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We discuss the spectrum and the internal composition of ground and excited four-quark states in the
charm and bottom energy region. To this end we extend previous calculations within the framework of
the relativistic four-body Faddeev-Yakubovsky equation to include quantum numbers with JPC ¼
0þþ; 0−þ; 1−−; 1þ− and 1þþ and study their internal composition in terms of heavy-light meson pairs,
hadroquarkonia and diquark-antidiquark clusters. We observe similar patterns in the charm and bottom
energy region with different compositions of the four-quark states depending on JPC quantum numbers.
Most notably, we find that all states with C · P ¼ þ1 are dominated by heavy-light meson contributions,
whereas for axial-vector states with JPC ¼ 1þ− including the Zcð3900Þ we find a much more complicated
picture depending on the flavor content. We systematically compare our results for the spectrum with
existing experimental results and provide predictions for future analyses.
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I. INTRODUCTION

Starting out with the unexpected detection of a narrow
state in the J=ψπþπ− invariant mass spectrum by the Belle
Collaboration in 2003 [1], i.e., the χc1ð3872Þ, an ever
increasing number of exotic states has been identified in the
charmonium and bottomonium mass region by Belle,
BABAR, BES III and the LHC experiments in the last
two decades. Many of these ‘XYZ states’ cannot be
accommodated for in the conventional quark model for
QQ̄ mesons (with Q ¼ c, b) and are therefore generally
referred to as exotic hadrons. Some of these states carry
electric charge, which can only be explained assuming four
valence (anti)quarks with either hidden or open heavy
flavor configurations, i.e., QQ̄qq̄ or QQq̄q̄; Q̄Q̄qq (with
q ¼ u, d, s). Thus, four-quark states are considered to be
good candidates to study the properties of these exotic
hadrons, see, e.g., [2–9] for recent reviews.
A highly debated and unsettled property of four-

quark states is their internal structure. In most effective
field theory and model approaches, one can generally

distinguish between three different a priori assumptions
regarding a possible internal clustering. The first possibility
is motivated by the experimental observation of final
states with a specific charmonium/bottomonium state
and light hadrons. This is known as the hadroquarkonium
picture [10] and features a tight heavy quark and antiquark
(QQ̄) core which is surrounded by the light qq̄ pair. The
second prominent possibility is the clustering of the
constituents into diquark-antidiquark (dq − dq) pairs
which interact via color forces, see, e.g., [2] for a review.
Finally, there is the meson-molecule picture, which is
especially relevant for states close to open-flavor thresh-
olds. In this picture the constituents arrange in pairs of
Dð�ÞD̄ð�Þ or Bð�ÞB̄ð�Þ mesons which interact via short- and/
or long-range forces [6].
On a general note, these three possibilities of internal

clustering are not mutually exclusive, i.e., experimental
states may be a superposition of all three different clusters
with the ‘leading’ component possibly different on a case-
by-case basis. To thoroughly study this behavior, it is
important to develop theoretical approaches to QCD that
can deal with all three possibilities. A prominent approach
is lattice QCD, where interesting progress has been made in
recent years, see [11–19] and references therein. Recently,
the framework of functional methods has been generalized
to systematically investigate four-quark states with any JPC

and flavor combination, see [20] and references therein for
a review on results in the light and charm mass region.
In this work we reanalyze and confirm the findings for

the hidden-charm four-quark states in [21], i.e., states with
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quantum numbers IðJPCÞ ¼ 0ð1þþÞ, 1ð1þ−Þ and 0ð0þþÞ.
Furthermore, we investigate the experimentally very inter-
esting vector (1−−) channel in the hidden-charm region, and
discuss our findings for possible pseudoscalar (0−þ) four-
quark states in that region, where there are currently no
experimental exotic candidates. We also present our novel
results for the bqq̄b̄ hidden-bottom mass spectrum with the
aforementioned quantum numbers. Last but not least, we
discuss a new method to investigate the internal structure of
four-quark states by considering how much each of the
three internal clusters contributes to the normalization of a
given state [22,23].
The paper is organized as follows: In Sec. II we briefly

introduce the four-body Bethe-Salpeter equation (BSE) and
discuss the technical details, i.e., truncation of the two-body
interaction, construction of the physical basis and the
internal structure. In Sec. III we present and discuss our
results for the hidden-charm and hidden-bottom four-quark
states, before we conclude in Sec. IV.

II. SETUP

A. Four-quark Bethe-Salpeter equation

In this work we focus on heavy-light and heavy-heavy
four-quark states with hidden flavor. We denote their quark
content by Qqq̄Q̄ with q∈ fu; d; s; c; bg and Q∈ fc; bg.
Any bound state or resonance in QCD that has overlap with
Qqq̄Q̄ appears as a pole in the quark eight-point correlation
function or scattering matrix Tð4Þ, which satisfies the
scattering equation

Tð4Þ ¼ Kð4Þ þ Kð4ÞGð4Þ
0 Tð4Þ: ð1Þ

Here, Kð4Þ is the four-body interaction kernel and Gð4Þ
0

denotes a product of four dressed (anti)quark propagators;
see [24] for details. From the pole residue of Eq. (1)
one obtains the homogeneous four-quark BSE, written in
compact notation as

Γð4Þ ¼ Kð4ÞGð4Þ
0 Γð4Þ: ð2Þ

Each multiplication implies an integration over all loop
momenta, and Γð4Þ is the four-quark Bethe-Salpeter ampli-
tude of a given state.

Equation (2) is an eigenvalue equation for Kð4ÞGð4Þ
0 with

eigenvalues λiðP2Þ, which depend on the total hadron
momentum squared P2 ∈C. If the condition λiðP2

i Þ ¼ 1
is satisfied, this corresponds to a pole in the scattering
matrix at P2

i ¼ −M2
i . The index i indicates whether the

eigenvalue satisfying the condition corresponds to the
ground state (i ¼ 0), the first radial excited state (i ¼ 1),
etc. Below a given meson-meson threshold, Mi is real and
we have found a bound state. For a resonance, on the other
hand, this condition is only satisfied in the complex plane
on a higher Riemann sheet. In principle the homogeneous

BSE is able to detect both bound states and resonances,
where contour deformations are required to calculate λiðP2Þ
above the lowest threshold [25–27].
The scattering kernel Kð4Þ consists of irreducible two-,

three- and four-body correlations. In this work we primarily
want to study the internal two-body clusters, hence we
neglect the three- and four-body forces. The resulting
kernel is then the sum of the two-body interactions

K̃ð2ÞGð4Þ
0 ¼

X
aa0

ðKa þ Ka0 − KaKa0 Þ; ð3Þ

where a and a0 denote interactions between quark-
(anti)quark pairs and aa0 is one of three combinations
(12)(34), (13)(24) and (14)(23). These correspond to the
two-body interaction topologies for quark content Qqq̄Q̄:
Diquark-antidiquark ðQqÞðq̄Q̄Þ, meson-meson ðQq̄ÞðqQ̄Þ
and hadroquarkonium ðQQ̄Þðqq̄Þ. Note that the last term on
the rhs of Eq. (3) is necessary to avoid overcounting [28–31].
The resulting four-quark BSE with the kernel in Eq. (3) is
shown in Fig. 1.
For the two-body kernels, we employ the rainbow-ladder

truncation in combination with the effective Maris-Tandy
(MT) interaction [32,33]. This setup models the combined
effect of the dressed gluon propagator and quark-gluon
vertex and has been extensively applied to meson, baryon
and four-quark phenomenology, see [20,24] for recent
reviews. The explicit form of the interaction can be found
in Eq. (3.96) of [24]; we use the scale parameter
Λ ¼ 0.72 GeV tuned to reproduce the pion decay constant
and fix the shape parameter to ηMT ¼ 1.8. The Dyson-
Schwinger equation (DSE) for the quark propagator, which
is needed as an input for the BSE (cf. Fig. 1), is solved
using the same interaction. The MT interaction is known to
describe the phenomenology of light mesons in the
pseudoscalar and vector channel reasonably well, whereas
in the scalar and axial-vector channels it does not provide
satisfactory results. Its qualitative reliability can be judged
from the meson masses in Table I obtained via the quark-
antiquark BSE.
We work in the isospin symmetric limit, i.e.,mπ� ¼ mπ0 ,

mD� ¼ mD0 ,mB� ¼ mB0 . Throughout this paper we use the
abbreviation n ¼ u=d when referring to the light up and
down quarks. The u=d-quark mass is fixed by mπ to
mn ¼ 3.7 MeV at a renormalization point μ ¼ 19 GeV

