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1 Introduction

Stability is one of the most important measures in physics, telling us how likely a solution
could exist for a long period. It discriminates cosmological solutions from transient situa-
tions. Electrovacuum black holes (BHs) in general relativity (GR) are stable. Indeed after
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the seminal work by Regge and Wheeler [1], where they proved partially the stability of
the Schwarzschild black hole, Zerilli [2] provided the stability equations for the even-parity
perturbations. Later, following the same approach, Moncrief [3, 4] derived the stability of
the Reissner-Nordstrom black hole. But because of the impossibility to separate variables
in the rotating case, Teukolsky [5, 6] developed a new approach which helped to study the
linear stability of the Kerr black hole. Even if the Newman-Penrose formalism used by
Teukolsky turned out to be extremely difficult to implement for other rotating black holes,
such as the Kerr-Newman, the metric approach to non-rotating solution has been widely
used in various beyond GR models, see e.g. [7–9]. We see that stability is an essential anal-
ysis of any solution. On the other hand, thermodynamic stability is also widely studied.
It is important to mention that (mechanical) stability should be a condition before any
thermodynamic analysis. Indeed, if the black hole is mechanically unstable, any Hawking
radiation would destabilize it and therefore render any thermodynamic analysis impossi-
ble. Finally we should also mention the interesting aspects of instabilities in nature which
provide for example phase transitions. In this direction, any unstable black hole in an
asymptotically AdS spacetime could be associated via the AdS/CFT to a phase transition.

From a more astrophysical aspect, BHs turn out to be extremely useful to study models
beyond GR, in a strong gravitational regime. As we know, BHs are extremely simple
objects. They are described in the vacuum by mainly two parameters, the mass and the
angular momentum (the electric charge being usually negligible). These parameters, which
describe entirely the BH, can be measured, in particular via the frequency emitted during
the last moments of BH mergers, the so-called quasinormal modes (QNMs). Any hairy BH
could be discriminated against through these modes. QNMs are easily computed if their
equation is known. The analysis performed in this paper will provide these equations.

As we mentioned, in this paper, we address the problem of black hole stability for a
generic class of theories beyond GR. Modifying Einstein’s theory of gravity is an easy game
but building a new physical theory turns out to be complicated. Many modified gravity
theories turn out to be highly constrained by the data, from the Brans-Dicke model to
massive gravity à la dRGT. We should follow a simpler road. Could we define theories
with sufficient generality? For that, some of the simple elements that we will consider are

1. Ostrogradsky instability free theory, and therefore we will assume second order dif-
ferential equations for the fields1

2. Well-posed Cauchy problem. Interestingly, this condition reduces drastically the form
of the models in presence of a scalar field. Indeed, only K-essence non-minimally
coupled survives to these restrictions [13–15].

Of course, beyond GR theories can’t be reduced to only the presence of a scalar field.
For example, the dimensional reduction or Kaluza Klein compactification decomposes the

1Even if higher order differential equation for a scalar field turn out to be possible, see beyond Horn-
deski [10, 11], these theories haven’t been very successful in describing the Universe. More generically,
degenerate theories [12] can be constructed which do not propagate more degrees of freedom even if higher
derivatives are present, by considering an appropriate coupling to the metric which satisfies the degenerate
condition.
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higher dimensional metric into at least a vector field along with the scalar field. It is
therefore natural to consider a generic model with these two additional degrees of freedom,
keeping in mind that K-essence types of theories are strongly hyperbolic. The models
studied in this paper can be regarded as a non-linear extension of the hairy black hole
studied by Gibbons and Maeda [16] in the context of Kaluza-Klein theories, but also
rediscovered by Garfinkle, Horowitz and Strominger [17] in the context of string theory.

In this work, we therefore investigate the linear stability of generalized Einstein-
Maxwell-scalar black holes assuming that they are static and without magnetic charge.
We will derive some generic results and apply them to specific models. This paper is or-
ganized as follows. In section 2, we describe the model and the background equations.
In section 3, we summarize the black hole perturbation formalism that we will apply in
section 4 for the odd-parity perturbations and section 5 for the even-parity perturbations.
Finally, we will apply our results to various known solutions in the literature, before final
comments and conclusions.

To facilitate the use of our results, a Mathematica® notebook is available online [18].

2 Background equations of motion

We are interested in generalized Einstein-Maxwell-dilaton theories described by the follow-
ing action

S =
∫

d4x
√
−g
[
f1(φ)R2 + f2(φ,X, F )

]
, (2.1)

where R is the Ricci scalar, f1(φ) is a function of the scalar field φ, representing the non-
minimal coupling to gravity, and f2(φ,X, F ) is a function of the scalar field, its kinetic
energy X = −1

2∇µφ∇
µφ and F = −1

4FµνF
µν where the field strength is defined as Fµν =

∂µAν − ∂νAµ.
We will study the linear stability of static spherically symmetric spacetimes. For that,

we will consider a background spacetime described by the following line element2

ds2 = ḡµνdxµdxν = −A(r)dt2 + dr2

B(r) + C(r)
(
dθ2 + sin2 θdϕ2

)
. (2.2)

Notice that we kept a general function C(r) for the area of the sphere of constant r and t,
because various solutions in the literature are written in this form.

To satisfy the background symmetries of our spacetime, we will consider that the
scalar field only depends on the radial coordinate, φ̄ = φ(r) and the vector field takes the
non-generic form

Āµ = (Ā0(r), Ā1(r), 0, 0) . (2.3)

This function could also be decomposed into transverse and longitudinal modes using
Helmholtz’s theorem [19]. But because we do not consider any mass term à la Proca
AµA

µ, the component Ā1 will play no game in our equations. This background is not the
most generic spherically symmetric spacetime.3 In fact, we should only impose that the

2We will use the notation X̄ to refer to quantities evaluated at the background level.
3We are thankful to Julio Oliva for mentioning to us this point.
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energy-momentum tensor Tµν is invariant under the lie derivative along the generators of
the group SO(3), or we could consider a less restrictive situation where the electromagnetic
part of the energy-momentum tensor is spherically symmetric. Therefore we could consider
Ā = Ā0(r)dt + P̄ cos θdϕ where P̄ is the magnetic charge. We will consider in this paper
only electric charge. It is a genuine restriction.

Using our background metric, the kinetic terms for the scalar and vector fields take
the simple form, X̄ = −Bφ′2/2 and F̄ = BĀ′20 /(2A), where a prime represents a derivative
with respect to r.

Replacing the metric (2.2), the scalar and vector fields in the action (2.1), we obtain
the equations of motion (EOM) by varying the action with respect to the functions X =
{A,B,C, φ, Ā0}. We obtain the equations of motion EX = 0

EA ≡
1
C

[
f1

(
1 + BC ′2

4C

)
−BCf ′′1 −

1
2B
′(Cf1)′ −B

(
C ′f1

)′]+ f2 − 2F̄ f2,F (2.4)

EB ≡
1
C

[
f1

(
1− BC ′2

4C

)
− BA′

2A (Cf1)′ −BC ′f ′1

]
+ f2 − 2F̄ f2,F − 2X̄f2,X (2.5)

EC ≡ 2f2 − f1

√B

A

√B

A
A′

′ +
√
B

C

√B

C
C ′

′ + BA′C ′

2AC

− [(f ′1)2ABC]′

ACf ′1
(2.6)

Eφ ≡ ∂r
[√
ABCf2,X φ

′(r)
]

+

√
A

B
C

(
f2,φ + 1

2f1,φR

)
(2.7)

EĀ0
≡ Q′(r) with Q(r) =

√
B

A
CĀ′0 f2,F (2.8)

where ′ indicates a derivative w.r.t. r. From the last equation follows that Q(r) is constant;
this expresses the existence of a conserved charge arising from the U(1) symmetry.

It is useful to introduce the following variables to simplify the notations

J (r) =
√
ABCf2,X φ

′(r) , S(r) =

√
A

B
C

(
f2,φ + 1

2f1,φR̄

)
, (2.9)

hence, the equation of motion for the scalar field is written as Eφ = J ′ + S = 0.

3 Perturbation formalism

In this section, we will briefly summarize the formalism for perturbations around a static
spherically symmetric spacetime. We consider a background metric ḡµν and a perturbed
metric gµν = ḡµν +hµν . The background metric will be described by the line element (2.2).

Under a reparametrization of the angles (θ, ϕ) into R2(θ, ϕ), R3(θ, ϕ), the 10 compo-
nents of the perturbed metric gµν transform as scalar, vector or tensor. For example, the
component g00 transforms as a scalar while g0i, where i = (2, 3), transforms as a vector.
In fact, g0idtdxi → g0i∂jRidtdxj . In summary, we have three scalars (g00, g01, g11), two
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vectors of dimension two (g0i, g1i) and a rank two tensor (gij), where (i, j) take the values
(2, 3). Each vector field has an orthogonal decomposition

vi = ∂iω + wi , with ∇iwi = 0 (3.1)

and the rank 2 tensor can be decomposed as

Tij = λgij +∇ijψ +∇(iSj) + τij with ∇iSi = ∇iτ ij = τ ii = 0 (3.2)

from which, we can conclude easily that in four dimensions τij = 0 because it has 3 different
components (τ22, τ23, τ33) and 3 restrictions (∇iτ ij = 0, τ ii = 0). In D = 4, perturbations
around spherically symmetric spacetime can be described by scalar and vector pertubations,
which are also known as odd or axial for vector perturbations [1] and even or polar for
scalar perturbations [2]. As we have seen, in higher dimensions, we have an additional
tensor mode [20].

Considering the symmetries of our background spacetime, all scalars can be decom-
posed in the basis of (scalar) spherical harmonics as

Φ(t, r, θ, ϕ) =
∑
`,m

Φ`m(t, r)Y m
` (θ, ϕ) (3.3)

and all vectors can be decomposed into a basis of vector spherical harmonics4

vi(t, r, θ, ϕ) =
∑
`,m

[
ω`m(t, r)∇iY m

` (θ, ϕ) + ω̄`m(t, r)E j
i ∇jY

m
` (θ, ϕ)

]
, (3.4)

where Eij =
√

det γ εij , γij being the two-dimensional metric on the sphere and εij being
the Levi-Civita symbol with ε23 = 1. The functions (∇iY m

` , E j
i ∇jY m

` ) define the basis of
our vector spherical harmonics.

