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1 Introduction

In their pioneering work on perturbation theory in nontrivial geometries, DeWitt and
Brehme devoted special attention to the behavior of propagators and Green’s functions
near coincidence [1]. They noted that while the leading singularity is a universal function
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of the invariant separation, there is a less singular part which depends on the geometry and
on the properties of the field. They called this sub-dominant singularity the “tail” term.

The tail terms of certain fields become maximally strong during the accelerated expan-
sion of inflation. For many purposes the background geometry of inflation can be taken to
be de Sitter,

ds2 = a2(η)
[
−dη2 + d~x · d~x

]
= −dt2 + a2d~x · d~x , a(η) = − 1

Hη
= eHt . (1.1)

On D = 4 dimensional de Sitter background the propagator of a massless, minimally coupled
scalar, in Bunch-Davies vacuum, is,

i∆(x;x′)
∣∣∣
D=4

= 1
4π2

{
1

aa′∆x2 −
H2

2 ln
[1
4H

2∆x2
]}

, (1.2)

where the Poincaré interval is,

∆x2(x;x′) ≡
∥∥∥~x− ~x′∥∥∥2

−
(
|η − η′| − iε

)2
. (1.3)

The tail term of expression (1.2) is the part involving the logarithm.
A curious feature of the massless, minimally coupled scalar tail is that its coincidence

limit grows with time [2–4],

i∆(x;x) =
(
Divergent constant

)
+ H2

4π2 ln(a) . (1.4)

Expression (1.4) was the first example of a general sort of secular effect encountered in
loop corrections involving interactions between nearly massless and minimally coupled
scalars [5–9]. These secular logarithms attracted much attention during the opening decade
of the 21st century because they have the potential to enhance loop corrections to the power
spectrum [10–24].

A fascinating aspect of the secular logarithms encountered in loop corrections to scalar
potential models,

L = −1
2∂µΦ∂νΦgµν

√
−g − V (Φ)

√
−g , (1.5)

is that the steady growth of ln(a) = Ht must eventually overwhelm even the smallest
loop-counting parameter. One cannot conclude from this that loop corrections ever become
large, just that the standard loop expansion breaks down. Some sort of nonperturbative
resummation is required to determine what actually happens.

Starobinsky quite early developed a stochastic formalism which not only predicts the
leading logarithms of scalar potential models at each order in perturbation theory [25],
but also gives the late time form in those cases for which a static limit is approached [26].
Starobinsky’s formalism is based on replacing the full field operator Φ(t, ~x) with a stochastic
field ϕ(t, ~x) which commutes with itself [ϕ(t, ~x), ϕ(t′, ~x′)] = 0, and whose correlators are
completely free of ultraviolet divergences. This stochastic field ϕ(t, ~x) is constructed from
the same free creation and annihilation operators that appear in Φ(t, ~x) in such a way that
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the two fields produce the same leading logarithms at each order in perturbation theory.
The Heisenberg field equation for Φ gives rise to a Langevin equation for ϕ (which we
express in co-moving coordinates),

δS[Φ]
δΦ(x) = ∂µ

[√
−g gµν∂νΦ

]
− V ′(Φ)

√
−g −→ 3Ha3

[
ϕ̇− ϕ̇0

]
− V ′(ϕ)a3 . (1.6)

Here ϕ0(t, ~x) is a truncation of the Yang-Feldman free field with the ultraviolet excised and
the mode function taken to its limiting infrared form,

ϕ0(t, ~x) ≡
∫

d3k

(2π)3 θ
(
aH − k

)θ(k −H)H√
2k3

{
α~ke

i~k·~x + α†~k
e−i

~k·~x
}
. (1.7)

One derives (1.6) by first integrating the exact field equation to reach the Yang-Feldman
form. One then notes that reaching leading logarithm order requires each free field to
contribute an infrared logarithm, so there will be no change to correlators, at leading
logarithm order, if the full free field mode sum is replaced by (1.7). Differentiating this
truncated Yang-Feldman equation gives Starobinsky’s Langevin equation [27].

The problem of summing up large logarithms in flat space scattering amplitudes seems
similar, and that has prompted particle theorists to try applying renormalization group
methods to understanding the evolution of cosmological correlators [28–39]. However,
the problems with this approach become obvious upon closer examination of the analogy
on which it is based. The renormalization group of flat space describes how correlators
change when the positions of field operators are adiabatically expanded (or compressed) by
some constant:

Renormalization Group : xµ −→ A× xµ . (1.8)

What we really want to know in cosmology is how correlators change when infinitesimal
intervals are expanded by the time-dependent scale factor:

Cosmological Evolution : dxµ −→ a(η)× dxµ . (1.9)

It is not clear how to relate the two processes, and simple correspondences such as A −→ a(η),
or the renormalization scale µ −→ H , can easily be shown to fail by direct computation [40].
Another crucial obstacle is that the leading logarithms of scalar potential models arise
entirely from the infrared, without regard to renormalization. And the fact is that, despite
years of heroic effort by talented physicists [41, 42], no one has yet been able to devise
a version of the renormalization group which gives complete agreement for the leading
logarithms of scalar potential models [43].

Massless, minimally coupled scalars also engender large logarithms when they interact
with fermions [44] and with photons [45–48]. In both cases the other fields do not themselves
generate large logarithms, but their dynamics modify the ways in which these logarithms
manifest. Such modifications derive as much from the ultraviolet as from the infrared, so
no simple truncation procedure captures the correct result. However, integrating out the
other fields produces a scalar potential model whose large logarithms are correctly captured
by the stochastic formalism [44, 49].
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On a general cosmological background it turns out that dynamical gravitons obey the
same equation as the massless, minimally coupled [50], so loop corrections from inflationary
gravitons should also induce large logarithms. Of course the computations are much more
difficult but a number of 1PI (one-particle-irreducible) 1-point and 2-point functions have
been evaluated at 1-loop and 2-loop orders in pure gravity [51–54] and in gravity plus
various matter theories [55–62]. When the 1PI 2-point functions are used to quantum-correct
the linearized effective field equations one often (but not always) finds large logarithmic
corrections to mode functions and to exchange potentials [63–69]. These are very challenging
calculations, and it has been suggested that some of them may be gauge artifacts [70–77]. A
procedure has been developed to purge gauge dependence from 1PI 2-point functions [78, 79],
and its implementation is being undertaken as rapidly as the formidable computational
challenges permit [80].

Assuming the large logarithms of inflationary gravitons are real, the question is how
they can be re-summed. The derivative couplings of gravity pose an obstacle to a completely
stochastic explanation of these results because derivatives preclude every free field from
inducing a large logarithm, which was an essential part of the proof that the stochastic
formalism works for scalar potential models [27]. Further, direct studies have shown that
some of the logarithms cannot be explained using the stochastic formalism [81], nor are
all of the logarithms due to the tail part of the graviton propagator [82]. What we need
is a simple format in which the complications of derivative interactions can be sorted out
without intricate computations which require a year or more to complete.

Nonlinear sigma models would seem to provide a natural paradigm for derivative
interactions. These models consist of normal scalar kinetic terms which are multiplied by
functions of undifferentiated scalars, giving rise to the same sort of derivative interactions as
quantum gravity but without the distractions of tensor indices and gauge fixing. Early work
focused on deriving a completely stochastic representation of the large logarithms induced
by these models [27], and that approach has been extensively pursued by Kitamoto and
Kitazawa [83–85]. We have thought it good to revisit this problem after the realization that
no completely stochastic approach can capture all the large logarithms induced inflationary
gravitons [81, 82]. The point of this paper is to demonstrate that the large logarithmics of
nonlinear sigma models on de Sitter can be explained by combining a variant of Starobinsky’s
stochastic formalism with a variant of the renormalization group.

This paper consists of six sections, of which the first is nearly done. In section 2 we
introduce the two nonlinear sigma models that will be studied. Section 3 works out 1-loop
corrections to the mode functions and exchange potentials of the first model, as well as to 1-
loop and 2-loop expectation values of the field and its square. The same things are computed
for the second model in section 4. Section 5 collects the various large logarithms exposed
by all this work. We then demonstrate that many of these large logarithms arise from
stochastic effects associated with a curvature-dependent effective potential induced by the
kinetic terms. The remaining large logarithms follow from employing the Callan-Symanzik
equation to a special class of counterterms that can be viewed as curvature-dependent
renormalizations of the bare theories. Our conclusions comprise section 6, particularly the
lessons for quantum gravity.
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2 Two nonlinear sigma models

This section introduces the two models upon which this study is based. The first is a single
field model which gives a free theory by a local field redefinition; the second is a model
based on two fields which is fundamentally interacting. For each model we give the bare
Lagrangian and the first two variations of the action. We also present the Feynman rules
and some important identities for the coincidence limits of the propagator.

2.1 Single field model

The Lagrangian of the first model we will study is,

L = −1
2f

2(Φ)∂µΦ∂νΦgµν
√
−g . (2.1)

A nonlinear sigma model based on a single field can be reduced to free theories by local
field redefinitions. For the case of (2.1) the free field Ψ(x) obeys,

dΨ ≡ f(Φ)dΦ =⇒ L = −1
2∂µΨ∂νΨgµν

√
−g . (2.2)

Of course the existence of such a local field redefinition means that the flat space S-matrix
is unity but interactions can still cause interesting changes to the kinematics of free fields,
and to the evolution of the Φ background. Quantifying these changes at 1-loop and 2-loop
orders will teach us much.

We must select the function f(Φ) in order to define a specific model. The simplest
choice involves a single, dimensionful coupling constant λ,

f(Φ) = 1 + λ

2 Φ =⇒ Ψ[Φ] = Φ + λ

4 Φ2 ⇐⇒ Φ[Ψ] = 2
λ

[√
1 + λΨ− 1

]
. (2.3)

With this choice of f(Φ) the Heisenberg field equation is,

δS[Φ]
δΦ(x) =

(
1 + 1

2λΦ
)
∂µ
[
(1 + 1

2λΦ
)√
−ggµν∂νΦ

]
. (2.4)

We will also sometimes need the second variation,

δ2S [Φ]
δΦ(x)δΦ(x′) =λδD

(
x−x′

)
∂µ

[(
1+ 1

2λΦ
)√
−ggµν∂νΦ

]
(2.5)

− 1
4λ

2δD
(
x−x′

)√
−ggµν∂µΦ∂νΦ+∂µ

[(
1+ 1

2λΦ
)2√

−ggµν∂νδD(x−x′)
]
.