FIG. 1. Four-quark BSE for a generic hidden-flavor Qqq̄Q̄
system in the (12)(34) topology; the permutations (13)(24) and
(14)(23) are not shown here. The green half-circles denote the
Bethe-Salpeter amplitudes, blue boxes represent the two-body
interaction kernels and the blobs denote fully-dressed quark
propagators.
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in a MOM scheme. The strange and charm quark masses
are chosen as ms ¼ 85 MeV and mc ¼ 795 MeV (in the
same renormalization scheme) such that the sums mDs

þ
mD�

s
and mD þmD� have < 0.5% deviation from the sums

of the respective experimental values [34]. The bottom
quark mass is fixed to mb ¼ 3750 MeV (again same
scheme) such that the pseudoscalar and vector bb̄ masses
and the sum mB þmB� matches experiment within 0.8%
relative error. With these constraints set, the deviations
between the theoretical and experimental meson masses are
then below 7% in most channels.

B. Physically motivated four-quark amplitude

In general, the four-quark Bethe-Salpeter amplitude is a
direct product of Dirac (D), color (C) and flavor (F) parts.
For a given JPC it can be written as

Γðμν…Þðp1;p2;p3;p4Þ ¼ Γðμν…Þ
D ðp1;p2;p3;p4Þ⊗ ΓC ⊗ ΓF;

ð4Þ
with p1;…; p4 denoting the quark momenta. The μν…
occur as Lorentz indices for states with higher spin J. The
color and flavor part of the amplitude are straightforward to
work out and discussed in detail in the supplemental
material of [21].
The Dirac part can be written as

ΓðμÞ
αβγδðp1; p2; p3; p4Þ ¼

XN
i¼1

fiðΩÞτðμÞi ðp1; p2; p3; p4Þαβγδ;

ð5Þ
where the fiðΩÞ are Lorentz-invariant dressing functions
depending on ten Lorenz invariant momentum variables Ω

(see [37] for details). The τðμÞi are the corresponding Dirac
structures (with Dirac indices α, β, γ, δ) and N is the
number of Dirac basis elements. The full Dirac bases for
J ¼ 0 (N ¼ 256) and J ¼ 1 (N ¼ 768) states are collected
in [36] and in the Appendix of [37].
Following the arguments in [21,36], we note that the

amplitude dynamically develops two-body clusters in the
three different topologies mentioned in Sec. II A. For
heavy-light systems, this is a heavy-light meson-meson
component (M1), a hadroquarkonium component (M2)
and a dq − dq cluster (D). These clusters were found to
heavily influence the four-body system, thus the guiding
idea is to express ΓðμÞðp1; p2; p3; p4Þ in terms of these
internal two-body clusters.
Applying this idea to Eq. (4), we construct a physically

motivated basis for the Bethe-Salpeter amplitude by pro-
jecting onto a subset of the full basis corresponding to
the dominant two-body clusters. For given quantum num-
bers JPC, we draw on existing information on the decay
channels of experimental four-quark candidates to identify
the possible two-body clusters. This in turn fixes the Dirac
tensors that enter in the amplitude. A collection of the
chosen internal configurations used in this work is given in
Table II. With all of the above, the amplitude in Eq. (4)
reduces to

ΓðμÞð…Þ ≈
X

i∈ fM1;M2;Dg
fiðΩÞτðμÞi ð…Þ ⊗ τCi ⊗ τFi ; ð6Þ

where the sum includes the dominant physical compo-
nents for the different interaction topologies in Table II.
The resulting structure is visualized in Fig. 2. We empha-
size that this representation is different from the two-body
framework used in [38], as the subamplitudes depicted in

TABLE I. Qq̄mesons with quantum numbers JPC ¼ f0−þ; 1−−; 0þþ; 1þþg grouped according to their quark model classification. We
show the experimental candidates [34], the masses mRL obtained in our rainbow-ladder calculation, and the relative error of these to the
masses given in the PDG (if the experimental state has been identified). In the last two columns we also show the obtained rainbow-
ladder masses for the correspondingQq diquarks with quantum numbers JP ¼ f0þ; 1þg. All values are given in MeV: †: The π and the
η are mass degenerate in this work, since we neglect the strange component in the η and the indirect effect of the topological mass via
octet-singlet mixing. ‡: We do not consider the lightest scalar meson nonet as potential internal components, since they themselves are of
four-quark nature [35,36]. Instead, we resort to the scalar nonet with masses above 1 GeV.

0−þ 1−− 0þþ 1þþ
0þ 1þ

PDG mRL Δmrel PDG mRL Δmrel PDG mRL Δmrel PDG mRL Δmrel m0þ m1þ

nn̄ π=η† 137 0.0% ρ=ω 736 5.2% f0ð1370Þ 1370 ‡ a1 898 27.0% 809 1006
sn̄ K 501 1.1% K� 913 0.1% K�

0ð1430Þ 1425 ‡ K1 1110 11.4% 1072 1259
ss̄ � � � 698 � � � ϕ 1070 5.0% f0ð1500Þ 1522 ‡ � � � 1248 � � � 1266 1412
cn̄ D 1860 0.4% D� 2011 0.1% D�

0 2012 14.1% D1 2174 10.1% 2421 2439
cs̄ Ds 1937 1.6% D�

s 2124 0.5% D�
s0 2181 5.9% Ds1 2273 7.6% 2523 2543

cc̄ ηc 2803 6.1% J=ψ 2992 3.4% χc0 3142 8.0% χc1 3154 8.3% 3415 3433
bn̄ B 5310 0.6% B� 5375 0.9% � � � 5550 � � � B1 5802 1.3% 6396 6403
bs̄ Bs 5425 1.1% B�

s 5487 1.3% � � � 5680 � � � Bs1 5909 1.4% 6473 6492
bc̄ Bc 6232 0.7% � � � 6302 � � � � � � 6538 � � � � � � 6655 � � � 7139 7269
bb̄ ηb 9421 0.2% ϒ 9500 0.4% χb0 9759 1.0% χb1 9768 1.1% 9915 10394
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Fig. 2 are not actual two-body amplitudes but rather
specific Dirac-color-flavor basis elements of the four-body
amplitude that reflect its internal clustering.
In Eq. (6), τCi is the attractive color singlet structure

corresponding to each interaction topology, with 1 ⊗ 1
tensors for each of the two meson-meson topologies and a
3̄ ⊗ 3 tensor for the diquark-antidiquark topology (see
Supplemental Material of [21] for details). We relegate the
inclusion of repulsive color-singlet channels to future work.
The index i on the flavor part τFi is only used to construct
the Dirac and color part of the wave function but is
otherwise irrelevant for the calculation, as the interaction
kernel described in Sec. II A is flavor-blind.

