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We identify potential sources of decoherence for Uð1Þ gauge bosons from a cosmological standpoint.
Besides interactions with different species in the cosmological medium, we also consider effects due to the
expansion of the Universe, which can produce particles (especially scalars) that can potentially interact with
the photon in a quantum state. We look in particular at the case of axionlike particles and their predicted
decay channels in our analysis. These interactions are shown to have a negligible effect as far as
decoherence goes. Interaction rates with cosmic microwave background radiation or through Thomson
scattering are small, so that the interstellar medium remains the biggest decoherence factor. Thus, quantum
teleportation experiments with photon energies in the range 1–10 keV should be feasible at cosmological
distances up to the galaxy formation epoch or beyond (z ∼ 100).
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I. INTRODUCTION

Quantum teleportation experiments have shown that
quantum coherence can be maintained for ever increasing
distances. Indeed, the factor that hinders coherence (break-
ing the required entanglement for teleportation) is the loss
of signal to the medium, mainly the atmosphere. This
obstacle is no longer present in space, which hints at the
possibility of performing such experiments at interstellar
distances, or even detecting quantum signals from astro-
physical sources. In this context, one of us showed recently
that the quantum state of a photon could indeed be
maintained at galactic distances, at least for a range of
the electromagnetic spectrum [1]. The reason for this is that
the mean free paths associated with the different inter-
actions the photon could have are many orders of magni-
tude larger than the galactic scales (or even the observable
Universe). As an outcome of this observation, one seminal
suggestion that paper made was the possibility for inter-
stellar quantum communication, due to the viability for
maintaining quantum coherence over these distances for
certain frequency bands. Another possibility suggested in
that paper was if there were any natural quantum coherent
sources, such signals could maintain their coherence over
interstellar distances. Extending on these ideas, that paper

also noted that this (lack of) effect most likely can be
extrapolated to cosmological distances.
This work will explore that possibility. Herewe consider a

wider variety of decoherence factors, like the expansion of
the Universe itself. However, even for this case we do not
give upon thephilosophy that decoherence takes place due to
the interaction of the quantum state with some environment.
To do so, we consider the environment to be constituted by
particles produced by the expansion of the Universe at
different epochs. The mechanism to achieve this is squeez-
ing, which has beenwidely studied in quantum optics and, in
cosmology, in the theory of inflationary perturbations. So,
borrowing from this mechanism, we compute the number of
scalar particles through squeezing, and argue that this effect
is essentially absent for fermions and Uð1Þ gauge bosons.
Moreover, we identify the scalar field (interacting with
photons) to be that of axionlike particles (ALPs), as a natural
extension of the StandardModel. With these considerations,
we are able to look at different interactions of the photonwith
the ALPs (or their decay products) in order to estimate the
probability of interactions,whichwe find to be basically null.
Thus, in practice, the expansion is not a decoherence factor
for photons (at the energies we shall consider). We also look
at other potential sources of decoherence, like interaction
with cosmic microwave background (CMB) radiation or
with electrons after reionization. The latter is more likely to
be a source of decoherence, although the probabilities remain
low enough to consider that the quantum state could remain
undisturbed after decoupling. This opens up a new window
to look for quantum signals from certain astrophysical
objects or even from cosmic strings.
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II. EXPANSION-INDUCED DECOHERENCE

A. Scalar fields

In order to learn how the expansion of the Universe can
lead to decoherence, let us look at the theory of cosmic
inflation for guidance. Cosmological perturbations during
inflation undergo a process known as squeezing, where
states of the type jnk; n−ki are created at superhorizon
scales. This is an effect purely due to expansion, whose
basic principles can be grasped just by studying a massless
scalar field minimally coupled to gravity, as follows:

S ¼ 1

2

Z
dtd3x

ffiffiffiffiffiffi
−g

p ∂μϕ∂μϕ

¼ 1

2

Z
dτd3xa2½ðϕ0Þ2 − ð∇ϕÞ2�; ð1Þ

where primes denote derivative with respect to the con-
formal time τ. It is convenient to introduce the change of
variable φ≡ aϕ, such that

S ¼ 1

2

Z
dτd3x

��
φ0 −

a0

a
φ

�
2

− ð∇φÞ2
�
: ð2Þ

Using the Euler-Lagrange equations, and going to Fourier
space, one gets the mode equations

φ00
k þ

�
k2 −

a00

a

�
φk ¼ 0: ð3Þ

In the case of a perfect de Sitter expansion, a00=a ¼ 2=τ2,
the equation of motion becomes

φ00
k þ

�
k2 −

2

τ2

�
φk ¼ φ00

k þ ðk2 − 2ðaHÞ2Þφk ¼ 0: ð4Þ

Clearly, the solutions are oscillatory for k2 > 2ðaHÞ2,
whereas for k2 < 2ðaHÞ2 there is a growing and a
decaying-mode solution. The question which then arises
is what should be the right initial state for solving this
equation. For inflation, one usually takes Bunch-Davies
initial states

φkðτÞ ¼
e−ikτffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
; ð5Þ

such that the time-dependent field operator and the canoni-
cal momentum are given by

φ̂ðτ; xÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffi
2k

p
�
e−ikτ

�
1 −

i
kτ

�
ĉkðτ0Þ

þ eikτ
�
1þ i

kτ

�
ĉ†−kðτ0Þ

�
eik·x; ð6Þ

π̂ðτ; xÞ ¼ φ0 −
a0

a
φ

¼ −i
Z

d3k
ð2πÞ3

ffiffiffi
k
2

r
½e−ikτĉkðτ0Þ − eikτĉ†−kðτ0Þ�eik·x:

ð7Þ

The creation and annihilation operators at later times can
be found through a Bogolyubov transformation, such that

ĉkðτÞ ¼ αkðτÞĉkðτ0Þ þ βkðτÞĉ†−kðτ0Þ;
ĉ†−kðτÞ ¼ α�kðτÞĉ†−kðτ0Þ þ β�kðτÞĉkðτ0Þ; ð8Þ

where jαkj2 − jβkj2 ¼ 1.
Considering this, one can parametrize these coefficients

as

αk ¼ coshðrkÞe−iΘk ; βk ¼ − sinhðrkÞeiðΘkþ2ϕkÞ; ð9Þ

which renders

φ̂kðτÞ ¼
1ffiffiffiffiffi
2k

p f½coshðrkÞe−iΘk − sinhðrkÞe−iðΘkþ2ϕkÞ�ĉk
þ ½coshðrkÞeiΘk − sinhðrkÞeiðΘkþ2ϕkÞ�ĉ†−kg;

π̂kðτÞ ¼ −i
ffiffiffi
k
2

r
f½coshðrkÞe−iΘk þ sinhðrkÞe−iðΘkþ2ϕkÞ�ĉk

− ½coshðrkÞeiΘk þ sinhðrkÞeiðΘkþ2ϕkÞ�ĉ†−kg: ð10Þ

Comparing with the equations above (depending on
Bunch-Davies functions), one readily finds the parameters

rk ¼ sinh−1
�

1

2kτ

�
; Θk ¼ kτ þ tan−1

�
1

2kτ

�
;

ϕk ¼ −
π

4
−
1

2
tan−1

�
1

2kτ

�
: ð11Þ

The vacuum expectation value of the number of particles
for the new vacuum in the k mode is given by

hNki ¼ jβkj2 ¼ sinh2ðrkÞ ¼
�

1

2kτ

�
2

: ð12Þ

Thus, for k < 2=ðaHÞ the expectation number is bigger
than 1. In practice, this matches the region for which the
equation of motion has the exponential solutions, and in
particular, where squeezing takes place.

1. Particle production during the standard
cosmological expansion

In order to find the density of particles created during the
expansion history, it is convenient to have at hand the
evolution of the scale factor as a function of the conformal
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time, starting from the inflationary era until the matter
dominated era. We shall assume the transitions between
epochs to be instantaneous, commonly known as the
sudden approximation.1 Using the sudden approximation
between the (quasi-)de Sitter expansion and the hot big
bang phase, the scale factor is given by

aðτÞ ¼
� ðHInf jτjÞ−1; τ < τe < 0

αMðτ − τeÞ2 þ αRðτ − τeÞ þ αI; τ > τe
;

αM ¼ πG
3

ρeqa3eq; αI ¼
1

HInf jτej
;

αR ¼
�
4πG
3

ρeqa3eq

�
1

HInf jτej
þ aeq

��
1=2

; ð13Þ

where τe denotes the conformal time at the end of inflation
and “eq” refers to the time of matter-radiation equality.
The quadratic term corresponds to the evolution during
matter domination, whereas the linear term to radiation
domination.
Then, the equation of motion Eq. (3) (which is for a

completely general cosmological background) during this
epoch(s) is given by

φ00
k þ

�
k2−

2αM
αMðτ− τeÞ2þαRðτ− τeÞþαI

�
φk ¼ 0: ð14Þ

Naturally, one can identify regions where the equation gets
simplified. For the radiation-dominated era, the e.o.m. is

φ00
k þ k2φk ¼ 0; ð15Þ

whereas for the matter-dominated era, it is given by

φ00
k þ

�
k2 −

2

τ2

�
φk ¼ 0; ð16Þ

i.e., the same equation as for the inflationary era. In
principle, there can be small changes to the usual (pos-
itive-frequency) vacuum state coming from effects of
gravitational phase transitions. However, the corrections
to the positive-frequency vacuum are small or, in other
words, the number of particles created due to these phase
transitions quickly dilute. Therefore, it is reasonable to
consider the Bunch Davies-like initial states, such that the
solutions to these equations are, respectively, given by

RadφkðτÞ ¼
1ffiffiffiffiffi
2k

p e−ik=H; ð17Þ

and the basis for the matter-dominated era as

MatφkðτÞ ¼
1ffiffiffiffiffi
2k

p
�
1 −

iH
2k

�
e−2ik=H; ð18Þ

whereH is the comoving rate of expansion.2 As mentioned,
the matching of the solutions during the different epochs
will lead to excited states that will increase the number of
generated particles. However, for now it will be enough to
concentrate on this simple form of solutions. Moreover,
notice that Eq. (18) has the same functional form as the
Bunch-Davies solution for de Sitter spacetime, and thus the
squeezing formalism derived for that case also applies here.
In particular, the vacuum expectation of the number of
particles is

hNki ¼ jβkj2 ¼
�

1

2kτ

�
2

: ð19Þ

On the contrary, during radiation domination there is no
mass term in the e.o.m., so there is no squeezing and
particle production during this era. Therefore, expansion
induces particle excitations of a scalar field only during the
de Sitter and matter-dominated eras. Before moving on,
we will cover the case of massive scalar fields during
inflation, and similar calculations can be done for standard
expansion.