In D spacetime dimensions the propagators of both the Φ and the Ψ fields obey the
same equation,

∂µ
[
aD−2∂µi∆(x;x′)

]
≡ Di∆(x;x′) = iδD(x− x′) . (2.6)

The solution is [5, 6],

i∆(x;x′) = F
(
y(x;x′)

)
+ k ln(aa′) , k ≡ HD−2

(4π)D2
Γ(D − 1)

Γ(D2 )
, (2.7)
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Figure 1. The Feynman rules of the A-B model. A lines are solid whereas B lines are dashed, and
both propagators have the functional form (2.7).

where the de Sitter length function is y(x;x′) ≡ aa′H2∆x2(x;x′) and the first derivative of
the function F (y) is,

F ′(y) = − HD−2

4(4π)D2

{
Γ
(
D

2

)(4
y

)D
2

+ Γ
(
D

2 + 1
)(4

y

)D
2 −1

(2.8)

+
∞∑
n=0

Γ
(
n+ D

2 + 2
)

Γ (n+ 3)

(
y

4

)n−D2 +2
− Γ (n+D)

Γ
(
n+ D

2 + 1
) (y

4

)n}.
The coincidence limits of the propagator and its first two derivatives are,

i∆(x;x) = k
[
−πcot

(Dπ
2
)

+ 2 ln(a)
]
, ∂µi∆(x;x′)

∣∣∣
x′=x

= kHaδ0
µ , (2.9)

∂µ∂
′
νi∆(x;x′)

∣∣∣
x′=x

= −
(D − 1

D

)
kH2gµν , ∂µi∆(x;x) = 2kHaδ0

µ . (2.10)

2.2 Two field model

The simplest truly interacting nonlinear sigma model would seem to be,

L = −1
2∂µA∂νAg

µν√−g − 1
2

(
1 + 1

2λA
)2
∂µB∂νBg

µν√−g . (2.11)

The first variations of its action are,

δS [A,B]
δA (x) = ∂µ

[√
−ggµν∂νA

]
− 1

2λ
(

1 + 1
2λA

)
∂µB∂νBg

µν√−g , (2.12)

δS [A,B]
δB (x) = ∂µ

[(
1 + 1

2λA
)2√

−ggµν∂νB
]
. (2.13)

And the second variations work out to be,

δ2S [A,B]
δA (x) δA (x′) = ∂µ

[√
−ggµν∂νδD

(
x− x′

)]
− 1

4λ
2δD

(
x− x′

)
∂µB∂νBg

µν√−g , (2.14)

δ2S [A,B]
δB (x) δB (x′) = ∂µ

[(
1 + 1

2λA
)2√
−ggµν∂νδD(x− x′)

]
. (2.15)

The propagators of both A and B are the same as i∆(x;x′) given in expression (2.7).
The other Feynman rules for the bare action are the λA∂B∂B and λ2A2∂B∂B vertices.
All are depicted in figure 1.
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3 Large logarithms in the single field model

In this section we calculate 1-loop and 2-loop corrections to a variety of quantities in the
single field model. We begin with the 1-loop self-mass, which is then used to compute
1-loop corrections to the plane wave mode function and the response to a point source.
The section closes with a evaluation of the expectation values of the field and its square at
1-loop and 2-loop orders.

3.1 The self-mass

The 1PI 2-point function can be expressed as,

− iM2(x;x′) ≡
〈

Ω
∣∣∣∣∣ iδS[Φ]
δΦ(x)

iδS[Φ]
δΦ(x′) + iδ2S[Φ]

δΦ(x)δΦ(x′)

∣∣∣∣∣Ω
〉
. (3.1)

Substituting (2.4) into the first term and using (2.3) gives,

−iM2
Φ3(x;x′) =

( iλ
2
)2
{

1
2DD

′
[
i∆(x;x′)

]2
−D

[
a′
D−2

∂′
ρ
i∆(x;x′)∂′ρi∆(x;x′)

]
−D′

[
aD−2∂µi∆(x;x′)∂µi∆(x;x′)

]
+ 2(aa′)D−2∂µ∂′

ρ
i∆(x;x′)∂µ∂′ρi∆(x;x′)

}
. (3.2)

The second term in (3.1) comes from the second variation (2.5),

−iM2
Φ4(x;x′) = iλ2

4

{
−δD(x− x′) aD−2∂′µ∂

µi∆(x;x′)

+ ∂µ
[
i∆(x;x)aD−2∂µδ

D(x− x′)
]}
. (3.3)

The 3-point contribution (3.2) can be reduced by a series of partial integrations whose
general form will occur repeatedly. We will present them this once in detail and not again,

aD−2∂µi∆(x;x′)∂µi∆(x;x′) = ∂µ
[
aD−2i∆(x;x′)∂µi∆(x;x′)

]
− i∆(x;x′)Di∆(x;x′) = 1

2D
[
i∆(x;x′)

]2
− i∆(x;x)iδD(x− x′) , (3.4)

2(aa′)D−2∂µ∂′
ρ
i∆(x;x′)∂µ∂′ρi∆(x;x′) = 2∂µ

[
(aa′)D−2∂′

ρ
i∆(x;x′)

× ∂µ∂′ρi∆(x;x′)
]
− 2a′D−2

∂′
ρ
i∆(x;x′)∂′ρDi∆(x;x′) , (3.5)

= D
[
a′
D−2

∂′
ρ
i∆(x;x′)∂′ρi∆(x;x′)

]
− 2a′D−2

∂′
ρ
i∆(x;x′)∂′ρiδD(x− x′) , (3.6)

= 1
2DD

′
[
i∆(x;x′)

]2
−D

[
i∆(x;x)iδD(x− x′)

]
− 2kHaD−1∂0iδ

D(x− x′) . (3.7)

Reducing the four parts of (3.2) gives,

− iM2
Φ3(x;x′) = λ2

4

{
−i∆(x;x)D

[
iδD(x− x′)

]
+ 2kHaD−1∂0iδ

D(x− x′)
}
. (3.8)
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Applying the similar reductions to (3.3) allows the 4-point contribution to be expressed as,

−iM2
Φ4(x;x′) = λ2

4

{
i∆(x;x)D

[
iδD(x− x′)

]

− 2kHaD−1∂0iδ
D(x− x′) + (D − 1)kH2aDiδD(x− x′)

}
. (3.9)

When (3.8) and (3.9) are added, all the divergences cancel and we can take the
unregulated limit for the final result,

− iM2
Φ(x;x′) = 3λ2H4a4

32π2 iδ4(x− x′) . (3.10)

Equation (3.10) corresponds to a tachyonic mass of m2
Φ = −3λ2H4/32π2. Note that the

unit S-matrix implied by (2.3) does not preclude interactions from changing the free field
kinematics. We will see that evolution can also occur, and that composite operators still
require field strength renormalization.

3.2 1-loop mode function and exchange potential

The self-mass supplies the quantum correction to the linearized effective field equation
for Φ(x),

DΦ (x)−
∫
d4x′M2 (x;x′

)
Φ
(
x′
)

=
[
D + 3λ2H4a4

32π2 +O
(
λ4
)]

Φ(x) = J(x) , (3.11)

where D ≡ ∂µa2∂µ is the kinetic operator which was introduced in equation (2.6). We will
study 1-loop corrections to the kinematics of free scalar fields (with J(x) = 0) and to the
response to a point source (with J(x) = Kaδ3(~x)). It will be useful to consider the scale
factor a as the time variable,

D ≡ a2
[
−∂2

0 − 2aH∂0 +∇2
]

= a4H2
[
−a2∂2

a − 4a∂a + ∇2

a2H2

]
. (3.12)

3.2.1 Mode function

Scalar radiation takes the form,

J(x) = 0 =⇒ Φ(x) = uΦ(η, k)ei~k·~x , (3.13)

where the mode function uΦ(η, k) obeys,[
a2∂2

a + 4a∂a + k2

a2H2 −
3λ2H2

32π2 +O
(
λ4
)]
uΦ (η, k) = 0 . (3.14)

The canonically normalized solution for Bunch-Davies vacuum is,

uΦ (η, k) = i

√
π

4Ha3 H
(1)
ν

(
k

aH

)
, ν ≡

√
9
4 −

m2
Φ

H2 . (3.15)
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The form at late times is,

uΦ (η, k) −→ Γ (ν)√
4πHa3

(2aH
k

)ν {
1 + 1

ν − 1

(
k

2aH

)2
+ . . .

}
. (3.16)

Because ν = 3
2 −

m2

3H2 +O
(
λ4) is greater than 3

2 for tachyonic masses, we see that the mode
function (3.16) experiences slow growth at late times.

3.2.2 Exchange potential

The exchange potential is the response to a point source,

J(x) = Kaδ3(~x) =⇒ Φ(x) = PΦ(η, r) , (3.17)

where r ≡ ‖~x‖ and the potential obeys,

a4H2
[
−a2∂2

a − 4a∂a + ∇2

a2H2 + 3λ2H2

32π2 +O
(
λ4
)]
PΦ (η, r) = Kaδ3 (~x) . (3.18)

The order λ0 solution and its late time limit are [86],

P0 (η, r) = KH

4π

{
ln (Hr) + ln

(
1 + 1

aHr

)
− 1
aHr

}
, (3.19)

−→ KH

4π

{
ln (Hr)− 1

2 (aHr)2 + . . .

}
. (3.20)

The simplest way of solving equation (3.18) is by using the retarded Green’s function
for a massive, minimally coupled scalar,

m2 6= 0 =⇒Gret(x;x′) =− 1
4π

{
δ(∆η−∆r)
aa′∆r (3.21)

− H2θ(∆η−∆r)
2Γ(1

2 +ν)Γ(1
2−ν)

∞∑
n=0

Γ(3
2 +ν+n)Γ(3

2−ν+n)
n!(n+1)!

