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Abstract The properties of electrically charged strange
quark stars are investigated. We assume a non-linear
equation-of-state, and we obtain numerical solutions to
the structure equations. The key features of the solutions
obtained here are (i) they can support a 2 solar masses star,
(ii) both the mass and the electric charge of the stars increase
with the α parameter characterizing the electric density, (iii)
the electric object is heavier and larger than its neutral coun-
terpart.

1 Introduction

Compact objects [1–3] are the final fate of stars, and since
they are characterized by ultra high matter densities the non-
relativistic Newtonian description is not adequate. Dense,
compact objects are relativistic and as such they are described
properly within the framework of Einstein’s General Relativ-
ity (GR) [4]. On the one hand neutron stars were predicted to
exist by Baade and Zwicky [5] soon after the discovery of the
neutron by James Chadwick [6,7]. Indeed, several decades
later the discoveries of pulsars in the Crab and Vela super-
nova remnants [8] led to their identification as neutron stars
one year after the discovery of pulsars in 1967 [9].

On the other hand quark matter, by assumption, is abso-
lutely stable, and it may be the true ground state of hadronic
matter [10,11]. Therefore a new class of compact objects has
been postulated to exist as an alternative to neutron stars. As
a matter of fact, they provide us with a plausible explanation
of the puzzling observation of some super-luminous super-
novae [12,13], which occur in about one out of every 1000
supernovae explosions, and are more than 100 times brighter
than normal supernovae. The compact objects called “strange
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quark stars” [14–19], since they are a much more stable con-
figuration compared to neutron stars, may explain the origin
of the huge amount of energy released in super-luminous
supernovae.

Since real astronomical objects are expected to be electri-
cally neutral, or at least without a significant amount of elec-
tric charge, in studies of compact relativistic astrophysical
objects the authors usually focus on electrically neutral stars
made of an isotropic fluid, and the interior solution is matched
to the exterior Schwarzschild solution [20] on the surface
of the object. However, after the work of Bekenstein [21]
there is nowadays some interest in adding electric charge
to matter inside the star. Over the years some people have
investigated the properties of electric stars. However, previ-
ous studies have considered either incompressible, uniform
density stars, or polytropic stars and NSs [22–28]. Regarding
strange quark stars with a non-vanishing electric charge, we
are aware of the works of [29,30], where the well-studied
linear equation-of-state for quark matter was used.

Despite the fact they are still theoretical objects, in the
present work we propose to investigate the properties of elec-
trically charged strange quarks stars adopting a non-linear
equation-of-state instead, obtained in the framework of color
superconductivity [31–33], assuming a non-vanishing energy
gap and mass for the s quark. The assumed charge density,
too, here is different than the ansatz made in [29,30].

The plan of our work is the following: after this introduc-
tion, we present the structure equations describing hydro-
static equilibrium in Sect. 2, while in the third section we
show and discuss our numerical results. Finally we con-
clude our work in the last section. We adopt the mostly pos-
itive metric signature, (−,+,+,+), and we work in natural
units where the speed of light in vacuum c as well as the
reduced Planck constant h̄ are set to unity, c = 1 = h̄. In
these units all dimensionful quantities are measured in GeV,
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and we make use of the following conversion rules 1m =
5.068 × 1015 GeV−1 and 1 kg = 5.610 × 1026 GeV [34].

2 Structure equations

The model is described by the action

S = SG + SM + SEM (1)

where the gravity part SG is given by the usual Einstein-
Hilbert term, the electromagnetic Lagrangian SEM corre-
sponds to the Maxwell theory, while the matter contribution
corresponds to a perfect fluid with energy density ρ, pres-
sure p and a certain equation-of-state F(p, ρ) = 0. Varying
with respect to the metric tensor we obtain Einstein’s field
equations without a cosmological constant

Gμν = Rμν − 1

2
Rgμν = 8πTμν (2)

where we have set Newton’s constant G equal to unity. The
total stress–energy tensor has two contributions

Tμν = Mμν + Eμν (3)

namely one from the perfect fluid

Mμν = pgμν + (p + ρ)uμuν (4)

where uμ is the four-velocity of the fluid, and one from the
electromagnetic field [28]

