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We establish how the Breitenlohner-Freedman (BF) bound is realized on tilings of two-dimensional
Euclidean Anti–de Sitter space. For the continuum, the BF bound states that on Anti–de Sitter spaces,
fluctuation modes remain stable for small negative mass squared m2. This follows from a real and positive
total energy of the gravitational system. For finite cutoff ε, we solve the Klein-Gordon equation numerically
on regular hyperbolic tilings. When ε → 0, we find that the continuum BF bound is approached in a manner
independent of the tiling. We confirm these results via simulations of a hyperbolic electric circuit.
Moreover, we propose a novel circuit including active elements that allows us to further scan values of m2

above the BF bound.
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Introduction.—The AdS=CFT correspondence [1–3],
also known as holography, maps gravitational theories in
(dþ 1)-dimensional hyperbolic Anti–de Sitter (AdS)
spacetimes to strongly coupled conformal field theories
(CFTs) without gravity in d dimensions, defined on the
AdS boundary. The AdS=CFT duality provides a precise
map between CFT operators and AdS gravity fields, which
is of great significance both for fundamental aspects of
quantum gravity [4] and for applications to strongly
correlated condensed matter systems [5].
Motivated by the goal to provide a new example of

holographic duality, as well as possible realizations in
tabletop experiments, in this Letter we report novel insights
in this direction for discretized systems. A prime candidate
is a scalar field defined on discretizations of AdS space via
regular hyperbolic tilings (see Fig. 1) [6,7], which have
been recently investigated using methods from lattice
gauge theory in Refs. [8–11]. These works consider
discretization schemes for the scalar action, the Laplace
operator, and lattice bulk propagators, finding good agree-
ment of the scaling behavior of correlation functions with
analytic continuum results.
The physics of hyperbolic tilings has recently been

studied in the context of condensed matter physics [12],
circuit quantum electrodynamics [13–15], and topolectric
circuits [16–18]. These works focus on the spectrum of
tight-binding Hamiltonians on hyperbolic lattices and their

realization based on coupled waveguide resonators
[12,14,15] or classical nondissipative linear electric circuits
(topolectric circuits). Time-resolved measurements of wave
propagation in hyperbolic space have been achieved in such
architectures [17].
It remains an open question, though, how to establish a

duality in the sense of a map between bulk and boundary
theories for hyperbolic tessellations. Steps in this direction
were taken in Refs. [19,20] using modular discretizations
and in Ref. [21] via tensor networks on hyperbolic
buildings. In this Letter, we focus on hyperbolic tilings
as a discretization scheme instead. The starting point is one
of the key results of the continuum AdS=CFT correspon-
dence, namely the relation between the mass m of a scalar
field in the bulk and the scaling dimension Δ of its dual

FIG. 1. Hyperbolic {7,3} tiling in the Poincare disk represen-
tation. For the central node, the stencil of the discretized Laplace-
Beltrami operator is highlighted. Red sites carry constant weights
wð7;3Þ, whereas the central node (blue) is weighted by −7wð7;3Þ.
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operator on the boundary, ΔðΔ − dÞ ¼ m2l2, with l being
the AdS radius and d the boundary spacetime dimension
[2]. This is determined by the asymptotic boundary
behavior of the solutions of the Klein-Gordon equation
in AdS space. Conformally transforming AdS space into
flat space, the scalar field experiences a shift of its mass
squared to m2l2 þ d2=4. Thus, there is a stable potential
minimum for the field ifm2l2 > −d2=4, i.e., even for small
negative mass squared. This is the Breitenlohner-Freedman
(BF) bound [22–24].
In this Letter, we determine how the BF bound is realized

in discrete holographic setups and how it manifests itself on
finite-sized architectures accessible through simulation and
experiment. We establish the BF bound for hyperbolic
tessellations by first analyzing the properties of the con-
tinuum analytical solutions in the presence of a finite cutoff.
This cutoff can be chosen arbitrarily and is required
because only finite tilings, which do not cover the entirety
of hyperbolic space, can be experimentally and numerically
realized. In particular, this cutoff is independent of the
Schläfli parameter fp; qg characterizing a regular hyper-
bolic tiling with q regular p-gons meeting at each vertex.
Defining a scalar field on the vertices, we numerically solve
the associated equations of motion on several tilings,
finding excellent agreement with results from continuum
holography. We find that the stability bound of a scalar field
defined on large enough fp; qg hyperbolic tilings coincides
with the continuum BF bound, independently of p and q.
Our analysis extends previous investigations [13,15,17] of
the eigenvalue problem of the discrete Laplacian on these
tilings. In particular, we use insights from holography, such
as the presence of non-normalizable modes, to provide
solutions for masses squared above the BF bound, thus
beyond the standard spectrum of the Laplacian. Moreover,
we propose a novel electric circuit, in the spirit of topo-
lectric circuits [26,27], to access these new mass-squared
values in experiment.
Equations of motion on EAdS2.—In order to investigate