(y
4
)n}

,

where ν2 ≡ 9
4 −

m2

H2 and y ≡ aa′H2∆x2 is the de Sitter length function. (Note that expres-
sion (3.21) takes the form predicted by DeWitt and Brehme [1] with a universal light-cone
singularity plus a mass-dependent tail term.) For small m2/H2 we can expand Gret(x;x′),

Gret(x;x′) = − 1
4π

{
δ(∆η −∆r)
aa′∆r +H2θ(∆η −∆r)

−m2θ(∆η −∆r)
[

1
3 ln

(
1− y

4
)

+ 1
2 +

y
6

y − 4

]
+O(m4)

}
. (3.22)

Integrating against the source and taking the late time limit gives,

PΦ(η, r) =
∫
d4x′Gret(x;x′)×Ka′δ3(~x′) , (3.23)

−→ KH

4π

{
ln(Hr) + λ2H2

32π2 ln(a) ln(Hr) +O(λ4)
}
. (3.24)
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3.3 The expectation values of Φ(x) and Φ2(x)

The field definition (2.3) makes it simple to evaluate expectation values of Φ(x) and its
square. The first power is,

Φ[Ψ] = Ψ− 1
4λΨ2 + 1

8λ
2Ψ3 − 5

24λ
3Ψ4 +O

(
λ4Ψ5

)
. (3.25)

Taking the expectation value gives,〈
Ω
∣∣∣Φ(x)

∣∣∣Ω〉 = −1
4λi∆(x;x)− 15

64λ
3
[
i∆(x;x)

]2
+O

(
λ5
[
i∆(x;x)

]3)
. (3.26)

Expression (2.9) shows that the coincident propagator is time dependent, so we see that
〈Ω|Φ(x)|Ω〉 evolves, in spite of vanishing flat space scattering amplitudes.

The expansion of Φ2 is,

Φ2(x) = Ψ2(x)− 1
2λΨ3(x) + 5

16λ
2Ψ4(x) +O

(
λ3Ψ5

)
. (3.27)

Taking its expectation value gives,〈
Ω
∣∣∣Φ2(x)

∣∣∣Ω〉 = i∆(x;x) + 15
16λ

2
[
i∆(x;x)

]2
+O

(
λ4
[
i∆(x;x)

]3)
. (3.28)

Φ2(x) is a composite operator and requires renormalization with counterterms of the form,

δΦ2 = KΦ1R+KΦ2RΦ2 +KΦ3R
2 +O(λ4) . (3.29)

Comparison with the primitive expression (3.28) implies,

KΦ1 = µD−4

(4π)D2
Γ(D − 1)

Γ(D2 )
πcot(Dπ2 )
D(D − 1) , (3.30)

KΦ2 = 15λ2µD−4

8(4π)D2
Γ(D − 1)

Γ(D2 )
πcot(Dπ2 )
D(D − 1) , (3.31)

KΦ3 = 15λ2µD−4

16 (4π)D

[
Γ(D − 1)

Γ(D2 )
πcot(Dπ2 )
D(D − 1)

]2

. (3.32)

Using these values in (3.29), adding δΦ2 to (3.28), and taking the unregulated limit gives
the fully renormalized result,〈

Ω
∣∣∣Φ2(x)

∣∣∣Ω〉
ren

= H2

4π2 ln
(µa
H

)
+ 15λ2H4

256π4 ln2
(µa
H

)
+O(λ4) . (3.33)

4 Large logarithms in the two field model

The task of this section is computing the same things for the two field model (2.11) that we
previously did for the single field model (2.1). The order of presentation is the same as in the
previous section, although our labor is complicated by the inability to remove interactions by
a local field redefinition. We must also digress to explain the Schwinger-Keldysh formalism
when solving the effective field equations.
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x

−i MA

2

(x, x’) =
x x’

+ + + ...
x

Figure 2. Diagrams which represent the 1-loop contributions to the A-field self-mass −iM2
A(x;x′).

Recall that A lines are solid, whereas B lines are dashed.

4.1 1-loop self-masses for A and B

The four counterterms we require for renormalizing the self-masses at 1-loop are,

∆L = −1
2CA1 A A

√
−g − 1

2CA2R∂µA∂νAg
µν√−g

− 1
2CB1 B B

√
−g − 1

2CB2R∂µB∂νBg
µν√−g . (4.1)

The three diagrams which contribute to the A self-mass at 1-loop are shown in figure 2.
From left to right, their analytic expressions are,

−iM2
A3(x;x′) = (−iλ)2

2 (aa′)D−2∂µ∂′
ρ
i∆
(
x;x′

)
∂µ∂

′
ρi∆

(
x;x′

)
, (4.2)

−iM2
A4
(
x;x′

)
= −λ

2

4 iδ
D (x− x′) aD−2∂µ∂′µi∆

(
x;x′

)
, (4.3)

−iM2
Ac

(
x;x′

)
= −CA1DD′

[
iδD (x− x′)

(aa′)
D
2

]
+ CA2∂

µ
[
RaD−2∂µiδ

D(x− x′)
]
. (4.4)

After the same sort of reductions employed in the single-field model, the two primitive
diagrams take the forms,

−iM2
A3(x;x′) = (−iλ)2

2

{
1
4DD

′
[
i∆(x;x′)

]2
− 1

2D
[
i∆(x;x)iδD(x− x′)

]

− kHaD−1∂0iδ
D(x− x′)

}
, (4.5)

−iM2
A4(x;x′) = − iλ

2

4 δD(x− x′)×−(D − 1)kH2aD . (4.6)

The square of the propagator in expression (4.5) is logarithmically divergent so we need
only retain dimensional regularization for the leading term and can take D = 4 for the rest,

[
i∆(x;x′)

]2
=

Γ2(D2 − 1)
16πD

1
(aa′∆x2)D−2

− H2

16π4

ln
(

1
4H

2∆x2
)

aa′∆x2 + H4

64π4 ln2
(1

4H
2∆x2

)
+O(D − 4) . (4.7)

The fundamental logarithmic divergence is 1/∆x2D−4. We localize this by first extracting a
d‘Alembertian, then adding zero in the form of the massless propagator equation in flat
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B−i M
2

(x, x’) =
x x’

+ + + ...
x x

Figure 3. Diagrams which represent the 1-loop contributions to the B-field self-mass −iM2
B(x;x′).

Recall that A lines are solid, whereas B lines are dashed.

space [5, 6],

1
∆x2D−4 = ∂2

2 (D − 3) (D − 4)

[ 1
∆x2D−6

]
= µD−4

2 (D − 3) (D − 4)
4πD2 iδD (x− x′)

Γ
(
D
2 − 1

)
+ ∂2

2 (D − 3) (D − 4)

[
1

∆x2D−6 −
µD−4

∆xD−2

]
, (4.8)

= µD−4

2 (D − 3) (D − 4)
4πD2 iδD (x− x′)

Γ
(
D
2 − 1

) − ∂2

4

[
ln
(
µ2∆x2)
∆x2

]
+O(D − 4) . (4.9)

Here µ is the mass scale of dimensional regularization.
Comparison with expression (4.4) gives the two A-type counterterms,

CA1 = −λ
2µD−4

32πD2
Γ(D2 − 1)

2(D − 3)(D − 4) , CA2 = λ2µD−4

4(4π)D2
Γ(D − 1)

Γ(D2 )
πcot(Dπ2 )
D(D − 1) . (4.10)

Combining −iM2
A3(x;x′) and −iM2

A4(x;x′) with −iM2
3c(x;x′) and taking the unregulated

limit gives the renormalized self-mass at one loop,

−iM2
A(x;x′) = −3λ2H4a4

32π2 iδ4 (x− x′)+ λ2H2∂µ

16π2

[
ln
(
µa

H

)
a2∂µiδ

4 (x− x′)]

+ λ2DD′

512π4

{
ln (aa′) 4π2iδ4 (x− x′)

(aa′)2 + ∂2

(aa′)2

[
ln
(
µ2∆x2)
∆x2

]

+ 4H2

aa′

ln
(

1
4H

2∆x2
)

∆x2 −H4 ln2
(1

4H
2∆x2

)}
. (4.11)

Note that the first term represents a positive mass-squared of the same magnitude as the
tachyonic mass we saw in expression (3.10). It is accompanied by many other contributions
which signal that this system is not reducible to a free field.

Figure 3 depicts the three diagrams which contribute to the self-mass of B at 1-loop.
The analytic expressions for these three diagrams are, from left to right,

−iM2
B3
(
x;x′

)
= (iλ)2 ∂µ∂′

ρ
[
i∆
(
x;x′

) (
aa′
)D−2

∂µ∂
′
ρi∆

(
x;x′

)]
, (4.12)

−iM2
B4
(
x;x′

)
= λ2

4 ∂
µ
[
i∆ (x;x) aD−2∂µiδ

D (x− x′)] , (4.13)

−iM2
Bc

(
x;x′

)
= −CB1DD′

[
iδD (x− x′)

(aa′)
D
2

]
+ CB2∂

µ
[
RaD−2∂µiδ

D (x− x′)] . (4.14)
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After some familiar reductions the two primitive diagrams take the form,

−iM2
B3
(
x;x′

)
= (iλ)2

2 DD′
[
i∆
(
x;x′

)]2
− (iλ)2 ∂µ∂′

ρ
[(
aa′
)D−2

∂µi∆
(
x;x′

)
∂′ρi∆

(
x;x′

)]
, (4.15)

−iM2
B4
(
x;x′

)
= −λ

2

4 kπcot
(
Dπ

2

)
D
[
iδD

(
x− x′

)]
+ λ2H2∂µ

16π2

[
ln (a) a2∂µiδ

4(x− x′)
]

+O(D − 4) . (4.16)

Expression (4.16) is already fully reduced, and the reduction of the first term of (4.15)
is identical to that of (4.7), but the second term requires new analysis. Because this
contribution is quadratically divergent we must retain dimensional regularization for the
first two terms in the power series of the propagator,

∂µi∆(x;x′) = −
Γ(D2 )

2πD2 (aa′)D2 −1

{
∆xµ
∆xD +

[1
2aHδ

0
µ + D

8 aa
′H2∆xµ]

∆xD−2 + . . .

