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limit and at large radii this boundary theory is local and closely analogous to the corre-

sponding result in three-dimensions. The boundary effective action has a degenerate kinetic

term that leads to singularities in the one-loop partition function that are independent of

the discretization. These results establish a rich boundary dynamics for four-dimensional

flat holography.
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1 Introduction

The role of boundaries has become more and more important for various approaches to

quantum gravity. Holographic dualities, e.g. the AdS/CFT framework, suggest that a the-

ory of quantum gravity can be dually described by a field theory defined on an asymptotic

boundary. On the other hand, recently a lot of attention has been focussed on bound-

ary degrees of freedom, which might emerge through the breaking of diffeomorphism, or

other gauge symmetries, by a boundary, e.g. [1–6]. In particular, such boundary degrees of

freedom are thought to play a role in explaining black hole entropy, for instance in [7–11].

In three-dimensional quantum gravity the two themes, holographic duality and bound-

ary degrees of freedom, merge together in an interesting way. Carlip has worked out a dual

holographic boundary theory that arises from the breaking of (normal) diffeomorphisms by

the presence of the asymptotic boundary in 3D AdS gravity [12]. In this paper we consider

gravity without a cosmological constant. In this case one can also obtain dual boundary

theories, not only at the asymptotic boundary [13, 14], but also for finite boundaries [15–19].

We briefly review some developments that motivate the current work: Barnich et al.

computed the one-loop partition function for 3D gravity for a solid torus, in the limit of

infinite radius [14]. The result

Z1(β, γ) = e
β
8G

∞∏
k=2

1

|1− eiγk|2
(1.1)

depends on the moduli parameters β and γ, with β specifying the length of the axis of

the solid torus, and γ its Dehn twist. The action S = −β/8G, with G the 3D Newton’s

constant, is that of the flat solution, which arises solely from the boundary term.1 The

second factor is a one-loop correction. It indicates that there are field modes present,

despite the fact that 3D gravity is topological, in the sense of having no propagating

degrees of freedom. The explanation for this apparent paradox is that these field modes

describe boundary degrees of freedom. In fact, this partition function (1.1) reproduces the

3D vacuum character of the BMS3 group [21–23], which is an infinite-dimensional group

describing the asymptotic symmetries of 3D asymptotically flat space.2

How, then, does one identify the boundary degrees of freedom and the action that

governs their dynamics? The arguments of Carlip in [12] suggest that the geodesic distance,

1This boundary term is 1/2 of the usual Gibbons-Hawking-York-boundary term. This choice is justified

for an asymptotically flat boundary in [20].
2An analogous result for the AdS case has been derived in [13, 24, 25].
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defined from a point on the boundary to some central point,3 could provide a suitable

boundary field. Indeed, these variables would describe how the boundary is embedded into

the 3D (flat) solution. In particular, they would respond to deformations of the boundary

normal to itself, that is, to boundary normal diffeomorphisms. It has become customary

to refer to these degrees of freedom as boundary gravitons.

The geodesic distance can be understood as a functional of the metric, and hence we

might ask for the effective dynamics, as induced by the 3D gravity action for this functional.

Regge calculus [26], a discretization of gravity in which the basic variables are the

lengths of the edges of a triangulation of spacetime, turns out to be a very convenient

framework, in which just such an effective dynamics can be computed. To this end one

starts with a finite boundary and allows for the boundary metric to fluctuate, so that one

can describe the boundary gravitons. The discretization is also used as a regulator for the

path integral, and allows a straightforward evaluation of the one-loop determinant, even if

one considers regions with boundary [15].

One reason why Regge calculus turns out to be so convenient for this task is that its

3D one-loop partition function is bulk triangulation invariant. Hence you can work with

an arbitrarily coarse bulk triangulation. In particular, one can choose a triangulation with

an edge connecting each boundary vertex to some central bulk vertex (or to vertices on

some central axis if one considers a solid torus). Since the solutions to 3D gravity are flat

one can identify these edges with geodesics. To obtain an effective theory for the lengths

of these edges one just needs to integrate out the lengths of all other bulk edges.

If the topology of the bulk spacetime is that of a ball there is even a triangulation in

which all bulk edges are radial and go from the boundary to some central point. Hence, the

Regge action itself serves as an effective action for the geodesic length variables, without

the need to integrate out any variables. The Regge action is local, and thus one obtains a

local boundary field theory, whose partition function agrees with that of gravity. Note that

for other bulk topologies one might need to integrate out some set of edges and there is no

a priori guarantee of finding a local boundary theory. Indeed, for the solid torus topology

locality holds only in the large radius limit [15].

We briefly review a few results from [15]. In the large radius limit, there exists a

boundary field theory description, whose (linearized) action is characterized by a degenerate

kinetic term (described by a quadratic form that can be obtained from the trace-reversed

extrinsic curvature tensor) and a coupling to the Ricci scalar of the boundary metric.4 This

boundary field theory explains the structure of the one-loop correction in (1.1). Indeed,

the partition function (1.1) has been reproduced in [15] using Regge calculus, and shown

to be valid also for finite boundaries. This boundary field theory provides a reformulation

of 3D gravity (without cosmological constant) as a theory describing how a (boundary)

surface is embedded into 3D flat space.

3The precise definition of this central point is inconsequential because its displacement will amount to

a gauge transformation for the boundary field. In the case of the solid torus the central point is replaced

by a central axis.
4Similar boundary theories with degenerate kinetic terms were obtained in [27] and [28]. These deriva-

tions were based on very different arguments from the ones used in [15]: [27] relied on BMS symmetry

and [28] considered a null boundary with asymptotically flat boundary conditions.
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One might assume that this description, which makes use of the fact that the solutions

of 3D gravity are flat, holds only at the perturbative level. The works [16–19] show,

however, that it also holds at the fully non-perturbative level. Here, one uses the Ponzano-

Regge partition function for 3D gravity [29], which provides a non-perturbative model for

3D quantum gravity. This model allows, in particular, the evaluation of the partition

function for metric boundary conditions. More precisely, using techniques developed in

loop quantum gravity, the boundary conditions are encoded in boundary wave functions.

These wave functions can be chosen to exhibit the full range of possibilities from a deeply

quantum to a completely semiclassical boundary. Depending on this choice of wave function

one can find different boundary theories. A semiclassical choice reproduces the partition

function (1.1) with corrections resulting from non-classical backgrounds. The boundary

theories can again be interpreted as describing the embedding of a quantum surface into

3D quantum flat space. In particular, [19] reveals a connection of these boundary theories to

restricted solid-on-solid (RSOS) models, which are statistical models describing the growth

of surfaces in (flat) 3D space.

In this work we will consider the question of how many of these results from three-

dimensional gravity can be extended to four dimensions. The main difficulty is that 4D

gravity is, in contrast to its 3D counterpart, not a topological theory: it features prop-

agating curvature degrees of freedom. We will, however, concentrate on “the flat sector”

of 4D gravity, that is, we will consider boundary metrics that induce a flat solution. In

(2 + 1)D this applies to all possible boundary metrics, in (3 + 1)D this constrains two out

of the six metric degrees of freedom per (boundary) point.

The “flat sector” does not allow for interesting dynamics in the bulk. However, the

boundary dynamics is at least as rich as that of 3D gravity. Out of the four degrees of

freedom parametrizing the boundary metrics for the flat sector, three account for diffeo-

morphisms along the boundary. The remaining degree of freedom describes deformations

of the boundary normal to itself and captures boundary gravitons.

We will again seek a boundary theory for these boundary gravitons. As in (2 + 1)D we

will aim to extract an effective action for the lengths of a set of geodesics, stretching from

the boundary to a central point or central axis. We will use Regge calculus to find this

effective action. The 4D Regge action, evaluated on solutions, is not generically invariant

under changes of the bulk triangulation. Invariance does hold, however, for the flat sector.

This allows us to work with the coarsest bulk triangulation consistent with the continuum

limit of the boundary. To make the computations feasible we will work with linearized

Regge calculus and work with the closest possible analogue background solution to the one

used in (2 + 1)D, which is a solid hyper-torus.

The resulting effective action for the geodesic lengths will be surprisingly similar to the

one found in (2+1)D: the action is again local in the large radius limit; it has a degenerate

kinetic term; the quadratic form describing this kinetic term can again be obtained from

the trace-reversed extrinsic curvature tensor; and the boundary field is coupled to the

boundary metric, again, via the boundary Ricci scalar.

As mentioned above, the on-shell action is invariant under changes of the bulk trian-

gulation for the flat sector. However, in contrast to the 3D case one cannot find a local
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path integral measure such that the one-loop partition function is also invariant on the flat

sector [30, 31].5 Nevertheless, there is one triangulation invariant feature: the degenerate

kinetic term for the boundary theory leads to singularities for the one-loop correction.

These singularities appeared for the 3D theory, and, in fact, completely characterized the

3D one-loop determinant. In 4D the singularitites will remain for finer triangulations be-

cause we are working with an effective radial action on the flat sector, which is triangulation

invariant. Thus, again these singularities are a robust feature of the calculation.

In section 16, we briefly discuss an alternative dynamics for the kinematical variables of

Regge calculus that would allow one to completely calculate the one-loop partition function.

This alternative choice imposes sharply a flat 4D spacetime. A quantum model with such

a dynamics, and in particular a triangulation invariant path integral measure, has been

constructed by Baratin and Freidel in [32]. This invariant measure makes it possible to

calculate the one-loop partition function using the coarsest possible bulk triangulation.6

However, in this work we will focus on “gravitational” Regge calculus, as we plan to extend

our considerations to include solutions with curvature in future work. In fact, we will find

hints of an asymptotic regime in which the on-shell action has quite a simple structure,

including for solutions with curvature.

The paper is structured as follows: section 2 introduces Regge calculus and the one-

loop approximation to the path integral built out of this theory. Regge calculus allows us to

explicitly compute the boundary dual theory for the flat sector of four-dimensional gravity.

In section 3 we establish why this boundary theory will always be local for spacetimes with

the topology of a ball. In this paper, our efforts will be focused on another topology, that

of the solid hyper-torus, introduced in 4 and triangulated in 5, and in this example we find

that the non-localities are suppressed at large radius. Section 5 also introduces the discrete

Fourier transform that allows the results of the paper to be calculable.

To carry out explicit computations it is necessary to linearize the theory around the

hyper-torus background. Section 6 carries this out for the zeroth and first order in length

fluctuations, while section 7 outlines the steps that are necessary to carry this out to

second order. The second order computations are begun by treating the second order

radial effective action in section 8. This section mainly introduces some important changes

of variables and definitions for what follows. Sections 9 and 10 perform the main work of

the computation, focusing on the higher order, and lowest lying modes, respectively. The

lowest order modes are split off because they correspond to diffeomorphism symmetries

that must be treated with care. The complete second order Hamilton-Jacobi functional is

assembled in section 11 and the resulting boundary field theory is detailed in section 12.

These two sections constitute the main results of the paper. Section 13 returns to the low

lying diffeomorphism modes and studies how they impact the Hamilton-Jacobi functional.

Section 14 takes up singularities of the Hessian not related to diffeomorphism gauge

symmetries. These results are then used in section 15 to compute the one-loop corrections

to the path integral. The discussion, section 16, summarizes the results of the paper and

gives several directions in which this work could be productively extended.

5This holds even if one restricts to a class of triangulation changes that preserve flatness, in a particular

sense.
6This partition function will have support only on boundary metrics leading to flat solutions.
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2 Regge calculus

In Regge calculus [26] one replaces the continuous metric field on a smooth manifold with an

assignment of length variables le to the edges e of a triangulation T . The length variables

specify a piecewise flat and linear geometry for the triangulation T . For triangulations

with boundary, the solutions of the theory are determined by varying the Regge action

with the appropriate boundary term. When the edge lengths on the boundary are fixed,

the appropriate boundary term is the Hartle-Sorkin term [33], which is a discretization of

the Gibbons-Hawking-York term. The Regge action is

− 8πGSR[le] =
∑
t∈T ◦

At(le)εt(le) +
∑
t∈∂T

At(le)ψt(le), (2.1)

where T ◦ denotes the bulk of the triangulation T , ∂T its boundary, and At is the area of

the triangle t. The bulk and boundary deficit angles, which specify the intrinsic curvature

of the bulk and the extrinsic curvature of the boundary respectively, are defined by

εt(le′) = 2π −
∑
σ⊃t

θσt (le′), and ψt(le′) = π −
∑
σ⊃t

θσt (le′). (2.2)

Here θσt is the interior dihedral angle in the 4-simplex σ at the triangle t.

With the Hartle-Sorkin term, the Regge action is additive under gluing of two trian-

gulations along their boundaries. Varying the action with respect to the bulk edge lengths

one has the equations of motion ∑
t⊃e

∂At
∂le

εt(le′) = 0. (2.3)

These are discretizations of the Einstein equations for gravity. Here, as in the continuum

case, where the variation of the Ricci tensor yields a total divergence, the variation of the

curvature — given by the deficit angles εt — also vanishes. This is due to the Schläfli

identity [34] (for a modern symplectic proof see [35]),∑
t∈σ

Atδθ
σ
t = 0. (2.4)

The solutions to these equations may not be unique. In particular, if the solution is flat,

that is, if all deficit angles vanish, there will be a four-parameter gauge freedom for every

bulk vertex [36–38]. This gauge freedom is a remnant of the diffeomorphism symmetry

of the continuum. In the Regge setup this gauge freedom can be understood as follows:

given a flat geometry with boundary, which is triangulated and thus also a piecewise linear

and flat space, we can obtain a Regge solution by triangulating the bulk of this geometry.

The edge lengths for this triangulation are induced by the flat geometry. To determine the

geometric data of the triangulation we have to choose the positions for the bulk vertices

inside the given flat geometry. Changing these positions changes the lengths of the adjacent

edges, that is, the bulk variables are changed without changing the flatness of the solutions

and without affecting the boundary data. Thus, also the extrinsic boundary angles are not
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changed, and the Regge action, which on flat solutions only contributes a boundary term, is

unchanged. This defines a diffeomorphism gauge symmetry, and due to the interpretation

outlined above, this symmetry is also known as a vertex translation symmetry.

This symmetry is generically broken for solutions with curvature [39, 40].7 The Hessian

evaluated on a flat solution will have, in general, four null eigenvalues for each bulk vertex.

Turning on curvature, for instance by changing the boundary data, these eigenvalues will

no longer vanish and will scale with the amount of curvature, as determined by the deficit

angles [38, 39]. A similar effect arises in the presence of torsion [46].

