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Abstract In this work, we investigate five-dimensional
scale-dependent black hole solutions by modelling their
event horizon with some of the eight Thurston three-
dimensional geometries. Specifically, we construct constant
curvature scale-dependent black holes and also the more
exotic scale-dependent Solv black hole. These new solu-
tions are obtained by promoting both the gravitational and
the cosmological couplings to r -dependent functions, in light
of a particular description of the effective action inspired by
the high energy philosophy. Interestingly, the so-called run-
ning parameter, together with the topology of the event hori-
zon, control the asymptotic structure of the solutions found.
Finally, differences in both the entropy and the temperature
between the classical and the scale-dependent Solv black
hole are briefly commented.

1 Introduction

Topological techniques in General Relativity [1–3], devel-
oped mainly by Penrose, Hawking and Geroch, reveal their
power in the celebrated singularity theorems (see, for exam-
ple, [2]). Among the most important ingredients of these the-
orems are the energy conditions and topological considera-
tions on certain three dimensional hypersurfaces. Interest-
ingly, the interplay between topology and energy conditions
also appear in Hawking’s first black hole topology theorem
[4], which asserts that the event horizon of an asymptoti-
cally flat stationary four-dimensional black hole obeying the
dominant energy condition is a two-sphere. Of the various
ways to escape this theorem, we can mention going to higher
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dimensions [5] or considering matter sources that violate the
dominant energy condition.

When considering five-dimensional spacetimes, the event
horizon can be, in principle, any compact orientable three-
dimensional manifold. However, due to the Thurston
geometrization conjecture proved by Perelman [6], the event
horizon can be endowed with a metric locally isometric to one
of the eight Thurston geometries [7]. Within these geome-
tries, the simples one are the Euclidean space E

3, the three-
sphere S3, the hyperbolic space H3 and the products S1 ×S

2

and S
1 × H

2. There are also three non-trivial geometries
called the Solv geometry, the Nil geometry and the geometry
of the universal cover of SL2(R).

In Ref. [8], the authors catalogued solutions to the five-
dimensional vacuum Einstein equations which were mod-
elled on three-dimensional geometries of spherical, hyper-
bolic, flat or product type. In addition, they found two families
of new black hole solutions modelled by the Solv and the Nil
geometries. Some of these results were generalized in Ref.
[9], where new Nil black holes with hyperscaling violation
were studied. Even more, in the context of AdS/CMT, ther-
moelectric transport coefficients form charged Solv and Nil
black holes have been recently reported [10]. In addition, DC
conductivities have been computed for Solv, Nil and SL2(R)

black branes [11]. Finally, we note that Solv and Nil solu-
tions electromagnetically charged through a dilatonic source
have been considered in Ref. [12].

Interestingly, all these five-dimensional black hole solu-
tions have been found, to the best of our knowledge, only
within classical General Relativity. Therefore, it is our
interest to model, if possible, the event horizon of certain
black holes beyond General Relativity by some of the eight
Thurston three-geometries. As a preliminary step in order to
attack more general cases, in this work we will consider black
hole solutions embedded in the so-called scale-dependent
gravity [13–29] which, as it is well known, has become
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an alternative tool to introduce semiclassical corrections in
black hole solutions in 2 + 1 and 3 + 1 dimensional space-
times.

The main idea in which the scale-dependent scenario is
inspired can be summarized as follows: following the lessons
of Weinberg’s Asymptotic Safety program, we consider that
the effective action (i.e., a modified version of the classi-
cal action, which includes quantum-mechanical corrections)
is the fundamental object and, therefore, the corresponding
equations of motion should be derived using this action. Irre-
spectively of how complicated these effective actions could
be, a common feature between them is always present: the
couplings involved acquire a scale-dependence. Taking this
statement seriously, we shall analyse how the aforementioned
black holes suffer deviations with respect to their classical
counterparts.

