1
1 , . . . , µ0

q , nq+1) ∈ Ωq(U0)× Ωq−1(U1)× · · · × Ω0(Uq)× Ω−1(Uq+1) (E.11)

and denote the space of DB q-cochains by CqDB(M,Z). We define two differential operators

D(q−1,q) : Cq−1(M,Z)→ Cq(M,Z) and D(q,q) : Cq(M,Z)→ Cq+1(M,Z) via

D(q−1,q) := (d0 + dq−1
dR )− (d1 + dq−2

dR ) + · · ·+ (−1)q(dq + d−1
dR )

=

q∑
i=0

(−1)i(di + dq−1−i
dR ) (E.12)

D(q,q) = (d0 + 0)− (d1 + dq−1
dR ) + · · ·+ (−1)q+1(dq+1 + d−1

dR )

= d0 +

q+1∑
i=1

(−1)i(di + dq−idR ) (E.13)

where the first index in the subscript is meant to denote the degree of DB cochain that the

given codifferential operator acts on, and the second index denotes the maximum de Rham

degree in the image of the given operator. It can easily be checked that D(q,q) ◦D(q−1,q) = 0.

A DB q-cocycle is defined as a DB q-cochain in the kernel of the operator D(q,q), while a

DB q-coboundary is a q-cochain in the image of D(q−1,q). We may then define the q-th

Deligne-Beilinson cohomolgy as the following quotient

Hq
DB(M,Z) =

ker(D(q,q))

im(D(q−1,q))
. (E.14)

The DB cohomology as defined above has degree one lower than corresponding dif-

ferential cohomology defined for example in [50, 103]. Here, we follow the conventions

of [39, 40].

E.2 Configuration space for q-form U(1) connections

We defined above the Deligne-Beilinson cohomology of cochains on a Čech-de-Rham bi-

complex. We will now use this technology in order to define the configuration space of

q-form connections. Below, we illustrate this construction with a couple of examples of

U(1) connections at low form degree and check that they are indeed described by DB

cohomology classes. But, before getting to this we provide some intuition about why

this somewhat intricately defined cohomology group is isomorphic to the space of gauge

inequivalent configurations of U(1) fields.

A q-form U(1) connection is usually defined by specifying q-forms on open sets. How-

ever, for topologically non-trivial bundles, it is not possible to describe a connection via a

globally defined q-form, in which case one works with a covering of open sets with represen-

tatives of the connection defined locally as q-forms on each of the open sets. On overlaps of

open sets these q-forms need to be glued together via (q−1)-form gauge transformations.

The (q−1)-form gauge transformation fields in turn are only defined on double overlaps

of open sets and not globally. A gluing condition needs to be provided for them on triple
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overlaps via a (q−2)-form gauge field. This process continues iteratively until a specifi-

cation of integers on (q+1)-overlaps of open sets and finally the consistency condition for

this specification requires that the oriented sum of these integers must vanish on the corre-

sponding overlap of q+2 open sets. All this data defined on open sets as well as overlaps of

open sets at various degrees can be succinctly described as a DB q-cochain. Furthermore,

the various gluing conditions are nothing but the statement that the DB cochain must

actually be a DB cocycle. Finally, there are some redundancies in this description that can

very naturally be understood as the image of a DB codifferential operator acting on the

space of DB (q−1)-cochains. Upon modding out by this redundancy, what we obtain are

the isomorphism classes of gauge inequivalent q-form U(1) fields onM but defined as such

this is nothing but the q-th DB cohomology group. We illustrate this idea through a few

simple examples. Let us first consider the case of 1-form connections:

Example E.3 (1-form U(1) connections). DB 1-cochains are defined by the data A ≡
(µ1

0, µ
0
1, n

A
2 ) where µ1

0 are 1-forms defined on local contractible patches, µ0
1 are functions

defined on overlaps of open sets and nA
2 are integers defined on double overlaps. As de-

scribed above, this is precisely the data one requires to build a connection for a 1-form U(1)

bundle. All this data can be glued together by imposing that D(1,1)A = 0. This cocycle

condition implies

(d0µ
1
0)i0i1 ≡ (µ1

0)i1 − (µ1
0)i0 = (d0

dRµ
0
1)i0i1

(d1µ
0
1)i0i1i2 ≡ (µ0

1)i1i2 − (µ0
1)i0i2 + (µ0

1)i0i1 = (d−1
dR n

A
2 )i0i1i2

(d2n
A
2 )i0i1i2i3 ≡ (nA

2 )i1i2i3 − (nA
2 )i0i2i3 + (nA

2 )i0i1i3 − (nA
2 )i0i1i2 = 0 . (E.15)

It remains to quotient by the redundancies which physically correspond to 0-form gauge

transformations and mathematically correspond to DB 1-coboundaries. Given Λ ≡
(λ0