2. The massive scalar case

Here we will cover (although somewhat superficially)
the case of a massive scalar field. A priori, one would
expect particle production for massive fields to be less
efficient, so we need to quantify the required corrections to
the functions displayed above.
Let us start with a generalization of the action Eq. (2),

S ¼ 1

2

Z
dτd3x

��
φ0 −

a0

a
φ

�
2

− ð∇φÞ2 − a2m2φ2

�
; ð20Þ

which renders the following equation of motion for the
field:

φ00
k þ

�
k2 −

�
a00

a
− a2m2

��
φk ¼ 0: ð21Þ

Once again, this equation is completely general for any
cosmological epoch. For inflation this becomes

φ00
k þ

�
k2 −

1

τ2

�
2 −

m2

H2

��
φk ¼ 0; ð22Þ

where the Bunch-Davies solution is

1Relaxing this assumption does not change our main findings.

2We here ignore any squeezing which takes place before the
epoch of radiation domination.
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φk ¼
eið2νþ1Þπ

4ffiffiffiffiffi
2k

p
ffiffiffi
π

2

r
w1=2Hð1Þ

ν ðwÞ; ð23Þ

where w ¼ jkτj and ν2 ¼ 9=4 − ðm=HÞ2. The conjugate
momentum is

πk ¼ −i
ffiffiffi
k
2

r �
−i

ffiffiffi
π

2

r
eið2νþ1Þπ

4½w1=2Hð1Þ
ν−1ðwÞ

þ w−1=2ð3=2 − νÞHð1Þ
ν ðwÞ�

�
: ð24Þ

Notice that negative values of ν lead to exponentially
suppressed solutions. Thus, as expected, there is no particle
production for m≳H. Then, assuming that the mass term
is small enough so that ν is safely larger than 0, one can
compute the number of generated particles due to squeez-
ing by comparing the equations above with Eq. (10). In
order to have analytical expressions, one can expand
Eqs. (23) and (24) in powers of m=H, which yields

jβkj2 ≃
�

1

2kτ

�
2
�
1þ 2

3

m2

H2
ð−1þ γE þ lnð2wÞÞ

�
; ð25Þ

where γE denotes the Euler-Mascheroni constant.
Naturally, during radiation domination this type of mass
term does not enhance squeezing, whereas during matter
dominance it is more subdominant than in the other eras
(τ−4 vs τ−2).

B. Setting up an environment

What we have covered so far is valid for a scalar field, so
the natural next step is to try and reproduce this for photons.
However, in this case there is no induced time-dependent
mass term and thus no squeezing (similarly to the scalar
case during radiation domination). Naturally, there can be
particle production due to interactions with other fields, but
such processes are not linked to the background dynamics.
In fact, in some cases the expansion just dilutes whatever
number of particles are produced through these couplings.
Consequently, in order to grasp the effects of decoherence
of photons due to expansion alone, the next best thing is to
look at the interactions between the quantum state (of a test
photon) and an environment encompassed by either pseu-
doscalar particles produced by the squeezing of super-
horizon states, or by decay products of these scalars, in
particular, into photons. Arguably, the preeminent example
of a scalar field in such scenario is the axion, which has a
well-known interaction with Uð1Þ fields. Moreover, the
interactions between axions and photons through other
means have been widely explored in the literature, where
the search of this particle is largely based on this inter-
action. The interaction between axions and Uð1Þ gauge
fields is described by the Lagrangian

LAγγ ¼ −
gAγγ
4

FμνF̃μνϕA ¼ gAγγE · BϕA; ð26Þ

with

gAγγ ¼
α

2πfA

�
E
N
− 1.92ð4Þ

�

¼
�
0.203ð3Þ E

N
− 0.39ð1Þ

�
mA

GeV2
; ð27Þ

where E andN are the electromagnetic and color anomalies
of the axial current [2].

1. Number density

Let us estimate the number density of ϕA particles
created during inflation (just by squeezing). For this, we
need to compute the total number of particles. Assuming
the states are homogeneously distributed, the amount of
states within a “radius” k is

GðkÞ ¼ V
ð2πÞ3

4πk3

3
; ð28Þ

where V stands for a comoving volume. In this way, the
density of states is given by

gðkÞ ¼ ∂G
∂k ¼ V

2π2
k2: ð29Þ

Thus, the total number of particles is

N ¼
X
k

Nk ¼
Z

dkgðkÞfðkÞ

¼ V
2π2

Z
−1=τe

0

dkk2
�

1

2kτe

�
2

×

�
1þ 2

3

m2

H2
Inf

ð−1þ γE þ lnð−2kτeÞÞ
�
;

where we have used the formula for the average number of
particles on a mode k created due to squeezing, which we
identified with fðkÞ. The integration limits correspond only
to modes that have been superhorizon at some point during
inflation, as those are the ones that undergo squeezing.
Performing the integral we get

N ¼ V
8π2

k
τ2e

�
1þ 2

3

m2
a

H2
Inf

ð−2þ γE þ lnð−2kτeÞ�
�				−1=τe

0

¼ −
V
8π2

1

τ3e

�
1þ 2

3

m2
a

H2
Inf

ð−2þ γE þ ln 2Þ
�
: ð30Þ

Then, one can obtain the density of these particles at any
given time through
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n ¼ N
Vphys

¼ −
1

8π2

�
1

aτe

�
3
�
1þ 2

3

m2
a

H2
Inf

ð−2þ γE þ ln 2Þ
�
:

This is a good point to make some estimates. First, one
can get away (for now) with not choosing a value of ma, as
it will be subdominant. Thus, we are left to find τe. To do
so, notice that