The manuscript is organized as follows: Sect. 2 summa-
rizes the main points of the scale-dependent gravitational
theory. In Sect. 3, some classical black holes in five dimen-
sions with constant curvature and Solv horizons are reviewed
in order to extend them, in Sect. 4, into the scale-dependent
theory. In Sect. 5 we discuss the consistency of the scale-
dependent model with the asymptotic safety program, and
concluding remarks and some comments are given in Sect. 6.

2 Scale-dependent gravity

In order to be able to include any quantum correction in cer-
tain black hole solutions, it is mandatory to specify the object
which describes the “fundamental theory”. Analogously to
standard gravity (where the classical action is taken to be the
main object), scale-dependent gravity takes advantage of the
idea provided by the Asymptotic Safety program in which
the gravitational effective action, Γ [k̃, gμν, . . .], where k̃ is a
scale field, describes the theory. One of the most remarkable
features in quantum field theories is that the effective action
for the gravitational field, indeed at low-energy, acquires a
scale dependence. This effect appears at the level of the cou-
plings which means that it runs according to certain energy
scale, this fact being a generic result of quantum field theory.

The Asymptotic Safety program, which is based on a non-
trivial ultra-violet fixed point for the leading dimensionless
gravitational couplings is, by far, where these ideas have been
best implemented. Let us point out that it was Weinberg, in his
seminal work [30], who introduced this program. Substantial
improvement has been made up to now [31–53].

During the last years, scale-dependent gravity has been
used to construct black hole backgrounds both by improving
classical solutions with the scale dependent couplings from
Asymptotic Safety [54–73] and by solving the gap equa-
tions of a generic scale-dependent action [13–29]. This last
approach has revealed certain non-trivial features regarding

the black hole entropy and the energy conditions. Even more,
more recently, scale-dependent regular black holes [28] and
traversable (vacuum) scale-dependent wormholes [26] have
been found, showing that, in some sense and in particular
situations, scale-dependent gravity might shed light on how
to cure, in an effective way, some of the classical problems
related to singularities and the appearance of exotic matter
inside wormholes. From the cosmological point of view, the
impact of scale dependence has been studied in Refs. [74–
86].

The simplest formulation of scale-dependent gravity is
given by the scale-dependent version of the Einstein–Hilbert
action as follows

Γ [gμν, k̃] =
∫

dnx
√−g

[
1

2κk̃

(
R − 2Λk̃

)]
, (1)

where k̃ is a scale-dependent field related to a renormalization
scale, κk̃ ≡ 8πGk̃ is the Einstein coupling, and Gk̃ and Λk̃
refer to the scale-dependent gravitational and cosmological
couplings, respectively. The modified Einstein’s equations
are obtained by taking variations with respect to the metric
field gμν :

Gμν + gμνΛk̃ = −Δtμν, (2)

where the so-called non-matter energy-momentum tensor,
Δtμν , is defined according to [79,87]

Δtμν = Gk̃

(
gμν� − ∇μ∇ν

)
G−1

k̃
. (3)

By taking the variation of the effective action with respect to
the scale field, k̃(x), one imposes [88]

d

dk̃
Γ [gμν, k̃] = 0, (4)

which can be seen as an a posteriori condition towards back-
ground independence [87,89–94]. The β-functions describe
the renormalization group running of both Newton’s con-
stant and the cosmological coupling. These β-functions are,
in general, unknown because they depend of how we solve the
problem. Given that we do not want to compute them, we do
not have enough information in order to find both the metric
and the scale field. In order to bypass this issue, here we con-
sider that the couplings Gk̃ and Λk̃ inherit the dependence
on the space-time coordinates from the space-time depen-
dence of the scale field, k̃(x). Therefore, these couplings are
written as G(x) and Λ(x) [18,88]. This idea, together with
an appropriate choice for the line element, allows, in princi-
ple, to solve the problem in situations with a high degree of
symmetry.

At this point, a couple of important points are in order.
First, let us note that, after variations of the scale field, Eq.
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(4) turns out to be(
R∇μ

(
1

Gk̃

)
− 2∇μ

(
Λk̃

Gk̃

))
∂μk̃ = 0. (5)

And second, this equation, together with Eq. (2), are con-
sistent with diffeomorphism invariance, as expressed by the
conserved covariance of the Einstein tensor, as explicitly
shown in [88].