the physics of the BF bound for hyperbolic tilings, we
consider one of the simplest continuum systems admitting a
holographic duality, a free massive scalar field Euclidean
AdS2 (EAdS2), with the induced metric

ds2 ¼ gμνdxμdxν ¼
l2

cos2ðθÞ ðdθ
2 þ sin2ðθÞdϕ2Þ: ð1Þ

Here, l is the curvature radius of EAdS2, and
θ ∈ ½0; ðπ=2ÞÞ, ϕ ∈ ½0; 2πÞ. The asymptotic boundary of
EAdS2 is at θ ¼ π=2, corresponding to an infinite geodesic
distance from the origin θ ¼ 0. The scalar field action

S ¼ 1

2

Z
d2x

ffiffiffi
g

p ð∂μΦ∂μΦþm2Φ2Þ ð2Þ

yields as equation of motion the Klein-Gordon equa-
tion [28]

0 ¼ 1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νΦÞ −m2Φ≡ ð□ −m2ÞΦ ð3Þ

¼ 1

l2
cos θ cot θ

∂

∂θ

�
sin θ

∂Φ
∂θ

�
−m2ΦðθÞ; ð4Þ

with □ the Laplace-Beltrami operator on EAdS2. The
second equality in Eq. (4) holds for a purely θ-dependent
field configuration ΦðθÞ with no angular dependence.
Equation (4) admits analytic solutions in terms of hyper-
geometric functions Eq. (S.2) in the Supplemental Material
[29], parametrized by two integration constants, which can
be related by the regularity boundary condition Φ0ð0Þ ¼ 0.
Asymptotically near the boundary at θ ¼ π=2, the two
fundamental solutions behave as

ΦðθÞ ≃ Aðcos θÞ1−Δ þ Bðcos θÞΔ; ð5Þ

where Δ ¼ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þm2l2

q
is the scaling dimension of the

boundary operator O holographically dual to Φ. In
AdS=CFT, the terms in Eq. (5) are denoted as non-
normalizable and normalizable modes, respectively.
Imposing suitable boundary conditions at θ ¼ ðπ=2Þ [37],
the coefficient B of the normalizable mode is identified
with the vacuum expectation value of the dual operator O,
while the coefficient A of the non-normalizable mode
determines its source J. In spatial dimension d ¼ 1 and
for masses of the scalar field

m2l2 < −
1

4
; ð6Þ

the scaling dimension Δ of the dual operator becomes
complex. In the CFT, this indicates a breakdown of
unitarity. In the AdS bulk, it implies that the energy of
the scalar field,

E ¼
Z

dθ cosðθÞ2Δðð∂θΦ̃Þ2 þ Δ2Φ̃2Þ; ð7Þ

ceases to be a real and positive quantity [29]. Here, we have
used the ansatz ΦðθÞ ¼ ðcos θÞΔΦ̃ðθÞ [22,23,38]. After
quantization, this denotes an instability of the system
toward a new, true ground state [39]. The reality condition
on Δ implies m2l2 ≥ − 1

4
. This is the Breitenlohner-

Freedman stability bound [22,23] and is a key element
of AdS=CFT.
We now analyze the implications of a finite cutoff for the

analytical solutions. Regularity at the origin is imposed
through von Neumann boundary conditions at θ ¼ 0.
Introducing a finite radial cutoff ε ≪ 1, such that
Dirichlet boundary conditions are imposed at θc ¼ π=2 −
ε via ΦðθcÞ ¼ 1, leads to a rescaling of the solutions. We

PHYSICAL REVIEW LETTERS 130, 091604 (2023)