}
. (4.17)

Taking the product of two such differentiated propagators, extracting derivatives and taking
D = 4 in integrable terms gives,

− (iλ)2∂µ∂′
ρ
[
(aa′)D−2∂µi∆(x;x′)∂′ρi∆(x;x′)

]
= −

(iλ)2Γ2(D2 )
4πD

{
DD′

4 (D − 2)2

[
1

(aa′∆x2)D−2

]
− DH2∂ · ∂′

8 (D − 2)

[
aa′

∆x2D−4

]

+ 1
8DD

′
[

H2

aa′∆x2

]
+ a2a′2H4∇2

8

[ 1
∆x2

]
− H4

16 DD
′ ln
(
H2∆x2

)}
. (4.18)

Comparison with expression (4.14) gives the two B-type counterterms,

CB1 = −λ
2µD−4

16πD2

Γ
(
D
2 − 1

)
2 (D − 3) (D − 4) , (4.19)

CB2 = λ2µD−4

4 (4π)
D
2

Γ (D − 1)
Γ
(
D
2

) πcot
(
Dπ
2

)
D (D − 1) −

λ2µD−4

32πD2

Γ
(
D
2 − 1

)
2 (D − 3) (D − 4)

(
D − 2
D − 1

)
. (4.20)

Note that CB2 cancels divergences in −iM2
B4(x;x′) — the left hand contribution to (4.20)

— and in −iM2
B3(x;x′) — the right hand term of (4.20). Combining the two primitive

diagrams with the counterterm and taking the unregulated limit gives,

−iM2
B(x;x′) = λ2DD′

64π2

[ ln(aa′)iδ4(x−x′)
(aa′)2

]
− λ2H2∂µ

16π2

[
ln
(
Ha

µ

)
a2∂µiδ

4(x−x′)
]

+ λ2DD′

256π4

{
∂2

(aa′)2

[ ln(µ2∆x2)
∆x2

]
+ H2∂2

aa′

[
ln2
(
H2∆x2

4

)]
−2H4

[
ln2
(
H2∆x2

4

)

+2ln
(
H2∆x2

4

)]}
+ λ2H2∂ ·∂′

64π4

{
aa′∂2

[ ln(µ2∆x2)
∆x2

]}
+ λ2H4(aa′)2∇2

32π4
1

∆x2 .

(4.21)
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4.2 1-loop mode functions & exchange potentials

4.2.1 Schwinger-Keldysh effective field equations

The linearized effective field equations for A reads,

DA(x) = J(x) +
∫
d4x′M2

A(x;x′)A(x′) . (4.22)

The B equation is the same with A(x) replaced by B(x) andM2
A(x;x′) replaced byM2

B(x;x′).
Setting the source J(x) = 0 describes the propagation of scalar radiation, while the choice
J(x) = a(η)δ3(~x) gives the scalar exchange potential.

Using our in-out results (4.11) and (4.21) in equation (4.22) would result in two
problems:

• The fact that the self-masses are complex precludes real solutions; and

• The fact that the self-massesM2
A,B(x;x′) are nonzero for x′µ outside the past light-cone

of xµ leads to a response before its cause.

Both of these embarrassments can be avoided by employing the self-masses of the Schwinger-
Keldysh formalism [87–90]. There are many fine references on the Schwinger-Keldysh
effective field equations [91–93] but we only need the simple rules for converting the in-out
self-masses (4.11) and (4.21) to in-in self-masses [94]:

• The Dirac delta function terms are not changed;

• For every term involving the Poincaré interval ∆x2(x;x′), defined in expression (1.3),
one must subtract the very same function of,

∆x2
+−(x;x′) ≡

∥∥∥~x− ~x′∥∥∥2
−
(
η − η′ + iε

)2
. (4.23)

In converting the in-out self-mass to its in-in cognate it is desirable to extract
d‘Alembertians from inverse powers of 1/∆x2 to reach powers of logarithms,

1
∆x2 = ∂2

4
[
ln(µ2∆x2)

]
,

ln(µ2∆x2)
∆x2 = ∂2

8
[
ln2(µ2∆x2)− 2 ln(µ2∆x2)

]
. (4.24)

Differences of powers of logarithms of ∆x2 and ∆x2
+− give a form that makes the reality

and causality of −iM2
A,B(x;x′) manifest,

ln(µ2∆x2)− ln(µ2∆x2
+−) = 2πiθ(∆η −∆r) , (4.25)

ln2(µ2∆x2)− ln2(µ2∆x2
+−) = 4πiθ(∆η −∆r) ln[µ2(∆η2 −∆r2)] , (4.26)

where ∆η ≡ η − η′ and ∆r ≡ ‖~x− ~x′‖.
Finally, we must adapt (4.22) to the fact that only one loop results for the self-masses

are available. This means we can only solve the equation perturbatively in powers of λ2,

A(x) ≡ A0(x) + λ2A1(x) +O(λ4) , B(x) ≡ B0(x) + λ2B1(x) +O(λ4) . (4.27)
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The zeroth order solutions obey,

DA0(x) = JA(x) , DB0(x) = JB(x) . (4.28)

At 1-loop order we have,

DA1 (x) = 3H4a4A0
32π2 − H2∂µ

16π2

[
ln
(
µa

H

)
a2∂µA0

]
− D

64π2

[ ln (a)DA0
a4

]

− D
512π3

∫
d4x′

{
∂4

2a2a′2

[
θ (∆η −∆r)

(
ln
[
µ2
(
∆η2 −∆r2

)]
− 1

)]
+ 2H2∂2

aa′

[
θ (∆η −∆r)

(
ln
[1

4H
2
(
∆η2 −∆r2

)]
− 1

)]

− 4H4θ (∆η −∆r) ln
[1

4H
2
(
∆η2 −∆r2

)]}
D′A0

(
x′
)
, (4.29)

DB1 (x) = − D
32π2

[ ln (a)DB0
a4

]
+ H2∂µ

16π2

[
ln
(
Ha

µ

)
a2∂µB0

]

− D
256π3

∫
d4x′

{
∂4

2a2a′2

[
θ (∆η −∆r)

(
ln
[
µ2
(
∆η2 −∆r2

)]
− 1

)]
+ 4H2∂2

aa′

(
θ (∆η −∆r) ln

[1
4H

2
(
∆η2 −∆r2

)])

− 8H4θ (∆η −∆r)
(

ln
[1

4H
2
(
∆η2 −∆r2

)]
+ 1

)}
D′B0

(
x′
)

− H2

128π3

∫
d4x′∂ · ∂′

{
aa′∂4

[
θ (∆η −∆r)

[
ln
[
µ2
(
∆η2 −∆x2

)]
− 1

]]}
B0
(
x′
)

− H4

64π3

∫
d4x′a2a′

2∇2∂2 [θ(∆η −∆r)]B0(x′) . (4.30)

4.2.2 1-loop corrected mode functions

Scalar radiation corresponds to JA,B(x) = 0 and has zeroth order solution,

A0(x) = B0(x) = u0(η, k)ei~k·~x =⇒ u0(η, k) = H√
2k3

[
1 + ikη

]
e−ikη . (4.31)

Because DA0(x) = 0 = DB0(x), very few terms of the 1-loop field equations (4.29)–(4.30)
survive,

DA1 = 3H4a4A0
32π2 +H3a3∂0A0

16π2 , (4.32)

DB1 =−H
3a3∂0B0
16π2 +H4k2a2

64π3

∫
d4x′ θ(∆η−∆r)∂′2

[
a′

2
B0(x′)

]
(4.33)

− H
2∂µ

128π3

{
a∂2

∫
d4x′ θ(∆η−∆r)

[
ln[µ2(∆η2−∆r2)]−1

]
∂′

2
[
a′∂′µB0(x′)

]}
. (4.34)

1-loop corrections to the A mode function are dominated by the first term on the right
hand side of expression (4.32) which corresponds to a mass,

m2
A = 3λ2H4

32π2 +O(λ4) =⇒ ν ≡

√
9
4 −

m2
A

H2 = 3
2 −

λ2H2

32π2 +O(λ4) . (4.35)
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Substituting (4.35) into our previous result (3.16) for the late time form of a massive scalar
mode function, and expanding in powers of λ2 gives,

i

√
π

4Ha3 H
(1)
ν

(
k

aH

)
−→ H√

2k3

{
1 + k2

2a2H2 +O

(
k4

a4H4

)
− λ2H2

32π2

[
ln
(2aH

k

)

+ ψ

(3
2

)
+
[
ln
(2aH

k

)
+ ψ

(3
2

)
− 2

]
k2

2a2H2 +O

(
k4

a4H4

)]
+O(λ4)

}
. (4.36)

In contrast, the final term in (4.32) is down by two factors of a,

∂0u0(η, k) = H√
2k3
×− k2

aH
exp

[ ik
aH

]
, (4.37)

and corrects the A mode function by terms which fall off like 1/a2.
The first term on the right hand side of (4.34) is opposite to the final term of (4.32),

and is similarly irrelevant. To evaluate the nonlocal contribution to (4.34) we first note,

∂′
2
[
a′

2
B0(x′)

]
= 12a′4H2B0(x′) + 2a′3H∂′0B0(x′) −→ 12a′4H2 × H√

2k3
. (4.38)

Hence the leading late time form of the right hand side of (4.34) is,
H4k2a2

64π3

∫
d4x′θ(∆η −∆r)∂′2

[
a′

2
B0(x′)

]
−→ H4k2a2

64π3

∫
d4x′θ(∆η −∆r)× 12a′4H2u0(0, k) , (4.39)

= H6k2a2

4π2 u0(0, k)
∫ η

ηi

dη′a′
4∆η3 −→ H2k2a2 ln(a)

4π2 u0(0, k) . (4.40)

The nonlocal source in (4.34) is therefore only enhanced over the minuscule local contribution
by a factor of ln(a). The net effect is no large logarithms in 1-loop corrections to uB(η, k),
just a slightly slower approach to the constant late time limit of the tree order result,

uB(η, k) −→
{

1 + λ2H2

8π2

( k

aH

)2
ln(a) +O(λ4)

}
u0(η, k) . (4.41)

4.2.3 1-loop corrected exchange potentials

We define the exchange potential as the response to a point source J(η, ~x) = Kaδ3(~x).
These potentials are functions of η and r ≡ ‖~x‖. The order λ0 solutions for A and B are
the same [86],

DP0 (η, r) = Kaδ3 (~x) =⇒ P0 (η, r) = KH

4π

{
ln
(
Hr + 1

a

)
− 1
aHr

}
. (4.42)

Other derivatives of P0 (η, r) are,

∂0P0 (η, r) = KH2

4π

[
1
Hr
− 1
Hr + 1

a

]
, ∂2

0P0 (η, r) = −KH
3

4π
1(

Hr + 1
a

)2 , (4.43)

∇2P0 (η, r) = Kδ3 (~x)
a

+ KH3

4π

 2a
Hr
− 2a
Hr + 1

a

− 1(
Hr + 1

a

)2

 . (4.44)
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Recall also that the late time limit of Hr � 1
a is constant in time but not in space,

P0 (η, r) −→ KH

4π

{
ln (Hr) + 1

2a2H2r2 + . . .