3 Some classical five dimensional black hole solutions

In this section we will briefly review some of the five-
dimensional black holes obtained within Einstein’s theory in
Ref. [8]. This choice of solutions is related to those which we
have been able to generalize into the scale-dependent theory,
as subsequent sections will show.

The classical Einstein–Hilbert action is, in five dimen-
sions, given by

I0[gμν] =
∫

d5x
√−g

[
1

2κ0

(
R − 2Λ0

)]
, (6)

where κ0 ≡ 8πG0 is the gravitational coupling, G0 is New-
ton’s constant and Λ0 is the cosmological coupling. Varying
the classical action (6) yields the equations of motion, i.e.,

Rμν − 1

2
Rgμν = −Λ0gμν, (7)

which can be expressed as

Rab = 2Λ0

3
gab. (8)

If the metric is written as

ds2 = −V (r)dt2 + V (r)−1dr2 + f 2(r)dxidx j , (9)

where ds̃2 = dxidx j is the metric induced on the t =
constant, r = constant surfaces, two type of solutions are
obtained, depending on the integration of f ′′(r) (see [8] for
details). The first set of the solutions are given by [8]

f (r) = r

V (r) = k − 2G0M

r2 − r2Λ0

6
, (10)

and

ds̃2 = dξ2 + sin2 ξdΩ2 (k = 1)

ds̃2 = dξ2 + sinh2 ξdΩ2 (k = −1)

ds̃2 = dξ2 + dθ2 + dφ2 (k = 0). (11)

These solutions are a warped product between a certain two-
dimensional spacetime and a three-dimensional Riemannian
manifold of constant curvature (spherical, hyperbolic or flat).
Interestingly, there is also a second set of solutions which are

products of a two-dimensional spacetime with an Einstein
three-manifold, with no warping. The interested reader can
consult the specific form of these solutions in [8]. In adition
to these constant-curvature black hole solutions, Solv and
Nil geometries were found in Ref. [8]. In particular, the Solv
black hole is found for Λ0 < 0 and it has a metric given by

ds2 = −B(r)dt2 + B(r)−1dr2 + 3

(−Λ0)
ds̃2, (12)

assuming the following definitions:

B(r) ≡ −2

9
Λ0r

2 − 2
√
G0M

r
(13)

ds̃2 = r2
(
e2zdx2 + e−2zdy2

)
+ dz2. (14)

As previously commented, we are interested in the gener-
alization of some classical black hole solutions. Specifically,
the solutions given by Eqs. (10) and (12) will be generalized
in the next section when certain effective deformation of the
classical theory is incorporated in terms of scale-dependent
gravity.

4 Five-dimensional scale-dependent AdS black holes

Due to the symmetries we want to explore, let us make
the choice G = G(r) and Λ = Λ(r) for the quasi-
dynamical Newton and cosmological couplings, respectively.
It is remarkable that, in non-trivial situations, for instance
with the Kerr black hole, the functional dependence of the
coupling could be more complex. In our particular case, we
arrive to the following vacuum equations:

Gμν + gμνΛ(r) + Δtμν(r) = 0. (15)

Let us note that the Einstein tensor is covarianty conserved
and, therefore, ∇μ

(
gμνΛ(r) + Δtμν(r)

)
vanishes on shell,

as can be explicitly shown. Specifically, the consistency con-
dition, which can be explicitly stated in this case as

Λ′ − G ′

G

(
Λ − 1

2
R

)
= 0, (16)

where the prime denotes derivative with respect to the r
coordinate, is automatically satistified. Interestingly, there
are other non-Λ-vacuum cases where the same phenomenon
occurs and the consistency condition is satisfied by construc-
tion [87].