C. Two-body poles

Let us now take a closer look at the Dirac part of the
amplitude. One can express the quark momenta p1;…; p4

by three relative momenta k, q, p and the total hadron
momentum P using the relations

p1 ¼
kþ q − p

2
þ σ1P; p3 ¼

−kþ qþ p
2

þ σ3P;

p2 ¼
k − qþ p

2
þ σ2P; p4 ¼ −

kþ qþ p
2

þ σ4P: ð7Þ

Here, σ1;…; σ4 are (quark-)momentum partitioning
parameters which can be used to maximize the calculable
domain for the bound-state mass by optimally distributing
the total hadron momentum among the quarks. In the rest
frame of the four-quark state, Pμ ¼ ð0; 0; 0; iMÞ is imagi-
nary whereas the relative momenta p, q, k are real.
Therefore, the p2

i obtained from Eq. (7) describe different
parabolas in the complex plane which are limited by the
nearest quark singularities, which translates into an upper
limit for M. An optimized choice of momentum partition-
ings then maximizes the mass range M for which the BSE
can be solved.
Using the relations in [39], one can group the Lorentz-

invariant momentum variables Ω ¼ fq2; p2; k2;…g in mul-
tiplets of the permutation group S4. This yields a singlet
variable S0 ¼ ðk2 þ q2 þ p2Þ=4 carrying the momentum
scale, a doublet containing the internal two-body clusters,
and two triplets, thus totaling to 3þ 3þ 2þ 1 ¼ 9momen-
tum variables, plus P2 ¼ −M2. Following [36,37], the
leading momentum dependence of the dressing functions
fi beyond the singlet variable S0 comes from the two-body
clusters, whose poles are dynamically generated when
solving the equation. We therefore pull out these poles from
the fi and, to reduce computational effort, assume that the
remainder only depends onS0. The resultingDirac part of the
amplitude then reads

ΓðμÞ
αβγδðk; q; p; PÞ ¼

X2
i¼0

fiðS0ÞPi
abP

i
cdτ

ðμÞ
i ðk; q; p; PÞαβγδ;

ð8Þ

where the two-body poles of the amplitude are given by

Pi
abP

i
cd ¼

1

ðpþ
abÞ2 þm2

ab

1

ðpþ
cdÞ2 þm2

cd

: ð9Þ

Here, pþ
ab ¼ pa þ pb is the momentum of the meson or

diquark with mass mab in a given topology ðabÞðcdÞ ¼
ð13Þð24Þ, (14)(23) or (12)(34). The sum in Eq. (8) runs over
the physical components given in Table II. These occur in the
diagrammatic topologies discussed in Fig. 2. For example,
for a four-quark state with IðJPCÞ ¼ 0ð1þþÞ the M1 top-
ology has clusters m13 ¼ mD and m24 ¼ mD̄� , the M2

cluster m14 ¼ mJ=ψ and m23 ¼ mω, and the D topology
m12 ¼ mScq andm34 ¼ mAq̄c̄

. On the other hand, the first two
states of Table II would have a single contribution (f0) inM1

TABLE II. Physical content of the Bethe-Salpeter amplitude for
cnn̄c and bnn̄b̄ configurations, where n stands for light u=d
quarks. Scalar and axial-vector diquarks are denoted by Sc=b and
Ac=b, respectively, where the subscript characterizes the heavy
quark that is paired with the light quark. The f̃0 here denotes the
f0ð1370Þ. The notation f0, f1, f2 for the physical components
corresponds to Eq. (8) and is used again to display results in
Sec. III D.

IðJPCÞ Physical components f0, f1, f2

cnn̄c̄ 0ð0−þÞ D�D̄1, χc0η, ηcf̃0
0ð1−−Þ DD̄1, χc0ω, J=ψ f̃0
0ð0þþÞ DD̄, J=ψω, ScSc
0ð1þþÞ DD̄�, J=ψω, ScAc
1ð1þ−Þ DD̄�, J=ψπ, ScAc

bnn̄b̄ 0ð0−þÞ B�B̄1, χb0η, ηbf̃0
0ð1−−Þ BB̄1, χb0ω, ϒf̃0
0ð0þþÞ BB̄, ϒω, SbSb
0ð1þþÞ BB̄�, ϒω, SbAb
1ð1þ−Þ BB̄�, ϒπ, SbAb

FIG. 2. Graphical representation of the Bethe-Salpeter ampli-
tude in the physical basis. The diagrams on the r.h.s. represent the
direct product of the internal clusters spanning the physical basis.
The first diagram shows the meson-meson configuration (M1),
with the heavy-light meson clusters depicted as blue half-circles.
The second diagram is the hadroquarkonium contribution (M2),
with individual components shown as violet half-circles, and the
last diagram is the diquark-antidiquark configuration (D), where
each diquark is depicted by an orange half-circle.
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topology, two contributions (f1;2) in M2 and none in D.
In general, the respective meson and diquark masses are
calculated from their rainbow-ladder BSEs as described
above and compiled in Table I.
Equation (9) introduces two-body poles in the integra-

tion domain of the rhs of Eq. (2), thus restricting the range
of P2 ¼ −M2 where the BSE can be solved directly. This
can be somewhat remedied by optimizing the quark
momentum partitioning parameters in Eq. (7) which split
the hadron momentum P amongst the quarks. On the other
hand, the momenta in the denominator of Eq. (9), which are
linear combinations of Eq. (7), also form complex parab-
olas which are limited by the meson and diquark poles.
To this end, it is advantageous to relate the σi to new
parameters η, ζ and χ, where η corresponds to the meson-
meson topology (M1), ζ to the hadroquarkonium (M2)
and χ to the dq − dq (D) cluster:

σ1 ¼
1

2
ðηþ ζ þ χ − 1Þ; σ2 ¼

1

2
ð−η − ζ þ χ þ 1Þ;

σ3 ¼
1

2
ðη − ζ − χ þ 1Þ; σ4 ¼

1

2
ð−ηþ ζ − χ þ 1Þ: ð10Þ

The choice

η¼ m13

m13þm24

; ζ¼ m14

m14þm23

; χ ¼ m12

m12þm34

;

then maximizes the value of M to be the lowest sum of
masses of the individual physical components in Table II,
e.g., mD þmD� for the χc1ð3872Þ. Here we also remedy a
slight inconsistency in the previous works [21,37], where
the quark momentum partitioning parameters were chosen

as σi ¼ 1
4
in the pole terms (9) but set to their optimal values

in the rest of the equation. As a result, the maximum value
of M did not exhaust its full range, which resulted in the
need for extrapolating the eigenvalue curves over a large
momentum range causing a large extrapolation error. In the
present work we overcome this limitation, thereby reducing
the extrapolation error considerably.
To calculate the eigenvalues above the thresholds, in

principle one needs to employ contour deformation tech-
niques or elaborate analytic continuations [26,27]. As the
former would present an enormous technical challenge in
the four-body approach, we relegate it to future work and
analytically continue the eigenvalues on the real axis using
the Schlessinger-point method [40], see Appendix B for
details. Thus, if masses above thresholds are quoted they
merely serve as a rough estimate for the real part of the
corresponding resonance locations. In many cases, how-
ever, the resulting ground-state masses are below all
thresholds and thus no analytic continuation is needed.