}
. (4.45)

The exchange potential for A takes the form,

PA (η, r) = P0(η, r) + PA1(η, r) +O(λ4) . (4.46)

From equations (4.29) and (4.42) we see that DPA1(η, r) is,

a4H2m2
AP0 −

λ2H2 ln
(µa
H

)
Kaδ3 (~x)

16π2 + λ2H3a3∂0P0
16π2 − λ2D

64π2

[
ln(a)Kδ3(~x)

a3

]

− λ2KD
512π3

∫
d4η′

{
∂4

2a2a′

[
θ(∆η − r)

(
ln[µ2(∆η2 − r2)]− 1

)]
+ 2H2∂2

a

[
θ(∆η − r)

×
(

ln
[1

4H
2
(
∆η2 − r2

)]
− 1

)]
− 4a′H4θ (∆η − r) ln

[1
4H

2(∆η2 − r2)
]}
. (4.47)

It turns out that only the first two contributions to (4.47) make significant contributions to
PA1(η, r) at late times. Of course the term proportional to m2

A = 3λ2H2

32π2 = −m2
Φ makes the

opposite contribution from the tachyonic mass of Φ that we worked out in expression (3.24),

D∆PA1 = a4H2m2
AP0 =⇒ ∆PA1(η, r) −→ −λ

2H2

32π2 ln(a)× KH

4π ln(Hr) . (4.48)

To work out the result from the second term in (4.47) we simply integrate against the λ0

retarded Green’s function (3.22),

D∆PA1 = −
λ2H2 ln

(µa
H

)
Kaδ3 (~x)

16π2

=⇒ ∆PA1 (η, r) =
∫ 0

ηi

dη′
{
δ (∆η − r)

aa′r
+H2θ (∆η − r)

} λ2KH2a′ ln
(
µa′

H

)
64π3 ,

(4.49)

= λ2KH3

64π3

{ 1
aHr

ln
(
µa (η − r)

H

)
+ 1

2 ln2
(
µa (η − r)

H

)}
, (4.50)

−→ λ2H2

32π2 ln (Hr)× KH

4π ln (Hr) . (4.51)

The final step is facilitated by noting that a(η − r) = 1/(Hr + 1
a). Combining (4.48)

and (4.51) gives the leading late time correction at 1-loop order,

PA1 (η, r) −→
{
−λ

2H2

32π2 ln(a) + λ2H2

32π2 ln(Hr)
}
× KH

4π ln(Hr) . (4.52)

The B exchange potential can be written as,

PB(η, r) = P0(η, r) + PB1(η, r) +O(λ4) . (4.53)

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
9

x’

< A     >< A     >(x) =
x

...+

Figure 4. Diagram which represents the 1-loop contribution to the expectation value of A(x).
Recall that A lines are solid, whereas B lines are dashed. Square vertices are fixed, whereas circular
vertices are integrated.

Substituting the tree order solution (4.42) in the generic 1-loop equation (4.30) implies that
the 1-loop correction obeys,

DPB1 (x) =
λ2H2 ln

(µa
H

)
Kaδ3 (~x)

16π2 − λ
2H3a3∂0P0

16π2 − λ2D
32π2

[
ln(a)Kδ3(~x)

a3

]

− λ
2KD

256π3

∫
dη′
{

∂4

2a2a′

[
θ(∆η−r)

(
ln
[
µ2
(
∆η2−r2

)]
−1
)]

+ 4H2∂2

a

(
θ(∆η−r)

× ln
[1

4H
2
(
∆η2−r2

)])
−8a′H4θ (∆η−r)

(
ln
[1

4H
2(∆η2−r2)

]
+1
)}

+ λ2H2∂µ

128π3

{
a∂4

∫
d4x′a′θ(∆η−∆r)

[
ln[µ2(∆η2−∆x2)]−1

]
∂′µP0(x′)

}

− λ
2a2H4∂2

64π3

∫
d4x′a′

2
θ(∆η−∆r)∇2P0(x′) . (4.54)

Many of the contributions in (4.54) are similar to those of (4.47), and it turns out that only
the first one induces large logarithms at late times. Because the sign of this first term is
opposite to its cousin in (4.47) we need only reverse the sign of (4.51) to obtain the leading
late time contribution,

PB1(η, r) −→ −λ
2H2

32π2 ln(Hr)× KH

4π ln(Hr) . (4.55)

4.3 Expectation values at 1 and 2 loops

Computing expectation values is much more difficult without a local field redefinition
like (2.3) which expresses the full field in terms of a free field. However, we struggle through
most of the same computations for the two field model (2.11) that we did for the single
field model (2.1). We first evaluate primitive results in dimensional regularization, then
renormalize and take the unregulated limit.

4.3.1 Primitive result for 〈A(x)〉

Figure 4 shows the 1-loop contributions to the expectation value of A(x). The initial
expression of this diagram is,

A1 = − i2λ
∫
dDx′ i∆(x;x′)

√
−g(x′)gµν(x′)× ∂′µ∂′′ν i∆(x′;x′′)

∣∣∣
x′′=x′

. (4.56)
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2

...(x) = +

x’

+
x xx

x’

+ +
x

x’’

x’

A< >_>(x)A
2

<

Figure 5. Diagrams representing those 1-loop and 2-loop contributions to the expectation value of
A2(x) which are not already included in the square of the expectation value of A(x). Recall that
A lines are solid, whereas B lines are dashed. Square vertices are fixed, whereas circular vertices
are integrated.

Employing relation (2.10) to evaluate the doubly differentiated, coincident propagator, and
then interpreting the diagram in the Schwinger-Keldysh sense gives,

A1 = i

2λ(D − 1)kH2
∫
dDx′

√
−g(x′)

[
i∆++(x;x′)− i∆+−(x;x′)

]
. (4.57)

Expression (4.57) is ultraviolet finite so we can set D = 4 and use expressions (1.2) and (4.24)
to conclude, 〈

Ω
∣∣∣A (x)

∣∣∣Ω〉 = λH2

16π2

[
ln(a)− 1

3 + 1
3a3

]
+O(λ3) . (4.58)

4.3.2 Primitive results for 〈[A(x)− 〈A(x)〉]2〉

The expectation value of A2(x) contains a disconnected part that is the square of (4.58),〈
Ω
∣∣∣A2(x)

∣∣∣Ω〉 =
〈

Ω
∣∣∣A(x)

∣∣∣Ω〉2
+
〈

Ω
∣∣∣[A(x)− 〈Ω|A(x)|Ω〉

]2∣∣∣Ω〉 . (4.59)

Figure 5 shows the 1-loop and 2-loop contributions to the connected part. Of course the
1-loop part is just the coincident propagator (2.9). Our initial expressions for the three
2-loop contributions are,

A2
2a = (−iλ)2

2

∫
dDx′

√
−g(x′)gµν(x′) i∆(x;x′)

×
∫
dDx′′

√
−g(x′′)gρσ(x′′) i∆(x;x′′) ∂′µ∂′′ρ i∆(x′;x′′)∂′ν∂′′σi∆(x′;x′′) , (4.60)

A2
2b = − iλ

2

4

∫
dDx′

√
−g(x′)gµν(x′)

[
i∆(x;x′)

]2
∂′µ∂

′′
ν i∆(x′;x′′)

∣∣∣
x′′=x′

, (4.61)

A2
2c =

∫
dDx′

√
−g(x′)

{
−iCA1

′i∆(x;x′) ′i∆(x;x′)

− iCA2Rg
µν(x′)∂′µi∆(x;x′)∂′νi∆(x;x′)

}
. (4.62)

We reduce expression (4.60) with (3.7) and an invocation of the Schwinger-Keldysh
formalism,

A2
2a = −λ

2

8
[
i∆(x;x)

]2
− iλ2(D − 1)kH2

4

∫
dDx′

√
−g(x′)

{[
i∆(x;x′)

]2
−
[
i∆+−(x;x′)

]2}
. (4.63)
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x’’

...
2

(x) = +

x’

+
x xx

x’

+ +
x

B ><

x’

Figure 6. Diagrams which represent the 1-loop and 2-loop contributions to the expectation value of
B2(x). Recall that A lines are solid, whereas B lines are dashed. Square vertices are fixed, whereas
circular vertices are integrated.

The 4-point contribution (4.61) follows from (2.10) and another application of the Schwinger-
Keldysh formalsim,

A2
2b = iλ2(D − 1)kH2

4

∫
dDx′

√
−g(x′)

{[
i∆(x;x′)

]2
−
[
i∆+−(x;x′)

]2}
. (4.64)

And the counterterm insertion (4.62) follows from the propagator equation and an application
of (3.4),

A2
2c = −CA2R i∆(x;x) . (4.65)

4.3.3 Primitive results for 〈B2(x)〉

The expectation value of B(x) vanishes to all orders by virtue of the shift symmetry of (2.11).
Hence there is no disconnected part to the expectation value of B2(x). The diagrams which
contribute to it are depicted in figure 6 The associated analytic expressions are,

B2
2a = (−iλ)2

∫
dDx′

√
−g(x′)gµν(x′) ∂′µi∆(x;x′)

×
∫
dDx′′

√
−g(x′′)gρσ(x′′) ∂′′ρ i∆(x;x′′) i∆(x′;x′′)∂′ν∂′′σi∆(x′;x′′) , (4.66)

B2
2b = − iλ

2

4

∫
dDx′

√
−g(x′)gµν(x′)∂′µi∆(x;x′)∂′νi∆(x;x′) i∆(x′;x′) , (4.67)

B2
2c =

∫
dDx′

√
−g(x′)

{
−iCB1

′i∆(x;x′) ′i∆(x;x′)

− iCB2Rg
µν(x′)∂′µi∆(x;x′)∂′νi∆(x;x′)

}
. (4.68)

Familiar partial integration procedures reduce (4.66)–(4.68) to the form,

B2
2a = 3λ2

4
[
i∆(x;x)

]2
− iλ2(D − 1)kH2

2

∫
dDx′

√
−g(x′)

{[
i∆(x;x′)

]2
−
[
i∆+−(x;x′)

]2}
, (4.69)

B2
2b = −λ

2

4
[
i∆(x;x)

]2
+ iλ2(D − 1)kH2

4

∫
dDx′

√
−g(x′)

{[
i∆(x;x′)

]2
−
[
i∆+−(x;x′)

]2}
, (4.70)

B2
2c = −CB2R i∆(x;x) . (4.71)
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The coincident propagator was given in (2.9), so we need only employ the Schwinger-Keldysh
formalism to show that,

− iλ2(D − 1)kH2

4

∫
dDx′

√
−g(x′)

{[
i∆(x;x′)

]2
−
[
i∆+−(x;x′)

]2}

= λ2H2D−4

(4π)D
Γ(D)
Γ(D2 )

{
Γ(D2 − 1)

2(D − 3)(D − 4) −
ln2(a)

3 − 2
3 ln(a) + 79

54 +O(a−1)
}
. (4.72)

Note that we have simplified ultraviolet finite contributions to (4.72) by taking D = 4.