In the next subsections we shall consider several horizon
geometries.
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4.1 Black holes with spherical and hyperbolic horizons

Here we consider line elements parametrized as

ds2 = −V (r)dt2 + dr2

V (r)
+ f (r)2

(
dξ2 + sin2 ξdΩ2

)

ds2 = −V (r)dt2 + dr2

V (r)
+ f (r)2

(
dξ2 + sinh2 ξdΩ2

)
,

(17)

where dΩ2 is the round metric for the two-sphere.
We get the following solutions:

f (r) = r

V (r) = k − 2G0M

r2 − r2Λ0

6
+ 8G0Mε

3r
− k

2rε

3
− 4G0Mε2

+k
5r2ε2

9
+ 8G0Mrε3

−
(

−2

3
kr2ε2 + 8G0Mr2ε4

)
log

(
1 + 1

εr

)

G(r) = G0

1 + εr

Λ(r) = 1

9r2(1 + rε)2

(−12G0Mε2(−1 + 2rε(4

+3rε(11 + 10rε))))

+ 1

9r2(1 + rε)2 r
2 (

ε2k(27 − 10rε(2 + 5rε))

+3(1 + rε)(3 + 5rε)Λ0)

+ 1

9r2(1 + rε)2

(
12r2ε2(1 + rε)(3

+5rε)
(−k + 12G0Mε2)) (

log

(
1 + 1

εr

))
(18)

where k = ±1 stands for the curvature of the horizon.
It is worth mentioning that the scale-dependent system

can be integrated without providing some extra information,
in contrast to which occurs in lower dimensional cases [13–
29]. To be more precice, in 2 + 1 and 3 + 1-dimensional
space-times, the scale-dependent system is undeterminated:
we have more unknowns that equations to be solved, so
decreasing the degrees of freedom is mandatory. In all of
these cases, the null energy condition plays an important role
in the sense that it allows to decrease these number of degrees
of freedom. In particular, this condition leads to a differen-
tial equation for the Newton coupling, G(r), which is finally
written as G(r) = G0/(1 + εr).

The fact that the Newton coupling obtained for the five-
dimensional solutions here presented coincides with that of
lower-dimensional cases is not a coincidence. It was proved
that, after a suitable choice of certain null vector, higher-
dimensional solutions are forced to obtain the same gravita-
tional coupling [95]. This is true indeed without invoking the
null energy condition or another suitable constraint. There-
fore, the information encoded into the null energy condition

is contained into the modified Einstein field equations. Such a
statement, indeed, was pointed out in [17], where the authors
shown that the classical null energy condition is also satis-
fied when we take advantage of the Schwarzschild ansatz.
Thus, although in this work we are not explicitly using such
a condition, it is already satisfied.

Finally, we note that in the limit ε → 0 the classical (non-
running) solution is recovered. Specifically,

lim
ε→0

f (r) = r

lim
ε→0

V (r) = k − 2G0M

r2 − r2Λ0

6
lim
ε→0

G(r) = G0

lim
ε→0

Λ(r) = Λ0. (19)

4.1.1 Asymptotics

In order to both interpretate the results and evaluate the differ-
ences in some thermodynamics quantities between the clas-
sical and the running solutions, here we show the asymptotic
expansion, for small ε and large r , for both the Ricci curva-
ture and the lapse function. They read

R = 10Λ0

3
+

(
−16G0M

3r3 + k
8

r

)
ε

+2

9

(
−k23 + 108G0M

r2 + k60 log(rε)

)
ε2 + O[ε]3

R = 10

9

(
−k10ε2 + 3Λ0

)
+ k

2

r2 + O
[

1

r

]3

, (20)

and

V (r) =
(
k − 2G0M

r2 − r2Λ0

6

)
+

(
8G0M

3r
− k

2r

3

)
ε

+1

9

(
−36G0M + k5r2 − k6r2 log[εr ]

)
ε2 + O[ε]3

V (r) =
(
k5ε2

9
− Λ0

6

)
r2 + 2k

3
+ 2k

9εr
− k

6ε2r2

−2
(−k + 12G0Mε2

)
15ε3r3 + −k + 12G0Mε2

9ε4r4

+O
[

1

r

]5

. (21)