Eμν = 1

4π

[
−1

4
Fgμν + Fνγ F

γ
μ

]
(5)

where F = FμνFμν is the Maxwell invariant, and Fμν is
the electromagnetic field strength. Furthermore, varying with
respect to the Maxwell potential one obtains Maxwell’s equa-
tions

∇νF
μν = 4π Jμ (6)

where Jμ is the current of the charged fluid.
For the exterior problem, r > R, with R being the radius

of the star, where Mμν vanishes, we seek static spherically
symmetric solutions of the form

ds2 = − f (r)dt2 + g(r)dr2 + r2(dθ2 + sin2 θdφ2) (7)

for the metric tensor, while for the electromagnetic field the
only non-vanishing component is the one that corresponds
to the electric field, Ftr = E(r) = Q/r2. The solution to

the exterior problem is of course the well-known Reissner–
Nordström solution [35]

f (r) = g(r)−1 = 1 − 2M

r
+ Q2

r2 (8)

where M, Q are the mass and the electric charge, respec-
tively, of the star. The electric charge takes values in the
range 0 ≤ Q ≤ M , where in the limit Q → 0 we recover
the Schwarzschild solution, while in the other limit the black
hole becomes extremal.

For the interior solutions, r < R, we have to solve the
field equations in the presence of both the perfect fluid and
the electromagnetic field. As usual we make the ansatz

ds2 = −eν(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdφ2) (9)

and we set for convenience

A(r)−1 = 1 − 2m(r)

r
+ q(r)2

r2 (10)

similar to the exterior solution, where m(r) is the mass
function, and q(r) is the total electric charge function.
Therefore, in total there are four unknown functions, m(r),
q(r), ν(r), p(r), satisfying the following system of coupled
differential equations [28]

q ′(r) = 4πρe(r)r
2
√
A(r) (11)

m′(r) = 4πρ(r)r2 + q(r)q ′(r)
r

(12)

p′(r) = −(p(r) + ρ(r))
4πrp(r) + m(r)

r2 − q(r)2

r3

1 − 2m(r)
r + q(r)2

r2

+ q(r)

r2 ρe(r)
√
A(r) (13)

ν′(r) = 1

p(r) + ρ(r)

[
q(r)q ′(r)

2πr4 − 2p′(r)
]

(14)

where ρe(r) is the electric density, and the prime denotes dif-
ferentiation with respect to the radial coordinate r . For neutral
stars, q(r) = 0, we recover the usual Tolman–Oppenheimer–
Volkoff equations [36,37]. Finally, the differential equations
are to be integrated imposing the initial conditions at the
center of the star

p(0) = pc (15)

m(0) = 0 (16)

q(0) = 0 (17)

with pc being the central pressure, while upon matching the
solutions on the surface of the star, the following conditions
must be satisfied
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p(R) = 0 (18)

m(R) = M (19)

q(R) = Q (20)

eν(R) = 1 − 2M

R
+ Q2

R2 (21)

The first condition allows us to determine the radius of the
star, while the second and the third allows to compute both
the mass and the charge of the object.

3 Equation-of-state and numerical results

3.1 Equation-of-state

To solve the structure equations we need to specify the
sources first. Matter inside the star is modelled as a relativis-
tic gas of de-confined quarks, and we consider an extension
of the simplest MIT bag model [38,39]

p(ρ) = 1

3
(ρ − 4B) (22)

with B being the bag constant, where the EoS is linear in
the form “radiation plus constant”. In the present work we
adopt a slightly more complicated, non-linear EoS obtained
in the framework of color superconductivity [31–33], which
is given by [40–42]

p(ρ) = ρ

3
− 4B

3
+ 3γ

π2 μ2 (23)

μ2 = −γ +
√

γ 2 + 4

9
π2(ρ − B) (24)

where the parameter γ is defined by [42]

γ = 2

3
Δ2 − 1

6
m2

s (25)

withms being the mass of the strange quark, and Δ the energy
gap. Clearly, when γ = 0 we recover the simplest version of
the MIT bag model mentioned before.

