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1 Introduction

It is widely believed that one of the defining characteristics of classical black holes is that
they have no “hair”. The concept of black-hole hair is a very broad one but, for the
stationary black holes we will be concerned with in this paper it can be defined as any
parameter that enters the metric and which cannot be eliminated through a coordinate
transformation which is not a function of the charges of the theory which are conserved
by virtue of a local symmetry (mass, angular momenta, electric charges) or a topological
property (magnetic charges) or the asymptotic values of the scalars (moduli).

Scalar charges, typically defined through the asymptotic behavior at spatial infinity
of the scalars in the black-hole spacetime, are not protected by any conservation law. In
ungauged theories the only local symmetries scalar fields transform under are diffeomor-
phisms but the conserved charges associated to them are the gravitational ones: mass
and linear and angular momenta. Scalar fields only transform under global symmetries of
the action or of the equations of motion only to which we will refer to as dualities. How-
ever, the charges associated to those symmetries in stationary black-hole spacetimes vanish
identically. They seem to have nothing to do with the conventionally-defined black-hole
scalar charges. Gauging the global symmetries does not help because the gauge symmetry
would be associated to some 1-form gauge fields and the conserved charges would have the
interpretation of electric and magnetic charges.

Therefore, according to our definition of hair, scalar charges are understood as hair and,
according to the no-hair conjecture, no black-hole solutions with regular horizons (hence-
forth to be referred to as “regular black holes”) carrying scalar charges should be expected.
Any scalar charges possessed by gravitationally collapsing matter should be radiated away
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in the black-hole formation. However, there are many regular black hole solutions carrying
non-vanishing scalar charges such as dilaton black holes and their generalizations.1

The solution to this apparent counterexample of the no-hair conjecture lies in the
distinction between primary and secondary hair [2]: in all the regular black-hole solutions
with non-vanishing scalar charges, those charges are not independent parameters but very
specific functions of the independent conserved charges which are allowed by the no-hair
conjecture and they are (by definition) secondary hair. In the solutions in which the scalar
charges are truly independent parameters, such as the Janis-Newman-Winicour solution [3]
or the Agnese-La Camera solutions [4] and their generalizations [1], there are no regular
horizons but naked singularities unless the scalar charge takes the value of the specific
function of the conserved charges we mentioned above (simply zero in the JNW solution).
This kind of scalar hair is, by definition, primary hair and it is the one which would actually
be forbidden by the conjecture.

The scalar charges which are allowed by the no-hair conjecture remain, nevertheless,
quite mysterious: what are the values of the scalar charges allowed in a given theory?
Why are those values allowed and no others? And, even more basic: is there a coordinate-
independent definition of scalar charge?

This mystery only deepened when Gibbons, Kallosh and Kol (GKK) showed in ref. [5]
(see also ref. [6]) that the allowed scalar charges occur in the first law of black hole me-
chanics [7] as thermodynamical potentials conjugate to the variations of the moduli. While
it is not clear which kind of physical process may result in a change of the moduli,2 it is
a fact that varying the black-hole entropy formulae of known solutions with respect to the
moduli one finds the scalar charges as coefficients of those variations.

Wald’s formalism [8–10] opened a new venue for the study of black-hole thermody-
namics that can be used to explore the role of scalar charges into it. The main observation,
realized in the context of purely gravitational (matter-free) theories invariant under dif-
feomorphisms is that the properties of the Noether (d − 2)-form charge associated to the
invariance under diffeomorphisms (Noether-Wald charge) can be used to prove the first law
of black-hole thermodynamics.

In theories with matter, this law includes work terms proportional to the variations of
conserved charges and the GKK scalar term proportional to the variations of the moduli.
In the last few years we have extended the formalism to handle theories in which there
are matter fields with gauge symmetries coupled to gravity showing how the electric work
terms appear [11–13],3 showing how extended black-hole thermodynamics arises in this
context [24, 25], how to include magnetic charges in the first law [26] and how to construct
Komar integrals from which Smarr formulae can be derived [24, 27]. In all those cases
each new work term in the first laws is associated to a gauge symmetry or an equivalent
topological property. Since, as we have seen, scalar charges are not associated to neither,

1For a review with many references, see ref. [1].
2The same could be said about magnetic charges.
3A slightly different approach to the one taken in those papers, which is the one used here as well, is the

point of view of “invariance up to gauge transformations”, taken in refs. [16, 19–23].
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it is unclear how the GKK work term can be recovered in Wald’s formalism.4 The absence
of a good coordinate-independent definition for the scalar charge complicates this problem.

In this paper we are going to show how this problem can be solved taking into account
hitherto ignored contributions to the integrals at spatial infinity and using a definition of
scalar charge as the integral of a (d − 2)-form which is manifestly coordinate and gauge
independent and which satisfies a Gauss law in stationary black-hole spacetimes. This
definition relies in the existence of conserved charges associated to global symmetries and
in the existence of a timelike Killing vector whose Killing horizon coincides with the black-
hole’s event horizon and whose action leaves invariant all the physical fields. Therefore,
there is a scalar charge associated to each global symmetry, and, therefore, the number of
charges may or may not coincide with the number of scalar fields.

In this paper we have studied 4-dimensional theories5 whose scalar kinetic terms are
described by symmetric sigma models in which the scalar fields map spacetime into a target
space which is a symmetric Riemannian homogeneous space G/H. These kinetic terms are
very common in supergravity theories. Furthermore, our theories include Abelian 1-forms
and we are going to assume that the couplings of the scalars to those 1-forms are such that
the equations of motion, enhanced with the Bianchi identities satisfied by the 2-form field
strengths are invariant under the duality group G.6 Again, this is a fairly common situation
in supergravity and include simple theories such as the Einstein-Maxwell-Dilaton ones. In
these theories we can associate a conserved scalar charge to each of the generators of G,
even if some of the transformations (the electric-magnetic duality rotations in particular)
do not leave the action invariant. As a result, according to our definition, there are always
more scalar charges than scalars. Nevertheless, we are going to show that the conventional
scalar charges can be recovered as combinations of the ones we have defined and we are
going to check these relations in particular black-hole solutions.