Vertex translation symmetries for flat solutions imply that Regge calculus, linearized

around a flat background, will also have these symmetries. Despite the fact that time

evolution in Regge calculus proceeds in discrete steps, and may even change the number

of degrees of freedom, one can perform a space-time split, and perform a canonical anal-

ysis [47–49]. In this analysis, the linearized theory has (linearized) first order constraints,

in perfect correspondence to the continuum Hamiltonian and diffeomorphism constraints.

Vertex translation symmetries are also linked to triangulation invariance [41, 50, 51].

When evaluated on flat solutions (with boundaries), the action does not depend on the

choice of bulk triangulation, even when the theory is linearized around a flat background.

This is not the case for solutions involving curvature — even if one is considering the lin-

earized theory [30]. In summary, flat solutions in Regge calculus showcase diffeomorphism

symmetry and triangulation invariance; this remains true even for homogeneously curved

solutions, provided one chooses to work with homogeneously curved building blocks [42].

Does this invariance extend to the quantum theory? We will argue that it does not,

but that there are still interesting properties of the theory that are invariant. Consider

the path integral for the linearized Regge action, i.e. a one-loop approximation of the full

theory. The path integral is

Z1(L, `bdry) =

∫
µ(L)

∏
e∈T ◦

d`e exp
(
−S[2]

R (L, `)
)
, (2.5)

where S
[2]
R is the expansion of the Regge action to second order in the fluctuations `e, defined

by le = Le + `e, with Le denoting the length of the edge e in a flat background solution.

To evaluate the path integral we integrate over the fluctuation variables `e associated

to the bulk edges e ∈ T ◦. The integration measure is defined by µ(L), which, in this

approximation, is a function of the background lengths only.

The path integral is ill-defined for two reasons. The first reason is the diffeomorphism

symmetry, which leads to non-compact gauge orbits. As in [15, 32, 52], we will identify a

measure over these gauge orbits and split off these infinite integrals. (This is equivalent

to gauge fixing and inserting a Faddeev-Popov determinant.) The second reason is known

as the conformal mode problem: the gravitational action is unbounded from below due to

the kinetic term from the conformal mode. We will treat this problem by formally rotating

the sign of this mode [53].

7This is true if one uses flat simplices. There is also a Regge action for homogeneously curved sim-

plices [41–45], which is particularly appropriate in the presence of a cosmological constant. The vertex

translation symmetries are then present for solutions describing a homogeneously curved spacetime.
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Given that the path integral for the linearized theory features a notion of diffeomor-

phism symmetry, one can ask if there is a choice for the measure factor µ(L) that would

make the partition function invariant under triangulation changes [30]. One can even

consider a subset of local triangulation changes that leave the classical theory invariant.8

There is, however, even with this restriction, no local choice of measure that would make

the one-loop partition function invariant [31].

Not having such an invariant measure (either local or non-local) at hand, the one-loop

correction will depend on the choice of triangulation, even if we consider boundary data

inducing a flat solution. However, here we will be interested in singularities for the one-

loop correction, which result from vanishing of the determinant of the Hessian of the Regge

action (after removing the zeroes resulting from the gauge symmetries). The existence of

these zeroes is independent of the choice of bulk triangulation. As we will see, they result

from a degeneracy of the kinetic term for the dual boundary field theory.

As we do not have a triangulation invariant measure at our disposal, we will not further

specify the ‘bare’ measure µ(L) — it will appear as a multiplicative factor for the one-loop

correction. See [30, 31, 55, 56] for suggestions for this measure term, including non-local

constructions.

As discussed at the end of the introduction, we can also employ an alternative theory,

constructed in [32], which describes (quantum) flat space. This theory is topological, that

is, (bulk) triangulation invariant, and includes, in particular, an invariant measure term.

3 On the locality of the effective boundary field theory

Having covered the basics of Regge calculus we will now explain how to define the dynamics

for a boundary field given by the lengths of geodesics going from the boundary to some

central point. Using Regge calculus we will see that the action describing this dynamics

is local for a ball-shaped region — at least if we restrict to boundary metrics that induce

flat solutions. Here we define an action to be local, if it couples only variables associated

to building blocks that are neighbors of some finite degree, e.g. next-to-nearest neighbors.

This translates, in the continuum limit, to having only finite order differential operators

appearing in the action. What follows applies to any bulk dimension D ≥ 3. For D = 3

all boundary metrics induce a flat solution, whereas for D = 4 this holds only for a subset.

The Hamilton-Jacobi functional, that is, the on-shell action, is invariant under bulk

triangulation changes for boundary metrics that induce a flat solution. Thus, restricting

to these boundary metrics, we can work with any bulk triangulation. For a ball-shaped

region we can in particular choose a triangulation that has only one bulk vertex, but still

allow for arbitrarily many vertices on the boundary. Thus all the bulk edges are radial and

8These would be the 1 − 5 and 2 − 4 Pachner moves and their inverses. An x-(6 − x) Pachner move

replaces a complex of x four-simplices with a complex of (6 − x) four-simplices [54]. Both complexes have

the same boundary triangulation. The boundary triangulation of the 1 − 5 and 2 − 4 Pachner moves only

allow for a flat bulk solution. This is the reason why the full and linearized Regge actions (evaluated on the

corresponding solutions) are invariant under these Pachner moves. By contrast the 3−3 move complex also

allows for curvature. Neither the full nor the linearized Regge actions are invariant under this move, if one

considers a solution with curvature [30]. Every (bulk) triangulation change can be obtained by a sequence

of the full set of Pachner moves.
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Figure 1. A triangulation of a ball shaped region. All bulk edges are radial, going from the

boundary to a central vertex. The Regge action for this triangulation can be understood as a

boundary action for the radial edge lengths.

go from a boundary vertex to the bulk vertex, see figure 1. The geometry defined by Regge

calculus is piecewise linear and flat.9 Given a flat solution the edges will therefore coincide

with geodesics. Even off-shell we can define geodesics inside a given building block that are

straight lines in the flat geometry of the given building block, and go from the boundary to

the central vertex. We can place these geodesics arbitrarily close to the edges of the block

and, thus, the geodesics’ lengths will approximate arbitrarily well the lengths of the edges.

The Regge action for such a triangulation will be a function of the boundary edge

lengths and the radial bulk edge lengths. The latter can be identified with a boundary

field, giving the geodesic radial distance of the boundary to the central vertex. Thus the

Regge action itself defines an “effective” theory for the geodesic radial distance.

As explained in section 2, the displacement of the central vertex is a remnant of

diffeomorphism symmetry. It acts as a gauge symmetry on the boundary field, at least

from the perspective of the gravitational partition function. It can also be seen as a global

symmetry from the perspective of the boundary theory — in fact, it provides only global

symmetry parameters. However, to regain the partition function of gravity, we have to

treat this symmetry as a gauge symmetry.

The effective theory defined by the Regge action is local in the following sense: for two

length variables associated to two edges e and e′ to couple to each other, e and e′ must both

be included in at least one D-simplex. Translated to the boundary, this means that two

radial length variables associated to two boundary vertices v and v′ can only be coupled to

each other if v and v′ are both included in at least one boundary (D−1)-simplex. Thus, the

Regge action is also local when interpreted as a boundary theory. This locality continues

to hold for the coupling of the boundary field to the boundary lengths.

For ball-shaped regions we therefore obtain a local boundary theory. This does not

necessarily hold for other topologies, indeed, for a solid hyper-torus we also obtain non-

local terms. However, direct computation shows that these are suppressed in the limit of

large radii.

9This holds in the original version [26] of Regge calculus. Note that one can also work with homoge-

neously curved building blocks [41–45], which allows generalization of this argument to (Regge) gravity

with a cosmological constant.
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Figure 2. Different 2D projections of a 4D hyper-cylinder. The red dashed lines indicate the 2D

axis where r = 0.

4 The background space time

The background spacetime we will consider is a Euclidean signature, flat spacetime with

boundary. It generalizes the 3D spacetime known as thermal spinning flat space [57]. This

3D spacetime is obtained by taking a solid cylinder with radius R and twisting this cylinder

by an angle γ around its axis before gluing it to a solid torus. One often uses a “time”

coordinate t along the axis of the cylinder, an angular coordinate θ that goes around the

central axis, and a radial coordinate r.

For our four-dimensional spacetime we replace the “time” coordinate t with two coordi-

nates y and z. The solid hyper-cylinder is D×[0, α]×[0, β], where D is the two-dimensional

disk and it has a two-dimensional central axis [0, α] × [0, β] coordinatized by y and z, see

figure 2. To get a spacetime with one boundary component we glue the cylinder twice. We

first identify the boundaries D × {0} × [0, β] and D × {α} × [0, β] with each other after

rotating the latter by an angle γy. Next we identify D × S1 × {0} and D × S1 × {β},
once again inserting a rotation by γz of the disk in the second component. This gives the

spacetime

ds2 = dr2 + r2dθ2 + dy2 + dz2 (4.1)

with r ∈ [0, R] and the remaining coordinates subject to the following periodic identifi-

cations

(r, θ, y, z) ∼ (r, θ + 2π, y, z),

(r, θ, y, z) ∼ (r, θ + γy, y + α, z),

and (r, θ, y, z) ∼ (r, θ + γz, y, z + β). (4.2)

Let us evaluate the Einstein action with the Gibbons-Hawking-York boundary term

S = − 1

16πG

∫
√
gR d4x− 1

8πG

∫ √
hK d3x (4.3)

– 9 –



J
H
E
P
0
1
(
2
0
1
9
)
1
4
4

6

5

7

8

d

c

2

1

3

4

b

a

Θ

Z

Y

R

“Inner 2D axis”

Figure 3. A hyper-prism as a unit block for the discretization of the solid three-torus. The numbers

1 to 8 indicate vertices that are positioned on the outer boundary of the solid three-torus. The

small latin letters a to d label vertices on the two-dimensional central axis. Table 1 lists all edges of

the hyper-prism, together with their background lengths. Note that we have not included diagonal

and hyper-diagonal edges in this figure.

on this spacetime. There is only a contribution from the boundary term. The extrinsic

curvature tensor of the r = R hypersurface is Kab = diag(R, 0, 0) and the trace is given by

K = 1
R . Together with

√
h = R this leads to a boundary term which is proportional to the

area of the hypersurface at R = 1:

S = −αβ
4G

. (4.4)

Note that the twist angles γy and γz do not appear in the classical background action. The

one-loop correction will depend on these angles.

5 Hyper-torus triangulation and discrete Fourier transform

As discussed in section 2, the Regge action evaluated on flat solutions will be bulk trian-

gulation independent. This allows us to choose a very coarse bulk triangulation. However,

we also want to take the continuum limit on the boundary and will choose a sufficiently

general and regular triangulation to achieve this limit.

The spacetime under consideration has the topology of a solid three-torus, i.e. D ×
S1 × S1 where D is a disk and S1 the circle. We cut this three-torus perpendicular to the

two S1-directions, that is, along three-planes with fixed y- and z-coordinates. (Care must

be taken with the twist parameters if these pieces are to be re-glued.) Repeatedly cutting

in this manner we produce Ny ×Nz building blocks with topology D × [0, 1]× [0, 1].

These building blocks are then cut along three-planes perpendicular to the disk and

along three-planes with constant angular coordinate θ. All these cuts go through a “two-

dimensional axis” where the radial coordinate vanishes, r = 0. This results in Nθ hyper-

prisms, see figure 3, each with side lengths Θ, Y, Z, and R.
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Bulk edge length variables

Edges on

hyper-prism

Length

of edge(s)

Length

fluctuations

e(1a) e(5c)

R `r
e(2a) e(6c)

e(3b) e(7d)

e(4b) e(8d)

e(1c) e(3d) √
R2+Y 2 `ry

e(2c) e(4d)

e(1b) e(5d) √
R2+Z2 `rz

e(2b) e(6d)

e(1d) e(2d)
√
R2+Y 2+Z2 `ryz

e(ac) e(bd) Y `ϕ

e(ab) e(cd) Z `ζ

e(ad)
√
Y 2+Z2 `ϕζ

Boundary edge length variables

Edges on

hyper-prism

Length

of edge(s)

Length

fluctuations

e(12) e(56)
Θ `θ

e(34) e(78)

e(15) e(37)
Y `y

e(26) e(48)

e(13) e(57)
Z `z

e(24) e(68)

e(16) e(38)
√

Θ2+Y 2 `θy

e(14) e(58)
√

Θ2+Z2 `θz

e(28) e(17)
√
Y 2+Z2 `yz

e(18)
√

Θ2+Y 2+Z2 `θyz

Table 1. The tables relate the length variables to the edges in the hyper-prism, which are shown

in figure 3. The left table includes all edges that are in the bulk of the solid three-torus. The right

table includes all the edges that are in the boundary of the solid three-torus.

Each hyper-prism can be triangulated into twelve four-simplices. This introduces var-

ious diagonals and hyper-diagonals. Table 1 lists all of the edges in the triangulation using

a notation where e(xy) denotes the edge that connects vertex x to vertex y. This table

also collects edges into groups with common background length parameter, denoted with

a capital variable Le, and the associated length fluctuation variable, denoted with a lower

case `e. The total length of edge e is le = Le + `e.

In the background geometry we choose lengths for the diagonals and hyper-diagonals,

see lower portions of table 1, such that the prism is almost everywhere flat, that is, the

deficit angles are vanishing for almost all bulk triangles. Exceptions are the triangles of

the inner 2D axis at r = 0. To have a vanishing deficit angle for these triangles we need to

impose a relation between the number of hyper-prisms Nθ in one constant (y, z)-slice and

the background lengths R and Θ:

x :=
Θ2

2R2

!
= 1− cos

(
2π

Nθ

)
. (5.1)

Furthermore, we have Y × Ny = α and Z × Nz = β, where α and β are characteristic

lengths of the continuum geometry, defined above (4.1).