0,m
A
1 ) ∈ C0

DB(M,Z), we need to impose A ∼ A +D(0,1)Λ. Explicitly, it reads

(µ1
0)i0 ∼ (µ1

0 + d0
dR λ

0
0)i0

(µ0
1)i0i1 ∼ (µ0

1 + d0λ
0
0 − d−1

dR m
A
1 )i1i2

(nA
2 )i0i1i2 ∼ (nA

2 − d1m
A
1 )i0i1i2 (E.16)

which are nothing but 0-form U(1) gauge transformations. For completeness, we can

check that

D(1,1) ◦D(0,1) =
[
d0 − (d1 + d0

dR ) + (d2 + d−1
dR )
]
◦
[
(d0 + d0

dR )− (d1 + d−1
dR )
]

= d2(d0
dR − d−1

dR )

= 0 (E.17)

where the third line follows from the fact that C1
DB(M,Z) ⊂ ker(d2). It is well-known that

the field strength of a U(1) connection is quantized to have integer periods. This can be

readily checked: since d1
dRµ

1
0,i0
− d1

dRµ
1
0,i1

= d1
dR ◦ d0µ0

1,i0i1
= 0, we can use d1

dRµ
1
0 as local

representative of the field strength. Let the field strength corresponding to a connection

A be denoted by FA. Then on an open set Ui we may write the local representative of
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the field strength as (FA)i0 := d1
dRµ

1
0,i0

. Given a 2-cycle L(2) together with a polyhedral

decomposition, we obtain∮
L(2)

FA =
∑
i0

∫
l
(2)
i0

(d1
dRµ

1
0)i0 =

∑
i0

∫
∂l

(2)
i0

(µ1
0)i0

=
∑
i0,i1

∫
l
(1)
i0i1

(d0µ
1
0)i0i1 =

∑
i0,i1

∫
l
(1)
i0i1

(d0
dRµ

0
1)i0i1

=
∑
i0,i1,i2

∫
l
(0)
i0i1i2

(d1µ
0
1)i0i1i2 =

∑
i0,i1,i2

∫
l
(0)
i0i1i2

(d−1
dR n

A
2 )i0i1i2

=
∑
i0,i1,i2

(d−1
dR n

A
2 )
∣∣∣
l
(0)
i0i1i2

∈ Z (E.18)

which is obviously the expected quantization of field strength. Note finally that given a

1-cycle L(1) together with a polyhedral decomposition, the holonomy of A along L(1) takes

the form

WQ(L(1)) := exp

{
2πiQ

∮
L(1)

A

}
= exp

{
2πiQ

(∑
i0

∫
l
(1)
i0

(µ1
0)i0 −

∑
i0,i1

(µ0
1)
∣∣∣
l
(0)
i0i1

)}
, (E.19)

which is invariant under (0-form) gauge transformations.

Following exactly the same steps, we define 2-form connections:

Example E.4 (2-form U(1) connections). Deligne-Beilisnon 2-cochains are defined by the

data B ≡ (ν2
0 , ν

1
1 , ν

0
2 , n

B
3 ). Similar to the case of 1-form connections, this is precisely the

data one needs to construct/describe a 2-form U(1) connection in the most general case.

However, in order to glue all this data together correctly we need to impose that B is in the

kernel of D(2,2). Writing D(2,2)B = 0 explicitly, we get

(d0ν
2
0)i0i1 ≡ (ν2

0)i1 − (ν2
0)i0 = (d1

dR ν
1
1)i0i1

(d1ν
1
1)i0i1i2 ≡ (ν1

1)i1i2 − (ν1
1)i0i2 + (ν1

1)i0i1 = −(d0
dR ν

0
2)i0i1i2

(d2ν
0
2)i0i1i2i3 ≡ (ν0

2)i1i2i3 − (ν0
2)i0i2i3 + (ν0

2)i0i1i3 − (ν0
2)i0i1i2 = (d−1

dR n
B
3 )i0i1i2i3

(d3n
B
3 )i0i1i2i3i4 ≡

4∑
j=0

(−1)j(nB
3 )i0...̂ij ...i4 = 0 . (E.20)

It remains to quotient by 1-form gauge transformations which in the context of the DB

construction implies modding out by coboundaries in the image of D(1,2). Given Θ ≡
(θ1

0, θ
0
1,m

B
2 ) ∈ C1

DB(M,Z), we need to impose B ∼ B +D(1,2)Θ. Explicitly, it reads

(ν2
0)i0 ∼ (ν2

0 + d1
dR θ

1
0)i0

(ν1
1)i0i1 ∼ (ν1

1 + d0θ
1
0 − d0

dR θ
0
1)i0i1
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(ν0
2)i0i1i2 ∼ (ν0