In this framework we are going to proof the first law of black-hole thermodynamics
recovering the GKK results and, as a byproduct, we are going to find a general expression
for the scalar charges in terms of the conserved charges and the position of the horizon,
thus answering one of the long-standing questions posed above.7 Observe that, since our
definition of scalar charge satisfies a Gauss Law, the value obtained for those charges is the
same whether we calculate the integrals over the horizon or at infinity.

This paper is organized as follows: in section 2 we review the kind of theories that
we are considering, their duality symmetries, the Gaillard-Zumino theorem [36] and the
construction of the Noether-Gaillard-Zumino (NGZ) currents which will be used in section 3

4In extended thermodynamics there are work terms associated to the variation of dimensionful constants
which, apparently, unrelated to gauge symmetries. However, those constants can be dualized into (d− 1)-
form potentials with a gauge freedom (for the cosmological constant, see refs. [30, 31]) and this description
leads to the work terms [24, 25, 28, 32, 33].

5The extension to higher dimensions and higher-rank forms is straightforward using the results of ref. [34]
for the Noether-Gaillard-Zumino currents.

6The general form of the theories that we consider is identically to that of the theories considered by
GKK in ref. [5] but, in our approach it is crucial to know the global symmetries of the theory.

7After completion of this work, we found that a similar definition of scalar charge and similar result had
been found in ref. [35] in the context of the dilaton black holes of the EMD theories.
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to define the scalar charges. In section 4 we derive the first law recovering the GKK results
and the general expression of scalar charges in terms of conserved charges and the position
of the horizon. In sections 5 and 6 we test our results on dilaton and axion-dilaton black
holes respectively. Section 7 contains a discussion of our results.

2 The theory

In this section we are going to review the theories we are going to consider and their duality
symmetries. Most of this material can be found elsewhere, but here we adapt it to our
needs and conventions.

Throughout this paper we are going to consider 4-dimensional ungauged supergravity-
inspired theories containing nS scalar fields φx that parametrize a symmetric coset space
G/H and nV 1-form fields AΛ = AΛ

µdx
µ with 2-form field strengths

FΛ = dAΛ , (2.1)

coupled to gravity which we will describe through the Vierbein ea = eaµdx
µ. Up to two

derivatives, they can be described by the generic action

S = 1
16πG(4)

N

∫ [
− ? (ea ∧ eb) ∧Rab + 1

2gxydφ
x ∧ ?dφy − 1

2IΛΣF
Λ ∧ ?FΣ − 1

2RΛΣF
Λ ∧ FΣ

]
≡
∫

L , (2.2)

where the kinetic matrix I = (IΛΣ) is negative-definite and we are going to assume that
the positive-definite σ-model metric gxy(φ) is invariant under the action of G (the duality
group) which also leaves invariant the set of all equations of motion plus the Bianchi
identities of the theory. This assumption will be translated into conditions for the scalar-
dependent matrices I = (IΛΣ) and R = (RΛΣ) shortly.

We will set G(4)
N = 1 and we will ignore the normalization factor (16π)−1 for the time

being.
The equations of motion are defined by (here ϕ stands for all the fields of the theory)

δS =
∫ {

Ea ∧ δea + Exδφ
x + EΛδA

Λ + dΘ(ϕ, δϕ)
}
, (2.3)

and given by

Ea = ıa ? (eb ∧ ec) ∧Rbc + 1
2gxy (ıadφx ? dφy + dφx ∧ ıa ? dφy)

− 1
2IΛΣ

(
ıaF

Λ ∧ ?FΣ − FΛ ∧ ıa ? FΣ
)
, (2.4a)

Ex = −gxy {d ? dφy + Γzwydφz ∧ ?dφw} −
1
2∂xIΛΣF

Λ ∧ ?FΣ − 1
2∂xRΛΣF

Λ ∧ FΣ , (2.4b)

EΛ = dFΛ , (2.4c)

where we have defined the dual 2-form field strength

FΛ ≡ IΛΣ ? F
Σ +RΛΣF

Σ . (2.5)
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Furthermore,

Θ(ϕ, δϕ) = − ? (ea ∧ eb) ∧ δωab + gxy ? dφ
xδφy − FΛ ∧ δAΛ . (2.6)

The original and dual 2-forms can be combined into a symplectic vector of 2-forms8

(
FM

)
≡
(
FΛ

FΛ

)
, (2.7)

and the Bianchi identities of the original 2-form field strength FΛ

dFΛ = 0 , (2.8)

and the Maxwell equations EΛ = 0 can be written as

dFM = 0 . (2.9)

These equations can be interpreted as Bianchi identities implying the local existence
of 1-form potentials (

AM
)
≡
(
AΛ

AΛ

)
, (2.10)

such that
FM = dAM . (2.11)

The set of equations (2.9) is invariant under arbitrary GL(2nV ,R) transformations

FM ′ = SMNF
N , (2.12)

but we have to take into account the rest of the equations and an important constraint: the
components of FM are not independent and, therefore, FM satisfies the following twisted
self-duality constraint

? FM = −ΩMNMNPF
P , (2.13)

whereMMN is the 2nV × 2nV symmetric symplectic matrix

M = (MMN ) =

 I +RI−1R −RI−1

−I−1R I−1

 ,

M−1 =
(
MMN

)
= Ω−1TMΩ =

 I
−1 I−1R

RI−1 I +RI−1R

 ,

(2.14)

and

Ω = (ΩMN ) =

 0 1nV ×nV

−1nV ×nV 0

 , Ω−1 =
(
ΩPN

)
. (2.15)

8The symplectic nature of this vector will be proven shortly.
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As a consequence, the set of Maxwell equations and Bianchi identities will only be
invariant under the subset of GL(2nV ,R) transformations that preserve this constraint,
which is possible provided thatM transforms as

M′ =
(
Ω−1SΩ

)
MS−1 , S =

(
SMN

)
. (2.16)