In summary, we have 3 vector perturbations

h0i =
∑
`m

h
(0)
`m(t, r)Eij∂jY m

` , (3.5)

h1i =
∑
`m

h
(1)
`m(t, r)Eij∂jY m

` , (3.6)

hij = 1
2
∑
`m

h
(2)
`m(t, r)

[
E k
i ∇kjY m

` + E k
j ∇kiY m

`

]
, (3.7)

4The first term comes easily from ∇iω where ω is decomposed as any scalar, while the second term
comes from the curl-free component. As we know (~∇ × ~A)i = εijk∇jAk, which in 2D gives ωi = εij∇jψ
with ψ a scalar that can be decomposed in the basis of scalar spherical harmonics.
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and 7 scalar perturbations

h00 = A(r)
∑
`m

H
(0)
`m(t, r)Y m

` , (3.8)

h01 =
∑
`m

H
(1)
`m(t, r)Y m

` , (3.9)

h11 = 1
B(r)

∑
`m

H
(2)
`m(t, r)Y m

` , (3.10)

h0i =
∑
`m

β`m(t, r)∂iY m
` , (3.11)

h1i =
∑
`m

α`m(t, r)∂iY m
` , (3.12)

hij =
∑
`m

[
K`m(t, r)gijY m

` +G`m(t, r)∇ijY m
`

]
. (3.13)

These perturbations are not independent. We can eliminate four of them using the coor-
dinate transformation xµ → xµ + ξµ where ξµ are infinitesimal. This transformation can
also be decomposed into scalar and vector perturbations, we have for the scalar part

ξ0 =
∑
`m

T`m(t, r)Y m
` (θ, ϕ) , (3.14)

ξ1 =
∑
`m

R`m(t, r)Y m
` (θ, ϕ) , (3.15)

ξi =
∑
`m

Θ`m(t, r)∂iY m
` (θ, ϕ) , (3.16)

and for the vector part

ξi =
∑
`m

Λ`m(t, r)Eji ∂jY
m
` (θ, ϕ) . (3.17)

Under this transformation, the perturbed metric transforms according to hµν → hµν −
2∇(µξν) and therefore, we have

h
(0)
`m → h

(0)
`m − Λ̇lm , (3.18)

h
(1)
`m → h

(1)
`m − Λ′lm + C ′

C
Λlm , (3.19)

h
(2)
`m → h

(2)
`m − 2Λlm , (3.20)

where a dot indicates a derivative w.r.t. t. We see that for vector perturbations and for
` ≥ 2, the only full gauge fixing condition is the Regge-Wheeler gauge defined by h(2)

`m = 0
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while for scalar perturbations we have

H
(0)
`m → H

(0)
`m − 2 Ṫlm

A
+ BA′

A
Rlm , (3.21)

H
(1)
`m → H

(1)
`m − Ṙlm − T

′
lm + A′

A
Tlm , (3.22)

H
(2)
`m → H

(2)
`m − 2BR′lm −B′Rlm , (3.23)

β
(0)
`m → β

(0)
`m − Θ̇lm − Tlm , (3.24)

α
(0)
`m → α

(0)
`m −Θ′lm −Rlm + C ′

C
Θlm , (3.25)

K
(0)
`m → K

(0)
`m −

BC ′

C
Rlm , (3.26)

G
(0)
`m → G

(0)
`m − 2Θlm . (3.27)

From which we see that 3 gauges (in the gravity sector) are possible, defined by (G`m =
K`m = β`m = 0), (G`m = H

(0)
`m = β`m = 0) or (G`m = α`m = β`m = 0). We will use in our

calculations, the first gauge.
These perturbations should be supplemented by the perturbation of the scalar field

and the vector field. The scalar field φ has only a scalar perturbation5

φ(t, r, θ, ϕ) = φ̄(r) +
∑
`m

δφ`m(t, r)Y m
` (θ, ϕ) , (3.28)

while the vector field perturbation (Aµ = Āµ + δAµ) can be decomposed into a scalar and
a vector part. The vector perturbation is

δA0 = δA1 = 0 , δAi =
∑
`m

A
(v)
`m(t, r)Eij∇jY m

` (θ, ϕ) , (3.29)

while the scalar perturbation can be written as

δA0 =
∑
`m

A
(0)
`m(t, r)Y m

` (θ, ϕ) , (3.30)

δA1 =
∑
`m

A
(1)
`m(t, r)Y m

` (θ, ϕ) , (3.31)

δAi =
∑
`m

A
(2)
`m(t, r)∇iY m

` (θ, ϕ) . (3.32)

Because of the gauge freedom associated to the vector field,6 we can set A(2)
`m to zero.

We will see later that for ` = (0, 1) some of the perturbations are identically zero which
allows us to use other gauges and simplify the problem. The formalism summarized in this
section applies to scalar and vector perturbations when ` ≥ 2.

5which transforms under a gauge transformation as δφ`m → δφ`m − B φ̄′R`m. We will later use this
condition.

6We define the transformation A0 → A0 −
∑

`m
Ȧ

(2)
`mY

m
` , A1 → A1 −

∑
`m
A

′(2)
`m Y m` and Ai → Ai −∑

`m
A

(2)
`m∇iY

m
` . We have for example A(0)

`m → A
(0)
`m − Ȧ

(2)
`m, that we will redefine as A(0)

`m without any loss
of generality. It is important that scalar perturbations remain scalar after this redefinition.
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In summary, we have two type of modes which can be studied separately at the linear
order unless we have parity-violating terms [21] such as Pontryagin density ∗RR. Also for
any spherically symmetric background, the final equations of perturbations are independent
of the order m [22]. Therefore, without any loss of generality, we will assume m = 0.

4 Odd-parity perturbations

Over the static and spherically symmetric background (2.2), we will consider small pertur-
bations of the fields defined by eqs. (3.5), (3.6), (3.8), (3.29)

Since modes with different ` evolve independently, we focus on a specific mode and
omit the index.

4.1 Second-order action for higher multipoles, ` ≥ 2

In this section we will focus in higher multipoles (` ≥ 2), since dipole mode ` = 1 require
a special treatment. Expanding the action (2.1) to second order in perturbations7 and
performing integration over the sphere (θ, ϕ), we find

S
(2)
odd = 2`+ 1

4π

∫
dt drL(2)

odd , (4.1)

where8

L(2)
odd = a1h

2
0 + a2h

2
1 + a3

[
ḣ2

1 + h′20 + 2C
′

C
h0ḣ1 − 2h′0ḣ1 + 2a4

(
h′0 − ḣ1

)
Av

]
+ a5h0Av + a6A

2
v + a7Ȧ

2
v + a8A

′2
v

(4.2)

where the coefficients are given by

a1 = λ

4C
[ d
dr

C ′
√
B

A
f1

+ (λ− 2)f1√
AB

+ 2C√
AB
EA
]
, a5 = λ

C

(
EĀ0
− C ′

C
Q

)

a2 = −λ2
√
AB

[(λ− 2)f1
2C + EB

]
, a6 = −λ

2Ā′0
4C2

Q

F̄

a3 = λ

4

√
B

A
f1 , a7 = λ

2BCĀ′0
Q

a4 = 2

√
A

B

Q

Cf1
, a8 = − λA

2CĀ′0
Q

(4.3)

and λ = `(`+1). On-shell, EA = EB = EĀ0
= 0 which allows us to simplify these coefficients.

Notice that for ` = 1, we have a2 = 0 on-shell, this is why this mode has to be studied
separately. The term inside square brackets in (4.2) can be rewritten in a more convenient
way such that the Lagrangian is simplified to

L(2)
odd = b1h

2
0 +a2h

2
1 +a3

[
ḣ1−h′0 + C ′

C
h0 − a4Av

]2
+
(
a6 − a3a

2
4

)
A2
v+a7Ȧ

2
v+a8A

′2
v +b2h0Av

(4.4)
7The first order perturbations vanish on-shell.
8We have renamed for simplicity of notations h(0)

`m → h0, h(1)
`m → h1, A(v)

`m → Av.
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where we have defined, b1 = a1− (C ′a3)′/C and b2 = a5 + 2a3a4C
′/C ≡ λEĀ0

/C. On-shell,
the last coefficient vanishes, b2 = 0.

Since no time derivative of h0 appears in the Lagrangian, variation with respect to
it, yields a constraint equation. However, because of the presence of h′0 in the action,
this constraint results in a second-order ordinary differential equation which cannot be
immediately solved for h0. To overcome this obstacle, we follow the procedure described
in [23, 24], we introduce an auxiliary field q(t, r) and define the following Lagrangian

L(2)
odd = b1h

2
0+a2h

2
1+a3

[
2q
(
ḣ1 − h′0 + C ′

C
h0 − a4Av

)
− q2

]
+
(
a6 − a3a

2
4

)
A2
v+a7Ȧ

2
v+a8A

′2
v .

(4.5)
We can easily check that by substituting the EOM for q(t, r) into eq. (4.5), we recover the
original Lagrangian. Now, varying (4.5) with respect to h0 and h1 leads to

b1h0 +
[
(a3q)′ + a3q

C ′

C

]
= 0 −→ h0 = −(a3qC)′

Cb1
(4.6)

a2h1 − a3q̇ = 0 −→ h1 = a3
a2
q̇ (4.7)

these expressions relate the metric elements h0 and h1 to the auxiliary field q. Once
q(t, r) is known, h0 and h1 are easily obtained, and thus all vector perturbations in the
Regge-Wheeler gauge are obtained. Substituting these expressions into the Lagrangian and
performing integration by parts one finds

L(2)
odd = α1q̇

2 + β1q
′2 + γ1q

2 + α2Ȧ
2
v + β2A

′2
v + γ2A

2
v + σAvq , (4.8)

which explicitly shows that taking into account the vector sector, we only have two degrees
of freedom, one associated with gravitational perturbation and another related to vector
perturbation of the electromagnetic field. The coefficients of the above Lagrangian, in
terms of the variables (4.3), are

α1 = −a
2
3
a2
, α2 = a7 , σ = −2a3a4 ,

β1 = −a
2
3
b1
, β2 = a8 , γ2 = a6 − a3a

2
4 ,

γ1 = a3
b21C

2

[
−Cb′1(a3C)′ + b1

[
C(a3C)′′ − 2C ′(a3C)′

]
− b21C2

]
.

(4.9)

We see that in the absence of electromagnetic perturbations, the Lagrangian (4.8) becomes
L(2)

odd = α1q̇
2 + β1q

′2 + γ1q
2, from which we should at least impose the no-ghost condition

α1 > 0 translating into a2 < 0 and therefore f1 > 0. Similarly, in the absence of the
gravitational perturbations, we have L(2)

odd = α2Ȧ
2
v + β2A

′2
v + γ2A

2
v from which we impose

the condition α2 > 0 which means Q/Ā′0 > 0 and using eq. (2.8) gives f2,F > 0.