III. RESULTS

In the following we present results for hidden-charm and
hidden-bottom four-quark states with quantum numbers
0ð0þþÞ, 0ð1þþÞ, 1ð1þ−Þ, 0ð1−−Þ, 0ð0−þÞ. The first three of
these were already investigated in the hidden-charm sector
in [21,37]. Here we extend the calculations to the bottom
region and also present novel results for the vector and
pseudoscalar channels. We first present our mass evolution
curves in Sec. III A and then discuss our results for the
physical spectrum in the charm and bottom energy region
in Secs. III B and III C. The internal composition of our
states is then the topic of Sec. III D.

FIG. 3. Current-mass evolution of the cqq̄c̄ (crosses) and bqq̄b̄ ground states (dots) in the 0ð1þþÞ and 1ð1þ−Þ channels. The gray
vertical-dashed lines mark the position of the q ¼ n, s, c, b current-quark masses, where n ¼ u=d. The dotted, dashed and dash-dotted
curves represent the meson-meson and diquark-antidiquark thresholds for the charm and bottom four-quark system, respectively. The
colors of the thresholds comply with Fig. 2, i.e., blue for theM1, purple for theM2 and orange for theD cluster. The gray bands are the
fits to the data.
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A. Mass evolution curves

We first discuss the charmlike and bottomlike ground
states in the IðJPCÞ ¼ 0ð1þþÞ, 1ð1þ−Þ and 0ð0þþÞ chan-
nels. While the 0ð1þþÞ channel has established experi-
mental four-quark candidates only in the charm region [34],
e.g., χc1ð3872Þ and χc1ð4140Þ, the 1ð1þ−Þ channel features
four-quark candidates both in the charm region (e.g., the
Zcð3900Þ) and the bottom region, namely the Zbð10610Þ
and Zbð10650Þ. The situation in the 0ð0þþÞ channel is not
yet settled in the literature, but the existing exotic candi-
dates also only occur in the charm region.
We display the results of our calculation for these three

channels in Figs. 3 and 4, where we show the mass
evolution curve (MEC) of the four-quark state with fixed
heavy-quark pair QQ̄ ¼ cc̄ (lower group of curves) and bb̄
(upper group of curves). The quark pair qq̄ is varied from
the bottom mass mb (rightmost vertical dashed line) to the
light quark mass mn (leftmost vertical dashed line). The
results for charmlike states are marked by crosses and
those for bottom-like states by dots. The dotted, dashed and

dash-dotted curves show the quark-mass evolution of the
two-body thresholds (cf. Table II). We show the MECs for
the first radial excited states in Appendix C.
We find that for increasing current-quark masses the

four-quark states become more deeply bound with respect
to the lightest meson-meson threshold. For quark masses
mq ≥ mc, the MECs become approximately linear both in
the charm and bottom region. However, below the charm
mass we observe an upwards bending of the MEC when it
approaches the lowest meson-meson threshold in the
system, which is stronger for the bqq̄b̄ compared to the
cqq̄c̄ states. We note that such a bending is also observed in
the MECs for the two-body heavy-light states in our
framework. In the pseudoscalar channel, the MECs bend
downwards formq ≃mn, resembling the observed behavior
of the MECs for the two-body qq̄ states in the pseudoscalar
(and scalar) channel, see, e.g., right figure in Fig. 3.10
in [24]. Since the masses from the aforementioned two-
body MECs serve as input for the four-quark state
calculations, the similarity in the behavior of the MECs
could be interpreted as a first indication that the states in the
pseudoscalar channel have a strong hadroquarkonium
component. A more detailed discussion about the internal
structure can be found in Sec. III D.
In Tables III and IV we quote the masses of all ground

and excited states calculated in this work. To this end, we
employ fits of the form

MðmqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bmq þ cm2

q

q
ð11Þ

to the MECs at quark masses reasonably far away from the
two-body thresholds. These fits are shown in Figs. 3 and 4
by the gray bands. The data not taken into account in the
fits are depicted slightly opaque. The error of the masses,
given in the brackets in Table III, is then determined by
combining the width of the bands [i.e., the error of the fit
function MðmqÞ], with the extrapolation error as described
in Appendix B. To facilitate comparisons with the liter-
ature, we also list the resulting binding energies EB ¼
M −Mth with respect to our calculated lightest heavy-light

TABLE III. Ground-state masses for the hidden-charm (cqq̄c̄) and hidden-bottom (bqq̄b̄) states in GeV. For completeness we also
display the binding energies EB with respect to the lightest (calculated) heavy-light meson-meson threshold in each channel except for
the 0−þ, where we take the χc0η in the charm and the ηbf̃0 in the bottom region, which are the most relevant thresholds in the system; the
“binding energies” for resonant particles above the threshold are shown in bold. The error given in the brackets is the combination of the
extrapolation error and the error of the fit from Eq. (11).

0ð0þþÞ 0ð1þþÞ 1ð1þ−Þ 0ð1−−Þ 0ð0−þÞ
M EB M EB M EB M EB M EB

cnn̄c̄ 3.41(2) −0.31ð2Þ 3.89(4) 0.02(4) 3.94(2) 0.07(2) 4.27(2) 0.23(2) 3.37(1) 0.09(1)
css̄c̄ 3.47(1) −0.40ð1Þ 3.98(4) −0.08ð4Þ 3.99(2) −0.07ð2Þ 4.33(2) 0.12(2) 3.68(1) −0.16ð1Þ
bnn̄b̄ 9.77(2) −0.85ð2Þ 10.52(6) −0.17ð6Þ 10.40(1) −0.28ð1Þ 11.01(5) −0.11ð5Þ 9.9(2) −0.9ð2Þ
bss̄b̄ 9.80(2) −1.05ð2Þ 10.55(6) −0.36ð6Þ 10.42(1) −0.49ð1Þ 11.03(5) −0.30ð5Þ 10.1(2) −0.8ð2Þ
bcc̄b̄ 10.72(2) −1.74ð2Þ 11.46(2) −1.08ð2Þ 11.13(0) −1.41ð0Þ 11.89(3) −1.00ð3Þ 11.61(4) −0.96ð4Þ

FIG. 4. Current-quark mass evolution of the cqq̄c̄ and bqq̄b̄
ground states in the 0ð0þþÞ channel; see Fig. 3 for details.
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meson-meson threshold Mth in both tables. For the pseu-
doscalar channel, we instead use the dominant hadroquar-
konium threshold, see Sec. III D. Note that these thresholds
do not necessarily coincide with the experimental ones
given that our meson masses are calculated in the same
framework as our four-quark masses.
We nowmove on to the novel results of this work, i.e., the

vector 0ð1−−Þ and pseudoscalar 0ð0−þÞ four-quark states.
For the 0ð1−−Þ channel there are many established exotic
candidates in the charm and bottom mass region [34]; the
ψð4230Þ, ψð4360Þ, ψð4660Þ, ϒð10753Þ, ϒð10860Þ, and
ϒð11020Þ. By contrast, as of today there are no experimental
exotic candidates in the pseudoscalar channel. Thus, we can
only compare our results with the experimental situation in
the vector channel and cross-check our obtained results with
theoretical predictions for the pseudoscalar channel.
In contrast to the other three quantum numbers, our

“physical basis” for the vector and pseudoscalar four-quark
states does not contain a diquark topology but rather a
secondM2 cluster (cf. Table II). The reason for this is that,
on one hand, the diquark clusters always constitute the
highest two-body thresholds in our system and are gen-
erally found to be almost negligible for hidden-flavor four-
quark states. On the other hand, the construction of S-wave

dq − dq pairs in the 0ð1−−Þ and 0ð0−þÞ channels would
require including pseudoscalar and vector diquarks, which
are strongly suppressed compared to their (“good”)
scalar and (“bad”) axial-vector diquark counterparts (see
Appendix A for details).
Our results for the ground states of the vector and

pseudoscalar states are displayed in Fig. 5. In both
channels, the behavior of the MECs are very similar to
the ones described before, i.e., the results are again affected
by the meson-meson thresholds for light quark masses.
As mentioned in Sec. II A, we calculate both the four-

quark ground states and radial excitations from Eq. (2).
The resulting masses of the radial excitations are given
in Table IV. Note that because the lowest two-body
thresholds are identical for the ground and excited states,
the eigenvalue curves need to be extrapolated much further
in some cases and thus the errors for these states increase.
Most of the excited states are therefore also unbound
resonances.
As noted before, the binding energies in Tables III

and IVare determined with respect to our calculated lightest
heavy-light meson-meson thresholds. In particular, in the
vector and pseudoscalar channels the thresholds depend on
the calculated masses of the scalar and axial-vector Qq̄

TABLE IV. Same as in Table III but for the first radially excited states.