1

k0jτej
¼ k0jτ�j

k0jτej
¼ ae

a�
∼ e60; ð31Þ

where “0” and “�” stand for present-day and horizon-
crossing magnitudes. In particular, k0 can be identified with
the current horizon length. As it is widely known, inflation
had to last at least 60e-folds after this mode crossed the
horizon in order to solve the horizon problem.3 Then, the
above is equivalent to

ðaHÞ−10
jτej

¼ H−1
0

jτej
∼ e60; ð32Þ

rendering a conformal time at the end of inflation,

τe ∼ −4 × 10−9 sec ¼ −1.465 × 1034 M−1
Pl : ð33Þ

With this, we have the necessary values to estimate the
number density of squeezing-generated ALPs at any given
era. The free parameters are the energy scale of inflation
and the mass of the particles. However, if the latter is small
in comparison to the former, the contribution from the ratio
will be negligible and one can get away with working with
the first term.

C. ϕAγt → xx̄

Fermion production from the interaction of an ALP and a
(test) photon γt is mediated by the Lagrangian

qxAμψ̄γ
μψ : ð34Þ

Let us take the initial momenta of the particles to be

ka ¼ Eað1; cos θ; sin θ; 0Þ; kγ ¼ Eγð1; 1; 0; 0Þ: ð35Þ

With a center of mass energy given by E2
com ¼

2EaEγð1 − cos θÞ, one can find the cross section of the
interaction to be

σ ¼ 1

4EaEγjva − vγj
q2xm2

x

2πf2a
ln

�
E0 þ p0

E0 − p0

�
; ð36Þ

where E0 ¼ Ecom=2, p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0Þ2 −m2

x

p
andmx denotes the

mass of the fermions. Now, we introduce the variables

λ ¼ 2m2
x=ðEaEγÞ and y ¼ cos θ, such that the average over

the initial axion momentum is [3]

hσvi ¼ q2xλ
16πf2a

Z
1−λ

−1
dy ln

� ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y − λ

pffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y − λ

p
�

¼ q2xλ
16πf2a

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2λ

p
þ ðλ − 2Þ lnð

ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffiffiffi
2 − λ

p
Þ

þ 2 lnð
ffiffiffiffiffiffiffiffiffiffi
2 − λ

p
þ

ffiffiffi
2

p
Þ − 1

2
λ ln λ

�

¼ q2xλ
16πf2a

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2λ

p
þ ð4 − λÞ lnð

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffi
2 − λ

p
Þ

þ
�
λ

2
− 2

�
ln λ

�
: ð37Þ

Notice this expression tells us that 0 < λ ≤ 2.
Next, we identify two contributions to the ALP number

density during the matter dominated era: those produced
during inflation and those produced during matter domi-
nation itself,

n ¼
Z

dn ¼ 1

8π2

�Z
−1=τe

aH

dk
a3τ2e

þ
Z ðaHÞeq

aH

dk
a3τ2

�
:

Then, it is convenient to write every expression in terms of
the variable λ introduced above,

k ¼ 2am2
x

λEγ
⇒ dk ¼ −

2am2
x

Eγ

dλ
λ2

; ð38Þ

such that the interaction rate is given by

hnσvi ¼ q2x
16πf2a

1

8π2a3
2am2

x

Eγ

�Z
λτ

λe

dλ
λτ2e

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 2λ

p

þ ð4− λÞ lnð
ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffi
2− λ

p
Þþ

�
λ

2
− 2

�
ln λ

�

þ
Z

λeq

λτ

dλ
λτ2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 2λ

p
þ ð4− λÞ lnð

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffi
2− λ

p
Þ

þ
�
λ

2
− 2

�
ln λ

��
; ð39Þ

where

λe ¼
2m2

x

Eγ
ajτej; λτ ¼

2m2
x

HEγ
; λeq ¼

2m2
x

HeqEγ
:

The kinematic constraints on λ place stringent bounds on
the allowed values of the parameters of the model, in
particular on the ratio m2

x=Eγ . To see this, take the values at
matter-radiation equality, where

3Actually, the number of e-folds needed to solve the horizon
problem depends on the energy scale of inflation, but we are only
interested in rough estimates here.
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λeðaeqÞ ∼ 1030M−1
Pl

2m2
x

Eγ
; λτðλeqÞ ∼ 1055M−1

Pl
2m2

x

Eγ
:

So, taking the maximum allowed value of λ, we conclude
that m2

x=Eγ ∼ 10−55MPl. This could be satisfied only for
extremely light fermions (even for not-so-realistic values of
the photon energy). Assuming these rather implausible
conditions are satisfied, we can notice that the first integral
will dominate (τ−2e ≫ τ−2), so we will just focus on this one
(for now). Then, the interaction rate is

hnσvi ≈ 3356q2x
16πf2a

ð1þ zeqÞ2
8π2

2 × 10−55MPl

τ2e
; ð40Þ

where we have solved the integral numerically. Plugging
the numerical values of τe and zeq, we have that

hnσvi ∼ 10−112M3
Pl

q2x
128π2f2a

: ð41Þ

Clearly fa would need to be abnormally small in order to
have a non-negligible interaction rate. The only way to
obtain non-negligible values would be to suppress even
more the ratio m2

x=Eγ, such that the corresponding versions
of λ approach to 0, where the integral actually diverges.
Needless to say, even considering very light fermions, the
energy of the photon would be out of reach (and can even
become trans-Planckian). Indeed, for axions coming from
string theory, we generically expect fa > MPl from the
weak gravity conjecture (WGC) [4–6]. Interestingly, the
WGC also constrains the ratio of the charge-to-mass of
fermions to be less than qx=mx < 1 in Planck units. On
excluding trans-Planckian photons on physical grounds,
this means that qx gets naturally suppressed on considering
very small values for m2

x=Eγ. Therefore, it seems that the
WGC highly disfavors having a non-negligible value for
this interaction rate.

