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We consider a symmetric scalar theory with quartic coupling in four dimensions. We show that the four-
loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare
coupling constant which is introduced at the level of the Lagrangian and is therefore conceptually simpler
than a standard 2PI calculation, which requires multiple counterterms. We explain how our method can be
used to do the corresponding calculation at the 4PI level, which cannot be done using any known method
by introducing counterterms.
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I. INTRODUCTION

There are many interesting systems for which there is no
small expansion parameter that could be used to implement
a perturbative approach, and for this reason much work has
been done in recent years on the development nonpertur-
bative methods. Lattice calculations are valuable in sit-
uations where the underlying microscopic theory is known,
but issues with the continuum and finite volume limit arise.
Various forms of reorganized or improved hard-thermal-
loop resummations have been formulated and applied to the
calculation of thermodynamic quantities [1–9]. Schwinger-
Dyson equations are another popular and familiar approach
to nonperturbative problems (for a classic introduction see
[10], a more recent review can be found in [11]). One
significant issue with the Schwinger-Dyson approach is
that the hierarchy of coupled equations must be truncated
by introducing some external prescription. Various meth-
ods to construct a truncation that preserves gauge invari-
ance have been proposed [12–14].
Another powerful technique is the renormalization group

[15], which is traditionally used to study systems where

scale-dependent behaviour is important. Its functional
formulation can be cast into the form of an exact flow
equation for the scale-dependent effective action. A hier-
archy of coupled flow equations for the n-point functions of
the theory can be obtained from the action flow equation,
but this hierarchy must again be truncated using some
prescription [16,17]. Some useful reviews include [18–24].
The n-particle-irreducible effective action is another

method to include nonperturbative effects. In the context
of nonrelativistic statistical mechanics, the original formal-
ism can be found in Refs. [25–27]. In its modern form, the
method involves writing the action as a functional of
dressed vertex functions, which are determined self-
consistently using the variational principle [28,29]. The
technique has been used to study the thermodynamics of
quantum fields [30–32], transport coefficients [33–36], and
nonequilibrium quantum dynamics [37–44]. An advantage
of the nPI method is that it provides a systematic expansion
for which the truncation occurs at the level of the action.
One major disadvantages is a violation of gauge invariance
[45,46]. A method to minimize gauge dependence has been
proposed [47], and some issues with applying the method
are discussed in [48–50]. Another significant difficulty with
the nPI formalism is renormalization. The renormalization
of the symmetric 2PI effective theory using a counterterm
approach was developed by a number of authors over a
period of several years [51–54]. The renormalization of
nonsymmetric theories is more subtle, but important for the
study of phase transitions and Bose-Einstein condensation.
Phase transitions are studied in a scalar ϕ4 theory in
[55–59], and in the SUðNÞ Higgs model in three dimen-
sions (where vertex divergences are absent) in [60]. Bose-
Einstein condensation has been studied in Refs. [61,62].
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All of the 2PI calculations cited above have used a
counterterm method to perform the renormalization. The
introduction of multiple sets of vertex counterterms is
required, and the complexity of the procedure is such that
it is unknown how to extend it to the 4PI theory. However,
since the introduction of higher-order variational vertices is
numerically very difficult, one might be tempted to ignore
vertex corrections and try to improve previous 2PI calcu-
lations by increasing the order of the truncation (typically the
loop order). In calculations where infrared divergences play
an important role, such 2PI calculations at higher loop order
can be useful [47,59,61–63]. However, it is known that nPI
formulations with n > 2 are necessary in some situations.
Transport coefficients in gauge theories cannot be calculated,
even at leading order, using a 2PI formulation [35].
Numerical calculations using a symmetric scalar ϕ4 theory
have shown the importance of 4PI vertex corrections in three
dimensions [64], and the breakdown of the 2PI approxima-
tion at the four-loop level in four dimensions [32].
There is a general hierarchial relationship between the

order of the truncation and the number of variational
vertices that can be included [65]. If the effective action
is truncated at L loops in the skeleton expansion, the
corresponding nPI effective actions are identical for n ≥ L
(equivalently, one necessarily works with L ≥ n). In this
sense, a three-loop calculation done within the 3PI for-
malism, a four-loop calculation done within the 4PI
formalism, etc., is complete. There is additional evidence
that an L-loop calculation in the nPI formalism should, in
general, be done with L ¼ n. In gauge theories, the n loop
nPI effective action respects gauge invariance to the order
of the truncation [45,46], and one therefore expects that a
three-loop 2PI calculation will have stronger gauge depend-
ence than a three-loop 3PI one. In QED, a two-loop 2PI
calculation (which is complete at two-loop order according
to the hierarchial relationship discussed above) found weak
dependence on the gauge parameter [66], while a recent
three-loop 2PI calculation in SUðNÞ Higgs theory [60] has
found strong dependence on the gauge parameter.
There is evidence therefore that higher-order nPI calcu-