From these results, a couple of comments are in order. (i) Both
the spherical (k = 1) and hyperbolic (k = −1) solutions give
place to an effective cosmological constant given by

Λeff = 5k

9
ε2 − Λ0

6
. (22)

Interestingly, only in the spherical case, this Λeff can be
turned off for certain values of the running parameter.
(ii) A mass-like term appears only in the spherical case.
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Specifically,

G0Meff = 1

12ε2 . (23)

(iii) A charge-like term appears in both cases. Specifically

G0Q
2
eff = 12G0Mε2 − k

9ε4 . (24)

As for the effective cosmological constant, this Qeff can be
turned off for certain values of the running parameter. And
(iv), both the spherical and hyperbolic solutions incorporate a
defect-like term (monopole-like [96]) with an effective deficit
angle δeff given by the term

δeff ∼ 2

3
k. (25)

We note that this deficit angle does not depend on the running
parameter. It is worth mentioning that this is not a surprising
finding in the context of scale-dependent gravity. In fact, in
Ref. [16] the authors reported an ε-independent deficit angle
in the asymptotic behaviour of the line element at infinity in
the scale-dependent Einstein–Maxwell system.

Even more, it is noticeable that all these effective quanti-
ties which emerge at infinity do not turn off when the running
parameter goes to zero. As commented in [16], we ascribe
this behaviour to the fact all dimensionless terms of the form
εr are incompatible with first taking the limit r → ∞ and
then ε → 0. Clearly, if the limit of small ε is taken first, the
classical results are recovered, as shown in Eq. (19).

4.2 Black holes with planar horizon

For a line element parametrized as

ds2 = −V (r)dt2 + dr2

V (r)
+ f (r)2

(
dξ2 + dθ2 + dφ2

)
,

(26)

we get the following solution:

f (r) = r

V (r) = −2G0M

r2 − r2Λ0

6
+ 8G0Mε

3r
− 4G0Mε2

−5r2ε2

9
+ 8G0Mrε3

−8G0Mr2ε4 log

(
1 + 1

εr

)

G(r) = G0

1 + εr

Λ(r) = 1

3r2(1 + rε)2

(
−4G0Mε2(−1 + 2rε(4

+3rε(11 + 10rε))))

+ 1

3r2(1 + rε)2

(
r2(1 + rε)(3 + 5rε)Λ0

)

+ 1

3r2(1 + rε)2

(
+48G0Mr2ε4(1 + rε)(3

+5rε) log

[
1 + 1

εr

])
,

Also in this case the classical (non-running) solution is recov-
ered when the running parameter is turned off. That is,

lim
ε→0

f (r) = r

lim
ε→0

V (r) = −2G0M

r2 − r2Λ0

6
lim
ε→0

G(r) = G0

lim
ε→0

Λ(r) = Λ0. (27)

4.2.1 Asymptotics

In this planar case, the expansions of both R and V (r) are
given by

R = 10Λ0

3
− 16(G0M)ε

3r3 + 24G0Mε2

r2 + O[ε]3

R = 10Λ0

3
− 8(G0M)

3ε2r6 + O
[

1

r

]7

, (28)

and

V (r) =
(

−2G0M

r2 − r2Λ0

6

)
+ 8G0Mε

3r

−4(G0M)ε2 + O[ε]3

V (r) = −Λ0r2

6
− 8(G0M)

5εr3 + 4G0M

3ε2r4 + O
[

1

r

]5

, (29)

showing that the rule of the running parameter can be inter-
preted in this case as related to an effective charge, which is
given by

Q2
eff = 4M

3ε2 . (30)

4.3 Solv black holes

When appropriate units are used, a five-dimensional metric
with three-dimensional Solv geometry can be parametrized
as [8]

ds2 = −V (r)dt2 + dr2

V (r)
+ Ae2zr2dx2

+Ae−2zr2dy2 + Adz2. (31)

Using this ansatz, we get the following solution:

A = − 3

Λ0

V (r) = −2
√
G0M

r
+ 3

√
G0Mε − 6

√
G0Mrε2 − 2r2Λ0

9
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+6
√
G0Mr2ε3 log

[
1 + 1

rε

]

G(r) = G0

1 + εr

Λ(r) = 1

3Ar(1 + rε)2

(
9A

√
G0Mε2 + 108A

√
G0Mrε3

)

+ 1

3Ar(1 + rε)2

(
108A

√
G0Mr2ε4

)

+ 1

3Ar(1 + rε)2 (r(1 + rε)(−3 + 2AΛ0

+rε(−3 + 4AΛ0)))

− 1

3Ar(1 + rε)2

(
54A

√
G0Mrε3(1 + rε)(1 + 2rε)

)

− 1

3Ar(1 + rε)2

(
log

[
1 + 1

rε

])
. (32)

We note that in the limit ε → 0 the classical (non-running)
solution is recovered:

lim
ε→0

A = − 3

Λ0

lim
ε→0

V (r) = −2
√
G0M

r
− 2r2Λ0

9
≡ V0(r)

lim
ε→0

G(r) = G0

lim
ε→0

Λ(r) = Λ0. (33)

4.3.1 Asymptotics

In the Solv case, the corresponding expansions are written as

R = 10Λ0

3
− 6

√
G0Mε

r2 + 36
√
G0Mε2

r
+ O[ε]3

R = 10Λ0

3
− 12

√
G0M

5ε2r5
+ O

[
1

r

]6

. (34)

V (r) = −2
(
9
√
G0M + r3Λ0

)
9r

+ 3
√
G0Mε

−6
(√

G0Mr
)

ε2 + O[ε]3

V (r) = −2Λ0r2

9
− 3

√
G0M

2εr2 + 6
√
G0M

5ε2r3

−
√
G0M

ε3r4 + O
[

1

r

]5

. (35)

In this case, the running parameter gives place asymptotically
to an effective charge given by

Qeff = 3

2

√
G0M

ε
. (36)

Interestingly, due to the sign of the term which goes with
r−4, this interpetation is only valid when ε < 0 (see eq. (2.3)
of Ref. [10] for charged Solv black holes).

Therefore, the combination of the running parameter,
ε, together with the considered topology (E3, S3, H3 and
Solv), give place to different asymptotic structures for the

Table 1 Asymptotics of classical and improved (scale-dependent)
black holes

Geometry Classical Improved

E
3 (M,Λ0) (Qeff ,Λeff )

S
3 (M,Λ0) (δeff , Meff , Qeff ,Λeff )

H
3 (M,Λ0) (δeff , Meff , Qeff ,Λeff )

Solv (M,Λ0) (Meff , Qeff ,Λeff )

See text for details

solutions here reported. Specifically, as shown in this sec-
tion and summarized in Table 1, an effective cosmological
constant (different to Λ0) is obtained for non-planar con-
stant curvature horizons. On the contrary, both planar and
Solv-geometries retain the classical cosmological constant.
Even more, although effective Maxwellian charges appear
in all the solutions here reported, only the scale-dependent
Solv black hole contains a Reissner–Nordström-like struc-
ture without gravitational monopoles, which are, on the con-
trary, included, in both the S3 and H

3 cases. Finally, we have
noted that the planar case is the only type which does not
give place to a mass-like term. It is important to remark that
the asymptotic structure here outlined has not to be taken
literally. In fact, the asymptotic limits of the solutions here
presented include other terms which are difficult to interpre-
tate and which typically fall-off slower than those we have
given an interpretation in terms of an effective mass, charge,
monopole or cosmological constant.

In order to evaluate the differences in some thermodynam-
ical quantities introduced by the scale-dependence proce-
dure, only the more exotic scale-dependent Solv black holes
will be considered. The extension of these results to scale-
dependent black holes with constant curvature horizons it is
straightforward and it will no be treated in this work.

Let us define the volume element of the compact Solv
spacetime as

ΩSolv =
∫

Ωx×Ωy×Ωx

√
Adx dy dz, (37)

where the ΩI ’s for I = (x, y, z) stand for the compact ranges
of the horizon coordinates, xI .