4.2 Master equation

To arrive at our final result, it is convenient to rescale the variables as

q(t, r) =
√

A

f1BC
Vg(t, r) , Av(t, r) = Ve(t, r)√

2(λ− 2)f2,F
, (4.10)
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where (Vg, Ve) represent respectively the vector perturbations associated to the gravita-
tional and electromagnetic sector. Notice that we have assumed the previous conditions
f1 > 0 and f2,F > 0. Finally, introducing the tortoise coordinate, dr =

√
AB dr∗ we find

S
(2)
odd = `(`+ 1)(2`+ 1)

16π(`+ 2)(`− 1)

∫
dtdr∗

[(
∂Ψi

∂t

)2
−
(
∂Ψi

∂r∗

)2
− VijΨiΨj

]
, (4.11)

where ~Ψ = (Vg, Ve)t, and Vij are the components of a 2 × 2 symmetric matrix and are
given, after substituting relations (4.3), by

V11 = (λ− 2)A
C
− ∂r∗S1 + S2

1 , S1(r) =
√
AB

2

(
C ′

C
+ f ′1
f1

)
, (4.12)

V22 = λA

C
+G(r)− ∂r∗S2 + S2

2 , S2(r) = −
√
AB

2
f ′2,F
f2,F

, (4.13)

V12 = V21 =

√
(λ− 2)A

C
G(r) , G(r) = 2 A

C2
Q2

f1f2,F
. (4.14)

The introduction of the functions (S1, S2) will be more transparent in the stability analysis
section. Variation of the action (4.11) with respect to Ψ gives us a wave-like equation

− ∂2~Ψ
∂t2

+ ∂2~Ψ
∂r2
∗
−V~Ψ = 0 . (4.15)

Both modes propagate at the speed of light. Since matrix V is not diagonal, the previous
equation is a set of two coupled differential equations. But the system can be diagonalized
because the eigenvalues are independent of the radial coordinate.9

4.3 Stability analysis

Stability means that no perturbation grows unbounded in time. For that, we will Fourier
transform our variables (~Ψ→ e−iωt~Ψ) such as eq. (4.15) is recast as

H~Ψ = ω2~Ψ (4.16)

where H = −∂2
r∗ + V. The frequency ω2 appears as the eigenvalues of the operator H.

Unstable modes are equivalent to purely imaginary modes ω2 < 0 (see e.g. [24]), therefore
the stability of the spacetime is related to the positivity of the operator H, namely that H
has no negative spectra. To prove the stability, let us define the inner product

(~ψ, ~ξ) =
∫

dr∗
[
ψ̄1ξ1 + ψ̄2ξ2

]
, (4.17)

where ~ψ = (ψ1, ψ2)T and ~ξ = (ξ1, ξ2)T . Stability means that the operator H is a posi-
tive self-adjoint operator in L2(r∗), the Hilbert space of square integrable functions of r∗.
Therefore, we need to prove the positivity defined as

∀χ , (~χ,H~χ) > 0 . (4.18)
9We could verify it for various theories but not generically.
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This condition will imply that given a well-behaved initial data, of compact support, χ
remains bounded for all time. This is a sufficient condition. The rigorous and complete
proof of the stability related to equations of the form (4.15) can be found in [25, 26] using
spectral theory.

We have

(~χ,H~χ) =
∫

dr∗
[
χ̄1
(
−∂2

r∗χ1 + V11χ1 + V12χ2
)

+ χ̄2
(
−∂2

r∗χ2 + V22χ2 + V12χ1
)]

=
∫

dr∗
[ ∣∣∣∣dχ1

dr∗

∣∣∣∣2 +
∣∣∣∣dχ2
dr∗

∣∣∣∣2 + V12
(
χ̄1χ2 + χ1χ̄2

)
+ V11|χ1|2 + V22|χ2|2

]

=
∫

dr∗

[ ∣∣∣∣dχ1
dr∗

+ S1χ1

∣∣∣∣2 +
∣∣∣∣dχ2
dr∗

+ S2χ2

∣∣∣∣2 + (λ− 2)A
C
|χ1|2 + (λA

C
+G)|χ2|2

+

√
(λ− 2)A

C
G
(
χ̄1χ2 + χ1χ̄2

)]

=
∫

dr∗

[ ∣∣∣∣dχ1
dr∗

+ S1χ1

∣∣∣∣2 +
∣∣∣∣dχ2
dr∗

+ S2χ2

∣∣∣∣2 +
∣∣∣∣
√

(λ− 2)A
C
χ1 +

√
Gχ2

∣∣∣∣2 + λ
A

C
|χ2|2

]
≥ 0 . (4.19)

where χ̄i (i = 1, 2) represent the complex conjugate of χi and should not be confused
with background quantities. In the second line, we have neglected the boundary term
χ̄1∂r∗χ1 + χ̄2∂r∗χ2 coming from the integration by parts, because we assumed χ1 and χ2
to be smooth functions of compact support, while in the third line we have neglected the
boundary term S1|χ1|2 + S2|χ2|2.

Therefore, we conclude that the black hole is stable under vector perturbations for
` ≥ 2 if the no-ghost condition is satisfied, namely10

f1(φ) > 0 , f2,F (φ,X, F ) > 0. (4.20)

Notice that these conditions are not equivalent to energy conditions (see appendix B).

4.4 Stability of dipole perturbation, ` = 1

We should first mention that for ` = 0, spherical harmonics are constant and therefore the
three vector perturbations of the metric and the vector perturbation of the electromagnetic
field are identically zero as we can see from their definition (3.5), (3.6), (3.8), (3.29).

For the dipole perturbation, ` = 1 and assuming m = 0 because the final result
is independent of the azimuthal angle, we have Y 0

1 ∝ cos θ, therefore we have hij = 0
where (i, j) = {1, 2}. We don’t need to use the Regge-Wheeler gauge to eliminate this
perturbation. We have seen that

h0 → h0 − Λ̇ , (4.21)

h1 → h1 − Λ′ + C ′

C
Λ . (4.22)

10It was also noticed that in Horndeski theory, the black hole is stable if the no-ghost and hyperbolicity
conditions are satisfied [24]. Notice that for Lovelock black holes, the no-ghost and hyperbolicity conditions
could be satisfied while the black hole is unstable [27].
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Therefore, we can use this gauge freedom to fix h1 = 0 but we have a residual gauge
freedom defined as Λ→ Λ + f(t)C(r).

Let us consider the Lagrangian (4.4) which is valid also for ` = 1. After imposing the
background equations, we get a2 = b1 = 0; and therefore11

L(2)
odd, `=1 = a3

[
ḣ1 − h′0 + C ′

C
h0 − a4Av

]2
+
(
a6 − a3a

2
4

)
A2
v + a7Ȧ

2
v + a8A

′2
v . (4.23)

Variation of this action with respect to h1 and h0 gives us

Ė = 0 , (CE)′ = 0 , (4.24)

where we have defined
E = a3

(
ḣ1 − h′0 + C ′

C
h0 − a4Av

)
, (4.25)

which solution is given by E = J /C(r), where J is an integration constant.12 Considering
our gauge freedom, we fix h1 = 0, and integrating the previous equation, we obtain

h0(t, r) = −JC(r)
∫ dr
C(r)2a3

− C(r)
∫

a4
C(r)Avdr + F (t)C(r) , (4.26)

where F (t) is a constant of integration. This last term can be eliminated with the help of
the residual gauge freedom, giving finally

h0(t, r) = −2JC(r)
∫ 1
C2(r)f1

√
A

B
dr − 2QC(r)

∫
Av

C(r)2f1

√
A

B
dr . (4.27)

The variation of (4.23) w.r.t. Av gives

a7Äv + (a8A
′
v)′ − (a6 − a3a

2
4)Av + a4

J
C(r) = 0 . (4.28)

Defining a new variable av =
√
f2,FAv and using the tortoise coordinate, we find

−∂
2av
∂t2

+ ∂2av
∂r2
∗
− V22av −

2QJA
C2f1

√
f2,F

= 0 (4.29)

where V22 is the coefficient defined in eq. (4.13) for ` = 1, i.e. λ = 2.
The solution of eq. (4.29) is the sum of a particular solution that we can consider as a

function of r only and a homogeneous solution. In order to understand this solution, let us
consider the simple case where we have perturbed Reissner-Nordström in general relativity.
For that we take f1 = 2, f2 = 4F and Q = 4q, from which we get A = B = 1−2M/r+q2/r2

and C = r2. For this spacetime, a particular solution of eq. (4.29) is av = −Jq/6Mr which
gives Av = −Jq/12Mr and therefore h0 = − J6M

(
−2M
r + q2

r2

)
which means

h03 = − J6M

(−2M
r

+ q2

r2

)
sin2 θ , (4.30)

11We will fix h1 = 0 after using the constraint derived from its variation because the gauge is not totally
fixed by this condition.

12We hope that this will not confuse the reader because of the function defined in eq. (2.9).
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in other words, the Kerr-Newman solution at the first order in J if we define J = −12J .
Therefore, the particular solution of eq. (4.29) should describe a slow rotating black hole
while the homogeneous solution describes the propagation of the electromagnetic field in
our spacetime [28]. This propagation is stable because of the potential V22 which can be
easily deformed to a positive potential using the function S2(r). In fact, as we have shown
in section 4.3, the operator associated is definite positive.

In conclusion, we have shown that for any theory described by the action (2.1) and
considering the conditions f1 > 0 and f2,F > 0, the static spherically symmetric spacetime
described by a generic metric (2.2) is stable under vector perturbations.