4.3.4 Renormalized results
The expectation value of A(x) is ultraviolet finite and requires no renormalization. The
square of A(x) is a composite operator and renormalizing it at 1-loop and 2-loop orders
requires three counterterms,

δA2 = KA1R+KA2RA
2 +KA3R

2 + . . . (4.73)

Comparison with expressions (4.63)–(4.65) reveals that the three constants are,

KA1 = µD−4

(4π)D2
Γ(D − 1)

Γ(D2 )
πcot(Dπ2 )
D(D − 1) , (4.74)

KA2 = 0 , (4.75)

KA3 = −λ
2µ2D−8

8(4π)D
Γ2(D − 1)

Γ2(D2 )
π2cot2(Dπ2 )
D2(D − 1)2 . (4.76)

Putting everything together gives the final renormalized result,〈
Ω
∣∣∣A2(x)

∣∣∣Ω〉
ren

= H2

4π2 ln
(µa
H

)
− λ2H4

128π4 ln2
(µa
H

)
λ2H4

256π4

[
ln(a)− 1

3 + 1
3a3 +O(λ2)

]2

+O(λ4) . (4.77)

The square of B(x) is also a composite operator and requires similar counterterms,

δB2 = KB1R+KB2RB
2 +KB3R

2 + . . . (4.78)

Comparison with expressions (4.69)–(4.71) determines the constants to be,

KB1 = µD−4

(4π)
D
2

Γ (D − 1)
Γ
(
D
2

) πcot
(
Dπ
2

)
D (D − 1) , (4.79)

KB2 = 5λ2µD−4

4 (4π)
D
2

Γ (D − 1)
Γ
(
D
2

) πcot
(
Dπ
2

)
D (D − 1) −

λ2µD−4

32πD2

Γ
(
D
2 − 1

)
2 (D − 3) (D − 4)

(
D − 2
D − 1

)
, (4.80)

KB3 = λ2µ2D−8

2 (4π)D
Γ2 (D − 1)

Γ2
(
D
2

) π2cot2
(
Dπ
2

)
D2 (D − 1)2

− λ2µ2D−8

(4π)D
Γ (D − 1)

Γ
(
D
2

) Γ
(
D
2 − 1

)
2 (D − 3) (D − 4)

1
D2(D − 1) −

λ2

128π4
79

2592 . (4.81)
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Quantity Leading Logarithms

uΦ(η, k)
{

1 + λ2H2

32π2 ln(a) +O(λ4)
}
× H√

2k3

PΦ(η, r)
{

1 + λ2H2

32π2 ln(a) +O(λ4)
}
× KH

4π ln(Hr)

〈Ω|Φ(x)|Ω〉 −
{

1 + 15λ2H2

64π2 ln(a) +O(λ4)
}
× λH2

16π2 ln(a)

〈Ω|Φ2(x)|Ω〉ren
{

1 + 15λ2H2

64π2 ln(a) +O(λ4)
}
× H2

4π2 ln(a)

Table 1. Leading logarithms in the single scalar model (2.1).

Substituting these values in (4.78), adding that to the sum of (4.69)–(4.71), and taking the
unregulated limit gives,

〈
Ω
∣∣∣B2 (x)

∣∣∣Ω〉
ren

= H2

4π2 ln
(
µa

H

)
+ λ2H4

128π4

{
3 ln2 (a)− 2 ln (a)

+ 8 ln
(
µ

H

)
ln (a) + 4 ln2

(
µ

H

)
− 3 ln

(
µ

H

)}
+O(λ4) . (4.82)

5 Describing the large logarithms

The purpose of this section is to explain the various large logarithms derived in the previous
two sections. We begin by summarizing them. We then show how to infer stochastic effects
based on effective potentials for Φ(x) and A(x). The remaining large logarithms can be
explained using a variant of the renormalization group which is based on a special class of
counterterms that can be viewed as curvature-dependent renormalizations of parameters in
the bare theories. The section closes with a color-coded summary of the various logarithms,
in which stochastic effects are red and renormalization group effects are green.

5.1 Summary

The large logarithms of the single scalar model (2.1) reside in expressions (3.16), (3.24), (3.26)
and (3.33). Table 1 summarizes these results.

The large logarithms of the two scalar model (2.11) reside in expressions (4.36), (4.41),
(4.52), (4.55), (4.58), (4.77) and (4.82). Of course the expectation value of B(x) vanishes to
all orders. Table 2 summarizes these results.

5.2 1-loop effective potentials

Stochastic effects in both models can understood using the effective potential. One derives
this by setting the undifferentiated fields equal to a constant and then integrating the
differentiated fields out of the field equations.
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Quantity Leading Logarithms

uA(η, k)
{

1− λ2H2

32π2 ln(a) +O(λ4)
}
× H√

2k3

uB(η, k)
{

1 + 0 +O(λ4)
}
× H√

2k3

PA(η, r)
{

1− λ2H2

32π2 ln(a) + λ2H2

32π2 ln(Hr) +O(λ4)
}
× KH

4π ln(Hr)

PB(η, r)
{

1− λ2H2

32π2 ln(Hr) +O(λ4)
}
× KH

4π ln(Hr)

〈Ω|A(x)|Ω〉
{

1 +O(λ2)
}
× λH2

16π2 ln(a)

〈Ω|A2(x)|Ω〉ren
{

1− λ2H2

64π2 ln(a) +O(λ4)
}
× H2

4π2 ln(a)

〈Ω|B(x)|Ω〉 0

〈Ω|B2(x)|Ω〉ren
{

1 + 3λ2H2

32π2 ln(a) +O(λ4)
}
× H2

4π2 ln(a)

Table 2. Leading logarithms in the two scalar model (2.11).

5.2.1 Single field model

The key to evaluating Veff(Φ) is that the Φ propagator in the presence of a constant field
configuration Φ(x) = Φ0 is a field strength renormalization of the free propagator,〈

Ω
∣∣∣T [Φ(x)Φ(x′)

]∣∣∣Ω〉
Φ0

= i∆(x;x′)
(1 + 1

2λΦ0)2 . (5.1)

The 1-loop effective potential follows from taking the expectation value of the action’s first
variation (2.4) in the presence of constant Φ(x) = Φ0,

−V ′eff (Φ0) aD =
(

1 + 1
2λΦ0

)
∂µ
[1

4λa
D−2∂µ

〈
Ω
∣∣∣Φ2 (x)

∣∣∣Ω〉
Φ0

]
, (5.2)

= −
1
2λ (D − 1) kH2aD

1 + 1
2λΦ0

. (5.3)

Expression (5.3) is ultraviolet finite and corresponds to a 1-loop effective potential of,

Veff(Φ) = 3H4

8π2 ln
∣∣∣1 + 1

2λΦ
∣∣∣ . (5.4)

The effective potential (5.4) explains the tachyonic mass (3.10) we found after the
lengthy computation of the 1-loop self-mass,

m2
Φ ≡

∂2Veff(Φ)
∂Φ2

∣∣∣
Φ=0

= −3λ2H4

32π2 . (5.5)

Recall expression (3.16) for the late time limit of the massive mode function,

uΦ(η, k) −→ Γ(ν)√
4πHa3

(2aH
k

)ν
, ν =

√
9
4 −

m2
Φ

H2 = 3
2 −

m2
Φ

3H2 + . . . (5.6)
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Substituting (5.5) into (5.6) and expanding for small λ gives quantitative agreement with
the entry for the mode function in table 1,

uΦ (η, k) −→
{

1 + λ2H2

32π2

[
ln
(2aH

k

)
+ ψ

(3
2

)]
+O

(
λ4
)} H√

2k3
. (5.7)

From expression (3.24) we see that the stochastically generated mass (5.5) also explains the
entry for the exchange potential.

The effective potential also explains the tendency for the expectation value of Φ(x)
to become more and more negative as per expression (3.26). To see this we write the
homogeneous evolution equation (in co-moving time) that follows from adding the variation
of the effective potential to the classical variation (2.4),

−
(

1 + λ

2 Φ
)
d

dt

[(
1 + λ

2 Φ
)
a3Φ̇

]
− V ′eff(Φ)a3 = 0 . (5.8)

Because the evolution of Φ is much slower than that of the scale factor a = eHt, the largest
contribution to the first term of (5.8) is from the external derivative acting on the factor of
a3. At this point the equation can be integrated,

3H
(

1 + λ

2 Φ
)2

Φ̇ ' −3λH4

16π2
1

1 + 1
2λΦ

=⇒ 1
2λ

[(
1 + λ

2 Φ
)4
− 1

]
' −λH

2

16π2 ln (a) . (5.9)

Inverting to solve for Φ gives,

Φ = 2
λ


[
1− λ2H2

8π2 ln (a)
] 1

4

− 1

 = −λH
2

16π2 ln (a)
{

1 + 3λ2H2

64π2 ln (a) +O(λ4)
}
. (5.10)

The fact that the order λ3 contribution (5.10) disagrees with table 1 is due to not
having included fluctuations around the homogeneous solution driven by the stochastically
truncated free field,

ϕ0(t, ~x) ≡
∫

d3k

(2π)3 θ
(
aH − k

)θ(k −H)H√
2k3

{
α~ke

i~k·~x + α†~k
e−i

~k·~x
}
, (5.11)

where α†~k and α~k are canonically normalized creation and annihilation operators,[
α~k, α

†
~p

]
= (2π)3δ3(~k − ~p) . (5.12)

If we use the symbol ϕ(t, ~x) to distinguish the full ultraviolet finite stochastic field from Φ,
then the Langevin equation associated with (5.9) is,

ϕ̇ = ϕ̇0 −
λH3

16π2
1

(1 + 1
2λΨ)3 . (5.13)

It is simple to generate a perturbative solution which includes stochastic fluctuations
around (5.10),

ϕ = ϕ0 −
λH2

16π2 ln(a) + 3λ2H3

32π2

∫ t

0
dt′ϕ0

− 3λ3H4

1024π4 ln2(a)− 3λ3H3

32π2

∫ t

0
dt′ϕ2

0 +O(λ4) . (5.14)
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The expectation value of (5.14) reproduces the entry for 〈Ω|Φ(x)|Ω〉 in table 1,〈
Ω
∣∣∣ϕ(t, ~x)

∣∣∣Ω〉 = 0− λH2

16π2 ln(a) + 0− 3λ3H4

1024π4 ln2(a)− 3λ3H3

32π2

∫ t

0
dt′

H2

4π2 ln(a′) +O(λ5) ,

(5.15)

= −λH
2

16π2 ln(a)
{

1 + 15λ2H2

64π4 ln2(a) +O(λ4)
}
. (5.16)

Note that stochastic fluctuations cause the expectation value of the field to roll down
its potential more rapidly than the result (5.10) because a downward fluctuation is more
probable than an upward one.

