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We demonstrate the feasibility of ground state preparation for the transverse Ising model using projective
cooling, and show that the algorithm can effectively construct the ground state in the disordered
(paramagnetic) phase. On the other hand, significant temperature effects are encountered in the ordered
(ferromagnetic) phase requiring larger lattices to accurately simulate.
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I. INTRODUCTION

In quantum computing efficient state preparation meth-
ods are important for the analysis of quantum field theories
so that field excitations can be accurately described.
Much work has been done on constructing algorithms to
prepare ground states and excited states for interacting
field theories, and are briefly discussed to highlight their
differences.
Quantum adiabatic evolution [1–3] involves slowly turn-

ing on some coupling in a model by real-time evolution to
transform a state in a noninteracting theory to a correspond-
ing state in the interacting theory. While this method is
almost guaranteed to generate the correct state, the prepa-
ration of the state can take up the bulk of the quantum circuit.
Quantum variational methods [4–6] are a hybrid algorithm
which use a quantum computer to prepare and calculate the
expectation value of the Hamiltonian of a chosen Ansatz, and
then feed the result to a classical computer to minimize
energy with respect to the parameters governing the Ansatz.
The downside to variational methods is that improved
Ansätze will often require more parameters and this leads
to a classical minimization bottleneck.
Quantum phase estimation [7,8] works by applying

iterative controlled time evolution operations a quantum
state that is relatively close to the desired state. This method
suffers from the same problem of circuit depth as quantum
adiabatic evolution. Tensor networks can also be used for
quantum computations [9], and do have similar strengths in
approaching exact states; however, they are troubled by
entanglement requirements and very deep quantum circuits.
These issues make them intractable in the current era of
noisy quantum computers. More recently, the authors of
[10,11] suggested circumventing this problem by using

classically generated lattice configurations, using
Monte Carlo techniques, to construct the density matrix
of the quantum system and perform time evolution on these
states. Unlike the other methods, this one encounters a
signal-to-noise problem; however, the authors demon-
strated that it is mitigable. Another recently proposed
algorithm, projective cooling, uses time evolution and
selected qubit measurement to remove the high energy
excitations of a Hamiltonian [12]. The first four algorithms
each have their strengths and weaknesses in the field of
quantum computing that have been thoroughly examined;
however, not much work has focused on the strengths and
weaknesses of projective cooling.
The work done in [12] investigated models which

conserved particle number. The authors demonstrated that
their new algorithm is efficient in preparing bound states for
these Hamiltonians, and approached the correct bound state
faster than adiabatic evolution. A natural extension is to
examine a quantum field theory which has an effective
“pair” creation and annihilation, the transverse Ising model
(TIM). This choice is inspired by the road map used to
develop lattice computations for QCD [13,14], since it is a
stepping stone toward understanding theories containing
confinement or are strongly coupled.
Section II layouts out the projective cooling algorithm

and the Hamiltonian that will be investigated. Section III
shows the results for the asymptotic behavior for both the
ordered and disordered phases, and finite size scaling
behavior in the transverse Ising model.

II. THEORY

The idea behind projective cooling involves removing
high energy excitations outside of some region of interest
by projecting them away. More explicitly, projective cool-
ing works as follows (see Ref. [12] for more thorough
details): a small region Rs, which contains Ns sites and
supports the Hamiltonian of interest Hs, is chosen so that it
is symmetrically contained within some larger system Rb
(see Fig. 1), which contains Nb sites, with a corresponding
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Hamiltonian Ĥb. An initial vector state jψi that has support
on Rs is prepared on the quantum computer, and time
evolved corresponding to Ĥb. This process is in may ways
similar to the quantum Joule expansion [15] where particle
excitations are allowed to escape into a larger system after
the walls constraining them are removed. The difference
arises when the particle excitations outside of the Rs are
projected away, and in the limit that Nb ≫ Ns the wave
function in Rs will approach an asymptotic state. This
algorithm can be summarized algebraically,

jψ0i ¼ PUðtÞjψi; ð1Þ

where P is the operator that projects away excitations
outside of the Rs, UðtÞ ¼ e−itĤb , and jψi is the initial wave
function. The projection operator P can be implemented by
measuring the qubits outside of Rs and only keeping the
result is if the state j0i is measured on all the qubits. This
will encounter a sampling problem but is manageable in the
near-term intermediate scale quantum (NISQ) era.
Two formulations for the TIM Hamiltonian were used in

this work, depending on the quantum phase the system is
in. The reason for choosing different formulations is a
result of choosing a basis which is natural to work in. In the
disordered phase (J < hT), it is easier to work in a basis
where the transverse field is diagonal; conversely, in the
ordered phase (J > hT) it is easier to work in a basis where
the nearest neighbor coupling is diagonal. In the disordered
phase, the formulation of the TIM Hamiltonian, in Rs, used
in this work is