The boundary of the solid three-torus is discretized into a regular cubical lattice, with

edge-lengths Θ, Y , and Z. The vertices of this lattice are labelled by the set

(sθ, sy, sz) ∈ [0, 1, . . . , Nθ − 1]× [0, 1, . . . , Ny − 1]× [0, 1, . . . , Nz − 1]. (5.2)
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The cuboids are further subdivided into six tetrahedra, which introduces face-diagonals,

body-diagonals, and a hyper-diagonal, see table 1. All the diagonals are chosen so that

there is an orientation for all edges with the following property: each coordinate of the

source vertex of any given edge is smaller or equal to the corresponding coordinate of the

target vertex. (Here we use the periodic identification to imagine an infinite lattice.) In

table 1 we have listed all edges in the form e(v1v2), where vi takes values 1 to 8, if it is a

vertex on the r = R boundary of the solid three-torus, and values a to d if the vertex is

on the two-dimensional central axis. With the above choice of orientation v1 is the source

vertex and v2 the target vertex of an edge e(v1v2) appearing in the table. We can thus

associate the length fluctuation variable of a given edge to its source vertex, that is, our

variables on the boundary are:

`e(sθ, sy, sz) with e ∈ {θ, y, z, θy, θz, θyz}. (5.3)

Moving on to the bulk edges we consider the set of edges that have one vertex, which

we choose as source, at the boundary of the solid three-torus, i.e. at r = R, and the other

vertex on the two-dimensional axis, at r = 0. We also associate the coordinates of the

source vertex to the variables associated to these edges:

`e(sθ, sy, sz) with e ∈ {r, ry, rz, ryz}. (5.4)

We have furthermore a set of bulk variables that have only vertices at r = 0, that is on

the two-dimensional axis. This axis is topologically a two-torus, and is discretized into

rectangles, which are furthermore subdivided by parallel diagonals into triangles. The

vertices are parametrized by (sy, sz). Here we have the variables

`e(sy, sz) with e ∈ {ϕ, ζ, ϕζ}. (5.5)

5.1 Fourier transform

The regular lattice of the boundary allows us to define a discrete Fourier transform. The

Fourier transform will (block)-diagonalize the Hessians resulting from the Regge action,

which will hugely simplify their analysis. We need to take into account the twist angles

γy and γz in the background geometry (4.2). In the triangulation we incorporate these

twists by rotating the hyper-cylinder by the respective twist angles before gluing it to the

three-torus.

We write the twist angles γi, with i ∈ {y, z}, as

γi =
2π

Nθ
Υi, (5.6)

so that the Υi give the angles in lattice units. We then have the periodicities

`e(sθ, Ny, sz) = `e(sθ −Υy, 0, sz), and `e(sθ, sy, Nz) = `e(sθ −Υz, sy, 0), (5.7)

for the fluctuation variables attached to the boundary.
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We define the Fourier transformation in θ in the usual way

`e(kθ, sy, sz) =
1√
Nθ

∑
sθ

e
−2πi

kθ ·sθ
Nθ `e(sθ, sy, sz) (5.8)

so that the periodicity relations (5.7) are now given by

`e(kθ, Ny, sz) = e−iγykθ`e(kθ, 0, sz), and `e(kθ, sy, Nz) = e−iγzkθ`e(kθ, sy, 0). (5.9)

Thus, the phase shifted variables

`ps
e (kθ, sy, sz) := e

iγykθ
sy
Ny eiγzkθ

sz
Nz `e(kθ, sy, sz) (5.10)

are periodic in the usual way:

`ps
e (kθ, Ny, sz) = `ps

e (kθ, 0, sz), and `ps
e (kθ, sy, Nz) = `ps

e (kθ, sy, 0). (5.11)

We define a ‘twisted’ Fourier transform in all three variables as

`e(kθ, ky, kz) =
1√

NθNyNz

∑
sθ,sy ,sz

e
−2πi(

kθ ·sθ
Nθ

+
vy ·sy
Ny

+ vz ·sz
Nz

)
`e(sθ, sy, sz), (5.12)

where

vy = ky −
γy
2π
kθ, and vz = kz −

γz
2π
kθ. (5.13)

For later use we introduce the abbreviations

ωθ = e
2πikθ
Nθ , ωy = e

2πivy
Ny , and ωz = e

2πivz
Nz . (5.14)

The variables attached to the edges living in the two-dimensional axis `e(sy, sz) depend

only on sy and sz. On the axis the twists have a trivial action and we can therefore just

employ the usual Fourier transform

`e(kθ, ky, kz) =
1√

NθNyNz

∑
sθ,sy ,sz

e
−2πi(

kθ ·sθ
Nθ

+
ky ·sy
Ny

+ kz ·sz
Nz

)
`e(sy, sz). (5.15)

This is consistent with (5.12): as the variables on the axis have no θ dependence, the sum

over sθ leads to an Nθ δkθ,0-factor, so that we can set vy = ky and vz = kz.

6 Zeroth and first order boundary effective actions

Having fixed the triangulation and its background geometry we can now evaluate the Regge

action on solutions to the equations of motion. As the Regge equations are highly non-

linear, we consider an expansion around the chosen background and evaluate the action up

to second order in perturbations.

To this end we split the length variables into le = Le+ `e and expand the Regge action

into zeroth, first, and second order effective actions, SR = S
(0)
R +S

(1)
R +S

(2)
R +O(`3). When
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evaluated on a solution we refer to the Hamilton-Jacobi functional and its various orders:

SR|sol := SHJ = S
(0)
HJ + S

(1)
HJ + S

(2)
HJ +O(`3).

For the zeroth order we have to evaluate the Regge action on the flat background and

therefore only need to consider the boundary term

S
(0)
R |sol = − 1

8πG

∑
t∈∂T

At(Le)ψt(Le), with ψt = π −
∑
σ⊃t

θσt . (6.1)

For the background triangulation we have chosen, the triangles with non-vanishing bound-

ary deficit angles are those that lie on the two-dimensional rectangular faces with side

lengths Y and Z. These rectangular faces are made up of two identical triangles both with

area 1
2Y Z. The deficit angle associated to these triangles is also the same and given by

ψt = 2π
Nθ

. There are 2Nθ ·Ny ·Nz such triangles and so we obtain

S
(0)
R |sol = − 1

8πG
NθNyNz Y Z

2π

Nθ
= − 1

4G
αβ. (6.2)

This gives the zeroth order of the Hamilton-Jacobi functional S
(0)
HJ both for our discretiza-

tion and in the continuum.

The first order variation of the Regge action is given by

δSR = − 1

8πG

[∑
t∈T ◦

(
∂At
∂le

εt

)
`e +

∑
t∈∂T

∑
e⊂t

(
∂At
∂le

ψt

)
`e

]
, (6.3)

where, as in 2, T ◦ and ∂T refer to the bulk and boundary portions of the triangulation

T . On flat solutions εt = 0, and the bulk part vanishes. As before, only those boundary

triangles with non-vanishing extrinsic curvature angle ψt contribute, and once again these

are the triangles in the rectangular faces with side lengths Y and Z. Therefore, we get

S
(1)
HJ =− 1

8GNθ

∑
sθ,sy ,sz

{Z[`y(sθ,sy,sz)+`y(sθ,sy+1,sz)]+Y [`z(sθ,sy,sz)+`z(sθ,sy,sz+1)]}

=− 1

4GNθ

∑
sθ,sy ,sz

{Z`y(sθ,sy,sz)+Y `z(sθ,sy,sz)}

=−
√
NθNyNz

4GNθ
{Z`y(kθ = 0,ky = 0,kz = 0)+Y `z(kθ = 0,ky = 0,kz = 0)} . (6.4)

In section 2 we discussed the fact that there is a notion of (residual) diffeomorphisms

for Regge configurations on a flat background. These diffeomorphisms act by displacing

a vertex in the embedding flat space time. The vertex displacement induces a change of

lengths for the edges adjacent to this vertex. Here we are interested in describing these

displacement induced length changes to first order in the fluctuation variables `e explicitly.

A vertex can be displaced in four directions, which we can identify to be the directions

(in the background geometry) of the radial edges, the edges in the θ-direction and in

the y- and z-directions. A displacement in an orthogonal direction (with respect to the

background geometry) to a given edge will not affect the length of this edge to first order.
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For displacements in the radial and angular directions we therefore have `y = `z = 0. For

displacements in the (negative) y-direction by an amount χy and for displacements in the

(negative) z-direction by an amount χz we obtain

`y(sθ, sy, sz) = χy(sθ, sy, sz)− χy(sθ, sy+1, sz), (6.5)

& `z(sθ, sy, sz) = χz(sθ, sy, sz)− χz(sθ, sy, sz+1) . (6.6)

As the first order of the Hamilton-Jacobi function (6.4) is a sum over these edge lengths,

and because of the periodicity of the y- and z-directions, we have that S
(1)
HJ vanishes for

boundary perturbations that describe (boundary) vertex displacements, that is, for flat

solutions (of the linearized equations of motions). Similarly, one finds in the continuum

that the first order of the Hamilton-Jacobi function is a total divergence if evaluated on

boundary data describing linearized diffeomorphisms [15].

In (6.4) we have used length variables to express the first order of the Hamilton-Jacobi

functional. For the continuum limit it is useful to transform the length variables on the

boundary to metric variables. This transformation is non-linear and this will lead to a

second order contribution to the Hamilton-Jacobi functional in metric variables, coming

from the first order in length variables.

Using the transformation of length variables to metric variables defined in appendix A,

we can express the length variables appearing in S
(1)
HJ up to second order in metric

variables as

`y =
1

2Y
hyy−

1

8Y 3
(hyy)

2+O((hyy)
3), and `z =

1

2Z
hzz−

1

8Z3
(hzz)

2+O((hzz)
3). (6.7)

Introducing rescaled metric variables h′aa = 1
Haa

haa and the shorthand N ≡ NθNyNz, the

part of the Hamilton-Jacobi action that is first order in length variables gives the following

contributions to first and second order in (rescaled) metric variables:

S
(1)
HJ→−

√
N

8GNθ
Y Z

(
h′yy+h′zz

)
|k=0

+
Y Z

32GNθ

∑
kθ,ky ,kz

(
h′yy(k)h′yy(−k)+h′zz(k)h′zz(−k)

)
=− 1√

N

αβ

8G

(
h′yy+h′zz

)
|k=0

+
Y Z

32GNθ

∑
kθ,ky ,kz

(
h′yy(k)h′yy(−k)+h′zz(k)h′zz(−k)

)
, (6.8)

where in the latter equality we have used α = NyY and β = NzZ.

7 The second order of the Regge action

The second order of the Regge action (in length perturbations) is given by

S
(2)
R = −ST ◦ − S∂T +

∑
σ

Sσ (7.1)

where

ST
◦

=
∑
t∈T ◦

∑
e,e′

`e

(
∂2At
∂le∂le′

εt

)
`e′ , S∂T =

∑
t∈∂T

∑
e,e′

`e

(
∂2At
∂le∂le′

ψt

)
`e′ , (7.2)
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and

Sσ =
1

16πG

∑
t

∑
e,e′

`e

(∑
t⊂σ

∂At
∂le

∂θσt
∂le′

)∣∣∣∣∣
le=Le

`e′ . (7.3)

The first, bulk contribution ST
◦

once again vanishes because we work on a flat back-

ground where εt = 0. The second term in (7.1) is a boundary term, whose computation is

very similar to the first order term in (6.4). The only non-vanishing angles are ψt = 2π
Nθ

for

the boundary triangles in the yz-plane, and so we only have to consider the second deriva-

tives of the areas for these triangles. After a Fourier transform, and using the rescaled

length variables ˆ̀
e = Le`e, which turns out to simplify the matrix entries, we have

S∂T =
1

8GNθ

1

Y Z

∑
kθ,ky ,kz

 ˆ̀
y(k)

ˆ̀
z(k)

ˆ̀
yz(k)


t −1 0 1

2(1+ωz)

0 −1 1
2(1+ωy)

1
2(1+ω−1

z ) 1
2(1+ω−1

y ) −1


 ˆ̀

y(−k)
ˆ̀
z(−k)

ˆ̀
yz(−k)

 .
(7.4)

It is much more laborious to determine the last contribution to the second order of the

Regge action in (7.1), which is a sum over contributions Sσ for each four-simplex σ. To

this end one has to compute the Hessian matrix

HTee′ =
∑
σ⊂T

(∑
t⊂σ

∂At
∂le

∂θσt
∂le′

)∣∣∣∣∣
le=Le

=
∑
σ⊂T

Hσ
ee′ |le=Le . (7.5)

We broke this calculation into the following steps:

• Evaluate the Hessian matrices Hσ
ee′ on the geometry of each four-simplex in one

hyper-prism.

• Add these Hessian matrices to obtain the Hessian associated to the hyper-prism.

To this end, length variables that define the same variable in the hyper-prism were

identified with each other.

• ‘Glue’ the Hessians of the hyper-prisms to get the Hessian of the full triangulation.

The Fourier transformation (5.12) block diagonalizes the Hessian for the full triangu-

lation. This allows us to consider the blocks labeled by the momenta (kθ, ky, kz). For

kθ > 0 each block HTee′(kθ, ky, kz) is a (4+7)× (4+7) matrix, with e ∈ {r, ry, rz, ryz}
labeling the bulk edges and e ∈ {θ, y, z, θy, θz, θyz} labeling the boundary edges.

For kθ = 0 we have three additional rows and columns due to the edges on the

two-dimensional inner axis, labelled by e ∈ {ϕ, ζ, ϕζ}.

• Compute the effective actions by integrating out all bulk edges except for the radial

edges with e = r. The latter are not integrated out because we want to understand

the variables `r associated to these edges as boundary fields. This integration process

starts with the variables e ∈ {ϕ, ζ, ϕζ} on the two-dimensional axis. There are two

gauge modes at kθ = 0, which arise from the vertex displacement symmetry of the

bulk vertices along this two-dimensional axis. However, this does not matter for

evaluating the action on the solutions — by definition the value of the action is
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constant along the gauge orbit. Similarly, we will have one gauge mode for kθ = 1

and for kθ = −1 arising from the vertex displacement symmetry of the bulk vertices

in the directions orthogonal to the two-dimensional axis. We will deal in more detail

with these gauge symmetries in section 15, where we compute the path integral to

one-loop order. After integrating out the axis variables we proceeded to integrate

out the diagonals and hyper-diagonals in the bulk, the edges with e ∈ {ry, rz, ryz}.
Finally, to compute the second order of the Hamilton-Jacobi functional we integrate

out the radial variables, see section 11.

The Hessian matrices appearing at the different stages of the integration process ex-

hibit a particular scaling in the background variables. We use this scaling to redefine our

variables and simplify the matrices. Furthermore, for the Hamilton-Jacobi action, as well

as for the effective action for the ‘radial’ boundary field, we transform the length variables

to metric variables. This again simplifies the expressions and the (interpretation of the)

continuum limit.

8 Computation of the second order boundary effective action

The most time consuming part of the work is the computation of the second order of the

Regge action and the second order of the boundary effective action. To deal with the

very lengthy expressions that can appear at intermediate stages, and will therefore not be

displayed here, we have used Mathematica. This section collects a number of definitions and

elaborations that will allow us to explain and interpret the results of these computations.

To begin with it is convenient to introduce various variable re-scalings in section 8.1.

We will also transform the boundary length variables to boundary metric variables, which

will simplify the continuum limit.