On one hand, as shown in Refs. [10,12], the Bekenstein–
Hawking entropy for classical (non-running) Solv black
holes is given by

S0 = 2π

κ
|Ωsolv|

√
2

3
r2
h , (38)

where we remind the reader that κ = 8πG0 and rh stands
for the event horizon corresponding to Eq. (12).

On the other hand, although the scale-dependent Solv
black hole has a different event horizon compared to its non-
running counterpart, we arrive to an improved entropy very
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similar to that given by Eq. (38) given by

S = 2π

8πG(rH )
|Ωsolv|

√
2

3
r2
H , (39)

where rH stands for the event horizon corresponding to Eq.
(32).

A simple expression which permits to compare the
entropies in both the classical and the running situations is

S = S0(1 + εrH )

(
rH
rh

)2

. (40)

Concerning the temperature, after employing the well-known
formula

T = 1

4π

∣∣∣∣ lim
r→r+

∂r gtt√−gtt grr

∣∣∣∣ , (41)

where r+ refers to the event horizon for the classical or the
running solution, we get that

T = T0
V ′(rH )

V ′
0(rh)

. (42)

As commented in previous works [13–29], the running
parameter has to be smaller than the other scales entering
the problem. Therefore, taking the asymptotic expansion for
V (r) obtained in Eq. (35) up to second order in ε, we get that
the new event horizon lies at

rH = rh − 1

2
εr2

h − ε2r3
h + O[ε]3. (43)

Within this approximation, the corrections to both the tem-
perature and the entropy are found to be

T = T0

[
1 − 2εrh − 7

4
ε2r2

h

]
+ O[ε]3, (44)

and

S = S0

[
1 − 13

4
r2
hε

2
]

+ O[ε]3. (45)

Finally, it is interesting to note that the corrected tempera-
ture includes a term linear in ε which is absent in the corre-
sponding correction for the entropy. In this sense, the entropy
remains more robust with respect to the scale-dependence
corrections than the temperature, which responds faster to
the effects of the running.

5 Is the scale-dependent scenario consistent with the
Asymptotic Safety program?

The Asymptotic Safety program for quantum gravity (for
details, see the seminal review [37]) establishes that a funda-
mental theory should be divergence free, which means that
the theory is well-defined in all the energy spectrum. It is
important to notice that the crucial point is the existence

of non-gaussian fixed points (NGFPs hereafter), which is
required for a good behavior of the theory. Certainly, the
existence of NGFPs is not ensured; however, in cases where
they exist, one should be able to obtain a full description of
the problem for any value of k̃.

In some circumstances it is useful to link the arbitrary
scale, k̃, with some coordinate of the spacetime. Usually, in
black hole physics, the connection is established via the con-
dition k̃r = constant (for instance in spherical symmetry)
but different parametrizations are still possible. The “renor-
malization group improvement” technique is precisely one in
which, solving the β function for the gravitational coupling,
one can improve the classical background (see for example
[55]) and where one uses the link between the renormaliza-
tion scale and some physical parameter. As we previously
said, in black holes with spherical symmetry, the relation
between k̃ and the radial coordinate is taken to be reciprocal.
This choice ensures that (i) quantum effects appear in the
“correct” sector (i.e., in the UV sector) and (ii) the standard
sector reamain unchanged (i.e., the IR sector).

Regarding the scale-dependent scenario, we remark that
the formalism allows to obtain generalized black hole solu-
tions for several symmetries [13,14,16–29]. These solutions,
however, introduce relevant correction for small values of
k̃ (i.e. in the IR region). In this sense, the scale-dependent
scenario introduces changes in the opposite sector compared
with that expected from the approaches based on the Asymp-
totic Safety program. At this point, one could consider that
the scale-dependent and the Asymptotic Safety programs are
not compatible. However, recent studies within the asymp-
totic safety program reported relevant corrections for small
k̃ [86,97,98]. This relevant feature, who was not anticipated,
could reconcile both formalisms (in the corresponding sec-
tor).