091604-2



solve Eq. (4) subject to these boundary conditions and find
that, above the BF bound, solutions have no zeros in the
regime θ ∈ ½0; ðπ=2ÞÞ. Below the BF bound, however,
solutions develop an infinite set of zeros [29].
At specific values of the mass squaredm2l2 and cutoff ε,

we observe a singular behavior of the solutions, charac-
terized by discontinuous jumps of the field amplitude, as
presented in Fig. 2. These only appear below the BF bound
and are a result of the cutoff coinciding with a zero of the
solution associated to the given value ofm2l2, thus making
the rescaling factor diverge. We denote these pairs
ðm2l2; εÞ as Umklapp points. The position of the first
Umklapp point below m2l2 ¼ − 1

4
, corresponding to the

zero which is furthest into the bulk, can be used as an
indicator for the unstable regime. More precisely, when the
cutoff is removed, the value of the mass squared for which
this zero first appears corresponds to the BF stability
bound. The analytical derivation of the solutions to the
Klein-Gordon equation (4) at a finite cutoff ε provided in
Ref. [29] allows for an exact tracking of this first Umklapp
point for different cutoffs. This provides a reference
behavior, shown in black in Fig. 3, to which we compare
our numerical findings.
Regular hyperbolic tilings of D2.—EAdS2 is isomorphic

to the Poincaré disk model of hyperbolic space D2, which
can be naturally discretized by regular hyperbolic tilings
[6,7]. These preserve a large subgroup, known as a
Fuchsian group of the first kind, of the isometry group
PSLð2;RÞ of EAdS2 [40,41], making them promising
candidates for setting up a discrete holographic duality.
Hyperbolic tilings are characterized by their Schläfli
symbol fp; qg, with ðp − 2Þðq − 2Þ > 4, denoting a tiling
with q regular p-gons meeting at each vertex. The f7; 3g
hyperbolic tiling and its dual f3; 7g tiling are shown in
Fig. 1 as an example. Since hyperbolic space introduces a
length scale through its radius of curvature l, the edge

lengths of hyperbolic polygons are fixed quantities,
depending only on the Schläfli parameters p and q [42].
Their geodesic length θðp;qÞ in units of l can be computed
via the Poincaré metric [Eq. (1)] and can be interpreted as a
fixed lattice spacing that cannot be tuned. We compute
θðp;qÞ for several p and q in Ref. [29]. In general, this makes
a continuum limit of fp; qg tilings in the usual way
impossible. Nevertheless, we provide evidence that regular
hyperbolic tilings indeed preserve some properties of the
continuum scalar field theory, indicating that they are a
good approximation of continuum EAdS2.
While the entire EAdS2 space can be filled with an

infinite fp; qg tiling, numerical simulations and experi-
mental setups can only be finite sized. The truncation of the
tiling to a finite number of layers is equivalent to the
introduction of a finite cutoff as mentioned earlier. Given
the jagged structure of the tiling’s boundary at any finite
layer, an effective uniform radial cutoff needs to be drawn.
This allows for a direct comparison of the Umklapp points
observed in numerical simulations on the truncated tilings
with the analytical solutions derived in Ref. [29].
Numerical methods.—The central ingredient for our

numerical analysis of the Klein-Gordon equation on
fp; qg hyperbolic tilings is a suitable discretization,
denoted by □̃, of the Laplace-Beltrami operator. Its action
on a scalar function Φðθ;ϕÞ, represented on the tiling by
discrete values Φj ¼ ΦðθjÞ, can be written as

ð□̃ΦÞj ¼
X
kjj

wjkl−2ðΦk −ΦjÞ; ð8Þ

where kjj denotes the summation over the q neighboring
sites k of site j. In order to determine the weight factors wjk,

FIG. 2. Field amplitude at the origin for different cutoff values
ε. We observe Umklapp points appearing at any finite cutoff, the
rightmost of which can be used as an indicator of unstable
solutions. For smaller cutoffs, the Umklapp points become denser
and converge toward the continuum BF bound (dotted line). FIG. 3. First Umklapp point for various hyperbolic tilings and

radial cutoffs θc. For small ε, the curves tend toward the
continuum bound m2l2 ¼ −1=4, indicated by the dotted hori-
zontal line. Inset: corresponding results from our hyperbolic
electric circuit simulations.
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we implement the following method devised from the
established approximation of lattice operators by finite
difference quotients. Given that all cells in a hyperbolic
tiling are isometric, it is clear that all weights in the stencil
have to be equal, i.e., wj;k ≡ w (cf. right panel of Fig. 1),
which allows us to write the lattice operator formally as a
matrix