lations are important andworthwhile to pursue. Higher-order
effective actions have been derived using different methods
[65,67–69], but little progress has been made in solving the
resulting variational equations. As mentioned above, one
major problem is that the renormalization of such theories in
four dimensions cannot be done (using any known method)
by introducing counterterms. This is, in part, the reason that a
method has been developed to apply the FRG to a 2PI theory
[70–73]. Similar techniques have been used in a condensed
matter context in [74–76].
Another significant technical problem is the size of the

phase space involved in self-consistent calculations of vertex
functions. Because of limitations of memory and computa-
tion time, very few calculations that include variational
vertices have been done, and typically various ansätze are

introduced for the vertex functions. In Ref. [77] the authors
study Yang Mills QCD in the 3PI approximation, but they
work in 3 dimensions. A set of self-consistent vertex
equations obtained from a three-dimensional 3PI Yang-
Mills theory were solved in [78], but the full structure of
the vertices was replacedwith comparatively simple ansätze.
Probably the most complete calculation to date was done in
Ref. [79] where the authors study QCD at the three-loop 3PI
level. They use a clever technique to exploit the symmetry of
the vertices and simplify the variational equations, but they
do not actually solve the fully self-consistent integral
equations, but rather obtain the ghost and gluon propagators
using a separate truncation, and input these results into the
vertex calculations.
The ultimate goal of our research program is to do a four-

loop 4PI calculation. We work (so far) with a symmetric
scalar theory, in order to avoid the complications associated
with the Lorentz and Dirac structures of fields in gauge
theories. As described above, there are two main obstacles:
a conceptual one (renormalizability) and a technical one
(memory and computation time constraints encountered
because of the large phase space associated with self-
consistent vertices). In this paper we develop a method to
resolve both of these issues, and test it by performing a
four-loop 2PI calculation. We renormalize the theory
using the FRG method that was introduced in [73] at
the three-loop 2PI level. Using this method, no counter-
terms are introduced, and all divergences are absorbed
into the bare parameters of the Lagrangian, the structure
of which is fixed and completely independent of the order
of the approximation. The RG method should therefore
work at any loop order, and at any order in the nPI
approximation. In [73] we tested our RG method by
applying it to a symmetric three-loop 2PI calculation.
However, at three loops, the traditional calculation
requires only one vertex counterterm, and in this sense
does not involve the full complexity of the 2PI counter-
term renormalization procedure. One could therefore
suspect that the agreement of our three-loop RG calcu-
lation with the standard counterterm calculation is an
artifact of the approximation. One of the motivations
for the calculation in this paper is to verify that this
agreement holds at the four-loop level. The results of this
paper show that a calculation that requires two vertex
counterterms using the traditional method, can be done
using the RG method by appropriately defining the one
bare coupling constant that appears in the original
Lagrangian. The success of this calculation is therefore
strong evidence that the RG method will also work on the
technically more difficult 4PI calculation.
The success of our approach is verified by comparing results

with our previous calculation [32] which used Cartesian
coordinates, performed all integrals using fast Fourier trans-
forms (which implement periodic boundary conditions), and
used counterterm renormalization. Cartesian coordinates are
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requiredwhenusing fast Fourier transforms, but beyond the 2PI
level they are impractical because of the size of the phase space
involved when vertex functions are represented on a Cartesian
grid. In order to reduce the size of the vertex phase space to a
numerically manageable level, we use spherical coordinates.
However, switching to spherical coordinates means giving up
the speed obtained from fast Fourier transforms. Adequate
speed is obtained by exploiting the symmetries of the vertex
function, and developing efficient interpolation and integration
methods.
This paper is organized as follows. In Sec. II, we present

our notation and the setup of the calculation. In Sec. III, we
describe our method and derive the flow equations that we
will solve. In Sec. IV, we give some details of our numerical
procedure. Our results are presented in Sec. V, and some
further discussion and conclusions are give in Sec. VI.

II. PRELIMINARIES

A. Notation

In most equations in this paper, we suppress the argu-
ments that denote the spacetime dependence of functions.
As an example of this notation, the quadratic term in the
action is written

i
2

Z
d4xd4yφðxÞG−1

no·intðx − yÞφðyÞ → i
2
φG−1

no·intφ: ð1Þ

The notation Gno·int indicates the bare propagator. The
classical action is

S½φ� ¼ i
2
φG−1

no·intφ −
i
4!
λφ4;

iG−1
no·int ¼ −ð□þm2Þ: ð2Þ

For notational convenience, we use a scaled version of the
physical coupling constant (λphys ¼ iλ). The extra factor of
i will be removed when rotating to Euclidean space to do
numerical calculations.
Using the functional renormalization group method, we

add to the action in (2) a nonlocal regulator term:

Sκ½φ� ¼ S½φ�þΔSκ½φ�; ΔSκ½φ� ¼−
1

2
R̂κφ

2: ð3Þ

The parameter κ has dimensions of momentum. The regu-
lator function is chosen to have the following properties:
limQ≪κR̂κðQÞ ∼ κ2 and limQ≥κR̂κðQÞ → 0. The effect is
therefore that for Q ≪ κ the regulator acts like a large mass
term which suppresses quantum fluctuations with wave-
lengths 1/Q ≫ 1/κ, but fluctuations with Q ≫ κ and wave-
lengths 1/Q ≪ 1/κ are not affected by the presence of the
regulator.
The n-point functions of the theory depend on the

parameter κ. One obtains a hierarchy of coupled differential
“flow” equations for the derivatives of the n-point functions

with respect to κ. This hierarchy is automatically truncated
when the effective action is, and there is therefore no need to
introduce additional approximations. The set of truncated
flow equations can be integrated from an ultraviolet scale
κ ¼ μ down to κ ¼ 0where the regulator goes to zero and the
desired quantum n-point functions are obtained. The param-
eter μ is the scale at which the bare masses and couplings are
defined (we use μ instead of the traditional Λ because that
letter will be used for a four-point kernel). One chooses μ
large enough that when κ ¼ μ the theory is classical. The
two- and four-point functions are then known functions of the
bare parameters, and these classical solutions can be used as
initial conditions on the differential flow equations.

B. The 2PI FRG effective action

The 2PI generating functionals are calculated from the
regulated action (3):

Zκ½J;J2� ¼
Z

½dφ�exp
�
i

�
S½φ�þJφþ1

2
J2φ2−

1

2
R̂κφ

2

��
;

ð4Þ

Wκ½J; J2� ¼ −i lnZκ½J; J2�; ð5Þ
δWκ½J; J2�

δJ
¼ hφi≡ ϕ;

δWκ½J; J2�
δJ2

¼ 1

2
hφ2i ¼ 1

2
ðϕ2 þ GÞ: ð6Þ

The 2PI effective action is obtained by taking the double
Legendre transform of the generating functional Wκ½J; J2�
with respect to the sources J and J2 and taking ϕ and G as
the independent variables:

Γ̂κ½ϕ; G� ¼ Wκ − J
δWκ

δJ
− J2

δWκ

δJ2

¼ Wκ − Jϕ −
1

2
J2ðϕϕþGÞ: ð7Þ

After performing the Legendre transform, the functional
arguments of the effective action ϕ and G are formally
independent of the regulator function and the parameter κ,
but the noninteracting propagator does depend on κ. We
define

iG−1
no·int·κ ¼ iG−1

no·int − R̂κ ¼ −□ − ðm2 þ R̂kÞ: ð8Þ
Using this notation, the effective action Γ̂κ½ϕ; G� can be
written

Γ̂κ½ϕ; G� ¼ Γno·int·κ½ϕ; G� þ Γint½ϕ; G�;

Γ̂no·int·κ½ϕ; G� ¼
i
2
ϕG−1

no·int·κϕþ i
2
Tr lnG−1 þ i

2
TrG−1

no·int·κG;

Γint½ϕ; G� ¼ −
i
4!
λϕ4 −

i
4
λϕ2Gþ Γ2½ϕ; G; λ�; ð9Þ
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where Γ2 contains all 2PI graphs with two and more loops.
We define an effective action that corresponds to the
original classical action at the scale μ:

Γκ ¼ Γ̂κ − ΔSκðϕÞ: ð10Þ
Throughout this paper, we use the notation Γ ¼ −iΦ

where both Γ and Φ carry the same subscripts or super-
scripts. For example, the interacting part of the action is
written Γint½ϕ; G� ¼ −iΦint½ϕ; G�. To make the equations
look nicer we also define an imaginary regulator function
Rκ ¼ −iR̂κ (the extra factor i will be removed when
we rotate to Euclidean space). Using this notation,
Eqs. (8)–(10) are rewritten

Φκ ¼ Φno·int·κ þΦint; ð11Þ

Φno·int·κ ¼ −
�
1

2
Tr lnG−1 þ 1

2
G−1

no·int·κG

�

−
�
1

2
G−1

no·int·κ þ
1

2
Rκ

�
ϕ2; ð12Þ

G−1
no·int·κ ¼ G−1

no·int − Rκ: ð13Þ
We extremize the effective action by solving the variational
equations of motion for the self-consistent one- and two-
point functions. These self-consistent solutions will depend
on the parameter κ and are therefore denoted ϕκ andGκ. We
will work throughout with the symmetric theory by setting
ϕκ ¼ 0. In Fig. 1 we show the diagrams that contribute to
Φint to four-loop order, and the names we will use for these
diagrams.

C. Kernels

We define a set of n-point kernels by taking functional
derivatives of the effective action

Λðn;mÞ ¼ 2m
δn

δϕn

δm

δGmΦint: ð14Þ

Since we work with the symmetric theory, we consider only
kernels with n ¼ 0 and we suppress the corresponding 0
index in the superscript. Substituting the self-consistent
solutions into the definition of the kernels (14), we obtain

FIG. 1. The interacting part of the effective action for the symmetric theory to four-loop order.

FIG. 2. Skeleton diagrams in the four-kernel Λ and the six-kernel ϒ. The numbers in brackets indicate the number of distinct
permutations of external legs, and the numbers that are not bracketed are symmetry factors. The name under each diagram indicates the
term in the effective action that produced it (see Fig. 1).