It is convenient to analyze the invariance of the Einstein equations first.
Using the identity

MMN ıaF
M ∧ ?FN = IΛΣ

(
ıaF

Λ ∧ ?FΣ − FΛ ∧ ıa ? FΣ
)
, (2.17)

and the twisted self-duality constraint eq. (2.13), the energy-momentum tensor of the 1-
forms can be written in the form

− ΩMN ıa ? F
M ∧ ?FN , (2.18)

which is left invariant by the transformations that leave invariant Ω

STΩS = Ω , (2.19)

that is, by transformations that belong to Sp(2nV ,R) [36]. Defining the nV ×nV blocks of
the symplectic matrix S

S =
(
A B

C D

)
, (2.20)

the symplectic nature of S implies the following conditions for them:

ATC − CTA = 0 , (2.21a)
BTD −DTB = 0 , (2.21b)
DTA−BTC = 1nV ×nV . (2.21c)

It is not difficult to see that, if S symplectic, so is ST . The symplectic nature of ST

implies

BAT −ABT = 0 , (2.22a)
DCT − CDT = 0 , (2.22b)
DAT − CBT = 1nV ×nV . (2.22c)

On the other hand, eq. (2.19) implies

Ω−1SΩ = S−1T , (2.23)

and, going back to eq. (2.16), we find that

M−1 ′ = SM−1ST . (2.24)

Defining the nV × nV , symmetric, period matrix

N = R+ iI , (2.25)
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it can be seen that the transformation of M eq. (2.24) is equivalent to the following
generalized fractional-linear transformations of N :

N ′ = (C +DN ) (A+BN )−1 . (2.26)

It is clear that these transformations of the period matrix are associated to trans-
formations of the scalars which we are going to study in their infinitesimal form. The
transformations of the scalars that leave the equations of motion invariant must necessar-
ily be generated by the Killing vectors of the σ-model metric gxy, which we are going to
denote by {kAx(φ)}.9 In some cases it is convenient to include in this set some vectors
which are identically zero so that the index A can be used to label also transformations
of the 1-form fields that do not involve the scalars, if necessary. Of course, additional
conditions involving the kinetic matrices (hence, the period matrix) need to be satisfied.

The infinitesimal transformations of the 1-form fields are

S ∼ 12nV ×2nV + αATA ,

TA =
(
TA

M
N

)
=

 TA
Λ

Σ TA
ΛΣ

TAΛΣ TAΛ
Σ

 .
(2.28)

S is symplectic if

TA
TΩ + ΩTA = 0 , ⇒ (ΩTA)T = ΩTA , (2.29)

(so ΩMPTA
P
N is symmetric in MN) which implies, for the block matrices

TAΛΣ = TAΣΛ ,

TA
Λ

Σ = −TAΣ
Λ ,

TA
ΛΣ = TA

ΣΛ .

(2.30)

Then, the infinitesimal form of eq. (2.26) is

δANΛΣ = TAΛΣ + TAΛ
ΩNΩΣ −NΛΩTA

Ω
Σ −NΛΓTA

ΓΩNΩΣ , (2.31)

and, for the kinetic matrices,

δARΛΣ = TAΛΣ + TAΛ
ΩRΩΣ −RΛΩTA

Ω
Σ −RΛΓTA

ΓΩRΩΣ + IΛΓTA
ΓΩIΩΣ , (2.32a)

δAIΛΣ = TAΛ
ΩIΩΣ − IΛΩTA

Ω
Σ − 2R(Λ|ΓTA

ΓΩIΩ|Σ) . (2.32b)

9These transformations leave exactly invariant the energy-momentum tensor of the scalars, which is the
only piece of the Einstein equations that we had not studied and transform covariantly the first two terms
of the scalar equations of motion:

δA {d ? dφx + Γyzxdφy ∧ ?dφz} = ∂wk
x
A {d ? dφw + Γyzwdφy ∧ ?dφz} . (2.27)
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Then, it can be easily seen that the whole scalar equations of motion transform as

δAEx = −∂xkAyEy , (2.33)

under the transformations

δAφ
x = kA

x , δAF
M = TA

M
NF

N , (2.34)

provided that
kA

x∂xN = δAN , (2.35)

where δAN is the infinitesimal generalized fractional-linear transformation in eq. (2.31)
(or equivalently, in eqs. (2.32a) and (2.32b) for the kinetic matrices). This equivariance
condition of the kinetic matrices is the condition we announced when we defined the theory.

3 A definition of scalar charge

Not all the symmetries of the equations of motion that we have studied are symmetries of
the action: those generated by TAΛΣ do not leave the action invariant. Those generated
by TAΛΣ leave it invariant up to a total derivative. However, as shown in ref. [36], there
is an on-shell conserved current for each of them, the so-called Noether-Gaillard-Zumino
(NGZ) current. The simplest way to construct them is by contracting the scalar equations
of motion with the Killing vectors that generate them. Using the Killing vector equation
and the equivariance conditions eqs. (2.32a) and (2.32b) we get [34]

kA
xEx = −d ? k̂A −

1
2ΩMPTA

P
NF

M ∧ FN

= −d
[
?k̂A + 1

2ΩMPTA
P
NA

M ∧ FN
]

+ 1
2ΩMPTA

P
NA

M ∧EN ,
(3.1)

where we have collected in a symplectic vector of 3-forms the Maxwell equations and
Bianchi identities: (

EM
)
≡
(

EΛ

EΛ

)
, (3.2)

and where we have denoted by k̂A the pullback of the 1-form dual to the target space
Killing vector kA

k̂A ≡ kAxgxydφy . (3.3)

Therefore, we find that the NGZ currents

? jA ≡ − ? k̂A −
1
2ΩMPTA

P
NA

M ∧ FN , (3.4)

are conserved on-shell

d ? jA = kA
xEx −

1
2ΩMPTA

P
NA

M ∧EN .= 0 . (3.5)
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The conservation of these currents follows from a global symmetry and the associated
charges are expressed as integrals over spacelike hypersurfaces (volumes)

qA ∼
∫

Σ3
?jA . (3.6)

However, it is not difficult to see that in static black hole solutions with non-trivial
scalar fields φx whose charges Σx are conventionally defined10 through the asymptotic
behavior of the field at spatial infinity

φx
r→∞∼ φx∞ + Σx

r
, (3.7)

the NGZ charges not only do not reproduce the charges Σx (or combinations of them) but
vanish identically.