To ease the interpretation of the results we will introduce a basis of geometrically

motivated modes for the boundary metric in subsection 8.4. This allows us to project onto

the flat sector, that is, the boundary metrics that induce a flat solution, and to define the

mode describing the boundary graviton. To find these geometrically motivated modes we

have to identify how diffeomorphisms act on the bulk and boundary variables, which we do

in subsections 8.2 and 8.3. Finally, subsection 8.5 explains how to obtain the continuum

limit from the discrete expressions.

8.1 Variable transformations and scalings

The Hessian Hpr for the hyper-prism simplifies if we introduce the rescaled variables

ˆ̀
e = Le `e (8.1)

and extract a pre-factor: we define

Hpr =
1

24Vσ
diag({Le}e) ·Mpr · diag({Le}e), (8.2)

here Vσ = ΘRY Z
24

√
1− x

2 , with x ≡ Θ2

2R2 = 1− cos 2π
Nθ

, is the four-volume of a four-simplex

in the triangulation. (The volumes are the same for all types of four-simplices.)
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After having integrated out all bulk variables except for the radial ones we transform

the length variables on the boundary to metric variables. There are seven length variables

per boundary vertex, but only six metric variables. The additional length variable is

given by the length fluctuation of the hyper-diagonal of the cuboids. This redundancy is

dealt with by finding a transformation that completely decouples the lengths of the hyper-

diagonals from the remaining variables. Interestingly, this transformation is the same as

for the computation of the 3D Regge action on a cuboid lattice [58, 59] and given by



hθθ
hyy
hzz
hθy
hθz
hyz
hθyz


=



2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

−1 −1 0 1 0 0 0

−1 0 −1 0 1 0 0

0 −1 −1 0 0 1 0
1
2(ωy + ωz)

1
2(ωθ + ωz)

1
2(ωθ + ωy) −1

2(1 + ωz) −1
2(1 + ωy) −1

2(1 + ωθ) 1


·



ˆ̀
θ

ˆ̀
y

ˆ̀
z

ˆ̀
θy

ˆ̀
θy

ˆ̀
yz

ˆ̀
θyz


. (8.3)

In appendix A we explain in more detail the transformation from length to metric variables.

(Definitions of the Fourier phases ωθ, ωy, and ωz are given in eq. (5.14).) Finally we apply

a further rescaling to the radial and the boundary metric variables:

h′ab =
1√

HaaHbb
hab , h′θyz =

1

ΘY Z
hθyz , and `′r =

1

Θ2
ˆ̀
r =

R2

Θ2
`r =

1

2x
`r, (8.4)

where Hab = diag(Θ2, Y 2, Z2) is the boundary background metric.

We then express the effective action for the radial boundary field as

Seff
r =

1

16πG

V 2
cube

24Vσ

∑
kθ,ky ,kz

 `′r(k)

h′(k)

h′θxy(k)


t

◦

Mrr(k) (B(k))t 0

B(−k) Mh(k) 0

0 0 Mθyz(k)

 ◦
 `′r(−k)

h′(−k)

h′θyz(−k)


(8.5)

where (h′)t = (h′θθ, h
′
yy, h

′
zz, h

′
θy, h

′
θz, h

′
yz) summarizes the boundary metric variables. We

use the circle product ◦ to denote the multiplication of boundary metric vectors f ′ and g′

such that

(f ′)t ◦ g′ :=
∑
a

f ′aag
′
aa + 2

∑
a<b

f ′abg
′
ab , (8.6)

where a and b take values in {θ, y, z} and are ordered according to θ < y < z. This

convention reproduces the usual inner product for metric fluctuations.

The three-volume of a cuboid in the boundary lattice is Vcube = ΘY Z, and so the

pre-factor is

V 2
cube

24Vσ
=

ΘY Z

R
√

1− x
2

=
ΘY Z

R
√

1− Θ2

4R2

. (8.7)
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Finally, we introduce short hands for various (rescaled) difference operators, which will

appear in Mrr and Mh:

ωθ = e
2πikθ
Nθ , ωy = e

2πivy
Ny , ωz = e

2πivz
Nz ,

dθ =
1− ωθ

Θ
, dy =

1− ωy
Y

, dz =
1− ωz
Z

,

d∗θ =
1− ω−1

θ

Θ
, d∗y =

1− ω−1
y

Y
, d∗z =

1− ω−1
z

Z
,

∆θ = dθd
∗
θ , ∆y = dyd

∗
y , ∆z = dzd

∗
z . (8.8)

8.2 Bulk diffeomorphisms

As explained in section 2, linearized Regge calculus on a flat background exhibits gauge

symmetries that are discrete remnants of diffeomorphism symmetry. Indeed, in [36, 37] it is

shown that the null modes of the quadratic action for linearized Regge calculus on a regular

cubic lattice represent a discretization of the spin 1 modes of the metric degrees of freedom.

To identify these null modes one considers a displacement of the vertex in the embed-

ding flat geometry and computes the induced change of the length variables of the adjacent

edges to first order in the displacement parameter (e.g. the lengths of the displacement in

the background geometry). See [15] for explicit computations in the 3D context, which

motivated the 4D example considered here.

The gauge degrees of freedom are associated to the bulk vertices. In our example

we only have bulk vertices on the two-dimensional axis. The vertices of this axis can be

displaced in the radial, the angular, and the y and z directions. The last two displacements

only effect the kθ = 0 modes of the various bulk variables and are given by

(n
ˆ̀
y(k))t =

(
0, ωy, 0, ωyωz,

1√
Nθ

(ωy − 1), 0,
1√
Nθ

(ωyωz − 1)

)
(8.9)

(n
ˆ̀
z(k))t =

(
0, 0, ωz, ωyωz, 0,

1√
Nθ

(ωz − 1),
1√
Nθ

(ωyωz − 1)

)
(8.10)

with the entries in the order (ˆ̀
r, ˆ̀

ry, ˆ̀
rz, ˆ̀

ryz, ˆ̀
ϕ, ˆ̀

ζ , ˆ̀
ϕζ). The radial variables are not

affected as the radial edges are orthogonal to the axis. The diagonals with an r-component

change by a θ-independent amount; this is the reason why this gauge symmetry only

involves the kθ = 0 mode.

Finally, there is the displacement of the bulk vertices orthogonal to the axis, that is,

in the rθ-plane. This displacement will leave the axis variables unaffected. The change in

the radial variables can be found by considering a central vertex in a disk connected by

Nθ equally distributed edges to the boundary of the disk: we parametrize this boundary

by θ ∈ [0, 2π). Displacing the central vertex, e.g. along the θ = 0 line, induces a change in

the lengths of these edges proportional to cos(θ). For a displacement along the θ = π/2

line we obtain a change proportional to sin(θ). Hence this gauge symmetry involves only

the kθ = +1 and kθ = −1 modes and is given by

(n
ˆ̀
±1(k))t = (1, ωy, ωz, ωyωz, 0, 0, 0) . (8.11)
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These gauge symmetries can easily be fixed and do not present a problem for com-

puting the effective action. However, they do need to be considered more carefully for the

computation of the one-loop determinant in section 15.

8.3 Diffeomorphisms affecting the boundary

Similarly to the vertex displacements of the bulk vertices, we can consider vertex displace-

ments of the boundary vertices. Applying such a vertex displacement to a flat solution will

not change its flatness. Thus, considering how these vertex displacements affect the bound-

ary metric, we will identify the space of boundary conditions that lead to flat solutions.

This will allow us to split the boundary conditions into two sets: a flat sector that entails

flat solutions, and a curved sector that leads to solutions with curvature, i.e. non-vanishing

deficit angles.

The vertex displacements tangential to the boundary itself are described by the fol-

lowing vectors (in the rescaled boundary metric variables h′e):

(nh
′
θ (k))t = (−2d∗θ, 0, 0, dy, dz, 0) ,

(nh
′
y (k))t = (0,−2d∗y, 0, dθ, 0, dz) ,

and (nh
′
z (k))t = (0, 0,−2d∗z, 0, dθ, dy) , (8.12)

where the entries are given in the order (h′θθ, h
′
yy, h

′
zz, h

′
θy, h

′
θz, h

′
yz).

One could expect that the quadratic part of the Hamilton-Jacobi function has these

boundary diffeomorphisms as null vectors. However, this is not the case in general. The

reason is that there is a non-vanishing first order term in the Hamilton-Jacobi function.

To make the first order term invariant under diffeomorphisms to higher than linear order

requires ‘compensating’ terms in the second order part, and these will, in general, appear

as boundary diffeomorphism violating terms.

Below we will see that the matrix Mh in (8.5) as well as the Hamilton-Jacobi action

in section 11 have two parts with different scalings in x = Θ2/2R2, and hence in the

background radius R of the solid three-torus. The part that dominates for large R is

invariant under diffeomorphisms tangential to the boundary. In addition MHJ has the

boundary diffeomorphisms in y and z direction as null vectors.

Finally, we have vertex displacements on the boundary in the radial direction. These

are described by the vector

(nh
′
r (k))t =

(
21+ωθ

Θωθ
, 0, 0,−dy,−dz, 0

)
=
(

4
Θ , 0, 0, 0, 0, 0

)
− (nh

′
θ (k))t. (8.13)

8.4 Projections on flat and curved solutions

Boundary metric perturbations induce either a flat solution or a solution with curvature.

The space of boundary metrics hab that induces flat solutions is spanned by the vectors

describing the boundary diffeomorphisms (8.12) and the radial diffeomorphisms (8.13). To

define an orthogonal subspace to these metrics, we specify an inner product on the space
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of boundary metric perturbations. The inner product is defined for each mode (kθ, ky, kz)

separately:

〈h1 , h2〉(k) =
∑
a,b,c,d

h1
ab(k) 1

2

(
HacHbd +HadHbc

)
h2
cd(−k), (8.14)

where Hab = diag(Θ−2, Y −2, Z−2) is the inverse of the boundary background metric. With

the rescaled variables h′ab =
√
HaaHbbhab we can write this inner product as

〈h1 , h2〉 =
∑
a

h′1aah
′2
aa + 2

∑
a<b

h′1abh
′2
ab =: (h′1)t ◦ h′2, (8.15)

using again the convention defined in (8.6).

The boundary and radial diffeomorphisms are not orthogonal to each other, nor are

the different types of boundary diffeomorphisms mutually orthogonal. To build a projector

onto the space spanned by each of these diffeomorphisms we would have to go through an

orthonormalization procedure for the corresponding vectors. However, there is a short cut

— we use the spin projectors for the background geometry of the boundary.

The background boundary geometry is flat and we can simply define the spin 0, spin

1, and spin 2 projectors. These projectors are generally useful, e.g. the quadratic action

for 3D gravity on a flat background can be written as a sum of the spin 0 and spin 2

projectors. This is possible because of the rotational symmetry of the background. Here,

although the background boundary metric has the same symmetry, its embedding into the

4D spacetime breaks the symmetry and, indeed, the boundary effective action will not be

a sum of spin projectors.

Nevertheless, the projectors are quite useful: the spin 1 projector determines the space

of diffeomorphisms tangential to the boundary. We use this projector to construct the

diffeomorphism component in the radial direction, which is orthogonal to the tangential

boundary diffeomorphisms. This allows us to construct a projector onto the orthogonal

part of the radial diffeomorphisms. The remaining vector space of dimension two is spanned

by boundary fluctuations inducing curved solutions.

These projectors can also be defined on a lattice of rectangular cuboids [60], which we

are using for the boundary discretization. In this context, the spin 1 projector describes

the discrete boundary diffeomorphisms, which are also symmetries of the linearized three-

dimensional Regge action [58, 59].

The discrete projectors on the space of rescaled boundary fluctuations h′ab are given by

Π
(0)
ab cd =

1

2

(
δab + (1− δab)

d∗ad
∗
b

∆
− δab

dad
∗
b

∆

)(
δcd + (1− δcd)

dcdd
∆
− δcd

d∗cdd
∆

)
,

Π
(2)
ab cd =

1

2
((1− δab) + δabωb)((1− δcd) + δcdω

−1
d )

×
((

δac −
d∗adc
∆

)(
δbd −

d∗bdd
∆

)
+

(
δad −

d∗add
∆

)(
δbc −

d∗bdc
∆

))
−Π

(0)
ab cd,

and Π
(1)
ab cd = Iab cd −Π

(2)
ab cd −Π

(0)
ab cd, (8.16)
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where Iab cd = 1
2(δacδbd + δadδbc) is the identity on the space of symmetric tensors of rank

two. We have abbreviated ∆ = ∆θ + ∆y + ∆z.

The image of the spin 1 projector is spanned by vectors

vcab(k) = δcadb(δab + (1− δab)ωa) + δcbda(δab + (1− δabωb)), (8.17)

which, modulo a phase, agree with the diffemorphisms tangential to the boundary described

in section 8.3.

These discrete projectors satisfy the usual requirements for orthogonal projectors, that

is, Π(i)◦Π(j) = δijΠ(j). As discussed above we can use these projectors to construct a vector

V ⊥. This (normalized) vector describes a metric perturbation leading to a flat solution, but

is orthogonal to the fluctuations induced by diffeomorphisms tangential to the boundary.

Therefore V ⊥ can be identified with the boundary graviton mode.

With V ⊥ in hand, we can construct the projector Πcurv onto the space of boundary

metric fluctuations that induce curved solutions:

(V ⊥(k))t =
1

∆

(
(∆y + ∆z),

∆y∆θ

∆y + ∆z
,

∆z∆θ

∆y + ∆z
, dydθ, dzdθ, −

∆θdydz
∆y + ∆z

)
,

Π⊥ab cd = V ⊥(−k)ab V
⊥(k)cd ,

and Πcurv
ab cd = Π

(0)
ab cd + Π

(2)
ab cd −Π⊥ab cd. (8.18)

In fact, Πcurv does project on a two-dimensional subspace of boundary conditions inducing

solutions with curvature. According to the last line in (8.13), which shows that the space

of flat solutions includes vectors of the form vab = δθaδ
θ
b , the projector Πcurv has vanishing

entries in the θθ-row and θθ-column. The curved sector, then, is spanned by the following

(orthonormalized) basis:

(W curv(k))t =
1

∆y+∆z
(0,∆z,∆y,0,0,dydz), and

(Xcurv(k))t =
1√

2∆(∆y+∆z)
(0,2d∗θd

∗
yd
∗
z,−2d∗θd

∗
yd
∗
z,d
∗
z(∆y+∆z),−d∗y(∆y+∆z),d

∗
θ(∆y−∆z)).