5 Even-parity perturbations

In this section, we will study the scalar (even, polar) perturbations of the action (2.1). We
follow the formalism that we have summarized in section 3

5.1 Second-order action for higher multipoles, ` ≥ 2

Following exactly the same procedure, we arrive at

S(2)
even = 2`+ 1

2π

∫
dt drL(2)

even , (5.1)

where the second-order Lagrangian is

L(2)
even = a1H

2
0 +H0

[
a2H

′
2 + λa3α

′ + (a4 + λa5)H2 + λa6α+ (a7 + λa8)δφ+ a9δφ
′

+a10δφ
′′ + a11(A′0 − Ȧ1)

]
+ (b1 + λb2)H2

1 +H1
[
b3Ḣ2 + λb4α̇+ b5 ˙δφ+ b6 ˙δφ′

]
+ c1H

2
2 + λc2α

2 + λc3H2α+ λc4α̇
2 + (c5 + λc6)H2δφ+ c7H2δφ

′ + c8Ḣ2 ˙δφ

+ λc9αδφ+ λc10αδφ
′ + c11H2(A′0 − Ȧ1) + λc12αA0 + e1 ˙δφ2 + e2δφ

′2

+ (e3 + λe4)δφ2 + e5δφ(A′0 − Ȧ1) + e6δφ
′(A′0 − Ȧ1)

+ d1(A′0 − Ȧ1)2 + λd2A
2
0 + λd3A

2
1 ,

(5.2)
here ai, bi, ci, di and ei are all functions of r only and their expressions are given in the
appendix A. In what follows, we will reduce this Lagrangian and rewrite it in terms of
three variables, representing the remaining three DOF of the theory. The variation of the
action with respect to A0 and A1 gives

λc12α+ 2λd2A0 − ∂r
[
a11H0 + c11H2 + e5δφ+ e6δφ

′ + 2d1(A0
′ − Ȧ1)

]
= 0 , (5.3)

2λd3A1 + ∂t
[
a11H0 + c11H2 + e5δφ+ e6δφ

′ + 2d1(A0
′ − Ȧ1)

]
= 0 . (5.4)

Introducing the new variable13 defined as

Se(t, r) = a11H0 + c11H2 + e5δφ+ e6δφ
′ + 2d1(A0

′ − Ȧ1) , (5.5)
13which will be associated to the scalar part perturbation of the electromagnetic field.
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we obtain
A0 = 1

2λd2

(
S′e − λc12α

)
, A1 = − Ṡe

2λd3
. (5.6)

Let us notice from Lagrangian (5.2) that H1 has no derivatives, so we can integrate out
this non-propagating field by using its own equation of motion

H1 = − 1
2λb2

[
b3Ḣ2 + λb4α̇+ b5 ˙δφ+ b6 ˙δφ′

]
. (5.7)

Notice that the coefficient b1 is zero on-shell, so we have dropped this term in the previous
equation. At this point, the Lagrangian (5.2) only depends on the variables H0, H2, α, Se
and δφ. Variation of the action with respect to H0 gives us

E1 ≡ 2a1H0 + a2H
′
2 + λa3α

′ + (a4 + λa5)H2 + λa6α+
(a7 + λa8)δφ+ a9δφ

′ + a10δφ
′′ + a11(A′0 − Ȧ1) = 0 .

(5.8)

Taking the combination E1 − a11/(2d1)Se(t, r), and using the identity 2a1 − a2
8/2d1 = 0,

we obtain a relation that sets a constraint for the other fields, but this is not an algebraic
constraint; however, in order to resolve this issue, we perform a field redefinition and use
a new variable14 Sg defined by

H2 = 1
a2

[
Sg(t, r)− a10δφ

′ − λa3α
]
. (5.9)

Using this relation, the constraint becomes an algebraic equation for α, which can be
solved

α = a3
λb4

T (r)
[
S′g + λ

a5
a2
Sg +

(
P (r)− λa10a5

a2

)
δφ′ + a11Se

2d1
+ (P ′(r) + λa8)δφ

]
(5.10)

where T and P are given by

T (r) = 2
Af1
√
AB

(
C ′

C
− A′

A
− 2λf1
B(Cf1)′

)−1
,

P (r) =
√
BC

[
A

(
f1,φ√
A

)′
+
√
Aφ′f2,X

]
.

(5.11)

Replacing this definition into E1, we can rewrite H0 in terms of the other variables and
their derivatives (this is a large expression, and at this point, it is unnecessary to write
it). Substituting this relations into (5.2) we obtain a Lagrangian that only depends on
variables Sg(t, r), Se(t, r) and δφ(t, r) given by

L(2)
even = α1Ṡg

2 + β1S
′
g

2 + γ1S
2
g + α2Ṡe

2 + β2S
′
e
2 + γ2S

2
e + α3 ˙δφ2 + β3δφ

′2 + γ3δφ
2+

σ1SgSe + σ2S
′
gSe + σ3S

′
gS
′
e + σ4ṠgṠe + η1Sgδφ+ η2S

′
gδφ+ η3S

′
gδφ
′ + η4Ṡg ˙δφ+

ν1Seδφ+ ν2Seδφ
′ + ν3S

′
eδφ
′ + ν4Ṡe ˙δφ .

(5.12)
14which will be associated to the scalar part perturbation of the gravitational field.
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The above Lagrangian can be rewritten in matrix form

L(2)
even = Kijχ̇iχ̇j − Lijχ′iχ′j +Dijχ

′
iχj +Mijχiχj , (5.13)

where χ = (Sg, Se, δφ)T and (Kij , Lij ,Mij) are symmetric matrices, while Dij is antisym-
metric.15 The no-ghost condition requires the matrix K to be positive definite; for this
purpose, we employ the Sylvester’s criterion, which gives

K11 > 0 , K11K22 −K2
12 > 0 , det(Kij) > 0 . (5.14)

We obtain that the first two conditions reduce to

K11 = AT 2

λC

√
A

B

(
λP1 − f1 + BC

A
Ā′20 f2,F

)
> 0 , (5.15)

K11K22 −K2
12 = A

BC

(
T

2λ

)2λP1 − f1
f2,F

> 0 . (5.16)

where we defined

P1(r) = BΞ
2ACf2

1

[
AC2f4

1
Ξ2B

]′
, and Ξ = (Cf1)′ . (5.17)

Imposing the conditions that we obtained in the odd-parity sector, namely f1 > 0 and
f2,F > 0, we get that the last term in (5.15) is always positive, so the previous two relations
are reduced to a single constraint: λP1 − f1 > 0. Finally, the third condition is given by

det(Kij) =

√
A

B

(
TC ′

4λCφ′
)2 (λ− 2)f1

B f2,F
(2P1 − f1) > 0 , (5.18)

which is satisfied if and only if
2P1 − f1 > 0 . (5.19)

Clearly, if eq. (5.19) is satisfied then conditions (5.15) and (5.16) are satisfied automatically,
given that ` ≥ 2. We recover the no-ghost condition computed in [29] for a general scalar-
tensor theory.

Using the background equations, we find

2P1 − f1 = C2f1φ
′2

Ξ2

(
3f1

2
,φ + 2f1f2,X

)
(5.20)

and assuming stability of odd-parity perturbations, viz. f1 > 0, we obtain

3f1
2
,φ + 2f1f2,X > 0 . (5.21)

5.2 Speed of propagation of scalar perturbations

We know that our model consists of five degrees of freedom, where two are related to gravity,
two others to the electromagnetic field and finally one degree of freedom is associated to
the scalar field. They are decomposed around a spherically symmetric spacetime as two
vector perturbations and three scalar perturbations. As we have seen, vector perturbations
propagate at the speed of light. To complete the analysis, we need to obtain the speed
propagation of the even perturbations. In that direction, let us consider that the solution
is of the form16 χ ∝ ei(ωt−kr). Considering the small scale limit, the dispersion relation

15All these matrices are given in a Mathematica file [18].
16We are calculating only the radial speed of propagation.
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obtained from (5.13) can be written as det
(
ω2Kij − k2Lij

)
= 0. The propagation speed cr

in proper time can be derived by substituting ω =
√
ABcrk into the dispersion relation.

Solving for c2
r , we obtain the propagation of the three degrees of freedom:

c2
r1 = c2

r2 = 1 , c2
r3 =

C2f1
(
3Bf ′1

2 − 2P3f1
)

BΞ2(2P1 − f1) , (5.22)

where
P3 = 2Σ + M

2

F
(5.23)

with

Σ = X̄
(
f2,X + 2X̄f2,XX

)
, M = −4X̄F̄ f2,FX , and F = −2F̄

(
f2,F + 2F̄ f2,FF

)
. (5.24)

The propagating mode different than the speed of light is related to the scalar field sector.
Indeed, in the case where the vector field is absent, we have that P3 = 2Σ, and c2

r3 reduces
to the propagation speed of the scalar field given in [29].

Using previous relations, we get17

c2
r3 = 1 + 4X̄f1

f2,XX(f2,F + 2F̄ f2,FF )− 2F̄ f2
2
,XF

(f2,F + 2F̄ f2,FF )(3f1
2
,φ + 2f1f2,X)

. (5.26)

It is important to emphasize that these velocities are very weakly constrained by
gravitational waves. Certainly, between the merger of two compact objects and us, the
wave propagates mostly over a FLRW spacetime than a spherically symmetric background.
But, we should also consider that a model described by our action is just an effective low
energy description of some more fundamental theory. For that, we should impose standard
conditions such as Lorentz invariance, unitarity, analyticity. Even if not proved generically,
it was shown in various situations and around different backgrounds that these conditions
imply nonsuperluminal propagation (see e.g. [31–33]). Hereafter, we will not consider this
condition but the much more restrictive, possibly more interesting, condition c2

r3 = 1, which
translates from eq. (5.26) into

f2,XX = 2F̄ (f2,XF )2

f2,F + 2F̄ f2,FF
. (5.27)

We conclude that any action given by the form below will propagate at the speed of light
five degrees of freedom

S =
∫

d4x
√
−g
[
f1(φ)R+ f2(φ, F ) +Xf3(φ)

]
, (5.28)

where (f1, f2, f3) are generic functions.
17Notice that if we consider a theory for which f2,F + 2Ff2,FF = 0, viz.

S =
∫

d4x
√
−g
[
F (φ)R+K(φ,X) +G(φ,X)

√
F
]

(5.25)

one of the degrees of freedom propagates at infinite speed, which could be similar to the Cuscuton [30], for
which this perturbation do not carry any microscopic information.
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5.3 Master equation

From Lagrangian (5.13), we obtain the equations of motion

Lijχ
′′
j + (L′ij −Dij)χ′j + (Mij + ω2Kij −

1
2D
′
ij)χj = 0 , (5.29)

where we have used ~χ(t, r)→ e−iωt~χ(r). Making a change of variable χi(r)→ Sij(r)Φj(r),
and changing to tortoise coordinate dr =

√
ABdr∗ we get

d2Φq

dr2
∗

+ ω2
(
ABS−1

qp L
−1
pi KinSnk

)
Φk +ABS−1

qp L
−1
pi BinSnkΦk = 0 (5.30)

where the matrix S is solution of18

S′ij + CikSkj = 0 , (5.31)

with

Cij = 1
2L
−1
ik

[
L′kj −Dkj −

1
2

(
A′

A
+ B′

B

)
Lkj

]
, (5.32)

and

Bij = Lik(CkmCmj − C ′kj)− L′ikCkj +DikCkj +Mij −
1
2D
′
ij . (5.33)

We see from eq. (5.30) that not all degrees of freedom propagate at the speed of light. But
if we consider the condition (5.27), we have Lij = ABKij , which implies

d2~Φ
dr2
∗

+ ω2~Φ−V~Φ = 0 (5.34)

where V is the matrix potential, which expression can be read off directly from (5.30)

V = −S−1K−1B S . (5.35)

Given the matrix S, the potential V can be easily derived and the stability studied. Un-
fortunately, in the generic case, we were not able to obtain the matrix S but we will see in
the following sections, various examples where these calculations can be performed easily.