□̃ −m2 ≡ wl−2ðA −GÞ þM; ð9Þ

acting on a vector of function values Φ ¼ ðΦ0;Φ1;…Þ.
Here, A and G denote the adjacency and degree matrix of
the tiling graph and M ¼ diagð−m2Þ. In order to calculate
the weight w, recall the approximation of a 1D second deri-
vative by finite differences ∂̃2xχðxÞ ¼ w½χðx − hÞ − 2χðxÞþ
χðxþ hÞ�. First, we determine a test function χðxÞ such that
∂
2
xχðxÞ ¼ 1, in this case χðxÞ ¼ 1

2
x2. Applying the discre-

tized derivative to this function yields ∂̃2xχðxÞ ¼ h2w; hence
w ¼ h−2. Note that unlike this case of a Cartesian hyper-
cubic lattice, the hyperbolic lattice spacing h is fixed, as
discussed above.
We now apply this procedure to the stencil on the

hyperbolic lattice. First, we determine a radially symmetric
test function χðθÞ such that

□χðθÞ ¼ 1

l2
ðcos2θ cot θ∂θ þ cos2θ∂2θÞχðθÞ ¼ 1: ð10Þ

A possible solution is

χðθÞ ¼ l2 ln

�
1þ 1

cos θ

�
: ð11Þ

Applying □̃ to this function on the central site of the tiling
(cf. right panel of Fig. 1) yields

□̃χð0Þ ¼ pwðχðθðp;qÞÞ − χð0ÞÞ ¼ 1: ð12Þ

Solving for w, the weight factors can be obtained for every
fp; qg and are listed in Ref. [29].
Numerical results.—Given the lattice Laplacian, the

continuum Klein-Gordon equation on a constant time slice
can be expressed on the finite hyperbolic tiling as

□̃Φ −m2Φ ¼ 0 for θ < θc;

ΦðθÞ ¼ Φc for θ ¼ θc ð13Þ

where the boundary condition is implemented by assigning
constant values to sites outside the radial cutoff θc.
Solving the discretized boundary value problem

[Eq. (13)] requires iterative matrix methods [43,44] already
for medium system sizes. It has to be taken into account
that for negative m2 exceeding a certain threshold, most
standard solvers tend to be unstable due to the lattice

operator □̃ −m2 becoming indefinite in this parameter
regime [45]. A class of algorithms which can handle
indefinite, sparse linear systems are so-called Krylow
subspace methods [46]. In particular, we use both the
GMRES (generalized minimum residual) [47] and
BiCGSTAB (biconjugate gradient stabilized) gradient sta-
bilized [48] methods to solve Eq. (13) and extract the
positions of the Umklapp points. The results from both
algorithms are fully compatible and presented in Fig. 3 for
various hyperbolic tilings [49] and values of the cutoff. We
find that all curves nicely converge toward m2l2 ¼ −1=4
for ε → 0, thus yielding the correct infinite volume limit
and marking the main result of this Letter.
We expect that the universal behavior for all p and q

displayed in Fig. 3 originates from a group-theoretic
argument as follows. For Fuchsian groups of the first kind,
which describe the isometries of fp; qg tilings, it is known
that the boundary limit set is the circle S1 [21,40]. For
infinite tilings, this implies conformal invariance of the
boundary theory. The BF bound is the mass-squared
threshold at which the scaling dimension Δ of the CFT
operator dual to the bulk scalar field becomes complex, as
can be seen from the definition of Δ below [Eq. (5)]. Thus,
the asymptotic value of the first Umklapp point must be the
same for all p and q as ε → 0. In addition, our numerical
results of Fig. 3 indicate that even for finite cutoff, where
the Fuchsian symmetry is broken, the universality of the
ε → 0 behavior is preserved for all p and q.
Hyperbolic electric circuits.—We further propose an

experimental realization of the BF bound in a suitable
electric circuit. We are motivated by topolectric circuits
[16], which are a platform based on circuits of capacitors
and inductors which are engineered to realize a plethora of
models exhibiting topological states of matter [26,27,50].
Specifically, let us consider a circuit on a hyperbolic tiling
as shown in Fig. 4. On the vertices of the tiling we attach
grounded capacitors C and connect them via identical
inductors L along the polygon edges. Note that our