In stationary black hole spacetimes, though, there is another definition of scalar charge
that satisfies a Gauss law. Let us assume that all the fields are invariant under the isometry
generated by the spacetime vector k, δkϕ = 0. This implies, in particular, that k is a Killing
vector and, for us, it will be the Killing vector associated to the Black hole’s Killing horizon.
For the scalar fields it means that their Lie derivatives with respect to that vector vanishes

δkφ
x = −£kφ

x = −ıkdφx = 0 . (3.8)

As shown in [11–13],11 for the 1-form fields, it means that their Lie derivatives with
respect to k plus a gauge transformation with parameter

χk = ıkA− Pk , (3.9)

where the Maxwell momentum map Pk satisfies the Maxwell momentum map equation12

ıkF + dPk = 0 , (3.11)

vanish identically:

δkA
M = −£kA

M + dχMk = − (ıkd+ dık)AM + d
(
ıkA

M − PkM
)

= −
(
ıkF

M + dPk
M
)

= 0 ,
(3.12)

by virtue of the Maxwell momentum map equation (3.11).
10See, for instance, ref. [5].
11The work terms for the electric charges associated to p-forms were found using the covariant phase

space formalsm in ref. [14]. See also [15] for a different, equivalent, approach based on the mathematics
of principal bundles. The importance of the gauge- and diffeomorphism invariance of the charges and
potentials that occur in the laws of black-hole thermodynamics has been stressed in [16, 18] and in the 5th
chapter of [17].

12The local existence of a Pk satisfying this equation follows from the assumption:

δkF = −£kF = −dıkF = 0 . (3.10)

– 9 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
8

If all the fields are invariant under δk, so must the NGZ currents be. Furthermore,
since the NGZ currents are not gauge invariant, we must use this definition for δk:

δk ? jA = −£k ? jA + δχk ? jA

= − (ıkd+ dık) ? jA −
1
2ΩMPTA

P
NδχkA

M ∧ FN

.= −dık ? jA −
1
2ΩMPTA

P
Ndχk

M ∧ FN

.= d

{
−ık ? jA −

1
2ΩMPTA

P
Nχk

MFN
}

= 0 ,

(3.13)

by assumption.
The expression in brackets is a 2-form that satisfies a Gauss law. Massaging it a bit,

we find the following manifestly gauge-invariant expression for it:

QA[k] = ık ? k̂A + ΩMPTA
P
NPk

MFN . (3.14)

Now, integrating over 2-dimensional, spacelike, closed surfaces (and restoring the nor-
malization) we get the charges associated to the NGZ currents:

QA,k = 1
16πG(4)

N

∫
Σ2

{
ık ? k̂A + ΩMPTA

P
NPk

MFN
}
. (3.15)

This is our proposal for scalar charges. Observe that under a duality transformation
generated by kA, TA with Lie brackets and commutation relations

[kA, kB] = −fABCkC , [TA, TB] = +fABCTC , (3.16)

these charges transform in the adjoint representation of the duality group:

δAQB,k = −fABCQC,k . (3.17)

In what follows we are going to show in several examples corresponding to static dilaton
and axidilaton black holes that their values are non-vanishing and reproduce the values
of the conventionally-defined scalar charges eq. (3.7) but, before we set to do that, let us
observe that this definition depends on the value of the momentum map over the integration
surface. The Maxwell momentum map is defined only up to an additive constant. This
constant can be chosen so that PkM

∣∣∣
∞

= 0. That is the choice that allows us to recover
the values of the conventionally-defined scalar charges eq. (3.7). However, other choices are
possible. The form of the first law that we are going to find includes an additional term
that takes into account that possibility so that the first law is invariant under a change of
asymptotic value of the Maxwell momentum maps.

It is also worth stressing that in the case in which we are considering (a symmetric
σ-model) there are always more symmetries than scalar fields. Therefore, there are more
2-forms QA[k] satisfying a Gauss law than scalars. Obviously, not all of them will be

– 10 –
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independent. In any case, the conservation laws of those currents can be used to reconstruct
the equations of motion of the scalars using the identity

δx
y = gABkAxkB

y , (3.18)

in which gAB is the Killing metric of the duality group G.
It also follows that there are more scalar charges than scalars, but we are going to see

that the conventionally-defined scalar charges Σx can be expressed in terms of the charges
QA,k that we have just defined.

It is worth mentioning that there is a slightly different procedure that allows us to
obtain the same expression eq. (3.14) and that was used in the case of dilaton black holes
in ref. [35]. In that case there is only one scalar and one target space Killing vector k = 1
that generates the constant shifts of the scalar which are compensated by rescalings of the
vector field (see section 5). In our case, we have to project the scalar equations with the
different Killing vectors kAx first, as in the first line of eq. (3.1). Then, we take the inner
product of the resulting equation with ık

ıkkA
xEx = −ıkd ? k̂A − ΩMPTA

P
N ıkF

M ∧ FN . (3.19)

If all the fields are invariant under the diffeomorphism generated by k

−ıkd ? k̂A = dık ? k̂A ,

ıkF
M = −dPkM ,

(3.20)

and, integrating by parts we arrive to dQA[k] = 0.