2 − d1θ
0
1 + d−1

dR m
B
2 )i0i1i2

(nB
3 )i0i1i2i3 ∼ (nB

3 − d2m
B
2 )i0i1i2i3 . (E.21)

We could check explicitly that D(2,2) ◦ D(1,2) = d3(−d1
dR + d0

dR − d−1
dR ) = 0 using the fact

that C1
DB(M,Z) ⊂ ker(d3). Similar to 1-form connections, the field strength of a 2-form

U(1) connection satisfies a generalized Dirac quantization condition which means that the

monopole charge is integer quantized, i.e.
∮
M FB ∈ Z. This can be demonstrated explicitly

using (d2ν2
0)i0 as a local representative of FB on an open set Ui. Given a 3-cycle L(3)

together with a polyhedral decomposition, we obtain indeed∮
L(3)

FB =
∑
i0

∫
l
(3)
i0

(d2
dR ν

2
0)i0 =

∑
i0

∫
∂l

(3)
i0

(ν2
0)i0

=
∑
i0,i1

∫
l
(2)
i0i1

(d0ν
2
0)i0i1 =

∑
i0,i1

∫
l
(2)
i0i1

(d1
dR ν

1
1)i0i1

=
∑
i0,i1,i2

∫
l
(1)
i0i1i2

(d1ν
1
1)i0i1i2 =

∑
i0,i1,i2

∫
l
(1)
i0i1i2

(d0
dR ν

0
2)i0i1i2

=
∑

i0,i1,i2,i3

∫
l
(0)
i0i1i2i3

(d2ν
0
2)i0i1i2i3 =

∑
i0,i1,i2,i3

∫
l
(0)
i0i1i2i3

(d−1
dR n

B
3 )i0i1i2i3

=
∑

i0,i1,i2,i3

(d−1
dR n

B
3 )
∣∣∣
l
(0)
i0i1i2i3

∈ Z . (E.22)

Note finally that given a 2-cycle L(2) together with a polyhedral decomposition, the (2-

)holonomy of B along L(2) takes the gauge invariant form

UM (L(2)) := exp

{
2πiM

∮
L(2)

B

}
= exp

{
2πiM

(∑
i0

∫
l
(2)
i0

(ν2
0)i0 −

∑
i0,i1

∫
l
(1)
i0i1

(ν1
1)i0i1 +

∑
i0,i1,i2

ν0
2

∣∣∣
l
(0)
i0i1i2

)}
. (E.23)

So the space of q-form connections is equivalent to the space of equivalence classes in

the q-th DB cohomology Hq
DB(M,Z), as illustrated above for the q = 1, 2 cases. We say

a connection A(q) ∈ Hq
DB(M,Z) is flat if it lies in the kernel of the D(q,q+1) operator and

thus we have the following isomorphism:{
Equivalence classes of flat q-form U(1) connections on M

}
' Hq

DB(M,Z) ∩ ker(D(q,q+1)) .

This follows from the fact that a U(1) q-form connection A(q) = (µq0, µ
q−1
1 , . . . , µ0

q , nq+1) ∈
Hq

DB(M,Z) needs to satisfy a single extra constraint in order to be in the kernel of D(q,q+1)

that is

dqµq1 = 0 . (E.24)

Hence the curvature of the q-form connection vanishes locally on each open set.
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E.3 Strict 2-group connections

Having described the space of gauge inequivalent configurations of higher form U(1) gauge

theories in terms of Deligne-Beilinson cohomology, in this subsection we explore a scenario

where the group bundle is a non-trivial product of bundles corresponding to 1-form U(1)

connections and 2-form U(1) connections. Here by non-trivial product we mean that locally

the data required on open sets, overlaps of open sets and so on is identical to that of a direct

sum of some number of 1-form connections and 2-form connections. However, the gluing

relations which were previously related to certain DB cocycle conditions are twisted in a way

that we make precise below. Also, the redundancies or gauge transformations which were

related to DB coboundaries are altered accordingly. This is the relevant situation when

discussing the embedding of a finite group 2-form gauge theory into a toric gauge theory.

That particular field theory (C.2) is the motivation for this subsection. By constructing

the Gauß operators and the gauge transformations within this theory, we inferred that

these transformations correspond to those of a toric strict 2-group bundle. Below we

first briefly describe strict 2-groups and then carefully construct the corresponding strict

2-group bundles.

A strict toric 2-group [34, 35, 37] is defined by four pieces of data, namely G ={
U(1)P ,U(1)Q, t, .