Given the equation-of-state p = p(ρ), the speed of sound
may be computed by c2

s = dp/dρ, and it is found to be

c2
s = 1

3
+ 2γ

3(γ + μ2)
(26)

Clearly, when γ → 0 we recover the constant value cs =
1/

√
3 corresponding to the linear EoS, but when γ �= 0 there

is a non negligible effect, which leads to a density dependent
value rather different than 1/

√
3. The behaviour of the speed

of sound for neutral objects may be seen in Fig. 2 of [42].
In the CFL scenario, since the energy gap Δ �= 0, the

EoS is non-linear even if the s quark is taken to be massless.

In this case all three quark flavours, u, d, s, have the same
number densities, and the neutrality condition

(+2/3)nu + (−1/3)nd + (−1/3)ns = 0 (27)

is satisfied without the presence of electrons [33]. When,
however, s quark has a finite mass, its number density is dif-
ferent than nd , nu , and the object without electrons acquires
a net electric charge. For the electric density, following pre-
vious works [24,27,28], we assume it is proportional to the
energy density

ρe(r) = αρ(r) (28)

with some constant of proportionality α taking values in the
range 0 ≤ α ≤ 1 [28]. Since strange quark stars at low
masses resemble an incompressible fluid, ρ ≈ ρ0, M ∼ R3,
we find it natural to consider here an electric density propor-
tional to matter energy density similar to [28], although dif-
ferent choices have been considered in other similar works,
for instance a Gaussian profile [29] or a power-law for the
total electric charge function [30]. It should be noted that
although in principle the electric fraction α should depend
on ms , in the numerical analysis below we shall treat α as a
free parameter, and we shall study its impact on properties
of charged strange quark stars.

We remark in passing that other refine and more sophis-
ticated quark EoSs do exist in the literature, such as mod-
els that incorporate a chiral symmetry breaking [43,44] or
models based on perturbative QCD studies [45,46], and oth-
ers [47,48]. All these EoSs lead to stars with properties
that vary in stiffness and compactness. In the following,
however, we shall consider the EoS given above since it
is always advantageous to work with analytic functions. It
certainly would be interesting to study precisely how other
more refine EoSs would affect the results of the present work,
and we hope to be able to address that issue in a future
work.

On the mass-radius plane the highest star mass that a given
EoS can support crucially depends on the equation-of-state,
and soft equations of state predict lower highest masses [49].
The observed massive pulsars PSR J1614-2230 with a mass
(1.908 ± 0.016) M
 [50] and PSR J0348-0432 with a mass
(2.01 ± 0.04) M
 [51] have put a stringent constrain on the
EoS. Several EoSs predict maximum star masses well below
2M
, and therefore they must be ruled out.

In the context of color superconductivity the EoS is char-
acterized by three parameters, namely: B,ms,Δ, and there
are 19 viable models, out of which 8 models admit a high-
est star mass larger than 2 solar masses, see e.g. [42]. In the
following, we choose two fiducial models (number 10 and
number 8) of [42] for our study, where the parameters take
the following numerical values
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Fig. 1 First row electric charge q(r) (left panel), pressure p(r) (mid-
dle panel) and metric function eλ (right panel) versus normalized radial
coordinate r/R for α = 0, 0.1, 0.2, 0.4, 0.4 from bottom to top for the
model CFL 10. Second row ratio Q/M (left panel) and compactness

β = M/R (middle panel) versus mass of the star (in solar masses), and
mass-to-radius profiles (right panel) for α = 0, 0.1, 0.2, 0.4, 0.4 for the
model CFL 10

Fig. 2 Same as Fig. 1 but for the model CFL 8

Table 1 Maximum values of
star mass (in solar masses) and
radius (in km) for the model
CFL 10

α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

Rmax 11.87 11.90 11.98 12.12 12.34

Mmax 2.20 2.22 2.28 2.38 2.55

Table 2 Maximum values of
star mass (in solar masses) and
radius (in km) for the model
CFL 8

α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

Rmax 10.27 10.30 10.37 10.51 10.70

Mmax 1.82 1.84 1.89 1.98 2.11
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Δ = 150 MeV (29)

ms = 150 MeV (30)

B = 80 MeV fm−3 (31)

and Mmax = 2.20 M
 for the model CFL 10 (above the two
solar masses band) and

Δ = 100 MeV (32)

ms = 150 MeV (33)

B = 80 MeV fm−3 (34)

and Mmax = 1.82 M
 for the model CFL 8 (below the two
solar masses band).