Following the same procedure as in the vector perturbation sector, we define the op-
erator Hij = −δij d2

dr∗ + Vij , and we obtain

(Φ,HΦ) =
∫

dr∗Φ̄iHijΦj

=
∫

dr∗
[∣∣∣dΦi

dr∗

∣∣∣2 + VijΦ̄iΦj

]
, (5.36)

where we have as usual performed an integration by parts and eliminated the boundary
term. Even if a generic stability condition can’t be obtained, we can discuss sufficient

18This differential equation will have some integration constants which can be left free as soon as S is
invertible.
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stability conditions. In fact, a sufficient but not necessary condition of the stability is
obtained if the potential is definite positive. On the contrary, if there is a trial function19

Φ0, such that (Φ0,HΦ0) < 0, the spacetime is unstable [34].
In the case20 where f2,XF = 0, we found for large λ

V22 = λ
A

C

f2,F

f2,F + 2F̄ f2,FF
+O(λ0) . (5.37)

Considering Φ0 = (0, φ0(r), 0)T with (φ0, φ0) <∞ (a normalizable trial function), we get

(Φ0,HΦ0) =
∫

dr∗

[ ∣∣∣∣dφ0
dr∗

∣∣∣∣2 + λ
A

C

f2,F

f2,F + 2F̄ f2,FF
|φ0|2

]
+O(λ0) . (5.38)

Therefore we conclude that if
f2,F

f2,F + 2F̄ f2,FF
< 0 , (5.39)

the integral is negative for sufficiently large λ which implies the instability.

5.4 Second order Lagrangian for ` = 0

Similarly to the vector perturbations, the generic analysis we have performed in the previ-
ous section is valid only for higher modes, ` ≥ 2. For scalar perturbations, we will see that
for ` = 0, we have only one perturbation related to the scalar field, the breathing mode,
which is the spherically symmetric perturbation and for ` = 1 we will have 2 perturbations
related to the scalar field and the electromagnetic field. Using the relations derived in
section 3, we have, for ` = 0, without defining any gauge, h0i = h1i = 0 and only K00
survives in the expression of hij . We can choose the freedom on ξ1 to fix K00 = 0. We
still have the freedom on choosing ξ0. Using these relations, we obtain from eq. (5.2) using
` = 0 (λ = 0)

L(2)
even, `=0 = a1H

2
0 +H0

[
a2H

′
2 + a4H2 + a7δφ+ a9δφ

′ + a10δφ
′′ + a11(A′0 − Ȧ1)

]
+H1

[
b3Ḣ2 + b5 ˙δφ+ b6 ˙δφ′

]
+ c1H

2
2 + c5H2δφ+ c7H2δφ

′ + c8Ḣ2 ˙δφ

+ c11H2(A′0 − Ȧ1) + e1 ˙δφ2 + e2δφ
′2 + e3δφ

2 + e5δφ(A′0 − Ȧ1)
+ e6δφ

′(A′0 − Ȧ1) + d1(A′0 − Ȧ1)2 .

(5.40)

Variation of the action with respect to A0 and A1 gives us the relations ∂tSe(t, r) =
∂rSe(t, r) = 0, where Se(t, r) is defined in (5.5); thus, Se(t, r) ≡ C1 is constant.

Variation w.r.t. H0, and using the previous relation gives

∂r

[
P (r)δφ+ a2H2 + a10δφ

′ − C1
2 Ā0

]
= 0 , (5.41)

19Because the lowest eigenvalue ω0 of the spectrum of H gives ∀ Φ, ω2
0 ≤ (Φ,HΦ)/(Φ,Φ). Therefore if a

trial function Φ0 is such that (Φ0,HΦ0) < 0, we have ω2
0 < 0, for a normalizable trial function.

20Notice that this condition includes most, if not all models studied in the literature for generic Einstein-
Maxwell-dilaton theories.
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while variation w.r.t. H1 gives

∂t
[P (r)δφ+ a2H2 + a10δφ

′

A

]
= 0 . (5.42)

Therefore, we conclude that

P (r)δφ+ a2H2 + a10δφ
′ = C1

2 Ā0(r) + C2 , (5.43)

where C2 is a new integration constant. This equation will be used to eliminate the
variable H2.

We can use the freedom on ξ0, to partially fix the gauge by considering H1 = 0 which
would also gives us an additional freedom viz. H0 → H0 − f(t). Considering now the
variation w.r.t. to H2 and fixing this gauge, we obtain an expression for H ′0 which can be
integrated and the integration constant g(t) eliminated by the remaining gauge freedom.
These expressions are not specially illuminating and therefore will not be written but we
will demonstrate the effect of this mode on a particular solution. Finally, the equation
w.r.t. to δφ gives the equation

−K0δ̈φ+
(
L0δφ

′
)′

+M0δφ+N0(r) = 0 (5.44)

where we have defined
K0 = C ′2(2P1 − f1)

2
√
ABCφ̄′2

. (5.45)

From this equation, we can see that the no-ghost condition, K0 > 0, is the same as the
one for higher multipoles, i.e., equation (5.19). On the other hand, in the limit of large
wavenumber k, we get that the velocity of the propagation is

c2
0 = L0

ABK0
= C2f1

(
3Bf ′21 − 2P3f1

)
BΞ2(2P1 − f1) , (5.46)

which also coincides with c2
r3 given in eq. (5.22). Since only the scalar wave is excited

in the monopole perturbation, this result allows us to interpret c2
r1 and c2

r2 as the propa-
gation speed of gravitational and vector perturbations, and c2

r3 as the propagation of the
scalar waves.

The eq. (5.44) admits a particular and homogeneous solution. The homogeneous so-
lution will describe the propagation of the spherical scalar wave in the fixed background
metric while the particular solution should modify the constants of the metric. For that,
let us consider the electric GM-GHS black hole (see section 6.4) with

f1 = 2 , f2 = 4X + 4e−2φF (5.47)

A = B = 1− 2M
r

, C = r

(
r − q2

M

)
(5.48)

Ā0 = −q
r
, φ = 1

2 log
(

1− q2

Mr

)
(5.49)
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Using the previous equations, we found that a particular solution of eq. (5.44) is a constant
which gives us (H0, H2) and therefore

h00 = α

r
, h11 = α

r(1− 2M/r)2 , (5.50)

where α is a constant, α = M(C1q − 4C2M)/(8M2 − 2q2). That gives us A = B =
1− 2M/r − α/r. Therefore, only the mass has been modified. Also we have

A′0 − Ȧ1 = MC1 + 4αq
8Mr2 , (5.51)

which shifts the electric charge F01 → F01− (MC1 + 4αq)/8Mr2. In conclusion, we expect
that for any spacetime, the particular solution shifts the constants of the spacetime while
the homogeneous solution describes a scalar wave propagating in a fixed background.

5.5 Second order Lagrangian for ` = 1

Considering now the dipole perturbation, we see that for ` = 1 and therefore Y 0
1 ∝ cos θ,

we have

h22 = (K(t, r)−G(t, r)) cos θ , (5.52)
h33 = (K(t, r)−G(t, r)) cos θ sin2 θ , (5.53)
h23 = 0 . (5.54)

Therefore, the metric perturbation hij depends on K and G only through the combination
K − G. We can use one function of the coordinate transformation, ξ2, to set K − G = 0
(ξ3 = 0). We also use the transformation ξ0 to define β(t, r) = 0. Thus, we have a remaining
degree of freedom that we can use to set δφ(t, r) = 0. As we have seen, δφ→ δφ− Bφ̄′R.
Using the transformation of coordinate ξ1 sets the scalar field to zero. In this case, the
gauge is totally fixed and therefore we can proceed as usual. The Lagrangian for the dipole
mode is obtained taking λ = 2 (` = 1) in (5.2)

L(2)
even, `=1 = a1H

2
0 +H0

[
a2H

′
2 + 2a3α

′ + (a4 + 2a5)H2 + 2a6α+ a11(A′0 − Ȧ1)
]

+ (b1 + 2b2)H2
1 +H1

[
b3Ḣ2 + 2b4α̇+ b5 ˙δφ

]
+ c1H

2
2 + 2c2α

2 + 2c3H2α+ 2c4α̇
2

+ c11H2(A′0 − Ȧ1) + 2c12αA0 + d1(A′0 − Ȧ1)2 + 2d2A
2
0 + 2d3A

2
1 . (5.55)

Performing similar calculations to those we did in the section of higher multipoles, after
taking δφ = 0, we get a second-order Lagrangian similar to (5.12). Again, after redefining
the variables, we obtain that the Lagrangian takes the canonical form

L(2)
even, `=1 = K1

ijχ̇iχ̇j − L1
ijχ
′
iχ
′
j +D1

ijχ
′
iχj +M1

ijχiχj . (5.56)

In this case, χ is a two-component vector representing the two propagating degrees of
freedom, K1, L1 and M1 are 2 × 2 symmetric matrices and D1 is antisymmetric. The
no-ghost conditions, positivity of the matrix K1

ij , are the same as in the higher multipole
case, i.e., equations (5.15) and (5.16), which are reduced to the stability condition (5.19)
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after taking λ = 2. Also, from this Lagrangian, we obtain that the propagation speeds
along the radial direction are given by

c2
1 = 1 , c2

s = C2f1
(
3Bf ′21 − 2P3f1

)
BΞ2(2P1 − f1) , (5.57)

which again coincide with the propagation speed in the case of higher multipoles eq. (5.22).
We conclude that the degree of freedom associated to the scalar field travels at the same
speed, regardless of the multipole order.