}
where

t : U(1)P → U(1)Q

. : U(1)Q → Aut(U(1)P ) . (E.25)

This data needs to satisfy some consistency conditions which ensure that t and . interact

well with one another.34 The consistency relations for some A ∈ U(1)Q and B ∈ U(1)P are

t(A .B) = t(B) and t(B) .B′ = B′. In the following, we choose . = id. A homomorphism

t may be written as

[t(B)]I =

P∏
J=1

hpIJJ (E.26)

where I ∈ 1, . . . , P , J ∈ 1, . . . , Q and B ≡ (h1, . . . , hP ) ∈ U(1)P . In order to build a

G-bundle, we require local data which corresponds to P 2-form U(1) connections and Q

1-form U(1) connections. Therefore, the local fields are Q DB 1-cochains AI and P DB

2-cochains BJ :

AI = (µ1,I
0 , µ0,I

1 , nA,I
2 )

BJ = (ν2,J
0 , ν1,J

1 , ν0,J
2 , nB,J

3 ) . (E.27)

Henceforth, in order to keep the notation light, we specialize to the case P = Q = 1 which

can be readily generalized to P,Q ∈ Z. Although the local data corresponds to a direct

sum of an ordinary 1-form and 2-form U(1) gauge theory, the gluing (cocycle) conditions

34These consistency relations make G equivalent to a crossed module. For details please see [34] and

references therein.
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and gauge transformations are twisted by the homomorphism t ∈ Hom(U(1),U(1)) ' Z.

We note that since U(1) ' R/Z fits in the canonical exact sequence 0 → Z → R → R/Z,

the homomorphism lifts to t ∈ Hom(R,R) and t ∈ Hom(Z,Z).35 Hence the homomorphism

acts on all the local data of the Čech-de Rham bicomplex. This is an essential ingredient

in writing consistent gluing relations.

The space of strict 2-group G = {U(1),U(1), t, id}-connections on M is spanned by

tuples of DB cochains (A,B) ∈ C1
DB(M,Z)× C2

DB(M,Z) satisfying the conditions

D(2,2)B = (d0ν
2
0 − d1

dR ν
1
1)i0i1 + (−d1ν

1
1 + d0

dR ν
0
2)i0i1i2

+ (d2ν
0
2 − d−1

dR n
B
3 )i0i1i2i3 + (−d3n

B
3 )i0i1i2i3i4 (E.28)

= 0 (E.29)

D
t(B)
(1,1)A =

(
d0µ

1
0 − d0

dRµ
0
1 + t(ν1

1)
)
i0i1

(
−d1µ

0
1 + d−1

dR n
A
2 + t(ν0

2)
)
i0i1i2

+
(
d2n

A
2 + t(nB

3 )
)
i0i1i2i3

(E.30)

= 0 . (E.31)

Let us look at the above gluing conditions a bit more closely. For example the 1-form

connection A involves an assignment of (µ1
0)i on open sets Ui. On the overlap Ui0i1 of two

open sets Ui0 and Ui1 the local 1-form representatives are glued together by imposing

(µ1
0)i1 − (µ1

0)i0 = d0
dR (µ0

1)i0i1 − t(ν1
1)i0i1 . (E.32)

Hence the gluing condition for the 1-form connection has been altered by the presence of the

2-form connection. Similarly, the gluing conditions on overlaps of all degrees are modified.

In other words we need to impose that all the parenthesis in (E.31) vanish independently.

Furthermore, this data is defined up to the following gauge transformations

A ∼ A +D
t(Θ)
(0,1)Λ =: A +D(0,1)Λ− t(Θ)

B ∼ B +D(1,2)Θ (E.33)

where Λ ∈ C1
DB(M,Z) and Θ ∈ C2

DB(M,Z). Note that (E.33) is nothing but (C.4) written

more precisely in terms of the Deligne-Beilinson data. More explicitly, in terms of the local

data, the former equivalence reads

(µ1
0)i0 ∼ (µ1

0 + d0
dR λ

0
0 − t(θ1

0))i0

(µ0
1)i0i1 ∼ (µ0

1 + d0λ
0
0 − d−1

dRm
A
1 − t(θ0

1))i0i1

(nA
2 )i0i1i2 ∼ (nA

2 − d1m
A
1 − t(mB

2 ))i0i1i2 , (E.34)

while the gauge transformations for B are the same as those for ordinary 2-form U(1)

connections (E.21). We can readily check that Dt
(1,1) ◦D

t
(0,1) = 0 so that one may define

an affine cohomology theory. The space of gauge inequivalent configurations of a strict

2-group G are isomorphic to this cohomology space that we denote by H2,1
G (M).

35We use ‘t’ for the lifted homomorphisms as well in order to keep the notation light.
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Definition E.4. The affine cohomology group H2,1
G (M) is defined as the group of coho-

mology classes equivalent to isomorphism classes of gauge configurations of a toric strict

2-group gauge theory for the strict 2-group G. H2,1
G (M) are spanned by tuples of DB

cochains (A,B) ∈ C1
DB(M,Z)× C2

DB(M,Z) that satisfy the condition (E.31) modulo those

that are of the form (D
t(Θ)
(0,1)Λ, D(1,2)Θ) where (Λ,Θ) ∈ C0

DB(M,Z)× C1
DB(M,Z).