5.2.2 Two field model

The same techniques can be applied to the two scalar model (2.11). The exact shift
symmetry of B precludes there being any effective potential for the field B, but A has one.
We can compute it by noting that the expectation value of B in the presence of constant
A(x) = A0 is a field strength renormalization,〈

Ω
∣∣∣T [B(x)B(x′)

]∣∣∣Ω〉
A0

= i∆(x;x′)
(1 + 1

2λA0)2 . (5.17)

The 1-loop effective potential follows from taking the expectation value of the action’s first
A variation (2.12),

−V ′eff(A0)aD = −1
2λ
(
1 + 1

2λA0
)
aD−2

〈
Ω
∣∣∣∂µB(x)∂µB(x)

∣∣∣Ω〉
A0
, (5.18)

= +
1
2λ(D − 1)kH2aD

1 + 1
2λA0

. (5.19)

Taking the unregulated limit and integrating gives the 1-loop effective potential,

Veff(A) = −3H4

8π2 ln
∣∣∣1 + 1

2λA
∣∣∣ . (5.20)

The A effective potential (5.20) explains the positive mass-squared we found in expres-
sion (4.11) after a lengthy computation,

m2
A = ∂2Veff(A)

∂A2

∣∣∣
A=0

= 3λ2H4

32π2 . (5.21)

This is opposite of the tachyonic mass for Φ (that is, m2
A = −m2

Φ), which explains the factors
of −λ2H2

32π2 ln(a) in the entries for uA(η, k) and PA(η, r) in table 2. The effective potential
for A also explains the tendency for 〈Ω|A(x)|Ω〉 to grow without bound. Specializing the
A field equation (2.12) to homogeneous evolution in co-moving coordinates, adding the
effective potential, and neglecting derivatives of A with respect to derivatives of the scale
factor a gives,

− d

dt

(
a3Ȧ

)
− V ′eff(A)a3 = 0 =⇒ 3HȦ ' 3λH4

16π2
1

1 + 1
2λA

. (5.22)
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Equation (5.22) can be solved exactly,

A ' 2
λ

[√
1 + λ2H2

16π2 ln(a)− 1
]

= λH2

16π2 ln(a)
{

1− λ2H2

64π2 ln(a) +O(λ4)
}
. (5.23)

Gaining quantitative agreement with 〈Ω|A(x)|Ω〉 requires the inclusion of stochastic
jitter from the truncated free field A0(t, ~x),

A0(t, ~x) ≡
∫

d3k

(2π)3 θ
(
aH − k

)θ(k −H)H√
2k3

{
α~ke

i~k·~x + α†~k
e−i

~k·~x
}
. (5.24)

The Langevin equation associated with (5.22) is,

Ȧ = Ȧ0 + λH3

16π2
1

1 + 1
2λA

. (5.25)

Iteration of (5.25) generates a solution which includes the C-number solution (5.23) plus
stochastic jitter involving A0,

A = A0 + λH2

16π2 ln(a)− λ2H3

32π2

∫ t

0
dt′A0

− λ3H4

1024π4 ln2(a) + λ3H3

64π2

∫ t

0
dt′A2

0 +O(λ4) . (5.26)

The expectation value of (5.26) agrees exactly with the entry for 〈Ω|A(x)|Ω〉 in table 2,
〈

Ω
∣∣∣A(t, ~x)

∣∣∣Ω〉 = 0 + λH2

16π2 ln(a) + 0

− λ3H4

1024π4 ln2(a) + λ3H3

64π2

∫ t

0
dt′

H2

4π2 ln(a′) +O(λ5) , (5.27)

= λH2

16π2 ln(a)
{

1 + λ2H2

64π2 ln(a) +O(λ4)
}
. (5.28)

Note again that stochastic jitter again increases the rate at which the field rolls down
its potential.

The expectation value of A2(t, ~x) is also straightforward,

〈
Ω
∣∣∣A2(t, ~x)

∣∣∣Ω〉 =
〈

Ω
∣∣∣∣∣A2

0 + λH2

8π2 ln(a)A0

+ λ2H4

256π4 ln2(a)− λ2H3

16π2 A0

∫ t

0
dt′A0 +O(λ3)

〉
, (5.29)

= H2

4π2 ln(a)
{

1− λ2H2

64π2 ln(a) +O(λ4)
}
. (5.30)

Expression (5.30) is in perfect agreement with the entry for 〈Ω|A2(x)|Ω〉 in table 2. This
means that the leading logarithms of the field A(x) and its square are purely stochastic —
at least to this order.
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5.3 Curvature-dependent renormalizations

Let us start with the renormalized expectation of Φ2(x). Recall from relation (3.29) that
the renormalized composite operator is,

Φ2
ren ≡ Φ2 +KΦ1R+KΦ2RΦ2 +KΦ3R

2 +O(λ4) . (5.31)

Some of the 1-loop and 2-loop counterterms in expression (5.31) have no flat space analogs,
but theKΦ2RΦ2 counterterm can be regarded as part of a curvature-dependent field strength
renormalization, Φ2 =

√
ZΦ2 × Φ2

ren with,

ZΦ2 = 1− 2KΦ2 ×R+O(λ4) . (5.32)

The associated γ function is,

γΦ2 ≡
∂ ln(ZΦ2)
∂ ln(µ2) = −15λ2H2

32π2 +O(λ4) . (5.33)

Expression (3.33) shows that the renormalized expectation value of Φ2(x) actually depends
on the product µa/H . Hence we can replace the µ ∂

∂µ term in the Callan-Symanzik equation
with a ∂

∂a , [
a
∂

∂a
+ β

∂

∂λ
+ γΦ2

] 〈
Ω
∣∣∣Φ2(x)

∣∣∣Ω〉
ren

= 0 . (5.34)

The β function for this model is of order λ3, so we see that equation (5.34) perfectly explains
the order λ2 (2-loop) contribution to 〈Ω|Φ2(x)|Ω〉ren

a
∂

∂a

{
15λ2H4

256π4 ln2(a)
}
− 15λ2H2

32π2 × H2

4π2 ln(a) = 0 (5.35)

Note that the order λ0 (1-loop) contribution does not obey the Callan-Symanzik equa-
tion (5.34); the H2

4π2 ln(a) contribution is a stochastic effect which is not explained by the
renormalization group.

Expressions (4.73) and (4.75) show that the composite operator A2(x) does not require
a curvature-dependent field strength renormalization at this order,

ZA2 = 1− 2KA2 ×R+O(λ4) = 1 +O(λ4) =⇒ γA2 = 0 +O(λ4) . (5.36)

Hence the Callan-Symanzik equation does not constrain 〈Ω|A2(x)|Ω〉ren at this order, and
we saw from expression (5.30) that stochastic effects completely explain the 1-loop and
2-loop contributions for this entry in table 2.

The composite operator B2(x) experiences a curvature-dependent field strength renor-
malization we can read off from expression (4.78) and (4.80),

ZB2 = 1− 2KB2 ×R+O(λ4) =⇒ γB2 = −3λ2H2

16π2 +O(λ4H4) . (5.37)

The Callan-Symanzik equation for 〈Ω|B2(x)|Ω〉ren is,[
a
∂

∂a
+ β

∂

∂λ
+ γB2

] 〈
Ω
∣∣∣B2(x)

∣∣∣Ω〉
ren

= 0 . (5.38)
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Because the β function of the two field model is of order λ3, the equation precisely predicts
the 3λ2H2

32π2 × H2

4π2 ln(a) contribution reported in table 2. Note again that the Callan-Symanzik
equation does not predict the logarithm at order λ0 which is a stochastic effect.

Expression (4.1) shows that we can also think of the 1PI 2-point functions for A and
B experiencing curvature-dependent field strength renormalizations whose associated γ

functions can be computed from (4.10) and (4.20),

ZA = 1 + CA2 ×R+O(λ4) , ZB = 1 + CB2 ×R+O(λ4) , (5.39)

γA = +λ2H2

32π2 +O(λ4) , γB = −λ
2H2

32π2 +O(λ4) . (5.40)

The tree order mode functions both approach constants at late times, so the 1-loop
corrections are unconstrained by the Callan-Symanzik equation. However, the tree order
exchange potentials approach KH

4π ln(Hr) at late times. We must therefore interpret the
µ ∂
∂µ term as r ∂∂r . The 1-loop corrections are integrals of the 1PI 2-point functions, so the

Callan-Symanzik equations read,[
r
∂

∂r
+ β

∂

∂λ
− 2γA

]
PA (η, r) = 0 =

[
r
∂

∂r
+ β

∂

∂λ
− 2γB

]
PB(η, r) . (5.41)

With the γ functions (5.40), these equations predict the ±λ2H2

32π2 ln(Hr) × KH
4π ln(Hr)

contributions for PA(η, r) and PB(η, r) in table 2. Note that they do not predict the
−λ2H2

32π2 ln(a)× KH
4π ln(Hr) contribution to PA(η, r). This is a stochastic effect from the mass

generated by the effective potential Veff(A) of expression (5.20).

5.4 Color-coded tables

So many different logarithms occurred that we have thought it good to provide color-coded
versions of tables 1 and 2 to distinguish stochastic effects (in red) from those explained
by the renormalization group (in green). Note that mass effects are considered stochastic
because m2

Φ and m2
A were induced by the effective potentials Veff(Φ) and Veff(A) which give

rise to the Langevin equations (5.13) and (5.25).