Ĥs ¼ −J
XN2−1

i¼N1

σ̂xi σ̂
x
iþ1 −

XN2

i¼N1

ðhT σ̂zi þ hσ̂xi Þ ð2Þ

where J is the nearest neighbor coupling, hT is the onsite
energy, h is the longitudinal field coupling which lifts
the degeneracy in the strongly ordered phase (hT ¼ 0),
N1 ¼ ðNb − NsÞ=2þ 1, and N2 ¼ ðNb þ NsÞ=2. It should
be noted that Nb and Ns must have the same parity. This
choice of N1 and N2 forces Rs to be symmetrically located
within Rb. In this work hT ¼ 1, and h ¼ N−15=8

s to ensure
that the longitudinal field is perturbative. The choices of hT

and h are not arbitrary. Since the TIM undergoes a second
order phase transition when J ¼ hT , setting hT ¼ 1 has
the phase transition occur at J ¼ 1. The choice of
h ¼ h0ðNsÞ−15=8, where h0 ¼ 1, is to ensure that finite size
scaling relations are obeyed, and the effects of the longi-
tudinal field are perturbative. The factor of 15=8 arises as a
critical exponent for spacial correlation functions [16].
Reference [15] showed that in using this formulation for the
TIM, finite size scaling relations were obeyed even for
small lattices of eight sites. The Hamiltonian for Rb in the
disordered phase is

Ĥb ¼ Ĥs − J
XN1−1

i¼1

ðσ̂xi σ̂xiþ1 þ σ̂yi σ̂
y
iþ1Þ

− J
XNb−1

i¼N2

ðσ̂xi σ̂xiþ1 þ σ̂yi σ̂
y
iþ1Þ − hT

X
i∉Rs

σ̂zi : ð3Þ

The introduction of the σyi σ
y
iþ1 terms outside of Rs and the

exclusion of the longitudinal field σxi is done to ensure no
particles are created outside of Rs and “leak” back in, while
the transverse field terms σzi are kept to force spin down
states to be more energetic than spin up states and force the
state with all spins pointing down to be the ground state
outside of Rs.
The ordered phase of the Hamiltonian is

Ĥb ¼ −J
XNb−1

i¼1

σ̂zi σ̂
z
iþ1 −

XNb

i¼1

ðhT σ̂xi þ N−15=8
b σ̂zi Þ: ð4Þ

This Hamiltonian does not have a change in couplings to
ensure that the domain wall excitations do not bounce back
into Rs [17]; the risk of doing this is that there may be some
“heat” leaking from outside Rs; however, later results will
show that this is negligible.
In all cases, Nb ranges from 6 to 14, Ns ranges from

4 to 9 sites, and the initial state has all spins pointing up.
Because of the size of some of the Hilbert spaces, the time
evolution operator UðtÞ is represented using a Suzuki-
Trotter approximation; in the disordered phase the time
evolution operator is

Ûðt; δtÞ ≈
�
eiδtJ

P
i
σ̂yi σ̂

y
iþ1eiδtJ

P
i
σ̂xi σ̂

x
iþ1eiδthT

P
i
σ̂zi eihδt

P
i
σ̂xi
� t

δt;

ð5Þ

while in the ordered phase the time evolution operator is

Ûðt; δtÞ ≈
�
eiδtJ

P
i
σ̂zi σ̂

z
iþ1eiδthT

P
i
σ̂xi eihδt

P
i
σ̂zi
� t

δt ð6Þ

In all cases δt ¼ 0.01=J so as to keep the systematic error
from this approximation negligible for large timescales.

FIG. 1. Depiction of the regions Rb and Rs for a lattice with
Nb ¼ 10 total sites and an Ns ¼ 4 sites contained within Rs. In
this case N1 ¼ 4 and N2 ¼ 7.
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III. RESULTS