Having defined H2,1
G (M), we then consider the subspace of flat connections. This will

be important in what follows as it is the configuration space of topological G-gauge theories.

Definition E.5. The space of flat strict 2-group G-connections on M is the set of tuples

of DB-cochains (A,B) that satisfy the conditions

D(1,2)A + t(B) = 0

D(2,3)B = 0 (E.35)

which, in terms of the local data, translates into

D(2,3)B = (d2
dR ν

2
0)i0 + (d0ν

2
0 − d1

dR ν
1
1)i0i1 + (−d1ν

1
1 + d0

dR ν
0
2)i0i1i2

+ (d2ν
0
2 − d−1

dR n
B
3 )i0i1i2i3 + (−d3n

B
3 )i0i1i2i3i4

= 0 (E.36)

D(1,2)A + t(B) =
(
d1
dRµ

1
0 + t(ν2

0)
)
i0

+
(
d0µ

1
0 − d0

dRµ
0
1 + t(ν1

1)
)
i0i1

+
(
−d1µ

0
1 + d−1

dR n
A
2 + t(ν0

2)
)
i0i1i2

+
(
d2n

A
2 + t(nB

3 )
)
i0i1i2i3

(E.37)

= 0 . (E.38)

It is easy to check that the flatness condition is preserved under the gauge transfor-

mations (E.33). Indeed,

D(1,2)A + t(B)→ D(1,2)A + t(B) +D(1,2) ◦D(0,1)Λ (E.39)

= D(1,2)A + t(B)

where we made use of the fact that D(1,2) ◦D(0,1) = (d1
dR +D(1,1))◦D(0,1) = d1

dR ◦D(0,1) = 0

that follows from im(D(0,1)) ∩ µ1(M) ⊂ im(d0
dR ).

We now want to compute the integral of the curvature of the 2-group connection and

reading off whether it satisfies any quantization conditions. First of all, we can immedi-

ately infer that since the gauge transformations of B are unaltered compared to the case

of the 2-form gauge theory previously studied, the quantization condition also remains

unaltered, i.e. ∮
L(3)

FB ∈ Z (E.40)

where L(3) ∈ Z3(M,Z). The situation is different as far as the curvature FA is concerned.

Let us first try to construct a local representative of FA. The simplest possibility is d1
dRµ

1
0.

Doing so, we realize that

d1
dR (µ1

0)i0 − d1
dR (µ1

0)i0 = −d1
dR

(
t(ν1

1)
)
i0i1

(E.41)
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so that (FA)i0 :=
(
d1
dRµ

1
0+t(ν2

0)
)
i0

can serve as a local representative since (FA)i0−(FA)i1 =

0. Using this representative, we may integrate the curvature over a closed 2-cycle L(2) inM∮
L(2)

FA =
∑
i0

∫
l
(2)
i0

(
d1
dRµ

1
0 + t(ν2

0)
)
i0

=
∑
i0,i1

∫
l
(1)
i0

(
d0µ

1
0

)
i0i1

+

∫
l
(2)
i0

t(ν2
0)i0

=
∑
i0,i1

∫
l
(1)
i0i1

(
d0
dRµ

0
1 − t(ν1

1)
)
i0i1

+

∫
l
(2)
i0

t(ν2
0)i0

=
∑
i0,i1,i2

∫
l
(0)
i0i1i2

(
d1µ

0
1

)
i0i1i2

+

∫
l
(2)
i0

t(ν2
0)i0 −

∑
i0,i1

∫
l
(1)
i0i1

(
t(ν1

1)
)
i0i1

=
∑
i0,i1,i2

d−1
dR n

A
2

∣∣∣
l
(0)
i0i1i2

+

∫
l
(2)
i0

t(ν2
0)i0 −

∑
i0,i1

∫
l
(1)
i0i1

t(ν1
1)i0i1 +

∑
i0,i1,i2

ν0
2

∣∣∣
l
(0)
i0i1i2

∈ Z +

∮
L(2)

B . (E.42)

Hence the field strength of a strict 2-group connection is not quantized but rather, as

expected, the quantization is shifted by the holonomy of B.

Since 2-group connections comprise 1-form and 2-form gauge fields, we expect the gauge

invariant operators to be Wilson lines as well as Wilson surfaces. The gauge transformations

for the connection B are the same as the ones entering the definition of a 2-form connection

so that the surface operators are the same as the ones defined in (E.23), i.e.

UM (L(2)) = exp

{
2πiM

∮
L(2)

B

}
. (E.43)

The line operators are a bit more subtle since the naive guess (E.19) is not gauge invariant.