In Fig. 1 we show a comparison between the dimensionful
gravitational coupling, as given by [97], and our solution for
G(r), showing encouraging similarities in the IR regime.

Before concluding this section, we would like to point out
the difference between the method here employed and other
alternative formalism largely inspired in Asymptotic Safety,
i.e., the RG-improvement method. With respect to the RG-
improvement method, the strategy consists in taking advan-
tage of the computation of β-functions to obtain the gravi-
tational coupling. Thus, Newton’s coupling (in terms of the
radial coordinate) is obtained just after considering a specific
relation between the renormalization scale, k̃ and the radial
coordinate, r . After doing so, the relation G0 → G(r) is
replaced into the classical BH solution in order to incorporate
the corresponding quantum features. Our formalism, how-
ever, follows an alternative route. Given that scale-dependent
gravity modifies classical gravity starting from the action, we
have an additional term, Δtμν , to be considered into the equa-
tions of motion. This term codifies the quantum features and
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Fig. 1 Left panel: gravitational running coupling G(k̃) extracted from
[97]. An unusual feature in the IR sector is observed. This was called
“IR instability” and reveals that some deviation in such sector could
appear. Right panel: gravitational running coupling G(k̃) obtained in
our model assuming the replacement k̃r = 1. We observe that our solu-

tion mimics the same IR instability for small values of k̃. In addition,
G(k̃) tends to be constant for intermediate values of k̃ and, finally, for
large values of k̃ our solution seems to miss the behavior predicted by
the Asymptotic Safety approach

can be interpreted as an additional contribution to the energy-
momentum tensor (as was previously shown). It is precisely
such an interpretation which is crucial for us. Notice that in
scale-dependent gravity the precise relation between k̃ and
r is not specified. In this respect, an unusual feature appears
following this idea: the Newton’s coupling now has a correc-
tion at large distance (apparently) absent in the Asymptotic
Safety solutions. However, such feature was also recently
reported within this framework, as commented before.

6 Concluding remarks

In this work we have constructed, for the first time, five
dimensional scale-dependent black holes. Although we have
been able to generalize some of the classical (non-running)
solutions presented in Ref. [8], it remains to be seen if all the
classical black holes with Thurston geometries have their
scale-dependent counterparts. Interestingly, all the solutions
found incorporate the same running for the Newton coupling
without invoking the null energy condition, in contrast with
some previous works [13–29]. It is remarkable that, at lower
dimensions, the null energy condition supplements the set
of equations to be solved. However, at higher dimensions,
this requirement is not mandatory. Despite of that, given
the symmetry of the problem, the Schwarzschild ansatz is
consistent with the null energy condition as was previously
reported in [17,95]. Interestingly, after comparing the result
here obtained for the running gravitational coupling with the
corresponding results provided by the Asymptotic Safety
program [31–53] one finds that a matching is straightfor-
ward for the scale setting choice k̃(r) ∼ r . As noted in [27],
this choice seems peculiar, since in a naive scale setting one

usually expects k̃ ∼ 1/r for dimensional reasons. However,
it is important to note that this finding is not in contradic-
tion with the Asymptotic Safety paradigm itself but with the
naive scale setting k̃ ∼ 1/r , which is only an educated guess
applied a posteriori, when one tries to improve classical solu-
tions with the running couplings found in Asymptotic Safety.
After briefly discussing the effects due to the combination of
both the topology of the horizon and the scale-dependence,
we have computed the corrections to the temperature and
the entropy for the scale-dependent Solv black hole, finding
linear and quadratic growing behaviours with the running
parameter and recovering the classical results when the the-
ory reduces to General Relativity. Finally, an IR instability
similar to that found in the Asymptotic Safety approach has
been found in the scale-dependent setting here employed by
comparing the running of the Newton coupling in both cases,
suggesting interesting similarities between these approaches.
To conclude, we would like to mention that this work is, to
the best of our knowledge, the first attempt to construct black
holes with Thurston horizons in theories beyond General Rel-
ativity.
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