0ð0þþÞ 0ð1þþÞ 1ð1þ−Þ 0ð1−−Þ 0ð0−þÞ
M EB M EB M EB M EB M EB

cnn̄c̄ 3.89(2) 0.17(2) 4.19(3) 0.32(3) 4.36(4) 0.49(4) 4.64(4) 0.60(4) 3.69(0) 0.40(0)
css̄c̄ 3.95(2) 0.08(2) 4.26(3) 0.20(3) 4.43(4) 0.37(4) 4.71(3) 0.50(3) 4.00(1) 0.15(1)
bnn̄b̄ 10.38(2) −0.24ð2Þ 11.27(9) 0.59(9) 10.97(5) 0.29(5) 11.71(8) 0.60(8) 10.09(3) −0.71ð3Þ
bss̄b̄ 10.41(2) −0.44ð2Þ 11.30(9) 0.39(9) 11.02(1) 0.11(1) 11.73(7) 0.40(7) 10.30(4) −0.64ð4Þ
bcc̄b̄ 11.26(2) −1.21ð2Þ 12.06(5) −0.48ð5Þ 11.79(1) −0.75ð1Þ 12.46(6) −0.43ð6Þ 12.0(1) −0.6ð1Þ

FIG. 5. Current-quark mass evolution of the cqq̄c̄ and bqq̄b̄ ground states in the 0ð1−−Þ and 0ð0−þÞ channels; see Fig. 3 for details.
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states, which may differ from experiment by a couple of
percent (cf. Sec. II A and Table III for details).

B. Charm spectrum

In the left panel of Fig. 6 we compare our results for the
masses in Tables III and IV to the experimental spectrum in
the charmonium region. We find that the cnn̄c̄ and css̄c̄
states, depicted by blue and green boxes, respectively, lie
quite close together in most channels. This closeness can be
attributed to the plateaulike behavior of the MECs in
Figs. 3–5 for small quark masses. The only exception is
the pseudoscalar channel, where the MEC bends down-
wards at small quark masses.
Starting with the 1þþ channel, we find that the cnn̄c̄

ground state nicely agrees with the experimental state
χc1ð3872Þ. On the other hand, the css̄c̄ ground state is
too light compared to the χc1ð4140Þ, while the cnn̄c̄ and
css̄c̄ radial excitations are in the right mass region to be
identified either with the χc1ð4140Þ or χc1ð4274Þ.
In the 1þ− channel, the cnn̄c̄ ground state is close to the

Zcð3900Þ and the css̄c̄ ground state close to the Xð4020Þ�.
Their first radial excitations might be candidates for the
Zcð4220Þþ and Zcð4430Þ, although their masses lie sub-
stantially above the respective thresholds and should thus
be treated with caution.
In the 0þþ channel, we find that the cnn̄c̄ ground state

agrees with the χc0ð1PÞ, which in the literature, however, is
considered as a cc̄ ground state. In addition, also the css̄c̄
ground state appears in the same mass region. The excited
cnn̄c̄ state is in good agreement with the χc0ð3915Þ and the
excited css̄c̄ state matches very nicely with the recently
observed Xð3960Þ [41].

In the 1−− vector channel we find that the cnn̄c̄ ground
state agrees with the ψð4230Þ, thus rendering it the lowest-
lying four-quark candidate in this channel with the dominant
physical component being DD̄1, followed by χc0ω and
J=ψσ. The states below the ψð4230Þ are not picked up by
our analysis as they feature different decay channels. As a
caveat, we note that our calculatedD1 is substantially lighter
than its experimental counterpart, which also lowers theDD̄1

threshold so that our state is far above the threshold whereas
the experimental ψð4230Þ is a shallow bound state. The
corresponding css̄c̄ ground state is close to the ψð4360Þ,
although an identification may be questionable as the
dominant decays of the experimental ψð4360Þ do not point
towards ss̄ components [34]. The css̄c̄ excited state is
however close to the ψð4660Þ, which because of its promi-
nent decays to DsD̄s1ð2536Þ and ψð2SÞππ (ψð2SÞf0ð980Þ)
is assumed to be a hidden-charm, hidden-strange four-quark
state. This leaves the cnn̄c̄ excited state, which appears to be
missing from the experimental spectrum.
The pseudoscalar 0−þ channel features the physical

components χc0η, ηcf0 and D�D̄1. It should be kept in
mind that in our present truncation the η only features an nn̄
component and is thus mass-degenerate with the pion
(cf. Table I). We therefore expect this component to be
possibly too dominant in our current calculation as com-
pared to a more complete approach. In the ηc hadrochar-
monium component we chose the f0ð1370Þ as companion
state, since the σ is itself a four-quark state [35,36] and too
broad to act as companion. Finally, for the heavy-light
meson components we did not consider the DD0 combi-
nation, because the experimentally measured D0 is again
much too broad to form a molecular bound state as already

FIG. 6. Hidden-charm (left) and hidden-bottom spectrum (right) for the ground and first excited four-quark states compared to
experiment [34]. The colored boxes are our results, where the height of the boxes stands for the error of the extracted masses. The gray
and black boxes are the PDG masses (real parts of the pole positions) for conventional and exotic hadrons, respectively. The pale gray
colored states are not yet well-established.
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argued in Refs. [9,42]. Instead, we consider the combina-
tion D�D̄1.
As a result, we obtain the cnn̄c̄ ground state at a mass of

about 3.37 GeVand a corresponding css̄c̄ ground state mass
at 3.68 GeV. We also compared our result for the cnn̄c̄
ground and excited state masses to the one using the masses
for the η and χc0 given in thePDG.We found that bothmasses
increase about 200MeVwith respect to themasses quoted in
Table III. However, using the PDG masses leads to a
significantly higher threshold in the χc0η channel of about
3.96 GeV, rendering both states deeply bound. The masses
for the corresponding excited cnn̄c̄ and css̄c̄ states are
3.61 GeV and 4.00 GeV, respectively.
Considering the lowest-lying heavy-light meson-meson

S-wave thresholds for each channel we investigated, one can
identify the following threshold hierarchy. The threshold in
the scalar channel is the lightest, followed by the axial
vectors, the vector and finally the pseudoscalar channel
thresholds. Our states, even including other components than
only heavy-light meson-meson pairings, follow this pattern
except for the pseudoscalar channel, which is fully hadro-
quarkonium dominated. We come back to this point in
Sec. III D below when we discuss the internal structure of
our states.