(8.19)

We will also need the part of the angular diffeomorphisms that is orthogonal to the

diffeomorphisms in the y- and z-directions. The corresponding normalized vector is

(Uadiff(k))t =

√
2∆−∆θ

2∆

(
(nh

′
θ (k))t −

d∗θdy
2∆−∆θ

(nh
′
y (k))t −

d∗θdz
2∆−∆θ

(nh
′
z (k))t

)
. (8.20)

8.5 Continuum limit

Our chosen triangulation is well-adapted to taking a continuum limit on the boundary.

Define edge lengths by

Θ = εΘ0, Y = εY0, and Z = εZ0,

and take the limit ε → 0 while increasing Nθ, Ny, and Nz, so that 2πR, α, and β stay

constant. Then we have

2π

Nθ
= arccos(1− x) =

Θ0

R
ε+O(ε3),

2π

Ny
=

2πY0

α
ε, &

2π

Nz
=

2πZ0

β
ε, (8.21)
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and thus

dθ = − 2πi

2πR
kθ +O(ε) , dy = −2πi

α
vy +O(ε) , & dz = −2πi

β
vz +O(ε). (8.22)

Taken as operators, the da are diagonal in the Fourier basis and (8.22) gives the eigenval-

ues for these operators. To match the da to differential operators in the continuum, we

introduce coordinates (see (4.1) for our original continuum metric and coordinates)

tθ =
R

Θ0
θ , ty =

1

Y0
y , & tz =

1

Z0
z , (8.23)

so that tθ ∈ [0, 2πR/Θ0), ty ∈ [0, α/Y0) and tz ∈ [0, β/Z0). The continuum background

(boundary) metric is then Hcont
ab = diag(Θ2

0, Y
2

0 , Z
2
0 ). We define the continuum Fourier

transform as

f(kθ, ky, kz) =

√
Θ0Y0Z0

2πRαβ

∫
dtθdtydtzf(tθ, ty, tz)e

−2πi
(

Θ0
2πRkθtθ+

Y0
α vyty+

Z0
β vztz

)
, (8.24)

with ka ∈ Z. To have a matching spectrum, at least for ka � Na, between the discrete

and continuum operators, we have to identify:

da → −
1√
Hcont
aa

∂a , d∗a →
1√
Hcont
aa

∂a , and ∆a → −
1

Hcont
aa

∂a∂a. (8.25)

Now the difference operators da, d
∗
a, and ∆a we have introduced, have a straightforward

translation into the continuum theory. We will see that — apart from global pre-factors

— the only remaining ε-dependent quantity that we will encounter in Mh is Θ = Θ0ε.

These terms, with Θ or Θ2 factors (and no accompanying 1/x ∼ 1/Θ2), will vanish in the

continuum limit.

Another length variable that will appear explicitly in the Hamilton-Jacobi action is

the radius R, it appears via Θ2

2x = R2. The Hamilton-Jacobi action will have terms that

either scale with R+1 or with R−1, and we will be most interested in the terms with the

dominant R scaling.

9 Effective action for the radial field with |kθ| ≥ 2

We will now detail the effective action for the radial length variables, as defined in (8.5):

Seff
r =

1

16πG

V 2
cube

24Vσ

∑
kθ,ky ,kz

 `′r(k)

h′(k)

h′θxy(k)


t

◦

Mrr(k) (B(k))t 0

B(−k) Mh(k) 0

0 0 Mθyz(k)

 ◦
 `′r(−k)

h′(−k)

h′θyz(−k)

 .

(9.1)

Integrating out the radial length variables `′r we will obtain the Hamilton-Jacobi action as a

functional of the boundary metric variables h′, including the hyper-diagonal variable h′θyz.

In this subsection we will assume that |kθ| ≥ 2. We will consider the cases kθ = 0 and

kθ = ±1 in the next subsection 13.
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The matrix Mh, which describes the boundary-boundary couplings, splits into two

terms with different scaling behaviour in R,

Mh = R2M
(R2)
h +M

(R0)
h =

Θ2

2x
M

(R2)
h +M

(R0)
h . (9.2)

To extract this scaling we only consider explicit dependencies on R via x = Θ2/(2R2).

There is also an indirect dependence on R via ∆θ(kθ) = 2 − 2 cos(2πkθ/Nθ) and the fact

that Nθ is fixed by the relation x = 1− cos(2π/Nθ). In particular, 1/∆θ = R2 for kθ = ±1.

Thus, in order to conclude that M (R2) dominates in the large radius limit, we should

assume that |kθ| � 1.

We will perform an analysis of the 1/∆θ terms in section 13, and show that the

1/∆θ terms in Mh are cancelled by matching terms arising from integrating out the radial

length fluctuations. Thus, if we take all these terms together, we do not have 1/∆θ terms,

from which an additional positive R scaling can arise. For this analysis we assume that

∆y + ∆z 6= 0; we will discuss the zeroes of ∆y + ∆z in section 14.

It turns out that M (R2) has quite a simple structure. It is invariant under the tangential

boundary diffeomorphisms, which manifests itself through the corresponding vectors being

null vectors of M (R2). A left and right projection with Π⊥ annihilates this matrix:

Π⊥ ◦ M (R2)
h ◦ Π⊥ = 0. (9.3)

This shows that the Hamilton-Jacobi action, evaluated on (linearized) flat solutions, does

not have a contribution from M
(R2)
h . Indeed, we will see that the terms with the dominant

R scaling arise from integrating out the radial length variables. In this sense, the radial

length variables will define a ‘dual’ boundary field, whose integration gives the dominant

contribution to the Hamilton-Jacobi action for flat solutions.

With the basis vectors we introduced in (8.18)–(8.20), the matrix M
(R2)
h is given by

M
(R2)
h (k) =

∆

8

(
Xcurv
− Xcurv

+ − V ⊥−W curv
+ −W curv

− V ⊥+

)
, (9.4)

where the ±-subindices stand for A− = A(−k) and A+ = (A(k))t. Note that(
Xcurv
− Xcurv

+ − V ⊥−W curv
+ −W curv

− V ⊥+

)
= (Π(2) −Π(0)), (9.5)

where Π(i) are the discrete spin projectors introduced in (8.16). Now (Π(2) − Π(0)) is

also the combination of projectors that appears in the second order expansion of the 3D

Einstein-Hilbert action (or the Regge action in a discretization [60]) on a flat background:

ΘY Z
∑

(h′(k))t ◦M (R2)
h (k) ◦ h′(−k) =

1

2

[∫ √
hR d3x

](2)

. (9.6)

Thus, it is M
(R2)
h that leads to a contribution to the Hamilton-Jacobi action that is pro-

portional to the integrated Ricci-scalar of the boundary metric.
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For the sub-leading term M
(R0)
h we find a much more involved expression:

M
(R0)
h (k) =

∆

16

(
8

(∆+3∆θ)
−Θ2

)
Xcurv
− Xcurv

+ +
1

16

(
1− ∆

∆θ

)
W curv
− W curv

+

+
∆

16

(
Θ2− 2

∆θ
−2

∆−∆θ

∆2
ω∗θ

)
V ⊥−W

curv
+ +

∆

16

(
Θ2− 2

∆θ
−2

∆−∆θ

∆2
ωθ

)
W curv
− V ⊥+

+
(∆−∆θ)

8

(
Θ2− 2

∆θ
− 2

∆
+

∆θ

∆2

)
V ⊥− V

⊥
+

+

√
2∆−∆θ

8∆
(d∗θ−dθ)ωθUadiff

− W curv
+ +

√
2∆−∆θ

8∆
(dθ−d∗θ)ω∗θW curv

− Uadiff
+

+
1

8

√
2∆−∆θ

∆2

(
Θ(∆−∆θ)

2−(2∆−∆θ)(dθ−d∗θ)
)
ωθU

adiff
− V ⊥+

+
1

8

√
2∆−∆θ

∆2

(
Θ(∆−∆θ)

2−(2∆−∆θ)(d
∗
θ−dθ)

)
ω∗θV

⊥
− U

adiff
+

+
1

4

(
2− 3∆θ

∆
−

∆2
θ

∆2

)
Uadiff
− Uadiff

+ . (9.7)

As explained in section 8.5 these expressions can be straightforwardly translated to the

continuum. The difference operators da, d
∗
a, and ∆ translate into rescaled differential oper-

ators as detailed in (8.25). Terms with Θ or Θ2 pre-factors vanish in the continuum limit

and ωθ and ω∗θ → 1.

Next we consider the terms that give the action for the radial variables `′r. The diagonal

coefficient Mrr is

Mrr = 2x

(
Θ2 − 2x

∆θ

)
(∆y + ∆z) , (9.8)

whereas the Mrh entries are

(B(k))t =−1

4

(
Θ2− 2x

∆θ

)
(2(∆y+∆z) , (2∆θ+∆z) , (2∆θ+∆y) , 2dθdy , 2dθdz , dydz )

=−1

4

(
Θ2− 2x

∆θ

)(
2∆V ⊥+ +(∆+∆θ)W

curv
+

)
. (9.9)

Note that, apart from the pre-factor, the entries of the vector B are local (i.e. do not

involve inverse Laplacians), whereas the vector V ⊥, describing the boundary-orthogonal

diffeomorphisms, is non-local, even after multiplying it with the Laplacian. The added

part from the curvature sector is such that it restores the locality of the B-vector.

Finally, the hyper-diagonal variables’ contribution is described by

Mθyz = −1

2

(
Θ2 − 2Θ2

2x

)
. (9.10)

10 Effective action for the kθ = 0 and kθ = ±1 modes

The modes kθ = 0 and kθ = ±1 are subject to gauge symmetries. The corresponding null

vectors are discussed in section 8.2. For kθ = 0 we have two null vectors, and hence we
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expect two gauge parameters. These gauge parameters can be chosen as ˆ̀
ϕ and ˆ̀

ζ and

one therefore only needs to integrate out ˆ̀
ϕζ and (ˆ̀

ry, ˆ̀
rz, ˆ̀

ryz) to find the radial effective

action. With the same notation as in (9.1) we have

Mrr(kθ = 0) = 2xΘ2

(
8x

Θ2
+ ∆y + ∆z

)
. (10.1)

The off-diagonal term (r − h) is given by

(B(kθ = 0))t = −1

4
Θ2

(
2

(
8x

Θ2
+ ∆y + ∆z

)
, ∆z , ∆y , 0 , 0 , dydz

)
= −1

4
Θ2

[
2

(
8x

Θ2
+ ∆y + ∆z

)
V ⊥+ + (∆y + ∆z)W

curv
+

]
(10.2)

and for Mh we find

Mh(kθ = 0) =
Θ2

2x

(∆y + ∆z)

8

(
Xcurv
− Xcurv

+ − V ⊥−W curv
+ −W curv

− V ⊥+

)
− Θ2(∆y + ∆z)

16

(
Xcurv
− Xcurv

+ − V ⊥−W curv
+ −W curv

− V ⊥+

)
+

Θ2

8

(
8

Θ2
+ ∆y + ∆z

)
V ⊥− V

⊥
+ +

1

2

(
Xcurv
− Xcurv

+ + Uadiff
− Uadiff

+

)
+

1

8
Θ
√

2(∆y + ∆z)
(
V ⊥− U

adiff
+ + Uadiff

− V ⊥+

)
. (10.3)

Finally, we have for the hyper-diagonal contribution

Mθyz(kθ = 0) = −1

2

(
Θ2 − 2Θ2

2x

)
, (10.4)

as for general kθ.

For kθ = +1 and for kθ = −1 we have one null eigenvector. The gauge parameter can

be identified with the radial fluctuation `′r. Integrating out all the bulk variables, except the

radial ones, we find that Mrr(kθ = ±1) and B(kθ = ±1) vanish. This result, as well as Mh

and Mθyz, can be found by setting ∆θ(kθ = ±1) = 2x
Θ2 in the formulas for the general case.

11 The Hamilton-Jacobi functional

Integrating out the radial variable `′r we arrive at the Hamilton-Jacobi action, which is a

functional of the boundary metric. There are five contributions to the Hamilton-Jacobi

action:

1. The term Mh, detailed in (9.4) and (9.7), is the boundary-boundary part of the radial

effective action. According to (8.5)–(8.7) this leads to the following contribution to

the Hamilton-Jacobi action

S
(2)
HJa =

1

16πG

ΘY Z

R
√

1− Θ2

4R2

∑
k

(h′(k))t ◦
(
R2M

(R2)
h +M

(R0)
h

)
◦ h′(−k). (11.1)
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2. Integrating out the radial variables, we obtain a matrix

Nh(k) =− 1

Mrr
B(−k)(B(k))t

=− 1

16

(
R2− 1

∆θ

)
1

∆−∆θ

(
4∆2V ⊥− V

⊥
+ +(∆+∆θ)

2W curv
− W curv

+ +

2∆(∆+∆θ)
(
V ⊥−W

curv
+ +W curv

− V ⊥+

))
, (11.2)

which comes with two different scalings with R, and gives rise to the contribution

S
(2)
HJb =

1

16πG

ΘY Z

R
√

1− Θ2

4R2

∑
k

(h′(k))t ◦
(
R2N

(R2)
h +N

(R0)
h

)
◦ h′(−k). (11.3)

3. Transforming the first order in length variables of the Hamilton-Jacobi action (6.8)

to metric variables gives the following second order contribution in metric variables:

S
(2)
HJc =

Y Z

32GNθ

∑
kθ,ky ,kz

(
h′yy(k)h′yy(−k) + h′zz(k)h′zz(−k)

)
=

Y Z

32G

(
Θ

2πR
+O

(
1
R3

)) ∑
kθ,ky ,kz

(
h′yy(k)h′yy(−k) + h′zz(k)h′zz(−k)

)
, (11.4)

where we used the relation Θ2

2R2 = 1− cos( 2π
Nθ

) to express Nθ as a function of R.

This term is not invariant under boundary diffeomorphisms in the y- and z-directions.

As mentioned above, this is due to having a non-vanishing first order for the Hamitlon-

Jacobi action. To make these invariant under diffeomorphisms to second order re-

quires compensating second order terms.

4. Another contribution is S∂T as computed in (7.4). Transformed to the rescaled

boundary metric variables h′ we obtain

S
(2)
HJd =S∂T

=− Y Z
64G

(
Θ

2πR
+O

(
1
R3

)) ∑
kθ,ky ,kz

 h′yy(k)

h′zz(k)

h′yz(k)


t

·

 Y 2∆z Y d∗y+Zdz−2 2Y dz
Y dy+Zd∗z−2 Z2∆y 2Zdy

2Y d∗z 2Zd∗y 8

·
 h′yy(−k)

h′zz(−k)

h′yz(−k)



→ Y Z

32G

Θ

2πR

∑
kθ,ky ,kz

 h′yy(k)

h′zz(k)

h′yz(k)


t

·

 0 1 0

1 0 0

0 0 −4

·
 h′yy(−k)

h′zz(−k)

h′yz(−k)

 . (11.5)

The last line gives the terms that survive the continuum limit. As for the previous

contribution S
(2)
HJc, this term is not invariant under boundary diffeomorphisms in the

y- and z-directions, nor is the sum of the two contributions S
(2)
HJc + S

(2)
HJd.