It is important to first ensure that the system will
approach a stable asymptotic state. This can be done by
measuring the overlap of the time evolved and projected
state with the actual ground state of the Hamiltonian, as
done in [12]; however, on a quantum computer it is not
possible to measure this overlap. In keeping with the
methods of quantum computing we can expect to see
asymptotic behavior by measuring the energy density of the
projected state in the compact region Rs. The plateau is
defined by taking the minimum observed value of the
energy density, and then using the calculated values of
the energy density earlier in time up to 0.2% above the
minimum value to estimate the uncertainty.
Figure 2 shows a typical result (J ¼ 0.4 and Ns ¼ 5)

for the disordered phase. It is clear that the system
approaches an approximate plateau for Nb ¼ 11 and 13
and less so for Nb ¼ 9 and does not approach a plateau at
all for Nb ¼ 7. Figure 3 demonstrates the evolution
toward an asymptotic state in the ordered phase for
J ¼ 1.4 and Ns ¼ 6. The results of the ordered regime
are more noisy because there is “heat,” in the form of
domain wall excitations, leaking back into Rs [18]. This
heat is visible from the significant oscillations in energy
density over time. The noticeable and important feature
that arises is as Nb increases, the minimum of the energy
density approaches the exact value. This is reassuring
even if we do not see the same plateau. In Fig. 4 (J ¼ 2.0
and Ns ¼ 4), we see the plateaus become more noticeable
again as Nb increases but they are not as clean as the
plateaus in the disordered phase.

In Figs. 2, 3, and 4 the energy density of the asymptotic
state, in general, becomes closer to the exact energy density
as Nb becomes larger. This is indicative that Nb introduces
lattice artifacts to the calculation because it is finite. These
artifacts can be mitigated by extrapolating to the limit
where the volume of Rb is infinite. In order to do this, the
following Ansatz was chosen:

EðNbÞ ¼ Ae−BNb þ E∞: ð7Þ

FIG. 2. Energy per site (in the small region) of projectively
cooled state as a function of time in the ordered phase;
J ¼ 0.4, Ns ¼ 5.

FIG. 3. Energy per site of the state using projective cooling as a
function of time in the ordered phase; J ¼ 1.4, ns ¼ 6.

FIG. 4. Energy per site of the state using projective cooling as a
function of time in the ordered phase; J ¼ 2.0, ns ¼ 4.
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This Ansatz constrains the energy density to always be
finite and approach an asymptotic value as Nb → ∞.
The uncertainty in the energy density is calculated by

using the data points in the range from the minimal value
of the energy density to 2% above the minimal value of the
energy density. The result of this algorithm favors simu-
lations that exhibit a plateau verses a local minimum.
Figure 5 shows the infinite volume extrapolation. Away
from the phase transition (J ¼ 1) there is excellent agree-
ment for the energy density in all cases. However for
Ns > 5, it appears that there is some convergence issues
near the phase transition.
A second feature that is indicative that the system is close

to the ground state is the finite size scaling relations for the
magnetic susceptibility are preserved. The susceptibility is
defined as

χ ¼ 1

Ns

(PNs
i;j¼1hσ̂xi σ̂xji − hσ̂xi ihσ̂xji J < hTPNs
i;j¼1hσ̂zi σ̂zji − hσ̂zi ihσ̂zji J ≥ hT

; ð8Þ

where the different formulas correspond to the different
bases that are worked in. The susceptibilities are calculated
over the same region that the energy densities are. The data
collapse is demonstrated in Fig. 6 where different ratios of
Ns=Nb are plotted to demonstrate possible thermal effects.
For ratios of Ns=Nb > 5=9 nonlinear effects begin to take
over and cause the finite size scaling to break down and are
not shown.

IV. CONCLUSIONS

This work demonstrates that projective cooling can
effectively and accurately prepare the ground state for a
relatively simple field theory with a nontrivial ground state.
The projective cooling algorithm constructs the ground
state in the disordered phase of the transverse Ising model
more accurately than in the ordered phase. The discrep-
ancies in the ordered phase are likely a result of thermal
effects, indicated by the noticeable discrepancies of the
magnetic susceptibility in the ordered phase.
The work done here can be extended to extracting bound

states energies for attractive interacting problems such as
an Ising-like model with both σ̂zσ̂z and σ̂xσ̂x interactions
with only a few changes to the choice of initial state. Other
possible extensions could be the Schwinger or O(N)
models. In addition, optimizing this algorithm for quantum
computation is a challenge that must be addressed as the
readout errors and machine noise outside of the Rs can have
a drastic effect on the interpreted states and the costs of
postselection using the projection operator.
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FIG. 5. Energy density using an infinite volume extrapolation
as a function of the coupling constant for various compact region
sizes. Blue crosses: extrapolated points; orange curve: ground
state energy density via exact diagonalization. FIG. 6. Rescaled magnetic susceptibility as a function of the

rescaled nearest neighbor coupling for various ratios of Ns=Nb.
Black curve: interpolation for the exact magnetic susceptibility
for 14 sites; green points and blue crosses: calculated suscep-
tibilities using projective cooling.
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