M. E. CARRINGTON et al. PHYS. REV. D 97, 036005 (2018)

036005-4



ΛðmÞ
κ ¼ ΛðmÞj

ϕ¼o
G¼Gκ : ð15Þ

We introduce specific names for the kernels we will write
repeatedly:

Λð1Þ ¼ Σ; Λð2Þ ¼ Λ; Λð3Þ ¼ ϒ: ð16Þ
The kernels Σ, Λ and ϒ have two, four and six legs,
respectively. The Fourier transformed functions are written
ΣðPÞ, ΛðP;KÞ and ϒðP;K;QÞ. The diagrams that con-
tribute to Λ and ϒ in the four-loop approximation are
shown in Fig. 2. We note that the four-kernel contains two-
loop diagrams that involve nasty overlapping divergences.
When we use the RG method, any kernel that contains
subdivergences is calculated from a flow equation. This is
explained in detail in the next section.

III. METHOD

A. Flow equations

Using the chain rule, and the fact that Φint and therefore
ΛðmÞ does not explicitly depend on κ, we find

∂κΛ
ðmÞ
κ ¼ 1

2
∂κGκΛ

ðmþ1Þ
κ : ð17Þ

In momentum space (restoring arguments), this equation
has the form

∂κΛ
ðmÞ
κ ðP1; P2; � � �PmÞ

¼ 1

2

Z
dQ∂κGκðQÞΛðmþ1Þ

κ ðP1; P2; � � �Pmþ1; QÞ: ð18Þ

Equation (18) is an infinite hierarchy of coupled integral
equations for the n-point kernels. This structure is typical of
continuum nonperturbative methods, for example
Schwinger-Dyson equations and traditional (1PI) RG
calculations. In our formalism however, the hierarchy
truncates at the level of the action. This can be seen
immediately from Eq. (18) since it is clear that when the
effective action is truncated at any order in the skeleton
expansion, the kernel on the right side of (18) is zero when
the largest number of propagators that appears in any
diagram in the effective action is less thanmþ 1. As will be
explained in Sec. III C, the hierarchy can be truncated at an
even earlier level.
We show below how to rewrite the flow equations (18) in

a more convenient form. The stationary condition is

δΦκ½ϕ; G�
δG

����
G¼Gκ

¼ 0; ð19Þ

and using Eqs. (11)–(14) and (16), the variation produces a
Dyson equation for the nonperturbative two-point function
in terms of the two-kernel Σ:

G−1
κ ¼ G−1

no·int − Rκ − Σκðϕ; GκÞ: ð20Þ
Using (20) we have

∂κGκ ¼ −Gκð∂κG−1
κ ÞGκ ¼ Gκð∂κðRκ þ ΣκÞÞGκ: ð21Þ

The first two equations in the hierarchy (18) can now be
rewritten using (16) and (21) as

∂κΣκðPÞ ¼
1

2

Z
dQ∂κ½ΣκðQÞ þ RκðQÞ�G2

κðQÞΛκðP;QÞ;

ð22Þ

∂κΛκðP;KÞ¼1

2

Z
dQ∂κ½RκðQÞþΣκðQÞ�G2

κðQÞϒκðP;K;QÞ:

ð23Þ

These equations are shown in Fig. 3. The grey boxes denote
the kernels Σ, Λ and ϒ (the specific kernel is indicated by
the number of legs attached to the box). The crosses
indicate the insertion ∂κðΣκðQÞ þ RκðQÞÞ.
Finally, we note that the flow equation for the two-kernel

Σ can be rewritten in terms of the Bethe-Salpeter (BS)
vertex. Iterating Eq. (22) we obtain

∂κΣκðPÞ ¼
1

2

Z
dQ∂κRκðQÞG2

κðQÞMκðP;QÞ; ð24Þ

with

MκðP;KÞ¼ΛκðP;KÞþ1

2

Z
dQΛκðP;QÞG2

κðQÞMκðQ;KÞ:

ð25Þ

In the 2PI formalism, we can also define nonperturbative
vertices in terms of the change in the effective action with
respect to variations in the field evaluated at the stationary
point. These are usually called ‘physical’ vertices. The
physical four-point function, which we call V, can be
written in terms of the BS vertex as

FIG. 3. The flow equations in Eqs. (22) and (23).
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V ¼ λþ 3ðM − ΛÞ: ð26Þ

We note that the vertex V involves a resummation in all
three (s, t and u) channels, but using our shorthand notation
which suppresses indices, the three channels combine to
produce the factor (3) in Eq. (26). Details of the derivation
of (26) are given in Refs. [31,72].
In order to do numerical calculations, we rotate to

Euclidean space by defining the Euclidean variables:

q0 → iq4; dQ → idQE; Q2 → −Q2
E; ð27Þ

m2 →m2
E; λ→−iλE; δλ→−iδλE;

G−1
no·int → iðG−1

no·intÞE;
Σ→−iΣE ⇒G−1→ iG−1

E ¼ iðP2
Eþm2

EþΣEÞ;
Λ→ iΛE; ϒκ →−iϒκE; M→ iME; ; V→ iVE:

Rκ ¼−iRκE: ð28Þ

The extra factors of i in the definitions of λE and RE remove
the factors that were introduced in the definitions λphys ¼ iλ
[under Eq. (2)] and R̂ ¼ iR [under Eq. (10)]. From this
point forward we suppress the subscripts which indicate
Euclidean space quantities. The flow equations (22) and
(23), and the BS equation (25) have the same form in
Euclidean space. The Euclidean space Dyson equation is

G−1ðPÞ ¼ G−1
no·intðPÞ þ ΣðPÞ; ð29Þ

and the physical vertex becomes

V ¼ −λþ 3ðM − ΛÞ: ð30Þ

The regulator function we use has the Euclidean momen-
tum space form

RκðQÞ ¼ Q2

eQ
2/κ2 − 1

: ð31Þ

B. Tuning

Physical considerations dictate the renormalization con-
ditions which are enforced on the nonperturbative quantum
n-point functions that are obtained at the κ ¼ 0 end of the
flow. We use standard renormalization conditions:

G−1
0 ð0Þ ¼ m2; M0ð0; 0Þ ¼ −λ: ð32Þ

The quantum n-point functions in (32) are obtained by
solving the integro-differential flow equations (22), (23),
starting from some set of initial conditions at κ ¼ μ. The
regulator function Rκ [Eq. (31)] is chosen so that at the
scale κ ¼ μ the theory is described by the classical action
and the initial conditions for the flow equations can be

taken from the bare masses and couplings of the original
Lagrangian.
It is clear that one must know the values of the bare

parameters from which to start the flow at the beginning of
the calculation. A different choice of bare parameters will
give different quantum n-point functions at the end of the
flow, and therefore different renormalized masses and
couplings. The procedure to figure out the values of the
bare parameters that will satisfy the chosen renormalization
conditions is called tuning. Starting from an initial guess for
the bare parameters, we solve the flow equations, extract the
renormalized parameters, adjust the bare parameters either
up or down depending on the result, and solve the flow
equations again. The calculation is repeated until the chosen
renormaliation condition is satisfied to the desired accuracy.

C. Consistency

Since RG procedure involves initializing the flow
equations at an ultraviolet scale κ ¼ μ, and also enforcing
renormalization conditions at the κ ¼ 0 end of the flow, we
must address the question of whether or not the initial and
renormalization conditions can be defined consistently.
Consider an arbitrary n-point kernel of the form

ΛðmÞ
κ ðP1; P2…Þ ¼ Λ̃ðmÞ

κ ðP1; P2…Þ þ CðP1; P2…Þ ð33Þ

where Λ̃ðmÞðP1; P2…Þ is the result obtained from integrat-
ing the corresponding flow equation, and CðP1; P2…Þ is a
κ independent integration constant. In the limit κ → μ we
require that the vertex function approaches a momentum
independent constant:

lim
κ→μ

ΛðmÞ
κ ðP1; P2…Þ ¼ ΛðmÞ

μ ðP1; P2…Þ≡ −λμ ð34Þ

comparing Eqs. (33) and (34) we have

CðP1; P2…Þ ¼ −λμ − Λ̃ðmÞ
μ ðP1; P2…Þ; ð35Þ

so that (33) becomes

ΛðmÞ
κ ðP1;P2…Þ¼−λμþ Λ̃ðmÞ

κ ðP1;P2…Þ− Λ̃ðmÞ
μ ðP1;P2…Þ:

ð36Þ

Now we look at the κ → 0 end of the flow and determine
the conditions under which we can enforce the renormal-
ization condition Λ0ð0; 0;…Þ ¼ −λ. We start by adding
and subtracting two different terms to the original vertex,
and grouping into square brackets the differences we will
consider below. This gives

ΛðmÞ
κ ðP1;P2…Þ¼−λþ½ΛðmÞ

κ ðP1;P2…Þ−ΛðmÞ
0 ðP1;P2…Þ�

þ½ΛðmÞ
0 ðP1;P2…Þ−ΛðmÞ

0 ð0;0;…Þ�: ð37Þ
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The renormalization condition is satisfied if the square
brackets go to zero in the limit that κ and the momentum
arguments go to zero. Setting κ ¼ 0 and using Eq. (36)
we obtain

½ � ¼ ðΛ̃ðmÞ
0 ðP1; P2…Þ − Λ̃ðmÞ

0 ð0; 0…ÞÞ − ðΛ̃ðmÞ
μ ðP1; P2…Þ

− Λ̃ðmÞ
μ ð0; 0…ÞÞ: ð38Þ

The second term in (38) is zero in the limit μ ≫ P, since
this is (by construction) the limit in which loop contribu-
tions are suppressed and the momentum dependence of the
vertex disappears. We have therefore shown that the
renormalization condition will be consistent with the initial
condition if