4 First law and scalar charges

Taking into account the results obtained in refs. [11–13, 26] for the inclusion of matter fields,
in Wald’s formalism [8–10], the first law of black hole thermodynamics for a non-extremal
black hole whose bifurcate horizon coincides with the Killing horizon of the Killing vector
field k = ∂t + Ω∂ϕ, can be derived by integrating the on-shell identity

dW[k] .= 0 , (4.1)

where
W[k] ≡ δQ[k] + ıkΘ(ϕ, δϕ)−$k , (4.2)

over a spacelike hypersurface with boundaries at spatial infinity (S2
∞) and at the bifurcation

sphere BH and applying the Stokes theorem.
In the above identity Q[k] is the Noether-Wald charge for the Killing vector k, Θ(ϕ, δϕ)

is the presymplectic (d− 1)-form defined in ref. [8] and $kis defined by13

δΛkΘ(ϕ, δϕ) ≡ d$k . (4.3)
13This term arises when the effect of the induced gauge transformations are correctly taken into account

as in ref. [26]. In eq. (4.3) δΛk
stands for all the gauge transformations induced by the isometry generated

by k.
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Furthermore, it is assumed that the variations of the fields δϕ satisfy the linearized equa-
tions of motion in the black-hole’s background.

The first law, thus, follows from the identity∫
S2∞

W[k] =
∫
BH

W[k] . (4.4)

In previous works, following ref. [10], we assumed that, almost by definition, the first
integral simply gives the variation of the conserved charges associated to the Killing vector
k, that is,

δM − ΩδJ . (4.5)

A closer look reveals that, in presence of matter fields, it contains additional terms
that contribute to the first law [26]. In particular, as we are going to see, it contains terms
related to the scalar charges that we have just defined.

A standard calculation along the lines of refs. [11–13, 26] gives

Q[k] = ?(ea ∧ eb)Pk ab − PkΛFΛ , (4.6)

where Pk ab is the Lorentz momentum map defined in ref. [11] and coincides with the Killing
bivector

Pk ab = ∇akb , (4.7)

and PkΛ is the Maxwell momentum map defined in eq. (3.11). A quick calculation gives

δQ[k] = Pk abδ ? (ea ∧ eb) + ?(ea ∧ eb)δPk ab − FΛδPk
Λ − PkΛδFΛ . (4.8)

The presymplectic 3-form is given in eq. (2.6) and another short calculation gives

ıkΘ = −ık ? (ea ∧ eb) ∧ δωab − ?(ea ∧ eb) ∧ δıkωab + gxyık ? dφ
xδφy

− 1
2 ıkFΛ ∧ δAΛ − 1

2FΛ ∧ δıkAΛ .
(4.9)

Since, on-shell, the dual 1-forms obey the same equations as the original ones, we can
define the dual (magnetic) momentum maps PkΛ through the equation

ıkFΛ + dPkΛ = 0 , (4.10)

and, substituting this definition in the above expression and integrating by parts, we get

ıkΘ = −ık ? (ea ∧ eb) ∧ δωab − ?(ea ∧ eb) ∧ δıkωab + gxyık ? dφ
xδφy

+ PkΛ ∧ δFΛ − FΛ ∧ δıkAΛ ,
(4.11)

up to an irrelevant total derivative.
Another simple calculation gives [26]

δΛkΘ = (δσk + δχk)Θ

= −δσk
[
?(ea ∧ eb) ∧ δωab

]
− FΛ ∧ δχkδA

Λ

= − ? (ea ∧ eb) ∧ Dδσk ab − FΛ ∧ dδχkΛ

= d
{
− ? (ea ∧ eb) ∧ δσk ab − FΛδχk

Λ
}
,

(4.12)

– 12 –
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where the parameters of the induced Lorentz and Maxwell gauge transformations are,
respectively

σk
ab = ıkω

ab − Pkab , (4.13a)
χk

Λ = ıkA
Λ − PkΛ . (4.13b)

Therefore,
−$k = ?(ea ∧ eb) ∧ δσk ab + FΛδχk

Λ . (4.14)

Combining all these partial results, we arrive at

W[k] = Pk abδ ? (ea ∧ eb)− ık ? (ea ∧ eb) ∧ δωab
− PkΛδFΛ + PkΛδF

Λ + gxyık ? dφ
xδφy .

(4.15)

Let us consider the integral of W[k] at spatial infinity first, restoring the global factor
1/(16πG(4)

N ). The first two terms give the gravitational contribution

1
16πG(4)

N

∫
S2

∞

{
Pk abδ ? (ea ∧ eb)− ık ? (ea ∧ eb) ∧ δωab

}
= δM − ΩδJ , (4.16)

while the third and fourth give14

1
16πG(4)

N

∫
S2

∞

{
−PkΛδFΛ + PkΛδF

Λ
}

= −ΦΛ
∞δqΛ + ΦΛ∞δp

Λ = −ΩMNΦM
∞δq

N , (4.17)

where ΦΛ
∞ and ΦΛ∞ are the values of the electrostatic and magnetostatic potentials at

spatial infinity.
Let us consider the last term. In the previous cases only conserved charges are involved

and it is natural to use the definition of scalar charges we have proposed here to rewrite
that term. Using the identity gxy = gABkAxkB y

gxyık ? dφ
xδφy = gABık ? k̂AkB yδφ

y =
(
QA[k]− ΩMPTA

P
NPk

MFN
)
δA . (4.18)

where we have defined
δA ≡ gABkB yδφy , (4.19)

Restoring the global factor 1/(16πG(4)
N ), we find

∫
S2

∞

(
QA[k]− 1

16πG(4)
N

ΩMPTA
P
NPk

MFN
)
δA =

(
QAk − ΩMPTA

P
NΦM
∞q

N
)
δA∞ . (4.20)

Then,∫
S2

∞

W[k] = δM − ΩδJ − ΩMNΦM
∞δq

N +
(
QA − ΩMPTA

P
NΦM
∞q

N
)
δA∞ . (4.21)

14The electric and magnetic Maxwell momentum maps can be identified with the electrostatic and mag-
netostatic potentials ΦΛ and ΦΛ, respectively.
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The bifurcation surface is defined by the property k = 0 and, on it,

Pk ab
BH= κnab , (4.22)

where nab is the binormal to the horizon wit the normalization nabnab = −2 and κ is the
surface gravity. Therefore,∫

BH
W[k] = 1

16πG(4)
N

∫
BH

{
Pk abδ ? (ea ∧ eb)− PkΛδFΛ + PkΛδF

Λ
}

= κδAH

2πG(4)
N

− ΦΛ
HδqΛ + ΦΛHδp

Λ ,

(4.23)

where AH is the area of the horizon and ΦΛ
H and ΦΛH are the values of the electrostatic

and magnetostatic potentials over the horizon (constant according to the generalized ze-
roth law).