Furthermore, a Wilson line can only be defined for homologically trivial 1-cycles in order

to be (2-group) gauge invariant. Instead, the gauge invariant operator takes the form

WQ(L(1), ∂−1L(1)) := exp

{
2πiQ

∮
L(1)

A + 2πiQ

∫
∂−1L(1)

t(B)

}
(E.44)

where ∂−1L(1) is a 2-chain whose boundary is L(1). The corresponding polyhedral decom-

position can be obtained by attaching a single disc-like region to the 1-cycle L(1). Let us

first focus on the l.h.s. term of (E.44) whose integrand only depends on A. As mentioned

earlier, the integral of A over L(1) is not invariant under gauge transformations by itself

due to the modified gauge structure. Indeed, under gauge transformations one has

exp

{
2πiQ

∮
L(1)

A

}
→ exp

{
2πiQ

∮
L(1)

A− 2πiQ
∑
i0

∫
l
(1)
i0

t
(
(θ1

0)i0
)

+
∑
i0,i1

t
(
θ0

1

)∣∣∣
l
(0)
i0i1

}

= exp

{
2πiQ

∮
L(1)

A− t(Θ)

}
. (E.45)

The piece of data on the r.h.s. that depends on B requires a bit more care. We attach a

disc-like region to L(1) and introduce an open set labeled by U0 with the convention that

0 < i0 for all i0. By introducing this open set, every open set Ui0 in L(1) becomes an
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overlap of two open sets U0i0 in ∂−1L(1) and in turn every overlap of two open sets Ui0i1
in L(1) becomes an overlap of three open sets U0i0i1 in ∂−1L(1). We may now integrate

B ∈ C2
DB(M,Z) over ∂−1L(1) and write how it is modified under gauge transformations

exp

{
2πiQ

∮
∂−1L(1)

t(B)

}
= exp

{
2πiQt

(∫
l
(2)
0

(ν2
0)0 −

∑
0,i1

∫
l
(1)
0i1

(ν1
1)0i1 +

∑
0,i1,i2

ν0
2(l

(0)
0i1i2

)

)}

→ exp

{
2πiQ

∫
∂−1L(1)

(
t(B) + t(D(1,2)Θ)

)}
= exp

{
2πiQ

(∫
∂−1L(1)

t(B) +

∮
L(1)

t(Θ)

)}
. (E.46)

This confirms that (E.43) and (E.44) are the gauge invariant operators for a strict 2-group

toric gauge theory. To conclude, we have shown above that the gauge transformations for

the continuous topological gauge theory (C.2) correspond to a strict toric 2-group bundle.

Furthermore, such a bundle can be defined rigorously using methods based on Deligne-

Beilinson cohomology. Above, we constructed such a bundle, studied the quantization

conditions for its topological sectors and constructed gauge invariant functions (operators

in the quantum theory) in terms of local data.

Using the same technology, it is possible to write down rigorous actions for higher-

form topological phases in terms of Deligne-Beilinson cocycles. Some explicit examples

are provided in appendix F. Note that this construction can also be adapted in order to

describe flat connections for weak 2-group bundles and more generally for models built

from Postnikov towers.

F Topological actions in terms of Deligne-Beilinson cocycles

In this appendix we derive expressions for various topological actions built from Deligne-

Beilinson cohomological data.

F.1 (2+1)d BF theory

First, let us consider BF theory in (2+1)d. The BF topological action is commonly writ-

ten as

S[A,B,M] = 2πni

∫
M
B ∧ ddRA (F.1)

where n ∈ Z is a parameter of the theory, B and A are 1-form U(1) connections and

M is an oriented 3-manifold. But this expression does not make sense when we include

topological sectors of A and B. To give a more precise definition of the BF topological

action, we consider A,B ∈ H1
DB(M,Z) together with the following pairing:

H1
DB(M,Z)×H1

DB(M,Z)→ H3(M,R/Z) ∼ R/Z . (F.2)

Let the local data that defines A and B as DB 1-cochains be denoted by A =
{
µ1

0, µ
0
1, n

A
2

}
and B =

{
ν1

0 , ν
0
1 , n

B
2

}
, respectively, and the corresponding gauge transformations be
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parametrized by DB 0-cochains Λ =
{
λ0

0,m
A
1

}
and Θ =

{
θ0

0,m
B
1

}
. Then, the BF topo-

logical action can be derived term by term. The first term is the usual BF expression on

3-chains that are contained within open sets as per usual for a polyhedral decomposition

of a 3-manifold:

T1 =
∑
i0

∫
l
(3)
i0

(
ν1

0 ∧ d1
dRµ

1
0

)
i0
. (F.3)