6 Epilogue

Proponents of the renormalization group have long contended with supporters of the
stochastic formalism in attempting to explain and re-sum the large logarithms which arise
when making perturbative computations during inflation. Although the stochastic formalism
provides a complete description for scalar potential models, the outcome for nonlinear sigma
models is more nuanced. Many of their logarithms can be explained by a variant of the
stochastic formalism which is based on using the effective potential to infer a scalar potential
model. Unlike the cases of Yukawa theory [44] and Scalar Quantum Electrodynamics [49],
the effective potentials of nonlinear sigma models derive from kinetic terms and would
vanish in flat space background. The remaining logarithms can be explained by a variant
of the renormalization group based on regarding certain higher-derivative counterterms as
curvature-dependent renormalizations of couplings in the bare theory.
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Quantity Leading Logarithms

uΦ(η, k)
{

1+λ2H2

32π2 ln(a) +O(λ4)
}
× H√

2k3

PΦ(η, r)
{

1+λ2H2

32π2 ln(a) +O(λ4)
}
× KH

4π ln(Hr)

〈Ω|Φ(x)|Ω〉 −
{

1+15λ2H2

64π2 ln(a) +O(λ4)
}
× λH2

16π2 ln(a)

〈Ω|Φ2(x)|Ω〉ren
{

1+15λ2H2

64π2 ln(a) +O(λ4)
}
× H2

4π2 ln(a)

Table 3. Color-coded explanations of single scalar logarithms from table 1. Red denotes stochastic
logarithms and green those explained by the renormalization group.

Quantity Leading Logarithms

uA(η, k)
{

1−λ2H2

32π2 ln(a) +O(λ4)
}
× H√

2k3

uB(η, k)
{

1 + 0 +O(λ4)
}
× H√

2k3

PA(η, r)
{

1−λ2H2

32π2 ln(a)+λ2H2

32π2 ln(Hr) +O(λ4)
}
× KH

4π ln(Hr)

PB(η, r)
{

1−λ2H2

32π2 ln(Hr) +O(λ4)
}
× KH

4π ln(Hr)

〈Ω|A(x)|Ω〉
{

1 +O(λ2)
}
× λH2

16π2 ln(a)

〈Ω|A2(x)|Ω〉ren
{

1−λ2H2

64π2 ln(a) +O(λ4)
}
× H2

4π2 ln(a)

〈Ω|B(x)|Ω〉 0

〈Ω|B2(x)|Ω〉ren
{

1+3λ2H2

32π2 ln(a) +O(λ4)
}
× H2

4π2 ln(a)

Table 4. Color-coded explanations of two scalar logarithms from table 2. Red denotes stochastic
logarithms and green those explained by the renormalization group.

We considered a single field model (2.1), which can be reduced to a free theory by a
field redefinition,1 and a two field model (2.11) which cannot be. For the mode functions
and exchange potentials of each model we derived tree order and 1-loop results; for the
expectation values of the fields and the squares we derived 1-loop and 2-loop results. Tables 3
and 4 give a color-coded summary of which logarithms have a stochastic explanation and
which ones derive from the renormalization group. Note that many of the entries derive
partially from one technique and partly from the other. This is particularly evident for
1-loop corrections to the exchange potential for A in the two field model (2.11).

The need to combine ultraviolet and stochastic techniques can be seen in the passage
from the exact field equation (2.12) for A(x) to its stochastic realization (5.25). The exact

1The absence of flat space scattering in no way precludes interactions from changing the kinematics of
free fields or the evolution of the background.
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Heisenberg operator equation is,

∂µ
(√
−g gµν∂νA

)
− λ

2

(
1 + λ

2A
)
∂µB∂νBg

µν√−g = 0 . (6.1)

The stochastic realization of the first term in (6.1) is straightforward [27],

∂µ
(√
−g gµν∂νA

)
−→ −3H

(
Ȧ − Ȧ0

)
a3 . (6.2)

However, there is no completely stochastic derivation of the stochastic realization of the
second term,

− λ

2

(
1 + λ

2A
)
∂µB∂νBg

µν√−g −→ +3λH4

16π2
a3

1 + 1
2λA

, (6.3)

because it depends on the ultraviolet sector of B(x) to produce the correct stochastic result,

∂µB(x)∂νB(x) −→ −
(D−1
D )kH2gµν(x)

[1 + 1
2λA(x)]2

. (6.4)

Any stochastic truncation of B(x) would result in ultraviolet finite fields whose expectation
values could never reproduce the indefinite signature so evident in expression (6.4). Note
also that it can be the same field whose ultraviolet must be integrated out in derivative terms
to give the appropriate Langevin equation. This is evident for the single field model (2.1)
in the passage from the exact field equation (2.4),(

1 + λ

2 Φ
)2
∂µ
(√
−g gµν∂νΦ

)
+ λ

2

(
1 + λ

2 Φ
)
∂µΦ∂νΦgµν

√
−g = 0 , (6.5)

to its stochastic realization (5.13),

−
(

1 + λ

2ϕ
)2
× 3Ha3 (ϕ̇− ϕ̇0)− 3λH4

16π2
a3

1 + 1
2λϕ

= 0 . (6.6)

Quantum field theories in an expanding universe have instantaneous energy eigenstates,
but the expansion of the universe prevents these eigenstates from evolving onto one another.
So what was the minimum energy state at one instant is not generally minimum energy
later on. Bunch-Davies vacuum corresponds to the state that was minimum energy in the
distant past. Although Starobinsky’s stochastic formalism, and hence also our variant of it,
was derived assuming quantum fields in Bunch-Davies vacuum, it ought to apply broadly
to states which are perturbatively nearby. On the other hand, this is not true for states
which are highly excited from Bunch-Davies vacuum. Indeed, by making suitable Bogoli-
ubov transformations one can change the scalar and tensor power spectra by potentially
momentum-dependent factors which range from zero to infinity! That same ambiguity
must also afflict the stochastic formalism, as it does all the other predictions of inflationary
cosmology. We suspect that the process by which the states of originally trans-Planckian
wave numbers are red-shifted to the point where quantum general relativity can be used as
an effective field theory leaves these states near Bunch-Davies vacuum. However, that is a
conjecture which can and should be studied.
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We should comment on the peculiar notion of applying the renormalization group to
nonrenormalizable theories such as (2.1) and (2.11). At the order we have worked, no
renormalization was required for the 1PI 2-point functions of the single field model (2.1),
but we did need four counterterms (4.1) to renormalize the self-masses for A and B,

∆L = −1
2CA1 A A

√
−g − 1

2CA2R∂µA∂νAg
µν√−g

− 1
2CB1 B B

√
−g − 1

2CB2R∂µB∂νBg
µν√−g . (6.7)

Each of these counterterms involves higher derivatives, but there is an important distinction
between when those derivatives act on A and B and when they act on the metric. The terms
proportional to CA1 and CB1 involve higher derivatives of the fields A and B and play no
role in the generation of large inflationary logarithms. However, the terms proportional to
CA2 and CB2 can be viewed as curvature-dependent field strength renormalizations of A and
B, respectively. It is the flow of these couplings which serves to capture the green-colored
logarithms in tables 3 and 4. It is also worth noting that the basis for stochastic effects, the
effective potentials (5.4) and (5.20), are also curvature-dependent and would vanish in the
flat space limit.

This project suggests a number of extensions. The most urgent of these is working
out the curvature-dependent coupling constant renormalizations that would allow us to
determine the renormalization group flows. We would like to determine the late time
behavior and also whether or not renormalization group improvement of the effective
potentials matters at leading logarithm order. It would also be interesting to compute the
order λ3 (two loop) contribution to the expectation value of A(x) to see if it agrees with the
stochastic prediction in expression (5.28). And we would like to know whether or not the
renormalization group can be used to explain the sub-dominant logarithms one sometimes
encounters in the rate at which the mode functions freeze in,

u0(η, k) −→ H√
2k3

{
1 + k2

2a2H2 + . . .

}
, (6.8)

u1 (η, k) −→ H√
2k3

{
0 + #λ2k2 ln(a)

a2 + . . .

}
. (6.9)

A final spin-off is understanding the painfully accumulated collection of large logarithms
induced by inflationary gravitons in the mode functions and exchange potentials of various
matter theories [63, 65, 66, 95] and gravity itself [69, 96].

Of course the primary motivation for studying nonlinear sigma models was to understand
the derivative interactions of quantum gravity, without the plethora of indices and the
miasma of confusion associated with gauge fixing. We particularly wish to understand the
viability of back-reaction to slow the expansion rate in Λ-driven inflation [51, 97]. It is
therefore worth summarizing what this project suggests for quantum gravity:

• The large logarithms induced by inflationary gravitons can likely be explained using
a combination of curvature-dependent effective potentials and curvature-dependent
renormalization group flows;
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• There seems to be no obstacle to inferring an effective potential by integrating the
ultraviolet out of the invariant Lagrangian [98],

Linv = aD−2√−g̃ g̃αβ g̃γδ g̃εζ[1
2hαγ,εhζδ,β −

1
2hαβ,γhδε,ζ + 1

4hαβ,γhεζ,δ −
1
4hαγ,εhβδ,ζ

]
+ 1

2(D − 2)aD−1H
√
−g̃ g̃αβ g̃γδhαβ,γhδ0 , (6.10)

where g̃µν ≡ ηµν + κhµν is considered to be constant (κ2 ≡ 16πG), at which point we
can follow back-reaction by solving for the homogeneous evolution with the effective
potential, the same way we did with equations (5.9)–(5.10) for the single field model
and with equations (5.22)–(5.23) for the two field model;

• Of the two invariant 1-loop counterterms,

∆L = α1R
2√−g + α2C

αβγδCαβγδ
√
−g , (6.11)

the one proportional to α2 likely plays no role in producing large logarithms while
the one proportional to α1 can be viewed as a curvature-dependent renormalization
of Newton’s constant, and its flow has the potential to explain the unnaturally large
value of α1 in Starobinsky’s original model of inflation [99];

• As long as the curvature remains nonzero there is no reason to assume that evolution
approaches a static limit, and the two field model provides an explicit example of
significant evolution persisting to arbitrarily late times, cf. expression (5.23);

• It seems inevitable that significant modifications to the expansion rate and to the
force of gravity will persist to late times; and

• Curvature-dependent effective potentials and renormalization group flows pose a
challenge when back-reaction causes the curvature to change, but they also provide a
natural mechanism through which the effects of inflationary gravitons can become
dormant during radiation domination (with R = 0) and then reassert themselves at
late times, after the transition to matter domination.
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