6 Application to specific models

6.1 Reissner-Nordström BH

As a first example, let us consider the Reissner–Nordström BH, which is given by setting
f1 = 2 and f2 = 4F . We have four DOF, two in each type of perturbations, traveling at
the speed of light. The metric functions are

A(r) = B(r) = 1− 2M/r + q2/r2 , C(r) = r2 . (6.1)

Because f2,F = 4 > 0, we conclude that the vector perturbations are stable. For complete-
ness, let us write the perturbation potential for this sector

V11 =
(
r(r − 2M) + q2) (r(λr − 6M) + 4q2)

r6 , (6.2)

V22 =
(
r(r − 2M) + q2) (4q2 + λr2)

r6 , (6.3)

V12 = 2q
(
r(r − 2M) + q2)

r5
√
λ− 2 , (6.4)

which corresponds exactly to the potential derived21 originally in [3].
Considering the scalar perturbation sector, we need first to eliminate one row and one

column of our matrices because of the absence of the scalar field. Then, we need to solve
the eq. (5.31) which gives

S =
(

6Mr−4q2+(λ−2)r2

r2 c1
6Mr−4q2+(λ−2)r2

r2 c2
8c1q
r + c3

8c2q
r + c4

)
(6.5)

where (c1, c2, c3, c4) are constants of integration, which should be chosen freely as soon as
c1c4−c2c3 6= 0 in order for S to be invertible. Finally, the calculation of the scalar potential
is trivial and we found that our potential V is similar to the original potential22 derived
in [4] with a change of a constant basis matrix. Both matrices describe the same problem.
In fact, if we have

−∂
2Ψ
∂t2

+ ∂2Ψ
∂r2
∗
−VΨ = 0 , (6.6)

21Our perturbations (Vg, Ve) correspond respectively to (π̂g, π̂f ) of [3].
22Where our variables (Sg, Se) correspond respectively to (Q,H) of [4].
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we can always define a transformation Φ = PΨ and the similar potential W = PVP−1

such that

−∂
2Φ
∂t2

+ ∂2Φ
∂r2
∗
−WΦ = 0 (6.7)

if P is a constant matrix.
From the potential, the stability can be easily obtained because of the positivity of the

matrix.

6.2 Nonlinear electrodynamics

In this section, we generalize the previous section by considering nonlinear electrodynamics
(NED) black holes, given by the action

S =
∫
d4x
√
−g
[
R

4 + L(F )
]
, (6.8)

where L is an arbitrary function of F = −FµνFµν/4. From the background equations, it
is easy to find that

A′

A
− B′

B
+ C ′

C
− 2C

′′

C ′
= 0 , (6.9)

which can be easily integrated to

AC

BC ′2
= α , (6.10)

where α is a constant of integration. In the case where we would be interested only to the
background solution, we could always reparametrize our time coordinate such that α = 1
but because the perturbations are time dependent we will keep that constant.

The vector perturbations are stable if the condition (4.20) is satisfied (f1(φ) = 1/2 >
0), viz.

L,F > 0 . (6.11)

For completeness of the vector perturbations, the potential (4.12), (4.13), (4.14) is given by

V11 = (λ− 2)A
C

+ ABC ′

2C

(
C ′

C
− A′

A

)
, (6.12)

V12 = 2A
C

√
Q2(λ− 2)
CL,F

, (6.13)

V22 = A

C

(
λ+ 4Q2

CL,F

)
+
ABL′,F
4L,F

(
A′

A
+ B′

B
+ 2L,F

′′

L,F ′
− L,F

′

L,F

)
. (6.14)

In [28], the perturbations for this model were studied in a gauge invariant formalism. We
find exactly the same potential when C(r) = r2.
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Focusing on the even-parity sector, since we have only two degrees of freedom, the
stability conditions reduce to (for simplicity of the expression, we have eliminated the
obvious positive factors)

K11 ∝ λ− 2 + 4Q2C−1L−1
,F > 0 , det(K) ∝ (λ− 2)L−1

,F > 0 , (6.15)

giving the same condition as the odd-parity sector, namely L,F > 0. Following with the
even-parity sector, we compute the matrix S (5.31)

S =

 CA′−AC′+2αλC′
C′ c1

CA′−AC′+2αλC′
C′ c2

−8
√
αQ√
C
c1 +

√
C′

C3/4
√
Ā′0
c3 −8

√
αQ√
C
c2 +

√
C′

C3/4
√
Ā′0
c4

 (6.16)

where as in the previous case, the constants (c1, c2, c3, c4) can be freely defined as soon as
c1c4−c2c3 6= 0. The expression of the potential in the generic case is long and not necessarily
instructive. It can be easily obtained from the eq. (5.35). It is anyway interesting to derive
the most used expression in the literature, namely A(r) = B(r) and C(r) = r2 which
implies from eq. (6.10), α = 1/4. We will take without any restriction c2 = c3 = 0 and
c4 =

√
2Q(λ− 2)c1. We get

V11 = A[λ(λ− 2) + rA′(a+ 2)− 2A(λ− 2)]
r2(λ+ a) + 2A2(λ− 2)B

r2(λ+ a)2 , (6.17)

V12 = V21 = 2A
√
Q2(λ− 2)

r3(λ+ a)
√
L,F

(
λ− a+ 2Aκ− 4A+ 2AB

λ+ a

)
, (6.18)

V22 = A

(
κλ

r2 + 4Q2 (λ− 2A+ 4κA− rA′)
L,F (λ+ a) r4 + 8Q2AB

r4L,F (λ+ a)2 + L1/2
,F

[
A(L−1/2

,F )′
]′)

,

(6.19)

where we have defined a(r) = rA′ − 2A, B = λ − 2 + 4Q2/r2L,F and κ = −rĀ′′0/(2Ā′0) =
L,F /(L,F +2F̄L,FF ). This potential is the same as in [28]. From which we can easily derive
the stability condition for a specific model or calculate the QNMs.

It is important to notice that the stability will depend only on the metric potential A
and its derivatives. In fact, using the equations of motion, we can eliminate the electric
potential Ā0 and the Lagrangian L, reducing the potential matrix to

V11 = A

r2

[
rA′ − λ+ 2 + 2(λ− 2)(λ− 2A)

rA′ − 2A+ λ
+A

2(λ− 2)
(
r2A′′ − 2A+ λ

)
(rA′ − 2A+ λ)2

]
, (6.20)

V12 =
√
λ− 2A

r2

√
2− 2A+ r2A′′

[
λ− 4A− rA′

λ− 2A+ rA′
+ 2A λ− 2A+ r2A′′

(λ− 2A+ rA′)2

+A
4− 4A+ 2rA′ − r3A′′′

(λ− 2A+ rA′)(2− 2A+ r2A′′)

]
, (6.21)

V22 = A

r2

[
2rA′ + 7A− 2− λ− r2A′′ + 28A2 + λ(2 + r2A′′)−A(4 + 4λ+ 4r2A′′ + r3A′′′)

λ− 2A+ rA′

+ 2A(2− 2A+ r2A′′)(λ− 2A+ r2A′′)
(λ− 2A+ rA′)2 − A(4− 4A+ 2rA′ − r3A′′′)2

4(2− 2A+ r2A′′)2

+ (λ− rA′)(4 + 2rA′ − r3A′′′) +A(−4λ+ 4rA′ + 4r3A′′′ + r4A′′′′)
2(2− 2A+ r2A′′)

]
. (6.22)
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From which we conclude that different theories (Lagrangians) having the same black
hole solution will have the same stability. In that direction, we found that considering
A = B = 1 − 2M/r + q2/r2, the stability potential reduces to the Moncrief potential23

which implies the stability of the Reissner-Nordström metric independently of the nonlinear
electrodynamics theory considered.

6.2.1 Bardeen black hole

As an application, let us consider one of the first singularity free black hole proposed by
Bardeen [35]. This metric was shown to be an exact solution of Einstein equations with a
nonlinear magnetic monopole [36]. It is described by the metric

A = B = 1− 2Mr2

(r2 + q2)3/2 (6.23)

and C = r2. Because we have focused in this paper on electric source, we know from the FP
duality,24 that a solution can be generated by two different Lagrangians, one theory with
a magnetic field and the other with an electric field.25 It is easy to find that a Lagrangian
with electric field generating the Bardeen spacetime is

Ā0(r) = α
r5

(r2 + q2)5/2 , (6.24)

L(r) = 3Mq2(3r2 − 2q2)
2(r2 + q2)7/2 , (6.25)

where α is a constant. From which, we could obtain L(F ) but because the expression
is numerical and not analytical, we will just mention that such Lagrangian exists.26 We
can see from the electric potential, that we will not recover the Coulomb potential at
large distances, which could also be seen from the metric that reduces to 1 − 2M/r +
3Mq2/r3 for large r. Therefore, even at large distances, the black hole is not similar to
Reissner-Nordström spacetime. But interestingly, long distance quantum corrections to the

23Our potential V can be written as V = PWP−1 with W the Moncrief potential and P =
(

0 1
−1 0

)
,

therefore they are similar.
24The Lagrangian L(F ) can also be written in terms of the field P = PµνP

µν/4 where Pµν = FµνL,F [37].
This is the so-called P framework. The equations in the P framework are equivalent to the equations in
the F framework by performing a transformation while the metric remains unchanged [38]. Therefore, the
FP duality connects theories with different Lagrangians but similar metric. A purely magnetic solution
in the P framework will correspond to a purely electric solution in the F framework or vice versa. This
transformation exists [28] if L,F (L,F + 2FL,FF ) 6= 0.

25It would be interesting to see if a magnetically charged BH follows the same stability condition as
the electrically charged BH. Indeed, we found previously that in the electrically charged case, the stability
condition is independent of the Lagrangian.

26It was shown in [38] that a Lagrangian having a Maxwell asymptotic “does not admit a static, spherically
symmetric solution with a regular center and a nonzero electric charge”, which seems to contradict our result.
In fact, the Lagrangian we found is a multivalued function, therefore we would need different Lagrangians
for different ranges of the radial coordinate r. But it is single-valued if we restrict our analysis to the
exterior region, which is the interesting area for our analysis. Of course, these models can’t be continued
until the singularity and therefore loose their interest as singular free models.
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Schwarzschild black hole goes like 1/r3 [39, 40] which is similar to the Bardeen solution if
we identify q2 to 62~/45π

Looking now to the stability of this black hole, we found that odd-parity perturba-
tions are stable if f2,F = 3M/αr2 is positive which implies the trivially satisfied condition
Mα > 0.

Considering finally the even parity sector, we have analysed the stability numerically
from the potential (6.20), (6.21), (6.22). For that, we redefined the variables r → r̄q,
M → M̄q such that M̄ remains the only free parameter. Considering the normalized mass
in the range 0 < M̄ < 10 and for ` = 2, . . . , 10, we found that the potential is definite
positive and therefore the black hole is stable in this range.