D. ϕA → γγ ⇒ γtγ → γγ

In this case, we will check how likely it is for the photon
to interact with an environment composed of photons
which are produced from the decay of an ALP. For this,
we need the decay width of the process, which is

ΓA→γγ ¼
g2Aγγm

3
A

64π
; ð42Þ

and, assuming E=N ¼ 0, this becomes

ΓA→γγ ¼ 1.1 × 10−24 s−1
�
mA

eV

�
5

: ð43Þ

Without any further calculations, one can see that for
masses mA ∼Oð1Þ eV or less, the decay width is too small

even considering the age of the Universe (∼1017 s), and so
no photons would be produced. Current bounds on the
mass of the axion highly disfavor higher masses. This is
why it is more appropriate to talk about ALPs, as they are
more generic and well suited to be a test lab.
Naturally, the photons resulting from the decaying of the

ALP will not have the same momentum as it. We label the
resulting photons as 10 and 20, with an angle θ0 between
their momenta. Then, one can easily show that

hcos θ0i ¼ −
m2

A

4p10p20
; hp10p20 i ¼

m2
A

4
; ð44Þ

so that

p2
10 þ p2

20 ¼ p2
A þm2

A

2
; ð45Þ

leading to the following direction-averaged momenta:

p2
10 ¼

m2
A

4
þ p2

A

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

A

p2
A

s �
;

p2
20 ¼

m2
A

4
þ p2

A

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

A

p2
A

s �
: ð46Þ

This leads to a not-so-simple distribution of photons.
However, considering the range of masses that render a
photon population at matter domination, the distribution
can be somewhat simplified. To see this, first notice that
the comoving momentum is between ðaHÞeq ≲ k ≤ ðaHÞe,
or plugging in numbers, 10−59MPl ≲ k≲ 10−34MPl. The
physical momentum of massive particles varies with
expansion the same way as for massless particles
(p ∝ a−1). Thus, the physical momentum of ALPs
should be on the range 10−56MPl ≲ p≲ 10−31MPl (or
10−38 GeV≲ p≲ 10−13 GeV). Even for the upper limit,
the physical momentum of ALPs is rather negligible in
comparison with the rest mass required for it to decay by
the matter dominated era (Oð103Þ eV). Thus, it is a good
approximation to treat the ALPs as nonrelativistic. Then,
the momentum of the resulting photons are roughly

p10 ≈
mA þ pA

2
; p20 ≈

mA − pA

2
; ð47Þ

where for the sake of simplicity, we take p10 ≈ p20 ≈mA=2.
With these considerations, one can compute the mean

free path of a test photon interacting with an environment of
photons decaying from ALPs. For starters, Euler and
Kockel computed the cross section for photon-photon
interactions [7,8],
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σðγγ → γγÞ ¼ 937α4ω6

10125πm8
; ð48Þ

where α ≃ 1=137 is the fine structure constant, ω is the
energy of the photons in the center-of-momentum frame,
and m is the mass of the electron. The momentum of each
photon in the lab frame can be written as

pμ
1 ¼ E1ð1;1;0;0Þ; pμ

2 ¼ E2ð1;− cosθ; sinθ;0Þ; ð49Þ

such that

ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
cos

θ

2
: ð50Þ

Next, recalling the number density of ALPs (which trans-
lates into the number density of photons up to a factor of 2),
and considering that their mass is negligible in comparison
to the energy scale of inflation, we have

n ¼ −
1

4π2

�
1

aτe

�
3

; ð51Þ

such that

σn ∼
937α4

10125πm8
E3
γE3

1

2

π

ð1þ zeqÞ3
4π2

jτej−3; ð52Þ

where Eγ denotes the energy of the test photon (quantum
state) and E1 the energy of the environment photon. Then,
taking Eγ ¼ 10−17MPl and E1 ∼mA ¼ 10−24MPl ð1 keVÞ,
the resulting mean free path is

l ¼ ðσnÞ−1 ∼ 1021 cm; ð53Þ

which should be compared toH−1
eq ∼ 1050 cm. Nevertheless,

notice that we have taken a rather high energy for the test
photon, so much so that the cross section formula may be
invalid due to other processes being predominant. A more
sensible value would be Eγ ¼ 10−24MPl, which yields

l ¼ ðσnÞ−1 ∼ 1042 cm: ð54Þ

Thus, in principle photons could interact with other
photons emerging from the decay of ALPs (we will check
this more carefully below). However, it is instructive to
compare the possibility of these interactions to the inter-
action with CMB photons. According to our estimation for
the number density of photons created through the process
ϕA → γγ, by the time of photon decoupling we have n ∼
20 cm−3 (600 cm−3 by matter-radiation equality), whereas
for CMB photons npd ≈ nγ;0ð1þ zpdÞ3 ∼ 4 × 1011 cm−3.
Thus, the number density of ALP photons is negligible
in comparison to CMB photons, so the latter are in principle
a more important source of decoherence than the former

after z ∼ 1000. Let us compute next the mean free path due
to this interaction.