C. Bottom spectrum

Moving on to the bottomonium spectrum in the right
panel of Fig. 6, we observe similar features as in the
charmonium spectrum. Due to the plateau-like behavior of
the MECs for small quark masses, the cnn̄c̄ and css̄c̄ states
(green and blue boxes, respectively) are even closer to each
other compared to the charmonium spectrum and overlap in
most cases.
In the bottomonium spectrum there are only two exper-

imentally well-established four-quark candidates, namely
the Zbð10610Þ and Zbð10650Þ with quantum numbers 1þ−.
These are potential members of an isospin triplet and
therefore indistinguishable in our isospin symmetric frame-
work. We find a bnn̄b̄ ground state with a slightly lower
mass than the experimental Zbð10610Þ which seems to
match reasonably well. However, we also find a corre-
sponding state with bss̄b̄ flavor content close by, which has
not yet been detected in experiment.
The predicted bottomonium partners of the charmonium-

like 0þþ, 1þþ and 2þþ four-quark states are in the literature
referred to as WbJ states. In the 1þþ channel, our bnn̄b̄
ground state coincides with the experimental state χb1ð3PÞ,
which is a radial excitation of the χb1ð1PÞ. We therefore
predict a Wb1 state with a mass of about mWb1

¼
10.52ð2Þ GeV. In the scalar channel, our bnn̄b̄ ground state
is close to the χb0ð1PÞ, as was the case in the charmonium
spectrum. If the pattern that the first excited state is more in
line with the experimental four-quark candidates in this
particular channel can be carried over from the charm to the

bottomonium spectrum, we predict a Wb0 with a mass of
mWb0

¼ 10.38ð2Þ GeV. We note that the scalar 0þþ and
axial-vector 1þþ WbJ masses using heavy-quark spin sym-
metry (HQSS) and effective field theories are predicted in a
similar region [43], except that they are resonances above the
respectiveBB̄ andBB̄� thresholds while our states are below
their thresholds.
Considering the spectrum in the vector channel, we find

the ground state with quark content bnn̄b̄ in the vicinity of
three states, i.e., ψð10753Þ, ψð10860Þ, and ψð11020Þ. The
latter two are considered to be radial excitations of the
ϒð1SÞ often termed ϒð5SÞ and ϒð6SÞ in the literature.
Therefore, despite the higher mass of our bnn̄b̄ ground
state an identification with the experimental ψð10753Þ
seems to be an option.
Finally, for the pseudoscalar channel we find the bnn̄b̄

ground state at a mass of 9.9 GeV being slightly heavier
than our obtained bnn̄b̄ scalar state mass. Also here,
substituting our pseudoscalar nn̄ðηÞ mass with the η mass
from the PDG yields a bnn̄b̄ ground state which is about
200 MeV heavier.
The bss̄b̄ and bcc̄b̄ states in each channel do not

currently have any experimental candidates. We can,
however, compare our findings to predictions from the
literature, especially regarding the bcc̄b̄ states. These have
been investigated using various methods such as aug-
mented QCD sum rules [44], diquark-antidiquark models
[45] and lattice-QCD inspired quark models [46]. The
results for the investigated channels with these methods lie
mostly above 12 GeV and are very close or above the
respective meson-meson thresholds. From the MECs in
Figs. 3–5 and the resulting binding energies in Tables III
and IV one can clearly see that our states get more deeply
bound if we increase the mass of the qq̄ pair, i.e., when we
go from bnn̄b̄ to bss̄b̄ and bcc̄b̄. Thus, as expected, we find
the bcc̄b̄ ground states (and even their first excited states) to
be deeply bound in every channel.

D. Internal structure

One of the most interesting questions on four-quark states
concerns their internal structure. In the preceding works
using functional methods [21,27,37] such information was
extracted from the MECs only. The mass spectrum of four-
quark states with quark content cqq̄c̄ was calculated by
keeping the mass of the cc̄ pair fixed and varying the mass of
the light current-quark pair qq̄ from up/down to charm. By
changing the physical components entering in the calcula-
tion, one can then observe how well the MEC for a single
subcluster (or combinations of subclusters) agrees with the
MEC of the full state. For example, for the χc1ð3872Þ the
DD̄� component alone agrees reasonably well with the full
result across a wide range of current-quark masses, while the
J=ψω cluster contributes marginally and the effect of the SA
diquark cluster is almost negligible (cf. Fig. 2 in [37]).
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Here we employ a different strategy to obtain informa-
tion about the internal structure of four-quark states. To this
end, we investigate the dressing functions fiðS0Þ in Eq. (8)
and in particular their norm contributions, similarly to
Refs. [22,23,47] where the orbital angular momentum
composition of baryons and the strengths of different
internal diquark clusters were quantified along the same
lines. We follow the canonical normalization procedure for
BSEs [48,49] by contracting the amplitude in Eq. (6) with
its charge conjugate Γ̄ðμÞ. Because the amplitude sums over
the three dominant internal structures (cf. Fig. 2), the

product Γ̄ðμÞGð4Þ
0 ΓðμÞ is a sum of nine terms as illustrated

in Fig. 8. The diagonal terms represent the contributions
coming from the three topologies M1, M2 and D, and the
off-diagonal terms arise from themixing of these topologies.
To make statements about the internal structure of the

physical four-quark states with quark content cnn̄c̄ and
bnn̄b̄, we need to calculate the norm contributions with the
on shell Bethe-Salpeter amplitude for that quark configu-
ration. However, for some channels it is not possible to use
the on shell amplitude directly due to the two-body
thresholds. We can, however, calculate the norm contribu-
tions for a four-quark state with quark content Qqq̄Q̄ with
the on shell BSAs at quark masses for q where the two-
body thresholds do not affect the state, cf. Figs. 3, 4 and 5.
This yields a quark mass evolution of the norm contribu-
tions, in analogy to the MECs, which is then extrapolated to
the physical quark content. An example for the 0ð1þþÞ
channel is shown in Fig. 7. One can see that the evolution
follows a clear trend and does not change drastically when
varying the quark masses. The opaque datapoints at small
current-quark masses are the norm contributions not
considered in the fit and correspond to the opaque points
in Fig. 3. The curves for the other quantum numbers and the
excited states behave in a similar way.
Figure 9 shows the results for the contributions of this

correlation matrix elements to each state. The dressing
functions f0, f1 and f2 correspond to the first, second and
third physical component in Table II for each quantum
number, e.g.,DD̄, J=ψω and ScSc for the 0ð0þþÞ state. The
plot on the left illustrates the arrangement and color
scheme. For the 0−þ, 1−−, 1þ− and 1þþ channels we only
show the contributions for the cnn̄c̄, bnn̄b̄ and bcc̄b̄
ground states, since they hardly change for the correspond-
ing excited states or states with hidden strangeness (css̄c̄
and bss̄b̄). In the scalar channel we plot the results for the
respective excited states as they are more in line with the
exotic candidates.
Starting with the 1þþ channel in the charmonium sector,

we find that this state has an overwhelming DD̄� compo-
nent (blue) which contributes about 88% to the state. The
J=ψω component (red) and its mixing with DD̄� (orange)
are almost negligible, but these are still bigger than the
ScAc diquark component (brown) and its mixing with
DD̄� (green). This nicely reproduces the hierarchy found

in [27,37]. It also mirrors the experimentally known
decays; the dominant hadronic decay channel for the
χc1ð3872Þ is DD̄� with ∼86% when combining the
D0D̄0π0 and D0D̄�0 channels, followed by J=ψω with
∼8% [34]. Furthermore, as the χc1ð3872Þ is very close to
the DD̄� threshold, a strong DD̄� component in its wave
function is expected. The same behavior is also found for
the css̄c̄ ground and excited state, which are dominated by

FIG. 8. Graphical illustration of the norm contribution matrix.
Each entry in the matrix is an overlap integral that contributes to
the normalization of the four-quark state shown in the denom-
inator. The diagonal terms correspond to the norm contribution
coming from theM1,M2 and D topologies and the off-diagonal
terms arise from the mixing of the topologies. Note that the
matrix is symmetric, so that the contributions with the same
background color are summed up.