5. The last contribution comes from the hyper-diagonal variables h′θyz:

S
(2)
HJe =

1

16πG

ΘY Z

R
√

1− Θ2

4R2

(
R2 − 1

2Θ2
)∑

k

h′θyzh
′
θyz. (11.6)
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This seems to have a similar scaling behavior to the first two contributions. However,

we have defined h′θyz = 1
ΘY Zhθyz, whereas for the standard metric variables we have

h′ab = 1√
HaaHbb

hab with hθyz and hab having the same scaling dependence on the

(rescaled) length perturbations ˆ̀
e = Le`e. Thus, in the continuum limit, where

Θ = εΘ0, Y = εY0, and Z = εZ0, with R constant, the R2 term will a priori dominate

over the other contributions.

We will therefore assume that the length perturbations for the hyper-diagonal are

chosen such that h′θyz = 0, and that this contribution is vanishing. Indeed, the hyper-

diagonal is a spurious variable, which does not have a representation in the continuum

geometry, and as we have seen, can be decoupled from the remaining variables. We

can thus interpret the condition that h′θyz falls off (sufficiently) fast, as a requirement

on the discrete geometry such that it will allow for a sensible continuum limit.

We can expand the action for large radii R as (assuming |kθ| � 1)

S
(2)
HJ = R (S

(2)
HJ)(R1) +

1

R−1
(S

(2)
HJ)(R−1) +O( 1

R3 ). (11.7)

Assuming that the condition above on the hyper-diagonal fluctuations holds, the terms

that dominate in the large R limit come only from the S
(2)
HJa and S

(2)
HJb contributions:

(S
(2)
HJ)(R1) =

1

16πG

ΘY Z

4

∑
k

(
− ∆2

(∆−∆θ)

(
v(k)v(−k) +

1

2
v(k)w(−k) +

1

2
w(k)v(−k)

)
+

1

2
∆x(k)x(−k)− 1

4

(∆ + ∆θ)
2

(∆−∆θ)
w(k)w(−k)

)
, (11.8)

where we expanded the boundary metric fluctuation as h′ = vV ⊥+wW curv+xXcurv+Dbdiff ,

with Dbdiff being an element in the subspace spanned by the diffeomorphisms tangent to

the boundary.

If we further restrict to boundary conditions that induce flat solutions, we obtain only

one contribution, which results from integrating out the radial field:

(S
(2)
HJ)(R1)

|flat = − 1

16πG

ΘY Z

4

∑
k

∆2

(∆y + ∆z)
v(k)v(−k). (11.9)

Again, this part of the Hamilton-Jacobi function can be reproduced if we restrict to

flat boundary conditions, via a boundary field theory with action

Sbf =
RΘY Z

16πG

∑
k

(
`′r(k)(∆y+∆z)`

′
r(−k)+`′r(k)(b(k))t◦h′(−k)+`′r(−k)(h′(k))t◦b(−k)

)
,

(11.10)

where

(b(k))t = −1

4
(2 (∆y + ∆z) , (2∆θ + ∆z) , (2∆θ + ∆y) , 2dθdy , 2dθdz , dydz )

= −1

4

(
2∆(V ⊥(k))t + (∆ + ∆θ)(W

curv(k))t
)
. (11.11)
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Note that

(a(k))t := ((∆y + ∆z) , (∆θ + ∆z) , (∆θ + ∆y) , dθdy , dθdz , dydz)

= ∆
(

(V ⊥(k))t + (W curv(k))t
)

(11.12)

agrees, on the flat sector, with a multiple of b

b(k)|flat = −1

2
a(k)|flat. (11.13)

The boundary metric fluctuation a(k) arises from a discretization10 of the first order ex-

pansion of the Ricci scalar density
√
hR, see appendix B.

12 The boundary action

We thus come to the main result of our paper: restricted to the flat sector the discrete

action (11.10) coincides with a discretization of the second order expansion of the following

continuum action for a boundary field ρ

Scbf =
R

16πG

∫
d3x
√
h (−ρ(hyy∇y∇y + hzz∇z∇z)ρ−R ρ) . (12.1)

The expansion is around ρ = 0 and around the flat boundary metric hab = Hab =

diag(Θ2, Y 2, Z2).

This effective action can be taken to describe the dynamics for flatly embeddable

deformations of the boundary, that is, for boundary gravitons. It is quite similar to an

analogous action for three-dimensional gravity on a region with the topology Disk × S1.

There one had also a degenerate kinematical term, as well as a coupling of the scalar field

to the boundary Ricci-scalar.

Note that the degenerate kinematical term can be obtained by assuming a quadratic

form Qab = Kab − habK for the second derivatives. For the background four-metric

Gµν = (1, Θ2

R2 r
2, Y 2, Z2) and the hyper-surface r = R, we have Qab = − 1

Rdiag(0, Y −2, Z−2),

so that

Qab∇a∇b = − 1

R
(hyy∇y∇y + hzz∇z∇z). (12.2)

The 1/R factor can be absorbed by a rescaling of ρ by R.

10This discretization satisfies a consistency requirement, namely that the vector a is orthogonal to the

diffeomorphisms tangent to the boundary, as one would expect from a quantity resulting from the dis-

cretization of a scalar density.
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13 Hamilton-Jacobi functional contributions from the kθ = 0 and

kθ = ±1 modes

The contribution to the Hamilton-Jacobi action from the kθ = 0 modes can be computed

straightforwardly and yields

S
(2)
HJ(kθ = 0)

=
1

16πG

ΘY Z

R
√

1− Θ2

4R2

∑
ky ,kz

(
(h′(k))t◦Qh(k)◦h′(−k)+h′θyz(k)Mθyz(k)h′θyz(−k)

)
|kθ=0

(13.1)

with

Qh(k) =
∆

16
Θ2

(
1

x
−1

)(
Xcurv
− Xcurv(k)+−V

⊥
−W

curv
+ −W curv

− V ⊥+

)
+

∆

8
Θ2

(
1− 1

x

)
V ⊥− V

⊥
+ +

1

2

(
Xcurv
− Xcurv

+ +Uadiff
− Uadiff

+

)
+

1

8
Θ
√

2(∆y+∆z)
(
V ⊥− U

adiff(k)++Uadiff
− V ⊥+

)
−

(
Θ2

32x

(∆y+∆z)
2(

8x
Θ2 +∆y+∆z

))W curv
− W curv

+ −Θ2∆

16x

(
V ⊥−W

curv
+ +W curv

− V ⊥+

)
, (13.2)

and

Mθyz(kθ = 0) = −1

2

(
Θ2 − 2Θ2

2x

)
. (13.3)

The dominant scaling in R for kθ = 0 coincides with that for general kθ, if we set

∆θ = 0 there. Thus the conclusions about the boundary field theory, which we defined

in (11.10), hold also in this case.

This situation appears, a priori, quite different if we consider the modes kθ = ±1. In

this case we can use the general results found in section 11, if we set ∆θ = 1/R2. As we

discussed in section 10 the action for the radial field vanishes — the reason being that

for kθ = ±1 the radial field can be taken as a gauge parameter. Indeed the pre-factor

(Θ2 − 2x/∆θ), which appears for Mrr and Mrh = B, vanishes. However, we also have a

number of terms in M
(R0)
h with a 1/∆θ pre-factor, and these terms lead to an R2 scaling

in the kθ = ±1 case.

In fact, it turns out that the terms with a 1/∆θ coefficient coming from Nh in (11.2),

i.e. those that come from integrating out the radial field, cancel all the terms with a 1/∆θ

coefficient in Mh, that is, terms arising from integrating out all the other bulk fields:11

N
(R0)
h =

(∆y + ∆z)

16∆θ

(
4V ⊥− V

⊥
+ +W curv

− W curv
+ + 2

(
V ⊥−W

curv
+ +W curv

− V ⊥+

))
+O((∆θ)

0)

= −M (R0)
h +O((∆θ)

0). (13.4)

11The superscripts (R0) and (R2) refer only to the explicit R-dependence and do not take the implicit one

via ∆θ into account.
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Thus, although the radial variables give a vanishing contribution for kθ = ±1 — due to

the cancellation between N (R0) and R2N (R2) — this is compensated for by terms coming

from M
(R0)
h . This argument generalizes for the contributions from small kθ ∼ 1 modes.

This shows that, even for kθ = ±1, the boundary field theory (11.10) will lead to the

same Hamilton-Jacobi action — at leading order in the radius expansion and restricted

to boundary fluctuations inducing flat solutions — as the gravitational bulk theory. We

cannot, however, so easily identify the boundary field with the lengths of radial geodesics

anymore.

14 Null vectors of the Hessian matrix not related to gauge symmetries

For certain choices of Nθ, γy, and γz, there will be momenta (kθ, ky, kz) for which

∆y + ∆z = ∆−∆θ = 0. (14.1)

As we have ∆a ∼ 2− 2 cos(va/Na) for a ∈ {y, z}, this happens when

vy := ky −
Υy

Nθ
kθ = 0 mod Ny and vz := kz −

Υz

Nθ
kθ = 0 mod Nz. (14.2)

For kθ 6= 0, which we will assume here, a vanishing (∆y + ∆z) Laplacian leads to null

vectors for the bulk Hessian and thus a zero for its determinant. These null modes are not

related to gauge symmetries. This is because these modes are only null for the bulk Hessian

and not the full Hessian, which includes the boundary fluctuations. Indeed, when there

are momenta for which (∆y + ∆z) = 0 there is only a solution to the linearized equations

of motion if the boundary fluctuations satisfy

(B(k))t ◦ h′(−k) = 0 and (B(−k))t ◦ h′(k) = 0. (14.3)

Thus, if the twist angles are such that ∆y + ∆z has a zero, we can find a solution to the

linearized equation of motion only if (14.3) is satisfied for all k for which ∆y + ∆z is zero.

Note that it can also happen that a boundary metric that is in the image of the projector

onto the flat sector might not allow for such a solution.

The same issue appears for the gravitational partition function for (2 + 1)-dimensional

torus [15]. However, as discussed in [16], there are indications that this is related to an

artifact arising from the linearization, at least for finite radius R.

The zeroes of (∆y + ∆z) will lead to a vanishing determinant of the bulk Hessian, and

thus singularities for the one-loop correction.12 In [14] these singularities for the (2 + 1)-

dimensional partition function are dealt with by adding a small imaginary contribution to

the (in that case single) twist angle γ = 2πΥ/Nθ.

Let us find solutions for the equations (14.2) with kθ 6= 0. We will assume that

Υy 6= 0 and Υz 6= 0.13 A necessary condition for finding such solutions to vy = 0 is that

12More precisely, the conditions required for the saddle-point approximation are not satisfied.
13For Υy = Υz = 0 we will have a null mode (ky, kz) = (0, 0). The case where only one of the twisting

angles vanishes can be easily deduced from the more general discussion.
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py := GCD(Υy, Nθ)>1. Likewise a necessary condition for vz = 0 is pz := GCD(Υz, Nθ)>1.

The values of kθ for which vy vanishes, are given by

kθ = ty · qNy , (14.4)

where ty = 1, 2, . . . , py − 1 and qNy is defined by Nθ = qNy · py. The associated solutions for

ky are given by ky = ty · qΥ
y modNy, where Υy = qΥ

y · py. Likewise we need for vz = 0

kθ = tz · qNz , (14.5)

with tz = 1, 2, . . . , pz − 1 and kz = tz · qΥ
z modNz. Thus, to have vy = 0 and vz = 0, we

need to satisfy for ty = 1, 2, . . . , py − 1 and tz = 1, 2, . . . , pz − 1 the equation

ty · qNy = tz · qNz . (14.6)

Note that for arbitrary twist angles (Υy,Υz) 6= (0, 0) we can always find discretizations

for which no such zeroes in the determinant of the bulk Hessian arise. To this end we just

need to choose Nθ such that either GCD(Υy, Nθ) = 1 or GCD(Υz, Nθ) = 1.

We can also give a geometrical description of, for example, the condition GCD(Υy,

Nθ) = 1: on the hyper-torus, we consider a geodesic which starts at (sθ, sy, sz) = (0, 0, 0)

and for which (initially) sθ and sz are constant. Going from the sy = Ny − 1 to the

sy = Ny ≡ 0 vertex, we have, however, to shift to the sθ = Υy vertex. If GCD(Υy, Nθ) = 1

we only need one such geodesic to visit all vertices in the surface defined by sz = 0. In the

continuum theory the analogous condition is whether a geodesic, which goes initially along

constant (θ = 0)- and (z = 0)-coordinates, densely fills the torus defined by (z = 0).

15 One-loop correction

To find the one-loop correction we have to find the determinant of the Hessian describing

the quadratic form in the bulk perturbations, which we will do in the following subsections.

The one loop correction is given by the Gaussian integral

C1 =

∫
µ̂N (L)

∏
e∈blk

dˆ̀
e exp

(
−S(2)

blk(ˆ̀)
)
, (15.1)

where µ̂(L) is a measure factor for the ˆ̀ variables

µ̂N (L) = µN (L)
∏
e∈blk

Le (15.2)

and µ(L), the measure factor defined for the ` variables, is discussed in section 2. The bulk

action is

S
(2)
blk =

1

G
∑
k

(
~̂
`(k))t ·Mblk(k) · ~̂`(k)(−k), (15.3)

the matrix Mblk(k) is detailed in appendix C. Here G is shorthand for

G = 16πG× 24Vσ = 16πGRΘY Z

√
1− Θ2

4R2
. (15.4)
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There are seven types of bulk variables:

(
~̂
`)t = (ˆ̀

r, ˆ̀
ry, ˆ̀

rz, ˆ̀
ryz, ˆ̀

ϕ, ˆ̀
ζ , ˆ̀

ϕζ). (15.5)

The last three types, (ˆ̀
ϕ, ˆ̀

ζ , ˆ̀
ϕζ), describe edge lengths on the two-dimensional central axis

and are only defined for kθ = 0.

It is convenient to integrate out the various variables in steps, which we will describe

in the following. We also have to take care of the gauge symmetries arising for the kθ = 0

and kθ = ±1 modes, this is best done separately.