We arrive at our main result:15

δM = κδAH

8πG(4)
N

+ ΩδJ − ΩMN

(
ΦM
H − ΦM

∞

)
δqN −

(
QAk − ΩMPTA

P
NΦM
∞q

N
)
δA∞ . (4.24)

In this expression the object δA∞ is unusual, but it just reflects the different forms in
which the dualities of the theory can modify the values of the moduli at infinity, which are
also naturally associated to the charges that we have defined.

The last term involving ΦM
∞ is also unusual, but it has to be there if we are going to

allow for potentials which do not vanish at infinity. In the examples that we are going to
study explicitly, ΦM

∞ = 0 and the scalar charges take the expected value. Furthermore,
in that case, the scalar term can be brought to the form found in ref. [5] (up to the
normalization of the charges):

−QAkδA∞ = −QAkgABkBx∞gxy∞δφy∞ = −1
4Σxgxy∞δφ

y
∞ , (4.25)

where the scalar charges defined through the asymptotic expansions, Σx are related to the
ones associated to the duality symmetries QA by

Σx = 4QAgABkBx∞ . (4.26)

Finally, observe that, on the bifurcation surface

QA[k] BH= ΩMPTA
P
NPk

M
H F

N , (4.27)

and, therefore
QAk = −ΩMPTA

P
NΦM
H q

N . (4.28)

This formula, which is our second main result, gives a universal relation between the
scalar charges of a black hole and the electric and magnetic charges and potentials evaluated

15The overall sign of the electric and magnetic terms is unconventional. It is due to the definition of FΛ

with a negative-definite kinetic matrix IΛΣ. It can be easily be changed, but the relative sign between the
electric and magnetic terms can only be changed at the expense of losing explicit symplectic invariance.
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on the horizon generalizing the result found in ref. [35] in a gauge-invariant way. Observe
that The existence of a bifurcate Killing horizon is crucial: in other spacetime backgrounds
the scalar charges may take arbitrary values in agreement with the no-hair “theorem” and
the interpretation of the non-trivial scalar fields of these black-hole solutions as secondary
scalar hair [2].16

If we plug that formula back into the first law we arrive at

δM = κδAH

8πG(4)
N

+ ΩδJ − ΩMN

(
ΦM
H − ΦM

∞

)
δqN − ΩMPTA

P
N

(
ΦM
H − ΦM

∞

)
qNδA∞ , (4.29)

which is manifestly independent of the choice of asymptotic value of the potentials.
Notice that the right-hand side of this expression only contains the variations of quanti-

ties which are independent physical parameters of the black-hole solutions. The variations
of the scalar charges cannot and do not appear. The scalar charges actually pleay the roles
of thermodynamical potentials.

In the next two sections we are going to compare the scalar charges we have defined
with those obtained through the asymptotic expansion and the first law that we have
obtained with the first law obtained through the variation of the entropy with respect to
the physical parameters in two sets of solutions: static, electrically-charged black holes and
static axion-dilaton black holes.

5 Static dilaton black hole solutions

Dilaton black holes are solutions of the family of models defined by the action17

S[e,A, φ] = 1
16π

∫ {
− ? (ea ∧ eb) ∧Rab + 1

2dφ ∧ ?dφ+ 1
2e
−aφF ∧ ?F

}
, (5.1)

which depends on the real parameter a and determines the strength of the coupling of the
dilaton and the Maxwell field. The static black-hole solutions18 of this model were found
in refs. [37–39] and can be written in the form

ds2 = H
− 2

1+a2Wdt2 −H
2

1+a2
[
W−1dr2 + r2dΩ2

(2)

]
,

At = αeaφ∞/2(H−1 − 1) ,

e−φ = e−φ∞H
2a

1+a2 ,

(5.2)

where the functions H and W take the form

H = 1 + h

r
, W = 1 + ω

r
, (5.3)

16Static, spherically-symmetric solutions of pure gravity and dilaton gravity with primary scalar hair
(i.e. scalar fields with charges which are independent parameters of the solutions) can be found in refs. [3, 4]
(see also the higher-dimensional generalizations in chapter 16 of ref. [1]) and are singular.

17Sometimes they are called Einstein-Maxwell-Dilaton (EMD) actions. We set G(4)
N = 1 throughout all

this section.
18Related solutions with primary scalar hair were found in ref. [4].
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and the integration constants h, ω, α satisfy the following relation

ω = h
[
1− (1 + a2)(α/2)2

]
. (5.4)

In terms of the physical parametersM, q, φ∞ (ADMmass, electric charge and modulus)
and the coupling constant a, the integration constants h, ω and α are given by

h = −a
2 + 1
a2 − 1

{
M −

√
M2 + 4(a2 − 1)eaφ∞q2

}
,

ω = − 2
a2 − 1

{
a2M −

√
M2 + 4(a2 − 1)eaφ∞q2

}
,

α = −4qeaφ∞/2/h ,

(5.5)

for a 6= 1 and

h = 4eφ∞q2

M
,

ω = −2M
2 − 2eφ∞q2

M
,

α = −e−φ∞/2M/q .