6.2.2 Hayward black hole

An other interesting singular free black hole is defined as [41]

A = B = 1− 2Mr2

r3 + 2Ml2
. (6.26)

This black hole is known as the Hayward black hole. It reproduces the Schwarzschild
spacetime at large distances with corrections O(1/r4) which are not similar to loop quantum
contribution as noticed in the Bardeen solution. But similarly, the black hole is regular at
the origin and has a de Sitter core, A ' 1− r2/l2.

As in the previous case, the solution can be derived from various theories. We will
consider nonlinear electrodynamics. It is easy to find that a Lagrangian exists, numerically,
which gives this metric

Ā0(r) = −α6l2M2(r3 +Ml2)
(r3 + 2Ml2)2 , (6.27)

L(r) = 12M2l2(r3 −Ml2)
(r3 + 2Ml2)3 , (6.28)

where α is a constant.
Within this theory, we would like to know if the black hole is stable. The odd-parity

sector is trivially stable because f2,F = (r3 + 2Ml2)3/18α2M2l2r7 > 0
As for the Bardeen black hole, the even-parity perturbations will be studied numeri-

cally. Interestingly this spacetime is invariant under a scaling transformation [42]. There-
fore, we can renormalize our variables, r → l

√
Mr,M →M3/2l, which reduces the solution

to only one parameter. We have checked the stability for 0 < (M/l)2/3 ≤ 10 and 2 ≤ l ≤ 10.
We found that the potential is definite positive and therefore the black hole is stable in
this range.

6.2.3 Born-Infeld gravity

Considering open superstring theory, loop contributions lead to a Lagrangian of the Born-
Infeld type

L = 4
b2

[√
−g −

√
|det(gµν + bFµν |

]
, (6.29)
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where b is related to the tension of the D-brane [43]. In four dimensions, the determinant
can be expanded into [44]

L = 4
b2

[
1−

√
1 + b2

2 F
2 − b4

16(F ? F )2

]
, (6.30)

where ?F is the dual of the electromagnetic tensor, (?F )µν = 1
2εµνρσF

ρσ. Focusing from
now on an electric source and adding gravity, the action becomes

S =
∫

d4x
√
−g
[
R+ 4

b2

(
1−

√
1 + b2

2 FµνF
µν

)]
. (6.31)

The static spherically symmetric electrically charged black hole was obtained in [45]

A = B = 1− 2M
r

+ 2
3b2 r

2 + 2
β2r

g(r) (6.32)

C = r2 (6.33)

Ā0 = −Q
∫ dr
g′(r) (6.34)

where g(r) = −
∫ √

r4 + b2Q2dr which can be expressed in terms of hypergeometric func-
tions.

This solution has interesting features such as recovering the Reissner-Nordström solu-
tion at large distances, with highly suppressed corrections

A = B = 1− 2m
r

+ Q2

r2 −
Q4b2

20r6 +O
( 1
r10

)
, (6.35)

where m = M + Γ( 1
4 )2Q3/2

6
√
πb

. Also notice that around the singularity, at r = 0, the metric
takes the form A ' −2M/r but because M is not the ADM mass, it can take any sign
causing a time-like or space-like singularity according to the sign of m− Γ(1

4)2Q3/2/6
√
πb.

But contrary to [46], we conclude that the singularity is unavoidable, even if M = 0,
because the curvature scalar is R = 4Q/br2 around the singularity.

It is trivial to see that odd-parity perturbations are stable because f1 = 2 > 0 and
f2,F = 4/

√
1 + b2F/2 > 0. Turning now, to the even-parity perturbations, we have

checked for a large range of parameters and found that the eigenvalues of the matrix
V (6.20), (6.21), (6.22) are positive outside the horizon, from which we can conclude the
stability of this black hole.

6.3 Scalar-tensor theory

After studying spacetimes with the presence of an electric charge, we will consider another
particular case of our analysis for which only the scalar field is present, viz.

S =
∫

d4x
√
−g
[
f1(φ)R2 + f2(φ,X)

]
(6.36)

=
∫

d4x
√
−g
[
F (φ)R2 +K(φ,X)

]
(6.37)
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where we have redefined the functions of the Lagrangian in a more standard notations of a
K-field non-minimally coupled to gravity also known as K-inflation [47] or K-essence [48].

Since Nordström and his attempt to write a scalar theory of gravity [49], scalar fields
remained a very dynamical field of research from phenomenological models to more ad-
vanced and motivated theories. It has been motivated as early as Kaluza and Klein where
a scalar field appears in the compactification of a fifth dimension. Similarly, string theory
behaves in the low-energy limit as general relativity coupled to a scalar field, the dila-
ton, and a totally antisymmetric field strength Hµνρ [50]. Also, we should mention that
the dynamics of the tachyon field near the minimum of its potential is given by [51, 52]
K(φ,X) = −F (φ)

√
1 + (∂µφ)2, or the attempts to describe dark energy by the ghost con-

densation scenario [53] or inflation [54]. It would be impossible to list all the different
models with a scalar field, but we should mention that these models since Brans and Dicke
have been largely used as a model testing of general relativity [55].

As in the previous cases, the odd-parity sector is trivial. Indeed, we only need to
satisfy the condition F (φ) > 0 outside the black hole. For example, any theory expressed
in the string frame [56] where F (φ) = e−φ would be trivially stable under odd-parity
perturbations.

A generic sufficient condition for the stability of even-parity perturbations has not been
found in closed form but we will work out particular examples. This analysis can be easily
generalized to any BH within this class of theories with the Mathematica® notebook file
provided in [18].

Among all these theories, it was shown that Horndeski theories and Lovelock are weakly
hyperbolic but might fail to be strongly hyperbolic [13–15]. The only sub-class which is
strongly hyperbolic are the K-field models defined in eq. (6.37). Unfortunately for most of
these models, a non trivial black hole seems to be impossible. For example, it was shown
that if the model is shift symmetric, viz. f1 = 1 and f2 = f2(X), the only solution is
Schwarzschild [57]. For that, it was assumed that the area of constant r-spheres should
neither be infinite nor zero at the horizon. Violating this condition, the so-called cold black
holes (with zero surface gravity) can be constructed [58]. For that, we need to violate the
null energy condition by considering f1 = 1 and f2 = −X. We see that the scalar field has
the “wrong” sign for the kinetic term. The solution is

ds2 = −
(

1− 2k
r

)m/k
dt2 + dr2(

1− 2k
r

)m/k + r2
(

1− 2k
r

)1−m/k
dΩ2 (6.38)

with

φ(r) = −

√
m2

k2 − 1
√

2
ln
(

1− 2k
r

)
, (6.39)

where m is the ADM mass and k is related to the scalar charge. Indeed, we have at infinity
φ '

√
2m2−2k2

r .
Even if very interesting, this black hole violates the no-ghost condition (5.14). In fact,

it is easy to show that det(K) < 0. Maybe a stable black hole could be constructed in that
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direction by considering a non-linear kinetic term. We should here mention that various
papers on wormholes consider a ghost-like scalar field. While performing a stability analysis
at the equation level and not the action level, we could reach the erroneous conclusion of
a normal behaviour of that solution. But because the Hamiltonian is unbounded from
below, any coupling to matter such as a detector or any nonlinear regime of the theory
would couple to the negative energy modes and render the theory unstable. These theories
are pathological.

Another way to escape the no-go theorem previously mentioned is to brake the shift
invariance and assume a potential. We know that important no-hair theorems restrict the
existence of non-trivial black holes, see e.g. [59–62]. One particular solution is given by
a scalar field non-minimally coupled to the scalar curvature, the so-called BBMB black
hole [63–65]. The action is given by f1(φ) = 1

2 −
φ2

6 and f2(φ,X) = X while the line
element is given by

ds2 = −
(

1− M

r

)2
dt2 + dr2(

1− M
r

)2 + r2dΩ2 (6.40)

and φ(r) =
√

3M/(r −M), where M is the ADM mass. The horizon is located at r = M

where the scalar field diverges but with a regular geometry of the horizon. It is also a
cold black hole which connects smoothly to the Minkowsky space M = 0 but never to the
Schwarzschild spacetime. In fact, the black hole has the same causal structure than the
extremal Reissner-Nordstrom black hole. We conclude easily that the black hole is unstable
because it violated the condition f1(φ) > 0 in the region M < r < 2M , which is consistent
with the radial perturbations performed in [66].

6.4 BH in Einstein-Maxwell-dilaton theory

Finally, we consider the presence of all fields, namely the metric, the scalar and vector field.
In this context, an interesting solution was derived in Einstein-Maxwell-dilaton (EMd)
theory described by the Lagrangian [16, 17]

S =
∫
d4x
√
−g

(
R− 2∂µφ∂µφ− e−2aφFµνF

µν
)
, (6.41)

where a is the dilaton coupling constant. The model appears as a low energy limit of
heterotic string theory for a = 1 and as the dimensionally reduced five dimensional vacuum
Einstein action in the Einstein frame, for a =

√
3. The static and spherically symmetric

black hole solution in the case where the Maxwell field is electric is given by

A = B =
(

1− r+
r

)(
1− r−

r

) 1−a2
1+a2

, (6.42)

C = r2
(

1− r−
r

) 2a2
1+a2

, (6.43)

Ā0 = −
√
r+r−√

1 + a2 r
, (6.44)

φ̄ = a

1 + a2 log
(

1− r−
r

)
. (6.45)
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Here r+ is the position of the event horizon and r− corresponds to a curvature singularity
RµνρσR

µνρσ ∝ (r − r−)−2(1+3a2)(1+a2) except for a = 0 where the solution reduces to
Reissner-Nordström metric. The two parameters (r+, r−) are related to the ADM mass M
and the electric charge Q by [67]

r± = 1 + a2

1± a2

(
M ±

√
M2 − (1− a2)Q2

)
. (6.46)

Given the background solution, we can perform the analysis of perturbation theory. As a
first step, we focus on odd-parity perturbations. The no-ghost conditions (4.20) are trivially
satisfied since f1(φ) = 2 > 0 and f2,F (φ,X, F ) = 4e−2aφ > 0. We conclude that the odd-
parity perturbations are stable. From eqs. (4.12)–(4.14), we get that the components of
the potential associated with this type of perturbations are

V11 = V22 + T
r

[(
a2 − 3

)
r−

1 + a2 − 3r+

]
, (6.47)

V12 = 2T
r

√
(λ− 2)r−r+
a2 + 1 , (6.48)