Z¼ lim
ðP1;P2…Þ→0

ðΛ̃ðmÞ
0 ðP1;P2…Þ− Λ̃ðmÞ

0 ð0;0…ÞÞ→ 0: ð39Þ

In the next section, we will show that this condition is
satisfied if the truncation of the hierarchy in (18) is
performed correctly.
We comment on the fact that the discussion above is

misleading in one important way. It appears that the bare
vertex λμ cancels exactly when we go from Eq. (36) to
Eq. (37). If this were true, the initial condition and the
renormalization condition would be unconnected to each
other, and tuning would not be possible. The apparent
cancellation occurs because the self-consistent nature of the
set of coupled equations for kernels with different numbers
of legs is not evident when we consider one kernel in
isolation.
Finally, we note that renormalization conditions are

typically defined on vertices constructed from resummed
kernels [see Eq. (32)] and not the kernels themselves.
However, the condition derived above (39) is still sufficient
to guarantee the consistency of the procedure. The crucial
point is that the kernels are two-particle-irreducible (see
Fig. 2) and thereforewhen they are chained together to forma
resummed BS vertex, no additional subdivergences are
produced. It is easy to see how this works in our calculation,
where we only need to enforce a renormalization condition
on the four-point function (as will be explained in the next
section). When we define the renormalization condition on
the BS vertex instead of the kernelΛ, the result is only a shift

in the final value of the bare coupling λμ that is produced by
the tuning procedure.

D. Truncation

Now we return to the issue of the truncation of the
hierarchy of flow equations in Eq. (18). The kernels
obtained from direct functional differentiation of the action
using (15) will automatically satisfy the correct flow
equations (18). As explained in Sec. III A, this is just an
obvious application of the chain rule. Next we observe that
if a given kernel obtained from functional differentiation
satisfies the condition (39), then using the analysis
of the previous section, we know it will also satisfy

ΛðmÞ
0 ð0; 0 � � �Þ ¼ −λ and ΛðmÞ

μ ð0; 0 � � �Þ ¼ −λμ. The conclu-
sion is that we do not need to solve its flow equation (since
the result from solving the flow equation would be
precisely equal to the expression obtained from the func-
tional integration, with the addition of the appropriate
constant). The smallest value of m for which (39) is
satisfied is the “terminal” kernel which truncates the
hierarchy of flow equations. After we have identified
the terminal kernel, the set of flow equations for the
kernels with 2 × ð1; 2; 3;…m − 1Þ legs can then be solved
self-consistently.
The final step is to show that the flow equation for each

kernel can be initialized at the classical solution, which is
just the corresponding bare coupling. This is just a
consequence of the structure of the flow equations, in
which the kernel with 2m legs is constructed by calculating
a one-loop integral obtained by joining two legs of the

kernel with 2ðmþ 1Þ legs (see Fig. 3). If Λðmþ1Þ
0 is finite up

to a momentum independent bare coupling constant, then

clearly the result for ΛðmÞ
0 obtained from solving a flow

equation of the form (18) will also be finite.
In order to identify the terminal kernel, we need to know

under what circumstances the condition (39) will be
satisfied by a given 2PI kernel ΛðmÞ

κ . We start by looking
at an example where it will not. We consider the self-energy
diagram on the right side of Fig. 4 which gives

Σ0ðPÞ ¼ −
λ2

6

Z
dQ

Z
dLG0ðLÞG0ðLþQÞG0ðPþQÞ:

ð40Þ

FIG. 4. Example graphs.
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This sunset contribution to the self-energy is produced by
the BBALL diagram in the effective action (see Fig. 1). The
quantity Z in Eq. (39) now takes the form

Z ¼ −
λ2

6

Z
dQ

Z
dLG0ðLÞG0ðLþQÞ½G0ðPþQÞ

−G0ðQÞ�; ð41Þ

¼ −
λ2

6
P2

Z
dQ

Z
dLG0ðLÞG0ðLþQÞ½G0

0ðQÞ þ � � ��;

ð42Þ
where in the last line we have expanded around P2 ¼ 0.
The prime denotes differentiation with respect to Q2 and
the dots represent terms that are higher order in P2/Q2. It is
clear that the divergent L integral is unaffected by the
subtraction, and therefore we cannot conclude that Z → 0
when P approaches zero.
Another example is the contribution to the four-kernel Λ

from the last diagram in the first line of Fig. 2. If we route
the momenta as shown in the right side of Fig. 4 and rescale
momenta as described above, the divergence in the L2

integration is unaffected by the subtraction, and therefore
the condition (39) is not satisfied.
In general, any loop that does not necessarily carry one

of the external momenta is a “bad” loop. If a kernel does not
have any bad loops, it satisfies (39) and its flow equation
does not have to be solved. The smallest of these kernels is
the terminal kernel. In the following two subsections, we
explain how to apply these ideas to the 2PI calculation at
the three- and four-loop level.

1. Three-loop

If we truncate the effective action at the three-loop
(BBALL) level, the self-energy includes the sunset diagram
which has a bad loop, as explained above. The kernel Λ has
no bad loops, since the one-loop BBALL contributions in
Fig. 2 always carry external momenta. The vertex Λ is
therefore the terminal kernel and can be substituted directly
into the Σ flow equation. In order to satisfy the initial
condition,we replace the treevertex (theEIGHTcontribution
in Fig. 2) with the bare parameter −λμ. The Λ flow
equation (23) is not affected by any constant shift of the
four-kernel. Thuswe see that we can obtain, directly from the
action, an expression for the four-kernel that obeys the initial
condition and satisfies the correct flow equation. We have
also explicitly checked that the results are the same as those
obtained from solving the coupled set of Σ and Λ flow
equations.