(5.6)

The scalar charge Σ, computed using the conventional asymptotic definition

φ ∼ φ∞ + Σ
r
, (5.7)

takes the value
Σ = − 2ah

a2 + 1 . (5.8)

We have chosen the sign of the square roots in h and ω so as to always have h > 0 and
ω negative if certain non-extremality conditions are met: for all values of a

M2 >
4

a2 + 1e
aφ∞q2 . (5.9)

In that case, there is an event horizon at

r = −ω ≡ r0 , (5.10)

with Bekenstein-Hawking entropy

S = πr
2a2
a2+1
0 (r0 + h)

2
a2+1 , (5.11)

and Hawking temperature
T = r0

4S . (5.12)

We can derive the first law for these families of black holes by varying the entropy with
respect to all the independent physical parameters, including the modulus φ∞:

δS = 1
T

[
δM + 4

(a2 + 1)αe
aφ∞/2δq + 1

4Σδφ∞
]
, (5.13)
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for a2 6= 1 and

δS = 1
T

[
δM + 2

α
eφ∞/2δq + 1

4Σδφ∞
]
, (5.14)

for a2 = 1.
In the above expressions Σ is the scalar charge defined through the asymptotic expan-

sion eq. (5.7).
These theories are invariant under the global transformations generated by

δφ = −1 , δA = −a2A , (5.15)

and eq. (3.14) takes the form

Q[k] = − 1
16π

{
ık ? dφ+ a

2Pke
−aφ ? F

}
= − ah

8π(a2 + 1)ω(2) , (5.16)

where ω(2) is the volume form of the round 2-sphere of unit radius. It is evident that these
2-forms satisfy a Gauss law and they give the same value when they are integrated over
2-spheres of any radius:

Qk = − ah

2(a2 + 1) = −1
4Σ , (5.17)

as expected according to our general arguments. This is, essentially, the result obtained
by Pacilio in ref. [35].

6 Static axion-dilaton black hole solutions

The so-called axion-dilaton model is just a generalization to an arbitrary number of vector
fields nV of pure, ungauged, N = 4, d = 4 supergravity [40], although this model can also
be embedded in N = 2, d = 4 supergravity for nV = 2.

We can introduce it as a model with two real scalars φ1 = a (the axion) and φ2 = φ

(the dilaton) which are naturally combined into the complex scalar (axidilaton)

λ = a+ ie−2φ , (6.1)

and where the σ-model metric and the period matrix are given by

(gxy) =
(
e4φ 0
0 4

)
, NΛΣ = −λδΛΣ . (6.2)

The most general non-extremal, static, black-hole solution of the axion-dilaton
model was presented in ref. [41] and it is a generalization of the solutions presented in
refs. [37, 42–46].19 A very useful feature of this solution is that it is written in terms of
its physical parameters only: the ADM mass M , the asymptotic value of the axidilaton
λ∞ = a∞ + ie−2φ∞ , the complex electromagnetic charges ΓΛ (a combination of the real

19The most general stationary, non-extremal black-hole solution of this theory was presented in ref. [47].
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electric charges qΛ, the real magnetic charges pΛ and the moduli λ∞) and the complex axi-
dilaton charge Υ = Σ+ i∆. All these parameters are defined by the asymptotic expansions
(G(4)

N = 1)

gtt ∼ 1− 2M
r

, (6.3a)

λ ∼ λ∞ − ie−2φ∞ 2Υ
r
, (6.3b)

1
2
[
FΛ

tr + i ? FΛ
tr

]
∼ e+φ∞ΓΛ

r2 = e+2φ∞(qΛ − λ∗∞pΛ)
r2 . (6.3c)

The asymptotic behavior of λ implies for those of a and φ

a ∼ a∞ + 2e−2φ∞=mΥ
r

, (6.4a)

φ ∼ φ∞ + <eΥ
r

, (6.4b)

so
Σ1 = 2e−2φ∞=m(Υ) , Σ2 = <e(Υ) . (6.5)

The axidilaton charge is a function of the rest of the physical parameters:

Υ = − 2
M

ΓΛ ∗ΓΛ ∗ . (6.6)

The ADM mass can be defined more rigorously as a conserved quantity through the
ADM [48], the Abbott-Deser [49] or many other formalisms. The electric and magnetic
charges can also be defined as conserved charges by standard methods refs. [50, 51] as

pΛ ≡ 1
16πG(4)

N

∫
FΛ , (6.7a)

qΛ ≡
1

16πG(4)
N

∫
FΛ . (6.7b)

In contrast, as we have stressed, the scalar charges are conventionally defined through
the above asymptotic expansion which is not based on any conservation (Gauss) law. Our
goal in this section will be to show that the definition of scalar charges that we have
proposed in section 3 gives exactly the same result for the static solutions of the axion-
dilaton model.

The most economical way of presenting this kind of solutions is through the time
components of the original and dual 1-form fields AΛ

t and AΛ t, respectively. They contain
enough information to recover the rest of the components of each of them.20 The solution
is, then, [41]

ds2 = e2Udt2 − e−2Udr2 −R2dΩ2
(2) ,

λ = λ∞r + λ∗∞Υ
r + Υ ,

AΛ
t = 2eφ∞R−2[ΓΛ(r + Υ) + c.c.] ,

AΛ t = −2eφ∞R−2[ΓΛ(λ∞r + λ∗∞Υ) + c.c.] .

(6.8)

20They are computed explicitly in ref. [27].
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The functions e2U and R are given by

e2U = R−2(r − r+)(r − r−) ,
R2 = r2 − |Υ|2 ,

(6.9)

and the parameters r± that appear in e2U (actually, the positions of the outer and inner
horizons when they take real values, i.e. when r2

0 > 0) are given by

r± = M ± r0 , with r2
0 = M2 + |Υ|2 − 4ΓΛΓΛ ∗ . (6.10)

Since we are just interested in the thermodynamics of these black holes, we only need
their Hawking temperature and Bekenstein-Hawking entropy, which are given by

T = r0
2S , (6.11a)

S = 2π
{
M2 +Mr0 − 2ΓΛ ∗ΓΛ ∗

}
. (6.11b)

Varying S with respect to the physical charges M, qΛ, p
Λ and the moduli λ∞ we get

the first law:

δM = TδS + ΦΛδqΛ − ΦΛδp
Λ − 1

2=m(Υ)e2φ∞δa∞ −<e(Υ)δφ∞ . (6.12)

The last two terms can be rewritten in two different fashions:

−1
2=m(Υ)e2φ∞δa∞ −<e(Υ)δφ∞ = −1

2=m
(

Υ∗ δλ∞
e−2φ∞

)
= −1

4gxy(φ∞)Σxδφy∞ ,

(6.13)

where Σ1,Σ2 are the asymptotic scalar charges defined in eqs. (6.5). Both expressions are
manifestly duality-invariant.21

We are now going to see how the scalar charges Σx are related to those defined in
section 3 and how the scalar term in the first law agrees with the one in eq. (4.24).