1. Mean free path

In order to compute the mean free path (or redshift in a
cosmological setting), we will use the optical depth,
defined as

T ¼
Z

σjμdxμ; ð55Þ

where σ is the cross section of the interaction and jμ is the
four-current [9]. The integral over the spatial dimensions is
null due to isotropy and homogeneity. This will be used to
compute in a more robust manner the mean free path for the
interaction of a photon with others produced by the decay
of an ALP. Moreover, we will incorporate the time
dependence from the decay width. With these consider-
ations, the optical depth is written as

T ¼
Z

t0

t
dtð1 − e−ΓtÞ 937α

4E3
γm3

A

10125πm8

Z
1

−1
dðcos θÞcos6 θ

2

1

4π2

×

�Z
−1=τe

aH

dk
τ2e

þ
Z ðaHÞeq

aH

dk
τ2

�
: ð56Þ

Next, we shall assume a matter dominated Universe
throughout the entire propagation of the photon. This will
be convenient in order to deal with the explicit time
dependence in the expression. Thus, we have that

t ¼ 2

3H0

ð1þ zÞ−3=2: ð57Þ

We shall focus on the first term inside the brackets of
(56), which is dominant (by many orders of magnitude). In
doing so, the optical depth is written as

T ¼ 937α4E3
γ;0m

3
A

10125πm8

1

8π2

×
Z

z

0

dz0ð1þ z0Þ3
H0ð1þ z0Þ5=2 ð1− e−ΓtÞ 1

τ2e

�
−
1

τe
−H0ð1þ zÞ1=2

�
:

In order to have numerical estimates we take Eγ;0 ¼
mA ¼ 10−24MPl, such that

937α4E3
γ;0m

3
A

10125πm8

1

8π2H0

≃ 1078: ð58Þ

The probability of the photon traveling without interacting
with the environment is given by PðzÞ ¼ e−T ðzÞ. For
z ¼ 3400, one gets T ∼ 10−20, meaning that basically
P ¼ 1, and so there is no decoherence due to the interaction
between the photon in some quantum state and the photons
produced by the decay of expansion-generated ALPs.

QUANTUM COHERENCE OF PHOTONS TO COSMOLOGICAL … PHYS. REV. D 104, 063519 (2021)

063519-7



One could entertain the idea of going further into the past
(higher redshift) in order to obtain nontrivial probabilities
(even though the single-fluid approximation would break in
the realistic setup). However, even for redshifts as high as
1020, the optical depth is just around 10−13, so that
interactions remain highly unlikely. One could also argue
that different input parameters could change this conclu-
sion; however, smaller masses only lead to less efficient
interactions and a slower decay, effectively increasing the
mean free path.
Let us emphasize that we have studied the potential

interactions with particles that have been produced
directly or indirectly due to the dynamics of the expansion
of the Universe. In this sense, one could also ask if there can
be interactions with a primordial population of ALPs (or
their offspring). Such interactions can be potentially more
important that the ones we have considered; however,
it has been found that for realistic values of the parameters
the growth of the photon field in particular is strongly
suppressed [10,11], and thus by the time of decoupling
this scenario should not be considered a source of
decoherence.
An interesting thing to note is that the strength of the

interaction, which we have considered in this work, has
recently been constrained from the observation of the
birefringence angle from the CMB data [12]. It is also
well known that photons traveling significantly large
distances, and interacting with magnetic fields, can lead
to the production of ALPs (see, for instance, [13]).
Conversions between photons and ALPs, in the presence
of primordial magnetic fields, can also leave observable
signatures in the CMB [14], which together with other
cosmological considerations, has been used to constrain a
considerable region of the parameter space [15]. In the
future, we plan to combine the estimate coming from
polarization data, and the requirement that ALPs from the
early Universe do not decohere, to find new probes for the
so-called cosmological axion background [16].

III. DECOHERENCE THROUGH THE
COSMOLOGICAL MEDIUM

In this section we will look at the potential sources of
decoherence of a photon in some quantum state due to the
interaction with other particles in the cosmological
medium. Unlike for the estimates in the previous section,
we know from observations the number density of the other
species, with values that make interactions more likely. We
already had a first glance at such interactions, like photon-
photon scattering with CMB radiation.

A. Abundance of particles

First, we shall compute the number density of photons.
This is given by

nγ ¼
8π

c3

Z
∞

0

�
kT
h

�
3 x2dx
ex − 1

⇒ nγ ¼ 4.11 × 108ð1þ zÞ3m−3; ð59Þ

where the temperature of the CMB is T0 ¼ 2.72548�
0.00057 K. Other sources give far fewer photons.
Next, we look at the abundance of baryons. The baryon-

to-photon density is

η ¼ nb
nγ

¼ 2.75 × 10−8Ωbh2: ð60Þ

With Planck’s (2018) value of Ωbh2 ¼ 0.02237� 0.00015
[17], this gives an average baryon density today (if fully
ionized) of

nb;0 ¼ 0.2526 m−3: ð61Þ

Primordial nucleosynthesis and the CMB tell us that the
helium-4 mass fraction is about YP ¼ 0.246. To a good
approximation, all the mass is in protons and helium—
everything else is negligible in terms of number density.
The number density of helium is given by YP ¼