2. Four-loop

At the four-loop level, the kernel Λ contains a bad loop
(as illustrated in the right side of Fig. 4) and does not satisfy
(39). We therefore cannot use the explicit expression for the

four-kernel Λ shown in Fig. 2 directly in the flow equation
for the two-kernel [Eq. (22)], as we did at the three-loop
level. The kernelϒ (the bottom line of Fig. 2) contains only
one-loop diagrams that always carry external momenta, and
therefore satisfies (39) and is the terminal kernel. Since
there is no bare six-vertex in the Lagrangian, we know the
integration constant should be set to zero. We therefore
substitute the result for ϒ shown in Fig. 2 directly into the
Λ flow equation. The Σ and Λ flow equations must then be
solved self-consistently.

IV. NUMERICAL METHOD

A. Procedure

We initialize the flow of the two- and four-kernels,

ΣμðPÞ ¼ m2
μ −m2; ð43Þ

ΛμðP;KÞ ¼ −λμ; ð44Þ
and we take the propagator in the ultraviolet limit
as G−1

μ ðPÞ ¼ P2 þm2
μ.

Schematically the numerical procedure can be described
as follows:
(1) Choose values for the physical mass m and coupling

λ. We use always m ¼ 1, which means we give all
dimensionful quantities in mass units.

(2) Calculate the quantum n-point functions:
(a) Initialize the differential flow equations using

(43), (44).
(b) Guess at the correct value for the bare parameters

mμ and λμ.
(c) Substitute the result for the six-kernel ϒ ob-

tained from the four-loop 2PI effective action
(shown in the second part of Fig. 2) into the Λ
flow equation.

(d) Solve the integro-differential flow equations:

ΣμðPÞ → Σ0ðPÞ and

G0 ¼ ðP2 þm2 þ Σ0ðPÞÞ−1; ð45Þ
ΛμðP;KÞ → Λ0ðP;KÞ: ð46Þ

(e) Solve the BS equation:

M0 ¼ Λ0 þ
1

2
Λ0G2

0M0: ð47Þ

(f) Extract renormalized mass and coupling:

m2
found ¼ G−1

0 ð0Þ ¼ m2 þ Σ0ð0Þ; ð48Þ
−λfound ¼ M0ð0; 0Þ: ð49Þ

(3) Compare the chosen and found values for the mass
and coupling, adjust the bare values up or down
accordingly, and repeat all steps until the renorm-
alization conditions are satisfied to the desired
accuracy.
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B. Parameters

The differential equations are solved using a logarithmic
scale by defining the variable t ¼ ln κ/μ, in order to increase
sensitivity to the small κ region where we approach the
quantum theory. We use κmax ¼ μ ¼ 100, κmin ¼ 10−2 and
Nκ ¼ 50. We have checked that our results are insensitive
to these choices. In addition, we have checked for possible
dependence on the form of the regulator function by using a
generalization of (31):

RκðQ; zÞ ¼ κ2ðQ2/κ2Þz
ðeQ2/κ2 − 1Þz : ð50Þ

The original expression (31) corresponds to the choice of
exponent z ¼ 1. Using z ¼ 1/2 and z ¼ 1/4 produces
results that are virtually identical.
The four-dimensional momentum integrals are written in

the imaginary time formalism as
Z

dKfðk0; k⃗Þ ¼
X
n

Z
d3k
ð2πÞ3 fðmtn; k⃗Þ; ð51Þ

with mt ¼ 2πT. Numerically we take Nt terms in the
summation with β ¼ 1

T ¼ Ntat where the parameter at is
the lattice spacing in the temporal direction.
The integrals over the three-momenta are done in spherical

coordinates and using Gauss-Legendre integration. We use
typically Nx ¼ Nϕ ¼ 8 points for the integrations over the
cosine of the polar angle and the azimuthal angle. The
dependence on these angles is weak, and results are very
stable when Nx and/or Nϕ are increased. To calculate the
integral over the magnitude of the three-momenta, we define
a spatial length scale analogous to the inverse temperature
L ¼ asNs where as is the spatial lattice spacing andNs is the
number of lattice points.

C. Restrictions

The numerical method replaces a continuous integration
variable with infinite limits by a discrete sum over a finite
number of terms. For numerical accuracy, we need generi-
cally that the upper limit of the sum is big and the step size
is small. This means we require pmax ∼ 1

as
≫ 1 and

Δp ∼ 1
L ¼ 1

Nsas
≪ 1. The number of lattice points Ns is

limited by memory and computation time, and therefore
there is a limit on how small as can be taken while
maintaining Nsas large. However, there is another more
subtle issue that limits how small we can choose as. The
theory has a Landau pole at a scale that decreases when λ
increases. When λ becomes large, as must increase (pmax
must decrease) so that the integrals are cut off in the
ultraviolet at a scale below the Landau scale. However,
decreasing the ultraviolet cutoff pmax will eventually cause
important contributions from the momentum phase space to
be missed. When λ has increased to the point that the
Landau scale has moved down and dipped into the
momentum regime over which the integrand is large,

physically meaningful results cannot be obtained. In our
calculation we have determined that the maximum coupling
we can calculate is λ ≈ 5.
Finally, we note that it is well known that scalar ϕ4

theory in four dimensions is noninteracting if it is consid-
ered as a fundamental theory valid for arbitrarily high
momentum scales (quantum triviality), but the renormal-
ized coupling is nonzero if the theory has an ultraviolet
cutoff and an infrared regulator. In our calculation the mass
m regulates the infrared and the lattice spacing parameter
provides an ultraviolet cutoff.