The Killing vectors of the target-space metric are

k1 = a∂a −
1
2∂φ , k2 = 1

2(1− a2 + e−4φ)∂a + 1
2a∂φ , k3 = 1

2(1 + a2 − e−4φ)∂a −
1
2a∂φ ,
(6.14)

and their Lie brackets satisfy the sl(2,R) ∼so(2, 1) algebra

[kA, kB] = εABDη
DCkC , (6.15)

where (ηAB) = (ηAB) =diag(+ +−) is the SO(2, 1) invariant metric.
The SL(2,R) matrices which act on the 1-form fields are tensor products

S =
(
A B

C D

)
⊗ 1nV ×nV , with AD −BC = 1 . (6.16)

21e2φδλ and Υ are multiplied by the same phase under SL(2,R) transformations.
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The generators (always ⊗1nV ×nV ) are

T1 = −1
2σ

3 , T2 = −1
2σ

1 , T3 = i

2σ
2 , (6.17)

and their commutation relations are

[TA, TB] = −εABDηDCkC . (6.18)

It is somewhat simpler to work with the bases k1, k± = k2 ± k3 and T1, T± = T2 ± T3.
We compute separately the ık ? k̂A and ΩMPTA

P
NP

M
k FN contributions, which in this case

correspond to
ΩMPT1

P
NP

M
k FN = 1

2
(
PΛ
k FΛ + PkΛF

Λ
)
,

ΩMPT+
P
NP

M
k FN = −PΛ

k F
Λ ,

ΩMPT−
P
NP

M
k FN = PkΛFΛ .

(6.19)

In this case we can use as potentials the time components of the original and dual
vector fields given in eqs. (6.8)

PMk = AMt , (6.20)
which vanish identically at infinity.

We are only interested in the pullback of these 2-forms over 2-spheres.22 The results,
after a long calculation are (G(4)

N = 1)

Q1 k = − 1
8πe

2φ∞=m(λ∗∞Υ)ω(2) ,

Q+ k = − 1
8πe

2φ∞=m(Υ)ω(2) ,

Q− k = 1
8πe

2φ∞=m(λ∗ 2
∞Υ)ω(2) ,

(6.21)

Again, it is evident that these 2-forms satisfy a Gauss law and they give the same value
when they are integrated over 2-spheres of any radius, namely

Q1 k = −1
2e

2φ∞=m(λ∗∞Υ) ,

Q+ k = −1
2e

2φ∞=m(Υ) ,

Q− k = 1
2e

2φ∞=m(λ∗ 2
∞Υ) .

(6.22)

It is now trivial to see that the asymptotic charges eqs. (6.5) are recovered using
eq. (4.26) with the Killing vectors given above and

(
gAB

)
=

 1 0 0
0 0 1/2

1/2 0 0

 , (6.23)

for the 1,+,− basis.
The first law eq. (4.24) is recovered with

δ1∞ = 1
2e

4φ∞δ|λ|2∞ , δ+∞ = e4φ∞δa∞ , δ−∞ = −1
2e

4φ∞(λ∗ 2
∞ δλ∞ + c.c.) . (6.24)

22There are additional tr components that we ignore since they do not contribute to the integrals.
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7 Discussion

Some final comments on our results are in order.
First of all, it is unclear how to give coordinate-independent definitions of scalar charges

satisfying a Gauss law in absence of global symmetries. This limitation led us to focus on
theories with enough global symmetries to account for all the possible scalar charges. On
the other hand, there are not many examples of black-hole solutions in theories with no or
very few global isometries. Most of the general recipes elaborated to construct black holes
in N = 2, d = 4 theories, for instance, [52] are only valid for extremal black holes, which
lie outside the scope of our methods. Working with non-extremal black holes is much more
difficult [53] although some general methods have been developed [54] and they should be
revisited to study this problem.

In general, a Gauss law is not equivalent to a full conservation law. In our case, the
restriction to backgrounds with timelike Killing vectors makes it trivially equivalent to a
conservation law in those particular backgrounds, but not in general. We expect, however,
that the existence of a rigorous definition can be used to study the evolution of scalar
charge or at least its behavior under perturbations.

It is worth stressing the relation between the value of the scalar charge and the existence
of a regular bifurcate Killing horizon. In absence of such a horizon there does not seem to
be a restriction on that value. It is because of this relation that it can be understood as
secondary black-hole hair.

The general procedure that has allowed us to define a (d− 2)-form satisfying a Gauss
law starting from the (d− 1)-form (Noether current) associated to a global symmetry can
probably used in more general settings (fermionic matter, for instance).

As we mentioned before, it should be stressed that these results can be generalized
to higher-rank fields and higher dimensions. The NGZ currents have been determined in
ref. [34] and one simply has to follow the same steps. It also seems that it should also be
possible to find (d − 2)-forms satisfying Gauss laws starting from any standard Noether
current (d− 1)-forms associated to a global symmetry.

Concerning the first law, in order to recover the GKK scalar term it has been essential
to realize that the integral of W[k] at spatial infinity gives more than just the variations
of the gravitational charges at infinity. Often, these contributions have been ignored or set
to zero via convenient boundary conditions at spatial infinity. Often, the integral on the
bifurcation surface has been also identified with the TδS term of the firm law ignoring other
contributions (work terms). We think it is now clear that there are different contributions
to the first law coming from that integral as well and that the only one which is associate
to the entropy is the one that takes the form of a conserved Lorentz charge, as we have
pointed out in refs. [12, 13, 26]. Actually, the title of ref. [9] should be replaced by “Black
hole entropy is the (Lorentz) Noether charge.”
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