FIG. 7. Current-quark mass evolution of the norm contributions
for the cqq̄c̄ ground states in the 0ð1þþÞ channel. The color
coding is the same as in Fig. 8.
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the DsD̄�
s component. In the bottom sector we find the

(would-be Wb1) bnn̄b̄ state to be dominated by the BB̄�
component with about 77%; here the other components
are still all below 10% but the mixing of BB̄� −ϒω and
BB̄� − SbAb becomes more prominent.
In the 1þ− channel we find the J=ψπ component to be

dominant (55%), however with a substantialDD̄� admixture
(29%) and a DD̄� − J=ψπ mixing component (14%). In the
literature the internal structure of the Zcð3900Þ is debated as
its mass is close to, but still above, the DD̄� threshold.
Furthermore, theDD̄� decay channel is preferred over J=ψπ
by a factor ∼6 [50]. This led to the conclusion that the J=ψπ
component might be suppressed and the Zcð3900Þ could
be explained as a DD̄� molecule. The HAL-QCD Lattice
Collaboration studied the internal structure of the Zcð3900Þ
using a DD̄� − J=ψπ coupled-channel analysis [51,52].
They found a strong DD̄� − J=ψπ mixing potential and
thus evidence against the state having only ameson-meson or
hadrocharmonium structure. Instead, they concluded that
this strong potential leads to a formation of theZcð3900Þ as a
threshold cusp. An analysis of the experimental data with
effective field theories [53,54] suggests that the meson-
molecule DD̄� component is at least equally important than
nonmolecular structures.
Interestingly, the contributions in the 1þ− channel

change in the bottom sector. Here we find a very strong
ϒπ component (86%) and a ϒπ − BB̄� mixing of about
10% for the bnn̄b̄ state, with the other correlations being
negligible. For the bcc̄b̄ state theϒηc component is weaker
(∼75%) and the BcB̄�

c and ϒηc − BcB̄�
c mixing contribute

about 10% to the state. This is somewhat at odds with the
common picture in the literature, where the Zbð10610Þ is
considered as a BB̄� molecule because of the dominant

decay Zbð10610Þ → BþB̄�0 þ B�þB̄0 with about 86% [34]
and the closeness to the BB̄� threshold [9].
In the 0þþ channel we find a dominant DD̄ component

for the cnn̄c̄ state which contributes about 89% to the state.
The mixing components of DD̄ − J=ψω and DD̄ − ScSc
amount to about 9%, while the remaining contributions are
negligible. This again nicely confirms the findings of
[21,27] where this state was found to be predominantly
DD̄. The corresponding css̄c̄ state has a contribution of
DsD̄s of about 89% which fits with the observed decay
channel of the Xð3960Þ [41]. In the bottom region, we
observe again a BB̄ dominance of 80% with the mixings
BB̄ −ϒω and BB̄ − SbSb becoming more prominent with a
total contribution of 16%.
Concerning the cnn̄c̄ state in the 1−− vector channel, we

find that it is almost exclusively dominated by the DD̄1

component (93%) with a small contribution coming from
the χc0ω (4%) andDD̄1 − χc0ωmixing (3%). This is in line
with Refs. [55,56] concluding that a description of the
ψð4230Þ as a D1D̄ molecular state agrees with the
experimental data. As the DD̄1 threshold is also the lowest
S-wave meson-meson threshold in the system [6,9,57], the
closeness of the state to that threshold also points to a
strong meson-molecule component in the wave function.
The internal structure of the ψð4660Þ, which we identified
with our css̄c̄ excited state, is a little more elaborate. Here,
motivated by the observed decays, there are claims to
describe this state as a hadrocharmonium ψð2SÞf0ð980Þ
state [58], a Dð�Þ

s D̄s1ð2536Þ meson-molecule [59], or a
P-wave tetraquark (dq − dq) state [60]. In our analysis we
find the DsD̄s1 component to be dominant with 92%. The
picture is quite similar in the bottom region: All states are
dominated by the respective BB̄1 component with about

FIG. 9. Norm contributions for the cnn̄c̄, bnn̄b̄ and bcc̄b̄ states. In the scalar channel we show the results for the excited states and in
all other channels those for the ground states. The f̃0 here corresponds to the f0ð1370Þ. The bars sum up to 100%.

HIDDEN-FLAVOR FOUR-QUARK STATES IN THE CHARM AND … PHYS. REV. D 109, 074025 (2024)

074025-11



83%, followed by a contribution of about 10% coming
from the pure χb0ω cluster.
Finally, we turn to the 0−þ pseudoscalar channel. For the

cnn̄c̄ state we find that with a dominant χc0η component of
99% our obtained cqq̄c̄ states are exclusively hadrochar-
monium with no mixing components. As discussed, this
picture might change when we include the strange flavor
components in the η together with the octet-singlet mixing
and therefore needs to be explored again in a more
complete approach in the future. In the bottom sector
the dominant substructure is still hadroquarkonium, but the
state is now almost exclusively dominated by the
ηbf0ð1370Þ hadrobottomonium component with about
95%, augmented by an almost negligible χb0η contribution
of 5%. Presumably this result will not change in a more
complete approach given that a heavier η will decrease the
importance of this component rather than increase it. When
going to the bcc̄b̄ state, the dominant component is still
ηbχc0 with 96%, with the B�B1 and the χb0ηc components
contributing about 2% each.

IV. SUMMARY AND CONCLUSIONS

In this work we determined the spectrum and internal
composition of heavy-light four-quark states with hidden
flavor in the charm and bottom energy region. Using
rainbow-ladder two-body interactions between quarks
and (anti-)quarks, we solved the four-body Faddeev-
Yakubovsky equation in a fully covariant framework and
obtained spectra for states with quantum numbers JPC ¼
0þþ; 0−þ; 1−−; 1þ− and 1þþ. Our wave functions routinely
incorporate contributions from internal heavy-light meson-
meson, hadroquarkonium and diquark-antiquark contribu-
tions. Whereas we find the latter ones to be subleading in
most cases, it turns out that states with different quantum
numbers correspond to different internal contributions,
which in some cases also depend on the (hidden) flavor
of the states. For all states with CP ¼ þ1 (i.e. JPC ¼
0þþ; 1−− and 1þþ) we find highly dominant heavy-light
meson contributions, which almost exclusively determine
the masses of the ground and excited states in the charm
and bottom energy region. For axial-vector states with
JPC ¼ 1þ−, however, we find a much more complicated
picture. Our hidden-charm state corresponding to the
experimental Zcð3900Þ comprises both heavy-light meson
but also hadrocharmonium components in qualitative
agreement with results from other approaches [51–54].
The corresponding state in the bottom energy region is even
dominated by the hadrobottomonium configuration. The
same is observed for our pseudoscalar states regardless of
flavor. Thus, the most important message from our study is
the internal composition of XYZ states is by no means
uniform but varies between different quantum numbers and
flavors. It is certainly interesting to extend our findings to
the open flavor case. Corresponding work is in progress
and will be reported elsewhere.
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APPENDIX A: CONSTRUCTION
OF AMPLITUDES