V. RESULTS AND DISCUSSION

In ϕ4 theory, a perturbative calculation of the pressure
shown a lack of convergence already at couplings λ ∼ 2,
and therefore a nonperturbative method is relevant for
couplings λ≳ 2. Below we show results at two different
values of the coupling, λ ¼ 2 and λ ¼ 4.
We remind the reader that the parameter μ is the scale at

which our bare parameters are defined. All physical results
should be independent of μ, and we have verified that this is
the case, by testing values of μ between 50 and 500. The
results presented below were all calculated with μ ¼ 100.
We use at ¼ 1/10, as ¼ 1/5 and Ns ¼ 18 and vary the

temperature by changing the number of lattice points in the
temporal direction. The renormalization is done at Nt ¼ 37
and the highest temperature we consider is T ¼ 2 which
corresponds to Nt ¼ 5. In Fig. 5 we show the BS and

FIG. 5. The Bethe-Salpeter vertexMð0Þ and the physical vertex
Vð0Þ versus T for λ ¼ 2 and λ ¼ 4 at the two-, three- and four-
loop levels in the skeleton expansion of the action.
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physical vertices as functions of the temperature. The
graph agrees well with the results of our previous calcu-
lation [32] which used two separately defined counter-
terms. Some differences between the two calculations are
expected, due to the different boundary conditions that
must be implemented using the spherical and cartesian/fft
methods.
In Fig. 6 we show the dependence on the renormalization

scale. The two curves correspond to the physical vertex
Vð0Þ versus temperature with the renormalization done at
two different temperatures. The scale dependence of the
calculation is indicated by the shaded grey region between
the two curves, and is very small.
In momentum space, the spacing is Δp ∼ 1

asNs
and the

UV momentum cutoff is pmax ¼ π/as. In order to show that
the numerics are stable, one must show that results are
unchanged if either Δp decreases while pmax is held fixed,
or pmax increases while Δp is held fixed. We show below
that both of these criteria are satisfied.

In Fig. 7 we show the BS and physical vertices versus Ns
with as ¼ 1/5 and λ ¼ T ¼ 2. The grid spacing in momen-
tum space is Δp ∼ 1

L ¼ 5
Ns
. The graph shows that results are

stable with Ns ≳ 14. The results in Figs. 5 and 6 are
produced with Ns ¼ 18, and the curves in Fig. 7 are shifted
so that they cross at Ns ¼ 18, in order to provide the best
means of comparison.
In order to test the renormalization, we check that the

results are unchanged when pmax is increased while Δp ∼
1/L is held fixed. This is done by increasing Ns while
adjusting as so that L ¼ asNs is constant. In Fig. 8 we use
L ¼ 4 and λ ¼ T ¼ 2. To set the scale, we compare with an
incorrect three-loop calculation, in which one of the
vertices in the four-kernel is replaced with a bare vertex.
At pmax ≳ 20 the influence of the Landau pole is seen. The
data in Figs. 5 and 6 are produced with as ¼ 1/5
or pmax ¼ 15.71.

VI. CONCLUSIONS

In this paper, we have done a four-loop 2PI calculation in
a symmetric ϕ4 theory. We have renormalized the theory
using the FRG method that was introduced in [73] at the
three-loop 2PI level. Using this method, no counterterms
are introduced, and all divergences are absorbed into the
bare parameters of the Lagrangian, the structure of which is
fixed and completely independent of the order of the
approximation. We therefore expect that our RG method
will work at any order in the nPI approximation. The next
step in our program is to apply our method to a four-loop
4PI calculation. The structures of the flow and Bethe-
Salpeter equations are the same [80], but there is now
a variational four-vertex that must be calculated self-
consistently. In spherical coordinates, the phase space for
this vertex is comparable with that of the three-dimensional
self-consistent 4PI vertex function that was calculated in
[64]. This calculation is currently in progress.

FIG. 6. The physical vertex Vð0Þ versus T for λ ¼ 2 with the
renormalization performed at two different temperatures.

FIG. 7. The Bethe-Salpeter vertexMð0Þ and the physical vertex
Vð0Þ versus the number of spatial lattice points NS for λ ¼ T ¼ 2
at the three- and four-loop levels in the skeleton expansion of the
action. The curves are shifted so that they cross at Ns ¼ 18.

FIG. 8. The physical vertex Vð0Þ versus pmax with λ ¼ T ¼ 2
and L ¼ 4 at the four-loop level in the skeleton expansion of the
action. For comparison, the results of an incorrect calculation are
shown (see the text for further explanation).
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