4nHe=ð4nHe þ npÞ. With YP ¼ 0.246, np=nHe ¼ 12.26.
This means that the fraction of baryonic nuclei that is
helium-4 is 0.0754. We also have nb ¼ np þ 4nHe ¼
npð1þ 4=12.26Þ ¼ 1.33np.
Next, the abundance of protons is related to that of

baryons by

np;0¼
nb
1.33

⇒ np¼ 0.190ð1þ zÞ3 m−3; z< zreion; ð62Þ

where zreion ≃ 7.7� 0.8. Apart from protons, essentially all
other baryons are helium-4, which have a number density,
after reionization, of

nHe;0 ¼ ð0.2526 − 0.190Þ=4
⇒ nHe ¼ 0.016ð1þ zÞ3 m−3: ð63Þ

Before reionization (and after recombination) the ionized
fraction is about 10−4, so the proton number density is
smaller than Eq. (62) by this factor. Helium reionization is
thought to occur at zHe;reion ≃ 3–4, although the details
remain uncertain.
The number density of electrons is related to that of

protons and helium-4. Indeed, there is one electron per
proton and 2 per helium-4, which gives

ne;0 ¼ 0.190þ2×0.016⇒ ne¼ 0.222ð1þ zÞ3 m−3; ð64Þ

after zHe;reion. For zHe;reion < z < zreion, the electron number
density would be ne ¼ np.
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B. Interaction with CMB radiation

Using the cross section for photon-photon scattering, the
optical depth is computed as follows:

T ¼ 1

2

Z
t0

t
dt

937α4E3
γ

10125πm8

Z
∞

0

dE
2π2

E5

expðE=TÞ − 1

¼ 1

2

Z
t0

t
dt

937α4E3
γ

10125πm8

1

2π2

�
8π6

63
T6

�

¼ 1874π3α4

637875

E3
γ;0

m8

Z
z

0

dz0

ð1þ z0ÞHðz0ÞT
6
0ð1þ z0Þ9; ð65Þ

where T ¼ 1 determines the mean free path/redshift of the
test photon. The solutions to the equation depend strongly
on Eγ;0. For instance, for Eγ;0 ¼ 10−24MPl ∼ 1 keV, we get4

Z
z

0

dz0
ð1þ z0Þ8

½Ωmð1þ zÞ3 þΩrð1þ zÞ4 þΩΛ�1=2
≈ 1.13 × 1034;

which renders z ≈ 50000, whereas for Eγ;0 ¼ 10−21MPl ∼
1 MeV,

Z
z

0

dz0
ð1þ z0Þ8

½Ωmð1þ zÞ3 þΩrð1þ zÞ4 þΩΛ�1=2
≈ 1.13 × 1025;

which yields z ≈ 2700. The conclusion is clear, that the test
photon can propagate without interacting with CMB
radiation for longer than the latter has been around
(z ∼ 1000). Conversely, let us fix z ¼ zdec ¼ 1000, which
allows us to compute the probability of the photon traveling
without interacting (P ¼ e−T ðzdecÞ). For Eγ;0 ∼ 1 keV the
probability is essentially 1, whereas for Eγ;0 ∼ 1 MeV, we
get 0.9994, signaling that most likely the test photon would
not have interacted from the decoupling era until today due
to interaction with CMB radiation. Evidently, one can get
less trivial values for higher photon energies. However,
notice that at such energies other processes are predomi-
nant, which we will not consider for our purposes.

C. Interactions through Thomson scattering

Following the same philosophy as before, we will
compute the mean free path of a photons interacting
through Thomson scattering. The cross section for this
process is given by

σth ¼
8π

3

α2

m2
; ð66Þ

where m is the mass of the charged particle. Due to the
dependence on this parameter, the interaction with

electrons are predominant in comparison with interactions
with protons. Then, the optical depth is given by

T ¼ 8π

3

α2

m2

Z
z

0

dz0

ð1þ z0ÞHðz0Þ neðz
0Þ; ð67Þ

where the number density of free electrons is given by

ne;1ðzÞ ¼ 0.222ð1þ zÞ3 m−3; z < zHe;reion;

ne;2ðzÞ ¼ 0.19ð1þ zÞ3 m−3; zHe;reion < z< zreion ð68Þ

as computed in the Sec. III A. We are assuming that the
ionization fraction is 1 after reionization and 0 before it (but
after decoupling). With these considerations, the optical
depth is

T ¼ 8π

3

α2

m2

�Z
zHe;reion

0

dz0ne;1ðz0Þ
ð1þ z0ÞHðz0Þ

þ
Z

zreion

zHe;reion

dz0ne;2ðz0Þ
ð1þ z0ÞHðz0Þ

�
: ð69Þ

For the sake of concreteness, we take zHe;reion ¼ 3.5 and
zreion ¼ 7.8, yielding

T ¼ 0.0529585 ⇒ P ¼ expð−T Þ ¼ 0.94819; ð70Þ

i.e., there is roughly a 95% probability of photons traveling
freely from the reionization epoch until present time.
Notice that this analysis is basically the same as that for
the optical depth for CMB radiation due to the same
process. The value obtained by the Planck mission is
T ¼ 0.0561� 0.0071 [17], in good agreement with the
result estimated here. Notice that for higher energies one
would have to use the Klein-Nishina formula for the cross
section; however, it is always less or equal than the Thomson
cross section, which renders larger mean free paths.