In this section we describe the construction of the Bethe-
Salpeter amplitudes for the 0ð1−−Þ vector and 0ð0−þÞ
pseudoscalar four-quark states based on their dominant
physical clusters. We refer to the supplemental material of
Ref. [21] for the analogous construction for the quantum
numbers JPC ¼ 0þþ, 1þ− and 1þþ.
To begin with, we consider the quantum numbers of the

meson-meson and diquark-antidiquark components that
can appear in a four-quark state with the desired quantum
numbers. These components can then be assigned to one
of the interaction topologies M1 and M2 (meson-meson)
or D (diquark-antidiquark). We then compare with the
PDG [34] for the experimentally dominant or realized
decays of the four-quark state under consideration. If there
is no experimental evidence regarding the dominant
decays, we take the lowest-lying thresholds of the system
as the dominant contributions spanning the physical basis.
For the vector states this procedure is straightforward as
there are well-established exotic candidates with vector
quantum numbers such as the ψð4230Þ. At present, how-
ever, there is no evidence of a pseudoscalar four-quark
candidate, so we have to determine its physical clusters
based solely on the lowest-lying thresholds of the possible
internal components.
As a first approximation, we neglect the diquark com-

ponents in the basis for the vector and pseudoscalar four-
quark states. The reasons for this are twofold. First, the
possible diquark clusters feature either S-wave pairings of
scalar/axial-vector diquarks with pseudoscalar or vector
diquarks (which are not only heavier than their scalar and
axial-vector counterparts, but also unreliable in a rainbow-
ladder truncation), or P-wave scalar and axial-vector
diquark cluster pairings (which include higher orbital
angular momentum and are therefore suppressed). The
notion of S and P wave here refers to the combination
of Dirac tensors needed to construct a basis element of a
four-quark state with vector or pseudoscalar quantum
numbers. The P-wave combination would induce angular
momentum between the two diquarks, which is however
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not possible with the approximations explained in Sec. II C.
Secondly, the diquark clusters always form the highest
threshold in the system and were previously found to have
a negligible influence on the mass of hidden-flavor four-
quark states [21,36–38]. The resulting physical components
chosen for the vector and pseudoscalar four-quark states are
then only of meson-meson type and given in Table II.
To construct the basis describing the pseudoscalar and

vector states, we write down the leading Dirac-color tensors
for Ið0−þÞ and Ið1−−Þ in analogy to the supplemental
material of [21]. For the pseudoscalar states this yields

φ�
1 ¼ ½γ5αγδβδ � δαγγ

5
βδ�C11;

φ�
2 ¼ ½γ5αδδβγ � δαδγ

5
βγ�C0

11;

φ�
3 ¼ ½ðγμ⊥Þαγðγ5γμ⊥Þβδ � ðγ5γμ⊥Þαγðγμ⊥Þβδ�C11;

φ�
4 ¼ ½ðγμ⊥Þαδðγ5γμ⊥Þβγ � ðγ5γμ⊥Þαδðγμ⊥Þβγ�C0

11: ðA1Þ

where γμ⊥ ¼ ðδμν − P̂μP̂νÞγν is the transverse projection of
the γ-matrices with respect to the normalized total momen-
tum P̂μ and C11 ¼ δACδBD=3, C0

11 ¼ δADδBC=3 are the two
color-singlet tensors, with color indices A, B, C, D ¼ 1, 2,
3. For the vector states we use,

ψ�
1 ¼ ½γ5αγðγ5γμ⊥Þβδ � ðγ5γμ⊥Þαγγ5βδ�C11;

ψ�
2 ¼ ½γ5αδðγ5γμ⊥Þβγ � ðγ5γμ⊥Þαδγ5βγ�C0

11;

ψ�
3 ¼ ½δαγðγμ⊥Þβδ � ðγμ⊥Þαγδβδ�C11;

ψ�
4 ¼ ½δαδðγμ⊥Þβγ � ðγμ⊥Þαδδβγ�C0

11: ðA2Þ

Since we are dealing with heavy-light hidden-flavor four-
quark states, we retain only those basis elements that fulfil
charge conjugation symmetry (C parity) in the (14)(23)
topology:

fφþ
1 ;φ

þ
2 ;φ

−
2 ;φ

−
3 g and fψ−

1 ;ψ
þ
3 ;ψ

þ
4 ;ψ

−
4 g: ðA3Þ

Concerning the pseudoscalar basis, we are aware of the fact
that γ5γμ⊥ is the leading tensor for the 1þþ two-body state,
whereas the leading 1þ− meson tensor needed to form the
quantum numbers of the four-quark state has additional
higher angular momentum structures [61]. However, for the
physical components in Table II we can equally take the
leading tensor for the 1þþ two-body state as they are
degenerate for heavy-light systems.

APPENDIX B: ERROR ANALYSIS

In model calculations it is always hard to determine a
systematic error. In previous works [21,37] the main
parameter ηMT ¼ 1.8 of our model interaction, given by
Eq. (3.96) in [24] as already noted above, has been varied
by�0.2 to gauge the effect on the masses of the four-quark
states. Since these turned out to be remarkably stable under
such variations we do not repeat this exercise here.

However, we need to take into account potential errors
due to the extrapolation of our eigenvalue curves into
the complex momentum plane. As discussed in Sec. II B,
two-body thresholds can affect the calculation such that
the mass of the four-quark state cannot be obtained
directly. Therefore, we have to resort to extrapolation of
the eigenvalues above the threshold. For this we use a
variation of the Schlessinger point method (SPM) that
works as follows. Having obtained a set of eigenvalues
Ar ¼ fλðP2

i Þgri¼1, we extrapolate the behavior of all r
eigenvalues as a function of P2 to the value where the
condition λðP2

i ¼ −M2
i Þ ¼ 1 is fulfilled. This gives us a

base estimate of the mass, i.e., Mbase, and the first element
in a set of extrapolated masses denoted by B. Next we
choose a random subset of eigenvalues Am ⊂ Ar, with
m∈ fr − 1; r − 2; r − 3; r − 4; r − 5; r − 6g and extrapo-
late the eigenvalues chosen in Am to fulfil the condition
again. This procedure is repeated about 300 times for each
m. The corresponding extrapolation results are added to the
set B if they lie in a 5% region around the Mbase value. To
obtain the masses shown in Figs. 3–5 we average the values
in the set B and the error is given by the standard deviation
of the values in B. A nice example of the distribution of
eigenvalues in B is shown in the histogram in Figure 10.
This method has also been applied to states where the
condition λi ¼ 1 can be read off from the eigenvalue curve
directly. The corresponding histogram plot of eigenvalues
then shows an extreme dense clustering around the directly
determined value, which is the expected behavior.

APPENDIX C: FIRST RADIALLY
EXCITED STATES

In Figs. 11 we show the MECs for the first radial
excitations, which yield the first excited state masses

FIG. 10. Example distribution of extrapolated eigenvalues for
the IðJPCÞ ¼ 0ð1þþÞ state with quark configuration cqq̄c̄ and
mq ¼ 2750 MeV. The extrapolation results are centred around a
value of Mcqq̄c̄ ≈ 9.4 GeV with a spread that resembles a
Gaussian distribution.
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FIG. 11. Current-mass evolution of the cqq̄c̄ (crosses) and bqq̄b̄ first radial excited states (dots) for the investigated quantum numbers
in this work; see Fig. 3 for details.

HOFFER, EICHMANN, and FISCHER PHYS. REV. D 109, 074025 (2024)

074025-14



in Table IV. Comparing these MECs to the ones from Figs. 3–5, we see that the curves are affected by threshold effects
much earlier than the curves for the ground states. Therefore, the number of datapoints which can be directly calculated, and
thus fitted by the fit given in Eq. (11), is reduced compared to the ground state MECs.
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