Under gauge transformations µ1
0 → µ1

0 + d0
dR λ

0
0 and ν1

0 → ν1
0 + d0

dR θ
0
0, the term T1 trans-

forms as

T1 → T1 +
∑
i0

∫
∂l

(3)
i0

(
θ0

0 ∧ d1
dRµ

1
0

)
i0

= T1 +
∑
i0,i1

∫
l
(2)
i0i1

(
d0θ

0
0 ∧ d1

dRµ
1
0

)
i0i1

. (F.4)

To compensate for the variational term we need to add the term

T2 = −
∑
i0,i1

∫
l
(2)
i0i1

(
ν0

1d
1
dRµ

1
0

)
i0i1

, (F.5)

however, T1 + T2 together is not yet gauge invariant, indeed it transforms as

T1 + T2 → T1 + T2 +
∑
i0,i1

∫
l
(2)
i0i1

(
mB

1d
1
dRµ

1
0

)
i0i1

= T1 + T2 +
∑
i0,i1

∫
∂l

(2)
i0i1

(
mB

1µ
1
0

)
i0i1

= T1 + T2 +
∑
i0,i1,i2

∫
l
(1)
i0i1i2

d1

(
mB

1µ
1
0

)
i0i1i2

= T1 + T2 +
∑
i0,i1,i2

∫
l
(1)
i0i1i2

(
d1m

B
1µ

1
0 −mB

1d0µ
1
0

)
i0i1i2

. (F.6)

Using the gluing cocycle conditions (E.15) for DB 1-cocycles, the last term is integer-valued

and can therefore be dropped as the action in (F.1) is valued in R/2πZ. Then, in order to

cancel the gauge non-invariant contribution in (F.6), we add a third term

T3 =
∑
i0,i1,i2

∫
l
(1)
i0i1i2

(
nB

2µ
1
0

)
i0i1i2

(F.7)

which itself transforms as

T3 → T3 +
∑
i0,i1,i2

∫
li0i1i2

(
nB

2d
0
dR λ

0
0

)
i0i1i2

. (F.8)

And finally, in order to cancel the term which prevents the gauge invariance of T3, we add

T4 = −
∑

i0,i1,i2,i3

∫
l
(0)
i0i1i2i3

(
nB

2µ
0
1

)
i0i1i2i3

. (F.9)
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To summarize, the BF topological action (F.1) written in terms of Deligne-Beilinson cocy-

cles takes the form

S[A,B,M] = 2πin
(
T1 + T2 + T3 + T4

)
= 2πin

(∑
i0

∫
l
(3)
i0

(
ν1

0 ∧ d1
dRµ

1
0

)
i0
−
∑
i0,i1

∫
l
(2)
i0i1

(
ν0

1 ∧ d1
dRµ

1
0

)
i0i1

+
∑
i0,i1,i2

∫
l
(1)
i0i1i2

(
nB

2µ
1
0

)
i0i1i2

−
∑

i0,i1,i2,i3

∫
l
(0)
i0i1i2i3

(
nB

2µ
0
1

)
i0i1i2i3

)
.

(F.10)

The quantum partition function for a theory defined via the action (F.10) is the same as

that for an untwisted Zn gauge theory. In order to see this, we integrate over B in the

path integral. Firstly, integrating over ν1
0 imposes d1

dRµ
1
0 = 0, and since µ1

0 is defined on a

simply connected open set, we can always write µ1
0 = d0

dRα
0
0 that can be gauged away by

choosing λ0
0 = −α0

0. Hence, one obtains µ1
0 = 0. This sets the first three terms in (F.10)

to zero. Secondly, upon performing a sum over nB
2 ∈ Z, we obtain a delta function which

imposes that µ0
1 is an integral multiple of 1/n. Putting everything together, one obtains a

Zn connection from the BF theory. This should be viewed as living on a triangulation that

is dual to the Čech complex, i.e the open sets are vertices of the triangulation, overlaps are

1-simplices, and so on and so forth.

Note finally that the Zn gauge theory has an electromagnetic-duality, which is manifest

in the BF theory formulation, under the exchange A↔ B. This duality may be understood

as an embedding of the quantum double D(Zn) into a U(1) × U(1) gauge theory which is

the gauge group of the ‘level’ n BF theory. As a corollary, one may integrate over A instead

of B and obtain a Zn gauge theory for the Pontrjagin dual group Z̃n ' Zn. Performing an

integration by parts together with the gluing relations (E.15), we can rewrite (F.10) as

S[A,B,M] = 2πin

(∑
i0

∫
l
(3)
i0

(
d1
dR ν

1
0 ∧ µ1

0

)
i0
−
∑
i0,i1

∫
l
(1)
i0i1

(
ν1

0 ∧ dµ0
1

)
i0i1

+
∑
i0,i1,i2

∫
l
(1)
i0i1i2

(
d0
dR ν

0
1 ∧ µ0

1

)
i0i1i2

−
∑

i0,i1,i2,i3

∫
l
(0)
i0i1i2i3

(
nA

2ν
0
1

)
i0i1i2i3

)
.