D. Other processes

There are other processes involving photons which could
lead to decoherence (or the annihilation of the photon). One
such process is the pion photoproduction

pþ γ →

�
p

n

�
þ π: ð71Þ

However, the threshold energies for this kind of process are
very large for our purposes (see [9] for an in-depth study of
these processes). Indeed, one should take a closer look at
them for energies of order ∼1015 eV or higher.
On the other hand, as shown in [1], x-rays would be more

interesting for quantum communication purposes at present
day (or low redshifts in general). For said range and due to
the dominant constituents of the interstellar medium
(photons, electrons and protons) and the weakness of

4We have used Ωmh2 ¼ 0.1424, ΩΛ ¼ 0.6889 and Ωrh2 ¼
4.2 × 10−5.
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QED, the interactions between photons and the background
are negligible. Case in point, the mean free path for
interactions with electrons in the interstellar medium was
found to be of order 1Mpc,which is larger than the size of the
Milky Way. Looking at dense regions of the HII gas, the
mean free path reduces to 0.1 kpc, which is a considerable
distance within the galaxy. A more in-depth discussion of
these interactions and others, likewith dust particles, galactic
magnetic fields, etc., can be found in [1] and references
therein. The upshot is that for the (soft) x-ray region of the
spectrum, the interactions of a test photon at such energies are
rather negligible, as opposed to radio signals which can be
affected by galactic magnetic fields, or ultra-high energy
(UHE) photons, where particle production and other proc-
esses dominate. These conclusions can be extrapolated to
low redshifts, as demonstrated in [18]. That work reports a
considerable transparency window for photons in the same
energy range (E≲ 10 keV) for redshifts up to z ∼ 100.

IV. DISCUSSION

In this work we have looked at the possibility of photons
maintaining their quantum state over cosmological distan-
ces. Naturally, this is an intriguing question in many
respects, including quantum communication and quantum
teleportation, even more so considering the success
achieved in Earth-based experiments. An analysis of
quantum coherence to interstellar distances was presented
in [1], where it was shown that photons in the x-ray range
are the prime candidates for these purposes. This work
reinforces that conclusion, only now extending to cosmo-
logical distances, by generalizing to include other potential
sources of decoherence.
We have used the standard definition that decoherence

takes place due to the interaction between a quantum state
and an environment. Thus, for expansion-induced
decoherence, the question we had to tackle was how gravity
can produce an environment. For scalar fields it is well
known that squeezing can do the job, where a large number
of particles at superhorizon momenta scales are produced.
That is not the case for EM fields, because the EM field is
conformally invariant and the Friedmann-Lemaître-
Robertson-Walker metric is conformally flat. The same
argument can be applied for the free Dirac theory of
fermions. In consequence, there are no excitations of the
field owing to gravitational effects and thus no “extra”
environment wrecking the quantum state. One obvious
loophole consists in breaking the conformal invariance
through a coupling with other fields. We have considered
ALP-photon interactions,which have beenwidely studied in
the literature. One of the options is a direct interaction which
leads to the production of fermions, and the other is the decay
of the ALP into two photons, which in turn can interact with
the one in a coherent state. In both scenarios the clear
conclusion is that interaction rates range from negligibly
small to zero, depending on the parameters of the

interaction. In some sense we played against our odds by
taking large masses for ALPs so that they can decay by the
matter-dominated era, or by taking abnormally large ener-
gies for the test photon. Regardless of whatever may be the
case, the conclusion remains the same. We should empha-
size that the number densities for ALPs considered are only
those produced by expansion, not some primordial popu-
lation which may lead to an enhanced effect. In fact, axion
production by other (standard) mechanisms can lead to a
wider variety of more important processes, like the inverse-
Primakoff effect, which future radio telescopes could exploit
for ALP dark matter, although this is not expected for the
QCD axion [15]. In consequence, as far as expansion-
induced decoherence goes, the results from [1] can be
confidently extrapolated to cosmological distances.
In order to search for stronger decoherence factors, one

has to look at the population of different species in the
cosmological medium. Interactions with the CMB radiation
is one clear option, where for present-day energies of 1 keV
the interaction rate is essentially 0, whereas for 1 MeV, the
probability of interactions is less than 0.1%. Higher
probabilities of interaction are associated with Thomson
scattering after reionization, where there is roughly a 5%
probability of interaction. Thus, for photon energies in the
keV range the main decoherence factors lie at galactic
scales, where they can maintain the state for considerable
distances. Moreover, for the same sweet spot the conclu-
sion holds for low redshifts, or even for z ∼ 100 [18].
In conclusion, the analysis in this paper has examined the

free streaming requirements for photons, beyond just the
classical condition that they maintain their initial momen-
tum, to the stronger condition that the quantum coherence
of the photons is also preserved. Notice for instance that
groups of photons initially could also have some form of
quantum coherence amongst them through their momen-
tum or internal states, producing for example coherent or
lasing states. So, even if the individual momentum of the
photons was preserved it is still possible the more delicate
quantum coherence amongst the photons could be
destroyed. Here we have identified frequency regions in
which photon quantum coherence can be maintained up to
cosmological scales due to lack of interactions, extending
on the work in [1] that only examined the galactic scale.
Recently, the effect of a (curved) Schwarzschild back-
ground on the quantum state of coherent light, which can be
verified by Earth-to-satellite signals, has been examined
[19–21]. Building on our present work, it will be natural to
consider the effect of accelerating backgrounds on similar
coherent wave packets over cosmological scales and their
consequences for quantum communication.
A natural future direction to follow would be to check the

conditions required for the axions to maintain a similar
coherent state over cosmological distances. If one can find a
similar result that axions also do not decohere due to the
background expansion, this opens a new possibility for a
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complementary signal for axions coming from the very early
Universe.
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