15.1 Contribution from kθ = 0

The matrix Mblk(kθ = 0) has two null eigenvectors (per (ky, kz)), which correspond to

the two vertex translations in the y- and z-direction of the vertices on the central two-

dimensional axis. We described these null vectors in (8.9). From amongst the seven types

of bulk variables we therefore integrate out only five, namely `r(0, ky, kz), `ry(0, ky, kz),

`rz(0, ky, kz), `ryz(0, ky, kz), and `ϕζ(kψ, kz). The resulting effective action (if we allow for

non-vanishing boundary fluctuations) does not depend on the remaining two variables `ϕ
and `ζ . Below we will consider the measure over the gauge orbits resulting from the vertex

translation symmetry, which will absorb the Lebesgue measure over the remaining variables

`ϕ and `ζ .

Another peculiarity that appears for kθ = 0 is that Mblk(kθ = 0) has one negative

eigenvalue. This means that this contribution to the action is not bounded from below.

This is a shadow of the well known conformal factor problem in general relativity.14 As

usual, we formally rotate this eigenvalue to a positive sign.

It is not straightforward to isolate the eigenvector with the negative eigenvalue in the

full matrix Mblk(kθ = 0). However, one can first integrate out ˆ̀
ϕζ and then ˆ̀

ryz, which

give a contribution of

detpart1(ky, kz) =
Θ4

4
Nθ (15.6)

to the determinant of the Hessian Mblk(kθ = 0). The remaining 3 × 3 matrix has the

following 2× 2 block for the (ˆ̀
ry, ˆ̀

rz) variables:

−Θ2Y Z

2

(
0 d∗ydz

dyd
∗
z 0

)
(15.7)

that has eigenvalues ±Θ2Y Z
2

√
∆y∆z.

Integrating out the (ˆ̀
ry, ˆ̀

rz) variables, we obtain the following rr-component for the

matrix describing the effective action

(M̃blk)rr(kθ = 0) = 2xY 2Z2

(
∆y + ∆z +

8x

Θ2

)
. (15.8)

Already at this stage the effective action does not depend on ˆ̀
ϕ or on ˆ̀

ζ anymore.

14One finds also a negative eigenvalue for the kθ = 0 contribution in the 3D case, see [15].
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In summary, the product over the non-vanishing eigenvalues of Mblk(kθ = 0) is given by

−Nθ

8
xΘ8Y 4Z4∆y∆z

(
∆y + ∆z +

8x

Θ2

)
. (15.9)

We have also to consider that, with our definition of the Fourier transform for `ϕζ
in (5.15) ∏

sy ,sz

dˆ̀
ϕζ(sy, sz) =

∏
ky ,kz

√
Nθ dˆ̀

ϕζ(ky, kz). (15.10)

The contribution from integrating out the five types of variables ˆ̀
r(0, ky, kz), ˆ̀

ry(0, ky, kz),
ˆ̀
rz(0, ky, kz), ˆ̀

ryz(0, ky, kz) and ˆ̀
ϕζ(ky, kz) is then given by

D0 =
∏
ky ,kz

(2πG)5/2 23/2

x1/2Θ4Y 2Z2
(
∆y∆z(∆y + ∆z + 8x

Θ2 )
)1/2 . (15.11)

15.2 Contribution from kθ = ±1

For kθ = +1 and for kθ = −1 we have ∆θ = 2x/Θ2. Using this relation one finds that

the two matrices Mblk(kθ = +1) and Mblk(kθ = −1) each have one null eigenvector. These

eigenvectors corresponds to the vertex translation symmetry for the vertices of the two-

dimensional central axis, in the (r, θ) plane, see (8.11).

Hence, from amongst the four variables (ˆ̀
r, ˆ̀

ry, ˆ̀
rz, ˆ̀

ryz) we need only integrate out

three and choose (ˆ̀
ry, ˆ̀

rz, ˆ̀
ryz). The determinant of the corresponding sub-matrix is

given by

1

2
xΘ4Y 2Z2

(
∆y + ∆z +

8x

Θ2

)
. (15.12)

This leads to the following contribution to the one-loop correction

D±1 =
∏
ky ,kz

(2πG)3 2

xΘ4Y 2Z2
(
∆y + ∆z + 8x

Θ2

) . (15.13)

15.3 The measure over the gauge orbits

We have not integrated over the variables (l̂ϕ, l̂ζ) or (ˆ̀
r(kθ = +1), ˆ̀

r(kθ = −1)). But,

after having performed the integrations outlined above, it is clear that the resulting action

will be independent of these variables. Indeed these variables can be identified with gauge

parameters for the vertex translation symmetries. In what follows, we identify a measure

over the gauge orbits that will absorb the measure over these variables.

The gauge symmetry affects the vertices lying on the two-dimensional central axis. For

each vertex (sy, sz) we define the measure over the associated gauge orbit as

1

(8πG)2

∏
a=1,2,3,4

dxa(sy, sz), (15.14)
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where the xa(sy, sz) are Cartesian coordinates that describe the embedding of the given

vertex into the flat solution. We identify x3 and x4 with y and z and have, to first order

in the perturbations,

ˆ̀
ϕ(sy, sz) = Y (δx3(sy + 1, sz)− δx3(sy, sz)) ⇒ ˆ̀

ϕ(ky, kz)= −Y 2dy δx
3(ky, kz),

ˆ̀
ζ(sy, sz) = Z(δx4(sy, sz + 1)− δx4(sy, sz)) ⇒ ˆ̀

ζ(ky, kz) = −Z2dz δx
4(ky, kz). (15.15)

This gives for the measure15 over x3 and x4:∏
sy ,sz

dx3(sy, sz)dx
4(sy, sz) =

∏
ky ,kz

Nθ

Y 2Z2
√

∆y∆z

dˆ̀
ϕ(ky, kz)dˆ̀

ζ(ky, kz). (15.16)

To discuss the vertex displacements in the (r, θ)-plane we choose the x1-axis parallel to

the edges with the `r(sθ = 0) variables. A displacement of a vertex at (sy, sz) then results

in a change of the ˆ̀
r variable according to

(R+R−1 ˆ̀
r(sθ,sψ,sz))

2 =
(
Rcos(2πsθ/Nθ)−δx1

)2
+
(
R sin(2πsθ/Nθ)−δx2

)2
. (15.17)

To linear order this gives

R−1 ˆ̀
r ' − cos(2πsθ/Nθ)δx

1 − sin(2πsθ/Nθ)δx
2, (15.18)

and after Fourier transformation

R−1

(
ˆ̀
r(kθ = +1, ky, kz)

ˆ̀
r(kθ = −1, ky, kz)

)
'
√
Nθ

2

(
−1 +i

−1 −i

)(
δx1(ky, kz)

δx2(ky, kz)

)
. (15.19)

Thus, we have for the measure∏
sy ,sz

dx1(sy, sz)dx
2(sy, sz) =

∏
ky ,kz

2

R2
dˆ̀
r(+1, ky, kz) dˆ̀

r(−1, ky, kz). (15.20)

In summary, the measure over the gauge orbits of the vertex translation symmetry is

given by∏
sy ,sz

1

(8πG)2
dx1dx2dx3dx4

=
∏
ky ,kz

1

(8πG)2

2Nθ

R2Y 2Z2

1√
∆y∆z

dˆ̀
ϕ(ky, kz)dˆ̀

ζ(ky, kz)dˆ̀
r(+1, ky, kz) dˆ̀

r(−1, ky, kz) .

(15.21)

Because we have to remove this integration measure from the path integral, it leads to the

following contribution to the one-loop correction

DG =
∏
ky ,kz

(8πG)2R
2Y 2Z2(∆y∆z)

1/2

2Nθ
. (15.22)

15We remind the reader that due to our convention (5.15) we have
∏
sy,sz

dˆ̀
ϕ(sy, sz)dˆ̀

ζ(sy, sz) =∏
ky,kz

Nθdˆ̀
ϕ(ky, kz)dˆ̀

ζ(ky, kz) and
∏
sy,sz

dx3(sy, sz)dx
4(sy, sz) =

∏
ky,kz

Nθdx
3(ky, kz)dx

4(ky, kz).
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15.4 Contributions from |kθ| > 2

All that remains is to consider the modes with |kθ| ≥ 2. For these modes there are no

null vectors for Mblk, and so we have to integrate out all four types of bulk variables

(ˆ̀
r, ˆ̀

ry, ˆ̀
rz, ˆ̀

ryz). For the latter three types of variables we obtain a determinant

1

4
Θ6Y 2Z2 ∆θ (4∆θ + ∆y + ∆z) . (15.23)

The resulting effective action for the ˆ̀
r variable is described by the coefficient

(M̃blk)rr =
2x

Θ2
Y 2Z2

(
Θ2 − 2x

∆θ

)
(∆y + ∆z) , (15.24)

which agrees with (9.8) after taking into account the different scalings of `′r and ˆ̀
r and an

additional overall factor V 2
cube = Θ2Y 2Z2.

Note that the (∆y + ∆z) factor in (M̃blk)rr might have zeroes, which we described in

section 14. As these zeroes are not related to a gauge symmetry, they lead to singularities

for the one-loop correction.

The contribution of the |kθ| ≥ 2 modes to the one-loop correction is given by

D≥2 =

Nθ−2∏
kθ=2

∏
ky ,kz

(2πG)2 23/2

x1/2Θ2Y 2Z2

1

∆
1/2
θ (Θ2 − 2x

∆θ
)1/2(4∆θ + ∆y + ∆z)1/2(∆y + ∆z)1/2

.

15.5 Final result for the one-loop correction

To compute the product over kθ-modes of ∆θ(Θ
2 − 2x

∆θ
) we use the results

Nθ−1∏
kθ=1

Θ2∆θ = 2, and

Nθ−2∏
kθ=2

(
1− 2x

Θ2∆θ

)
=

1

4− 2x
. (15.25)

This leaves us with the following expression for the one-loop correction

C1 = µN (L)

( ∏
e∈blk

Le

)
D0D±1D≥2DG

= N

∏
ky ,kz

1(
(∆y + ∆z)|kθ=0 + 4

R2

)1/2
Nθ−1∏

kθ=1

∏
ky ,kz

1

(4∆θ + ∆y + ∆z)
1/2

×
×

Nθ−2∏
kθ=2

∏
ky ,kz

1

(∆y + ∆z)
1/2

 . (15.26)

The factor N is given by

N = µN (L)

( ∏
e∈blk

Le

)
(2πG)2NyNz(Nθ−1/4)(8πG)2NyNz22NyNz(Nθ−

3
2 )N

−2NyNz
θ

×
(

4− Θ2

R2

)1
2NyNz

RNyNzNθΘ−NyNzNθ(Y Z)−2NyNz(Nθ−2), (15.27)
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where µN (L) is a choice for the measure in the background path integral, see (15.1).

The one-loop approximation for the path integral is given by

Z1 = C1 exp
(
−S[2]

HJ(L, `bdry)
)
, (15.28)

where S
[2]
HJ(L, `bdry) is the second order approximation of the Hamilton-Jacobi action. Set-

ting the boundary fluctuations {`bdry} to zero, we will have

Z1 = C1 exp

(
αβ

4G

)
. (15.29)

The classical, on-shell action does not depend on the twist angles (γy, γz). The one-loop

correction C1 does, however, depend on these twists, via their appearance in the Laplacians

∆y and ∆z respectively. In particular, the last factor in (15.26) will be singular if (∆y+∆z)

has zeroes. As discussed in section 14, the appearance of such zeroes depends on the twist

angles, as well as on Nθ.

Let us emphasize again that the one-loop correction, as we have calculated it here,

depends on our choice of triangulation. The singularities we have found will, however,

persist if we consider finer discretizations. The reason for this is that these singularities

result from the effective boundary field theory for the radial length variables. This effective

field theory, if restricted to the flat sector (which, in particular, includes the boundary

condition where we set all boundary fluctuations to zero), is invariant under changes of

the bulk triangulation. That is, even if we would start with a much finer triangulation,

we would find again, via a coarse graining procedure, the same boundary field theory

for the radial length variables. Integrating out these radial length variables, we would

encounter the same kind of zeroes for the determinant of its Hessian, which, in turn, lead

to singularities for the one-loop correction.

Indeed, the existence of the singularities can be traced back to the fact that one cannot

find solutions to the linearized Einstein’s equations for certain boundary conditions. This

feature also exists for the continuum linearized Einstein’s equations; the obstruction is

topological in nature, as explained at the end of section 14.

16 Discussion

In this work we derived a boundary theory that encodes the dynamics of boundary gravitons

in 4D gravity. These boundary gravitons describe the deformations of the boundary under

diffeomorphisms. This geometrical interpretation motivates our choice of boundary field,

namely the geodesic distance from a given point on the boundary to a central axis.

As background spacetime we have worked with a solid hyper-torus with radius R.

When restricted to the flat sector of boundary metrics that lead to a flat 4D solution, and

in the large radius limit, the action encoding the dynamics of the three-dimensional (d = 3)

boundary theory is given by the second order approximation to

S ∼
∫
ddx
√
h
(
φQab∇a∇bφ−Rφ

)
, (16.1)
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where the kinematical term is characterized by the trace-reversed extrinsic curvature Qab =

Kab − habK and R is the Ricci scalar on the boundary.

The same boundary action (with d = 2) was found for a solid torus in 3D gravity.

In this case the flat sector includes all boundary metrics,16 and thus the boundary theory

encodes all of the dynamics of 3D gravity.

The quadratic form Qab appearing in the action (16.1) is, for the background spacetime

we have considered here, degenerate. However, when a Dehn-twist is included in the hyper-

torus it leads to a twist action on the leftover laplacian. For this reason the zeroes that

appear for the laplacian (as a function of the momenta) depend on the twist parameters.

These zeroes lead to singularities for the one-loop correction, which in the 3D case

completely characterize its dependence on the twist angles. In 4D we are not yet able to

compute the full one-loop correction, but can conclude that these singularities will also

feature in the continuum partition function.

Another interesting feature of the boundary theory results from the bulk diffeomor-

phism symmetry of gravity. These diffeomorphisms can change the position of the central

axis or central point from which the distance to the boundary points is determined. Indeed,

with our background spacetime this symmetry affects the lowest modes in the angular di-

rection, kθ = 0 and kθ = ±1, of the boundary field. We discussed the resulting subtleties

for the boundary theory in section 13. In particular, the action for the boundary field

vanishes for kθ = ±1, due to the fact that one understands the radial field for these modes

as pure gauge.