(F.11)

The integral over µ1
0 imposes d1

dR ν
1
0 = 0, hence ν1

0 can be set to zero by making gauge choice.

Then, the integral over µ0
1 imposes that d1ν

0
1 = 0. Finally, the sum over nA

2 imposes that

ν0
1 ∈ 1

nZ. Together this makes B a Zn-valued Čech 1-cocycle.

F.2 (3+1)d BF theory

Let us now consider U(1) (3+1)d BF theory. The theory is built from a 1-form U(1)

connection A and a 2-form U(1) connection B

S[A,B,M] = 2πin

∫
M
B ∧ ddRA . (F.12)
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However, when evaluated on topological sectors of the U(1) bundles, the above integral

does not make sense. This calls for a more rigorous definition of the BF topological action

using a DB 2-cocycle B =
{
ν2

0 , ν
1
1 , ν

0
2 , n

B
3

}
and DB 1-cocycle A =

{
µ1

0, µ
0
1, n

A
2

}
as defined for

the (2+1)d case. The gauge transformations of A and B are labeled by DB 0, 1-cochains Λ

and Θ, respectively, as described in section E. The topological action can be defined term

by term as before. On 4-chains contained within open sets, we define the term

T1 =
∑
i0

∫
l
(4)
i0

(ν2
0 ∧ d1

dRµ
1
0)i0 . (F.13)

Under the gauge transformations µ1
0 → µ1

0 + d0
dR λ

0
0 and ν2

0 → ν2
0 + d1

dR θ
1
0, the term T1

transforms as

T1 → T1 +
∑
i0

∫
∂l

(4)
i0

(
θ1

0 ∧ d1
dRµ

1
0

)
i0

= T1 +
∑
i0,i1

∫
l
(3)
i0i1

(
d0θ

1
0 ∧ d1

dRµ
1
0

)
i0i1

.

To compensate for the variational term, we need to add the term

T2 = −
∑
i0,i1

∫
l
(3)
i0i1

(
ν1

1 ∧ d1
dRµ

1
0

)
i0i1

, (F.14)

however, T1 + T2 is not yet gauge invariant, indeed it transforms as

T1 + T2 → T1 + T2 +
∑
i0,i1

∫
l
(3)
i0i1

(
d0
dR θ

0
1 ∧ d1

dRµ
1
0

)
i0i1

= T1 + T2 +
∑
i0,i1

∫
∂l

(3)
i0i1

(
θ0

1 ∧ d1
dRµ

1
0

)
i0i1

= T1 + T2 +
∑
i0,i1,i2

∫
l
(2)
i0i1i2

(
d1θ

0
1 ∧ d1

dRµ
1
0

)
i0i1i2

(F.15)

where we have used d2
dR ◦ d1

dRµ
1
0 = 0. In order to cancel the gauge non-invariant contribu-

tion, we add a third term

T3 =
∑
i0,i1,i2

∫
l
(2)
i0i1i2

(
ν0

2 ∧ d1
dRµ

1
0

)
i0i1i2

(F.16)

which itself transforms as

T3 → T3 +
∑
i0,i1,i2

∫
l
(2)
i0i1i2

d1
dR

(
mB

2µ
1
0

)
i0i1i2

= T3 +
∑
i0,i1,i2

∫
∂l

(2)
i0i1i2

(
mB

2µ
1
0

)
i0i1i2

= T3 +
∑

i0,i1,i2,i3

∫
l
(1)
i0i1i2i3

(
d2(mB

2 )µ1
0 +mB

2d0µ
1
0

)
i0i1i2i3

. (F.17)
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And finally, in order to cancel the term which prevents the gauge invariance of T3, we add

T4 = −
∑

i0,i1,i2,i3

∫
l
(1)
i0i1i2i3

(
nB

3µ
1
0

)
i0i1i2i3

T5 =
∑

i0,i1,i2,i3,i4

∫
l
(0)
i0i1i2i3i4

(
nB

3µ
0
1

)
i0i1i2i3i4

. (F.18)

Eventually, the topological action (F.12) takes the form S[A,B,M] = 2πin
∑5

j=1 Tj . Sim-

ilar to the case of (2+1)d BF theory, B can be readily integrated out in the partition

function in order to obtain a 2-form Zn gauge theory. This can be implemented by first

integrating over ν2
0 that sets µ1

0 ∼ 0 (by fixing a gauge). This sets the first four terms

T1,2,3,4 to zero. In the last term, nB
3 can be summed over which enforces µ0

1 ∈ 1
nZ.

Similarly we may first perform an integration by parts and then impose the gluing

relations. Doing so A can be integrated out instead of B. This reduces B to a Zn valued

Čech 2-cocycle. Thus establishing the duality between 1-form and 2-form gauge fields

within the (3+1)d BF theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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