3.2 Numerical results

Our numerical results are summarized in the Figs. 1 and
2 for the models CFL10 and CFL8, respectively. First, in
the top row of Fig. 1 we show the impact of the α param-
eter on the interior solutions for a given central pressure
pc = 1.5 B. In particular, we show the charge function
q(r) (left panel), the pressure (middle panel) and the second
metric function eλ (right panel) versus the normalized radial
coordinate r/R for α = 0, 0.1, 0.2, 0.3, 0.4 from bottom to
top. Notice than in the case of the pressure all four curves
coincide, since the pressure starts from the same central value
and decreases until it vanishes at the surface of the star.
The numerical results show that both the mass M = m(R)

and the electric charge Q = q(R) increase with the α

parameter.
In the bottom row of the same figure we show the mass-

to-radius profile (right panel), the compactness β = M/R
versus mass (in solar masses, middle panel) as well as
the electric charge versus mass of the star (left panel) for
α = 0, 0.1, 0.2, 0.3, 0.4. We can see that the impact of the
α parameter is significant only at higher masses, 1.5 − 2
solar masses, while for light stars we do not see any observ-
able effect. The numerical results show that the maximum
radius, the maximum mass and the maximum compactness
increase with the α parameter. Furthermore, for a given
α the ratio Q/M increases only slightly with the mass,
while for a given mass it increases with α. Finally, it is
worth mentioning that a mass as high as 2 solar masses
can be supported, and that the charged stars are heav-
ier than their neutral counterparts. Regarding the mass-to-
radius profiles, the highest values Mmax , Rmax are shown in
Table 1.

Next, we show in the top row of Fig. 2 the impact of the α

parameter on the interior solutions for a given central pressure
pc = 1.5 B for the model CFL8. Similarly to the previous
model, first we show the charge function q(r) (left panel),
the pressure (middle panel) and the second metric function eλ

(right panel) versus the normalized radial coordinate r/R for
α = 0, 0.1, 0.2, 0.3, 0.4 from bottom to top. We then observe
a similar behaviour to the model CFL10. In this case when
we decrease the value of Δ, the first and the third plots are
attenuated, whereas the pressure remains intact. The mass-to-
radius profiles obtained here are similar to the ones obtained
in [29,30].

In the bottom row of the same figure, we show the mass-to-
radius profile (right panel), the compactness β = M/R ver-
sus mass (in solar masses, middle panel) as well as the electric
charge Q/M versus mass of the star (left panel) for the same
values of α considered in the previous model. Regarding
the mass-to-radius profiles, the highest values Mmax , Rmax

are shown in Table 2. In comparison with the model CFL10
we obtain qualitatively similar results (although the stars of
the model CFL8 are somewhat smaller and lighter than the
ones of the model CFL10), namely (i) both the mass M and
the electric charge Q increase with the α parameter, (ii) the
charged stars are heavier than their neutral counterparts, and
(iii) the compactness is lower than 0.35, which is compati-
ble with the Buchdahl bound, β ≤ 4/9 � 0.44 [52]. Notice
that although in the case of neutral stars in the CFL 8 model
the highest mass supported by the assumed EoS does not
cross the two solar masses band, in the case of charged stars,
and when the electric charge becomes sufficiently large, the
highest mass eventually reaches the two solar masses bound.
Furthermore, the event GW170817 [53] has imposed a new
constraint to the upper limit of the maximum mass, 2.17 M

[54], and consequently the model CFL 10 would be ruled
out.

4 Conclusions

In summary, in the present work we have studied the
properties of electrically charged strange quark stars. We
have assumed a non-linear equation-of-state which describes
quark matter in the framework of color superconductivity,
and we have obtained numerical solutions to the structure
equations. The impact of the charge density on properties of
the stars is investigated in detail. Our results show that (i)
electric stars are heavier than their neutral counterparts, (ii)
the predicted mass-to-radius profiles cross the 2 solar mass
band, (iii) both the mass and the charge of the stars increase
with the α parameter of the charge density for a given central
pressure, and (iv) the maximum radius, the maximum mass
and the maximum compactness increase with the α parame-
ter.
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