FIG. 4. Section of the hyperbolic electric circuit. The structure
is repeated at every vertex in the lattice.
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construction differs from that in Ref. [17] in that we
exchange capacitors and inductors. This is necessary
because only then the site voltage Uj represents the scalar
field ϕj. In this network, the voltageUj at site j is related to

the capacitor current by Ij ¼ C _Uj while the voltage
differences between neighboring sites k of j are related
to the induced current by ðUk −UjÞ ¼ L_Ijk. According to
Kirchhoff’s laws, the time evolution of the voltage at site j
is given by

Üj ¼
1

LC

X
kjj

ðUk − UjÞ: ð14Þ

The oscillatory eigenmodes UjðtÞ ¼ ujeiωt are determined
by the system of equations

−ω2Uj ¼
1

LC

X
kjj

ðUk −UjÞ ¼
wðp;qÞ

LC
□̃Uj; ð15Þ

where in our case, the weights are constant wjk ¼ wðp;qÞ as
discussed above. By identifying

−m2l2 ¼ ω2
LC

wðp;qÞ ; ð16Þ

the electric circuit provides a realization of the discretized
Klein-Gordon equation for m2l2 < 0 [51].
The first Umklapp point corresponds to the lowest

eigenfrequency of the circuit, which represents the finite
gap in the negative-definite eigenspectrum of the hyper-
bolic Laplacian [15]. Since the circuits described above
contain only passive elements, they can only realize the
regime of negative mass squared. This is however precisely
the regime where according to Eq. (7), solutions to Eq. (4)
are unstable within the AdS=CFT correspondence. For
electric circuits to access the regime of m2 above the BF
bound, thus realizing non-normalizable solutions [Eq. (5)]
essential for holography, the implementation of active
electrical elements is required. Such elements were intro-
duced in Ref. [52] in the context of topolectric circuits. We
propose to use negative impedance converters to achieve
negative values of L or C on the rhs of Eq. (16).
In order to systematically locate the eigenmodes of the

passive circuit, we apply a driving alternating current at the
central node and integrate the system of Eq. (15) over time
using an explicit fourth-order Runge-Kutta method. Details
of our numerical analysis are presented in Ref. [29]. Once
the fundamental mode of the system is found, the corre-
sponding negative mass squared can be extracted according
to Eq. (16). These resonances (eigenfrequencies of the
circuit) are a physical manifestation of the Umklapp points
introduced above. Performing this analysis for several
different hyperbolic tilings [49] and finite cutoff radii,
we are able to locate the positions of the lowest eigenfre-
quency. Similarly to our analysis of the Umklapp points, we
are able to find the instability threshold on the tiling by

tracking the position of the first resonance frequency of the
circuit as the cutoff is removed. Again, we find an excellent
agreement with the continuum prediction, as shown in the
inset of Fig. 3. Our analysis thus shows how the BF bound
can be experimentally realized on hyperbolic electric
circuits.
Conclusions.—For the first time, we have identified the

implications of the Breitenlohner-Freedman bound for
discrete regular tilings of hyperbolic space. Notably, we
find universal behavior of the instabilities for all fp; qg
discretizations, even for finite cutoff. In particular, we find
excellent agreement between the positions of the Umklapp
points as obtained via numerical simulations of the scalar
field on several different fp; qg tilings with the analytical
solutions of the Klein-Gordon equation on EAdS2.
Moreover, for a specific hyperbolic electric circuit we
show how the resonance frequencies are a manifestation of
the Umklapp points. Simulations of the circuit dynamics
also show excellent agreement with the analytical data by
yielding the same dependence of the resonances on the
cutoff size. Both these results confirm the universal
behavior. Furthermore, we suggest how to adapt the
electrical circuits in order to realize mass-squared values
above the BF bound. Such circuit realizations will make
regular hyperbolic tilings excellent candidates for bringing
aspects of AdS=CFT to the laboratory.
The EAdS2 manifold considered here describes a con-

stant time slice of the larger AdS2þ1 spacetime. It would be
interesting to generalize our analysis to a Lorentzian setting
involving time, for instance by adding a temporal leg to the
vertices of the tilings and equipping them with radius-
dependent weights (see also Ref. [11] for a first attempt in
this direction). In practice, this can be implemented by
locally modifying L and C on the hyperbolic electric
circuit. We leave this for future work.
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