Integrating out the boundary field from the boundary action (16.1) we obtain the

Hamilton-Jacobi function, that is, the on-shell action, for 4D gravity restricted to the flat

sector (i.e. those boundary metrics that induce a flat solution). We have also computed

the on-shell action for general boundary metrics, albeit, due to the coarse triangulation we

have used, in a severe truncation. The result is quite complicated, but simplifies drastically

in the large radius limit. Future work will show whether this result persists when the bulk

triangulation is refined.

This brings us to a number of directions opened up by this work.

As mentioned in the introduction, instead of 4D gravity, we can consider a (quantum)

theory of 4D flat space, which to some extent is quite similar to 3D gravity. Such a theory

has been proposed in [32] (see also [61]). Adopting a form that is more suited to our

context, the partition function has the same kinematical ingredients as Regge calculus and

can be written as

Z(lbdry) =

∫
µinv(l) exp(iSR)

∏
e∈T ◦

dle
∏
t∈T ◦

δ(εt). (16.2)

Here SR is the Regge action, which due to the delta-functions in (16.2), reduces to a

boundary term. As we have restricted to flat solutions, the on-shell action will be invariant

under changes of the bulk triangulation. The measure µinv(l) can also be chosen such

that the partition function is bulk triangulation invariant. The delta-functions appearing

16As described in section 14, in 4D there are certain boundary metrics that do not have a solution in the

linearized theory.

– 38 –



J
H
E
P
0
1
(
2
0
1
9
)
1
4
4

in (16.2) might overlap and produce divergences, but these can be consistently removed in

such a way that the partition function is triangulation invariant, see [32].

Clearly (16.2) describes the embedding of the boundary hypersurface into flat space,

with each boundary configuration that allows for a flat bulk solution, weighted by the

(Regge) gravity boundary term. In this sense, this theory is similar to 3D gravity, for

which we discussed a similar interpretation in the introduction, see also [52].

The partition function (16.2) will vanish outside the flat sector, in other words, for

those boundary metrics that do not induce a flat solution. The on-shell action will, on the

flat sector, coincide between this theory and 4D gravity and so the boundary theory we

have identified for the flat sector of 4D gravity will also be a boundary theory for (16.2).

However, the one-loop correction will differ between the two theories. For (16.2) we

can determine this one-loop correction using an arbitrarily coarse triangulation [62].

This theory of quantum flat space can be formulated as a Topological Quantum Field

Theory (TQFT) based on a two-category [61]. TQFT’s are proposed to play an essential

role also for 4D quantum gravity, e.g. [63–66], but most work is so far concentrated on

BF-like TQFT’s [67–69], which start from an enlarged space of generalized simplicial ge-

ometries [70–74]. A key problem is to devise either a mechanism to restrict back to proper

geometric configurations [67, 75–80] or to find a dynamical principle for these generalized

simplicial geometries [81]. It will be fruitful to explore alternatives, such as the one just

discussed, even if these end up ‘only’ describing flat space.

In this work we have considered a spacetime with the topology of a solid hyper-torus.

We have found a particular form (16.1) for the boundary theory, which turns out to hold

both for the 4D spacetime and for the 3D solid torus. It will be interesting to know whether

the same boundary theory holds also for more general topologies. In particular, it would be

interesting to consider boundaries with topology S2 × S1, as this would include Euclidean

black holes. This case would be relevant for studying connections to the BMS symmetry

shown to exist for the 3D theory [14, 21, 22]. Another generalization would be to add

a cosmological constant. This can also be considered within Regge calculus, if one uses

homogeneously curved building blocks [42–45].

Here we constructed the boundary theory as the effective theory of geodesic distances

from the boundary to some central point(s). One could also look for other geometric

variables that describe the embedding of the 3D boundary into the 4D solutions. In the

3D case one can find boundary theories based on different geometric variables [16–19, 84].

To this end, one uses versions of Regge calculus based on other sets of variables than the

edge lengths, e.g. areas and angles [42, 46, 70, 82]. Another choice, possibly more suited

for Lorentzian signature, would be variables related to spinors or twistors [83, 84].

For the 3D theory, the boundary field leads to a similar encoding of the bulk geometry

as in the Ryu-Takayanagi proposal [85], which in 3D is based on geodesic distances between

boundary points (see also [86]). In 4D, the Ryu-Takayanagi proposal would, however,

involve the area of minimal surfaces, whereas here we are still using geodesic lengths. It

could be interesting to derive a boundary theory based on the areas of minimal surfaces.

We have been focused on the flat sector of 4D gravity, which allowed us to work with

an arbitrarily coarse bulk triangulation. However, this work also provides the setup to
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consider refinements of the bulk triangulation. Using coarse graining methods applicable

to Regge calculus [41, 60, 87], we can construct a renormalization flow for discrete gravity.

The model we used in this work has proven to lead to manageable computations. It seems,

therefore, to allow for a further evaluation of the dynamics, which with increasing bulk

refinement, will also include more and more curvature degrees of freedom. The unusual

feature of the setup here is that one can take already in advance the continuum limit for

the boundary. This might actually simplify the study of the coarse graining flow, as it

allows us to identify continuum geometric quantities and to consider the flow of an action

that is a functional of these geometric quantities. This might allow one to identify relevant

and irrelevant geometric variables, which would also be useful for coarse graining other

theories, e.g. spin foam models [88–93].

The coarse graining flow can also help to identify a measure for 4D Regge calculus that

is invariant under bulk triangulation changes. As shown in [31], such a measure must be

non-local and is difficult to guess. It will be interesting to see whether such a coarse graining

flow, which only affects refinement in the radial directions, also leads to such a non-local

(fixed point) measure. Alternatively, one can restrict to a local form of the measure and

attempt to find the best local approximation to an invariant measure [31, 94, 95].

In summary, we have identified a sector of 4D gravity — the flat sector — for which we

can (more) easily access the dynamics. Although it describes a spacetime without (bulk)

graviton excitations, this sector has as rich a dynamics as 3D gravity. In particular, it

describes how the boundary is embedded into flat spacetime. We have identified a theory,

defined on the boundary itself, that encodes this dynamics, and found astonishing parallels

between the 3D and 4D case.

The central aim of this work was to find the (one-loop) partition function for non-

asymptotic ‘generalized’ boundaries [96]. Such partition functions can serve as (semiclas-

sical) vacuum functionals. Understanding the vacuum functionals for such generalized

boundaries will also be crucial for coarse graining and renormalization in quantum grav-

ity [89, 97]. We hope that this will be the starting point for a more systematic understanding

of the semiclassical vacuum functional for generalized boundaries in quantum gravity.
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A Transformation from lengths to metric variables

We want to interpret the boundary theory as a theory coupled to the boundary metric. We

therefore need to change the (boundary) edge length fluctuation variables `e into metric

fluctuation variables hab ≡ gab−Hab, with Hab the background (boundary) metric. Fixing
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a set of edge vectors (eθ, ey, ez) that describe a discretization cell, the boundary length

variables `b are related to the metric variables hab as follows:

(Hab + hab)e
a
θe
b
θ = (Θ + `θ)

2 , (Hab + hab)(e
a
θ + eay)(e

b
θ + eby) =

(√
Θ2 + Y 2 + `θy

)2
,

(Hab + hab)e
a
ye
b
y = (Y + `y)

2 , (Hab + hab)(e
a
θ + eaz)(e

b
θ + eby) =

(√
Θ2 + Z2 + `θz

)2
,

(Hab + hab)e
a
ze
b
z = (Z + `z)

2 , (Hab + hab)(e
a
y + eaz)(e

b
θ + eby) =

(√
Y 2 + Z2 + `yz

)2
,

and (Hab+hab)(e
a
θ + eay + eaz)(e

b
θ + eby + ebz) =

(√
Θ2 + Y 2 + Z2 + `θyz

)2
.

The background boundary metric (with respect to the basis vectors (eθ, ey, ez)) is given

by Hab = diag(Θ2, Y 2, Z2). These relations express the six metric components in terms of

the seven length variables per vertex, and hence one of the length variables is redundant.

Following [58, 59], we introduce an auxilliary ‘metric variable’ hθyz and have seven discrete

metric variables he ∈ {hab, hθyz} with a, b ∈ {θ, y, z}. There is a transformation such that

the variable hθyz decouples from the boundary effective action. In the discrete Fourier

transformed picture, the transformation between the discrete metric variables he and the

rescaled length variables ˆ̀
e = Le`e that decouples hθyz is given by

he(k) =
∑
e

Tee′(k) ˆ̀
e′(k) +O(ˆ̀

e
2), (A.1)

with

Tee′(k) =



2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

−1 −1 0 1 0 0 0

−1 0 −1 0 1 0 0

0 −1 −1 0 0 1 0
1
2(ωy + ωz)

1
2(ωθ + ωz)

1
2(ωθ + ωy) −1

2(1 + ωz) −1
2(1 + ωy) −1

2(1 + ωθ) 1


,

(A.2)

where the ωa’s are the discrete Fourier coefficients defined in (5.14).

B Expansion of the Ricci scalar

Here we compute the first order expansion of the densitized Ricci scalar
√
hR around the

(flat) background boundary metric.

As is well known the first order variation of the densitized Ricci scalar is given by

δ(
√
hR) =

√
H
(

1
2H

ab BR− BRab
)
δhab +

√
H∇a

(
∇bδhab −Hbc∇aδhbc

)
, (B.1)

where BRab and BR denote the Ricci tensor and Ricci scalar of the background metric Hab.

We are considering a flat background Hab = diag(Θ2, Y 2, Z2), and thus ∇a = ∂a, and
BRab = 0. Hence we have for our background

δ(
√
hR) =

√
H
(
HacHbd −HabHcd

)
∂a∂bδhcd. (B.2)
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Introducing the scaled derivatives ∂′a =
√
Haa∂a and variables δh′ab =

√
Haa
√
Hbbδhab this

gives, in component form,

δ(
√
hR) = ΘYZ

(
−(∂′2y + ∂′2z )δh′θθ − (∂′2θ + ∂′2z )δh′yy − (∂′2θ + ∂′2y )δh′zz

)
+ 2ΘYZ

(
∂′θ∂
′
yδh
′
θy + ∂′θ∂

′
zδh
′
θz + ∂′y∂

′
zδh
′
yz

)
. (B.3)

C The bulk action

To compute the second order of the Regge action for length perturbations in general di-

mensions D, we will need the derivatives of the volumes Vh of the (D − 2)-simplices (the

hinges) and the derivatives of the dihedral angles θh at these hinges. Given a d-simplex σ

labelled with vertices {0, 1, · · · , d}, its volume as a function of its edge lengths is given in

terms of the Cayley-Menger determinant

V 2
σ =

(−1)d−1

2dd!
· det



0 1 1 1 . . . 1

1 0 l201 l
2
02 . . . l

2
0d

1 l201 0 l212 . . . l
2
1d

1 l202 l
2
12 0 . . . l22d

...
...

...
...

. . .
...

1 l20d l
2
1d l

2
2d . . . 0


, (C.1)

where lij is the edge length between vertices i and j. From this formula one can determine

easily the derivatives of the simplex volume with respect to the length variables.

A general formula for the derivatives of the dihedral angles in a simplex σ is given

by [59]

∂θ̂ij
∂lkl

=
1

d2

V̂kV̂l
V 2
σ

lkl

sin θ̂ij

(
cos θ̂ik cos θ̂jl + cos θ̂il cos θ̂jk + cos θ̂ij(cos θ̂ cos θ̂ik cos θ̂il + cos θ̂jk cos θ̂jl)

)
(C.2)

where V̂k is the volume of the (D − 1)-simplex, which is obtained by dropping the vertex

k in the simplex σ and θ̂ij is the dihedral angle between the two faces of the simplex that

are opposite the vertices i and j.

Using these formulas, we can compute, for our choice of triangulation T of the solid

hyper-torus, the Hessian matrix

HTee′ =
∑
σ

(∑
t⊂σ

∂At
∂le

∂θσt
∂le′

)∣∣∣∣∣
le=Le

=
LeLe′

24Vσ
Mee′ , (C.3)

which appears in the second order Regge action. To this end we employ the discrete Fourier

transform that diagonalizes the Hessian into blocks labelled by momenta k = (kθ, ky, kz).
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We only give here the bulk part of the Hessian, which is

Mblk(k) =



Θ2 + Θ2
(
Y 2 + Z2

)
∆θ · · · · · ·

Z2
(
2xY d∗y −Θ2∆θ

)
− Θ2

2

(
1 + ω−1

y

)
Θ2 + Θ2Z2∆θ · · ·

Y 2
(
2xZd∗z −Θ2∆θ

)
− Θ2

2

(
1 + ω−1

z

)
1
2Θ2

(
ωy + ω−1

z

)
Θ2 + Θ2Y 2∆θ

Θ2

2

(
ω−1
y + ω−1

z

)
−Θ2

2

(
1 + ω−1

z

)
−Θ2

2

(
1 + ω−1

y

)
−δ0,kθ

√
Nθ

(
xZ2 − Θ2

4 ωz

) (
1 + ω−1

θ

)
−δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4 −δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )ωz

4

−δ0,kθ

√
Nθ

(
xY 2 − Θ2

4 ωy

) (
1 + ω−1

θ

)
−δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )ωy

4 δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4

δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4 δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4 −δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
Θ2 · · · · · · · · ·

δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4
1
2Θ2 (δ0,kθ)

2Nθ · · · · · ·

−δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4 0 1
2Θ2 (δ0,kθ)

2Nθ · · ·

−δ0,kθ

√
Nθ

Θ2(1+ω−1
θ )

4 −1
2Θ2 (δ0,kθ)

2Nθ −1
2Θ2 (δ0,kθ)

2Nθ
1
2Θ2 (δ0,kθ)

2Nθ


.

(C.4)

Here the variables have the ordering (~̀e)
t = (ˆ̀

r, ˆ̀
ry, ˆ̀

rz, ˆ̀
ryz, ˆ̀

ϕ, ˆ̀
ζ , ˆ̀

ϕζ). The definitions of

the various phases ωθ, etc., and difference operators ∆θ, dy, etc., can be found in eqs. (8.8).

We use the abbreviation x = Θ2

2R2 . The missing entries of the matrix can be found by

imposing hermiticity.
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[43] H.M. Haggard, M. Han, W. Kamiński and A. Riello, SL(2,C) Chern-Simons theory, a

non-planar graph operator and 4D quantum gravity with a cosmological constant:

Semiclassical geometry, Nucl. Phys. B 900 (2015) 1 [arXiv:1412.7546] [INSPIRE].

[44] H.M. Haggard, M. Han and A. Riello, Encoding Curved Tetrahedra in Face Holonomies:

Phase Space of Shapes from Group-Valued Moment Maps, Annales Henri Poincaré 17 (2016)
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