V22 = T
[
λ+ r−

(a2 + 1)2 r

(
a4(2r + r− − 3r+)

r − r−
+ 2a2 + a2r+

r
+ 4r+

r

)]
, (6.49)

where we have defined

T = A(r)
(r − r−)2

(
1− r−

r

)2/(a2+1)
. (6.50)

It can be checked that the potential matrix has constant eigenvalues; therefore, we
can diagonalize this matrix to decouple the system of wave-like equations. After this
diagonalization, the potentials are

V EMd
± = T

r

[
λr +

3a4(r − r+)r2
−

r(a2 + 1)2(r − r−) +
(
4− 3a2) r−r+

(a2 + 1)r +
(
5a2 − 3

)
r−

2 (a2 + 1) −
3r+
2

± 1
2

√√√√9r2
+ +

(a2 − 3)2 r2
−

(a2 + 1)2 − 2 (7 + 3a2 − 8λ) r−r+
a2 + 1

 . (6.51)

As a specific case, setting a = 1, we recover the potential computed in [68].
Now, we turn to the problem of even-parity perturbations. The no-ghost condi-

tion (5.19) is trivially satisfied

2P1 − f1 =
2r2
−

(2r − r−)2 > 0 . (6.52)

Therefore, even-parity perturbations are well defined. It can also be check that all per-
turbations propagate at the speed of light. In order to study completely the stability of
these modes, we need to compute the matrix S (5.31) in order to obtain the potential
associated to these perturbations. Unfortunately, in these type of models, the integration
of eq. (5.31) is not easy27 and therefore we will rely to a numerical analysis. For that,

27The matrices obtained are extremely large and therefore not very useful.
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Figure 1. Fundamental mode (lowest QNMs) for the EMd black hole as a function of the charge
Q in units M = 1 and for ` = 2. In pink, we have the modes associated to the gravitational
sector, which reduce to the Regge-Wheeler and Zerilli potentials. In blue, the QNM associated
to the electromagnetic sector and finally in blue the mode associated to the scalar field. These
perturbations are compared to the Reissner-Nordstrom black hole in dotted line. The QNM have
been calculated with a step size of 0.0025 for the charge.

we integrate numerically eq. (5.31) assuming any initial conditions as soon as det(S) 6= 0.
From which we can easily obtain the potential (5.35). We found that the eigenvectors
of the matrix (5.35) −S−1K−1BS are constants and therefore the system has the same
eigenvalues than the matrix −K−1B. As a consequence, we do not need to calculate the
matrix S, but only the eigenvalues of the matrix −K−1B. Each eigenvalues will be the
effective potential of one of the three type of perturbations. From these effective potentials,
we have calculated the QNMs using the sixth order WKB method [69–72]. We see in the
figure 1, the real and imaginary part of the QNMs associated to this black hole compared
to the Reissner-Nordström solution. We see that contrary to the latter, the electric charge
breaks the isospectrality.28 From the numerical results, we found that Im(ω) < 0, for a
large number of `, and therefore we conclude that the black hole is linearly stable. As an
example, we have represented, in figures 1, 2, the real and imaginary parts of the QNM for
a = 1 and a = 0.5 respectively. These results coincide with [68] for a = 1 and with [73, 74]
in the case a = 0.5

7 Conclusions and discussion

We have studied the stability of static spherically symmetric black holes in generalized
Einstein-Maxwell-scalar theories with an electrically charged Maxwell field. We have ob-
tained the master equations in the odd and even parity sectors. We found that the ghost

28Same spectrum of quasinormal modes for even and odd perturbations.
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Figure 2. Fundamental mode (lowest QNMs), for ` = 2 and a = 0.5, as a function of the charge
Q, in units M = 1. In pink, we have the modes associated to the gravitational sector, which reduce
to the Regge-Wheeler and Zerilli potentials. In blue, the QNM associated to the electromagnetic
sector and finally in blue the mode associated to the scalar field. These perturbations are compared
to the Reissner-Nordstrom black hole in dotted line. The QNM have been calculated with a step
size of 0.0025 for the charge.

free conditions reduce to

f1 > 0 , f2,F > 0 , 3f1
2
,φ + 2f1f2,X > 0 . (7.1)

We found that four degrees of freedom propagate at the speed of light, while a degree of
freedom associated to the scalar field could propagate faster or slower than the speed of
light, its expression is given in eq. (5.26), from which we obtained the subclass of generalized
Einstein-Maxwell-scalar theories where all degrees of freedom propagate at the speed of
light eq. (5.28). Imposing the ghost free conditions, we found that odd-parity perturbations
are always stable and we obtained explicitly the effective potential matrix. Considering
the even-parity sector, we derived the master equation and the procedure to calculate
the effective potential matrix for a given model. We also found that assuming ghost free
conditions, the perturbations are unstable if f2,F +2F̄ f2,FF < 0 for models with f2,XF = 0.
Finally, we have applied this formalism for a large number of BH for which we could easily
obtain the stability conditions and calculate the QNMs.

We could recover all previously derived results in the literature which guarantees the
correctness of our calculations. As an application, the paper can be used to study the
QNMs of gravitational waves, electromagnetic radiation and scalar radiation. The presence
of these three fields appears naturally in higher dimensional theories of gravity such as
supergravity or string theory. Interestingly, we didn’t find any stable hairy black hole in
scalar tensor theories.

In order to facilitate future analysis of black hole stability in generalized Einstein-
Maxwell-dilaton gravity, all the perturbed equations are listed in a Mathematica® note-
book available online [18].
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A Even-parity coefficients

The coefficients which appear in the second-order Lagrangian (5.2) are

a1 = −C4

√
A

B
(F + EA)

a2 = −1
2
√
ABΞ

a3 =
√
ABf1

a4 = a′
2 + C

2

√
A

B
(F +M−EB)

a5 = −1
2

√
A

B
f1

a6 = a′
3 +

(
C ′

2C −
A′

2A

)
a3

a7 = −C
√
A

B

∂EA
∂φ

a8 = −
√
A

B

Z
C

a9 =
√
AC

Z

[√
B

C
Z2

]′

+ J −
√
A

B

C

φ′M

a10 =
√
ABZ

a11 = −
√
A

B

C

Ā′
0
F

b1 =
√
B

A
CEB

b2 = 1
2

√
B

A
f1

b3 =
√
B

A
Ξ

b4 = −2b2

b5 = 2
A

(a′
10 − a9)− 2CM√

ABφ′

b6 = −2
√
B

A
Z

c1 = C

4

√
A

B

[
2Σ + 2B

(
A′

2A + C ′

C

)
f ′

1 − EB

+
(
A′

A
+ C ′

2C

)
BC ′

C
f1 −F − 2M

]

c2 =
√
AB

C
(f1 − CEB)

c3 = −1
2
√
AB

[
f1

(
A′

A
+ C ′

C

)
+ 2f ′

1

]
c4 = 1

2

√
B

A
f1

c5 = C

√
A

B

∂EB
∂φ

c6 = −a8

c7 = −
√
AB

[(
A′

2A + C ′

C

)
Z + C

Bφ′ (2Σ−M)
]

c8 = − Z√
AB

c9 = 2J
C

+ 2
√
ABC

(
Z
C3/2

)′

c10 = 2
√
AB

C
Z

c11 =
√
A

B

C

Ā′
0

(F +M)

c12 = −2Q
C

d1 = −
√
A

B

C

Ā′2
0
F

d2 = Q

BCĀ′
0

d3 = −AB d2

e1 = J
ABφ′

e2 = −
√
ABC

Σ
X̄

e3 = ∂Eφ
∂φ

e4 = − J
BCφ′

e5 = 2CĀ′
0

√
B

A
f2,φF

e6 = − 2C
Ā′

0φ
′

√
A

B
M

where we have defined

Σ = X̄
(
f2X + 2X̄f2XX

)
, Ξ = (Cf1)′

M = −4X̄F̄ f2,FX , F = −2F̄
(
f2F + 2F̄ f2FF

)
, Z = Cf1,φ .
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B Energy conditions

Considering the generalized Einstein-Maxwell-dilaton action (2.1), we obtain the GR-like
equation Gµν = Tµν with

f1Tµν = f2gµν − gµν�f1 +∇µνf1 + φ,µφ,νf2,X + FµαF
α
ν f2,F . (B.1)

Because the energy momentum tensor is diagonal we can interpret these components as
the energy density and the three principal pressures in that frame in which the energy-
momentum tensor is diagonal. We have

T 0
0 = −ρ , T 1

1 = Pr , T 2
2 = T 3

3 = Pt , (B.2)

where ρ is the energy density, Pr is the radial pressure and Pt is the tangential pressure.
The energy conditions can be geometric if related directly to the curvature tensor and

physical if related to the fluid energy-momentum tensor. In our case, because we will
assume that the additional fields can be interpreted as an additional fluid, the equation
is reduced to a GR type equation and therefore the geometric and the physical energy
conditions are equivalent and described by the following relations

Null energy condition (NEC):

ρ+ Pr ≥ 0 , ρ+ Pt ≥ 0 (B.3)

Weak energy condition (WEC):

ρ ≥ 0 , ρ+ Pr ≥ 0 , ρ+ Pt ≥ 0 (B.4)

Strong energy condition (SEC):

ρ+ Pr + 2Pt ≥ 0 , ρ+ Pr ≥ 0 , ρ+ Pt ≥ 0 (B.5)

Dominant energy condition (DEC):

ρ ≥ 0 , |Pr| ≤ ρ , |Pt| ≤ ρ (B.6)

which can be easily written for generalized Einstein-Maxwell-dilaton knowing that

f1ρ = −f2 + 2Ff2,F +
√
B

C

(√
BCf ′1

)′
, (B.7)

f1Pr = f2 − 2Ff2,F − 2Xf2,X −
B(AC2)′

2AC2 f ′1 , (B.8)

f1Pt = f2 −

√
B

AC

(√
ABCf ′1

)′
. (B.9)

In the simplest case of a minimal coupling, i.e. f1 constant and positive. We have

Null energy condition (NEC):

f2,X ≥ 0 , f2,F ≥ 0 (B.10)
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Weak energy condition (WEC):

2Ff2,F − f2 ≥ 0 , f2,X ≥ 0 , f2,F ≥ 0 (B.11)

Strong energy condition (SEC):

f2 −Xf2,X ≥ 0 , f2,X ≥ 0 , f2,F ≥ 0 (B.12)

Dominant energy condition (DEC):

2Ff2,F − f2 ≥ 0 , |f2 − 2Ff2,F − 2Xf2,X | ≤ 2Ff2,F − f2 , |f2| ≤ 2Ff2,F − f2 (B.13)
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