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Abstract

In this paper we will consider the most general quadratic curvature action with infinitely many covariant 
derivatives of massless gravity in three spacetime dimensions. The action is parity invariant and torsion-free 
and contains the same off-shell degrees of freedom as the Einstein-Hilbert action in general relativity. In 
the ultraviolet, with an appropriate choice of the propagator given by the exponential of an entire function, 
the point-like curvature singularity can be smoothened to a Gaussian distribution, while in the infrared the 
theory reduces to general relativity. We will also show how to embed new massive gravity in ghost-free 
infinite derivative gravity in Minkowski background as one of the infrared limits. Finally, we will provide 
the tree-level unitarity conditions for infinite derivative gravity in presence of a cosmological constant in 
deSitter and Anti-deSitter spacetimes in three dimensions by perturbing the geometries.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Einstein’s theory of general relativity (GR) contains classical and quantum singularities in 
3 + 1 spacetime dimensions [1,2]. Quadratic curvature gravity in four spacetime dimensions 
(4d) indeed ameliorates the renormalizability issue, but contains massive spin-2 ghosts [3]. A 
ghost-free theory of quadratic gravity in 4d that contains infinitely many covariant derivatives 
has been constructed in Refs. [4,8–10,12,13,11] and [5,6]. The corresponding action is the most 
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general one which is parity invariant and torsion free as long as one is interested in linear per-
turbations around maximally symmetric spacetimes [6,7]. By construction, the action contains 3
analytic form factors Fi (�) = ∑

n fi,n�n with infinitely many covariant derivatives represent-
ing the Ricci scalar, the Ricci tensor and the Riemann/Weyl tensor. It was shown that the full 
action of ghost-free analytical infinite derivative theory of gravity (AIDG) in 4d can amelio-
rate the static Schwarzschild blackhole singularity [5,14–18], [19,20] and also produces rotating 
non-singular metrics [21] at linear level. The gravitational interaction weakens enough that as-
trophysical objects with even billions of solar masses may have no singularities, provided certain 
conditions are met [22,20]. The singularities can also be resolved with extended objects such as 
static p-branes [23]. At the quantum level, the interaction introduces non-locality [24–29] and 
it has been argued that the theory would be power-counting renormalizable [9,33,4]. A careful 
analysis of this issue can be found in [31,32].

It is now wishful to consider whether we could construct ghost-free AIDG in 3d , in particular 
we are motivated to study the gravitational action in the UV where the higher derivatives play a 
significant role around Minkowski and in (A)dS backgrounds. In 3d , GR itself has some interest-
ing properties which can be captured by either a metric theory of gravity or by a Chern-Simons 
theory [38–40]. It contains 3 off-shell degrees of freedom but on-shell they do not survive, hence 
the physical graviton does not propagate. Furthermore, there is an interesting connection between 
3d-gravity in AdS and conformal field theory (CFT) in the boundary [41,42] and in AdS3 there 
exists an intriguing non-trivial blackhole solution [43,44]. All these non-trivial features in 3d

demand further study on the construction of both massless and massive ghost-free AIDG up to 
quadratic in curvature.

The aim of this paper will be to construct the conditions on the gravitational form factors, 
which will at least guarantee a linearized ghost-free propagator around Minkowski and (A)dS 
backgrounds which has massless Einstein-Hilbert gravity as an IR limit. Finding the propagator 
in (A)dS involves non-trivial computations which we will carry out for the first time in A(dS) for 
AIDG in 3d . We will also show how such a construction can yield new massive gravity [45,46]
around Minkowski background, see also ref. [47] for further classifications of new massive grav-
ity in the IR. We will restrict ourselves to classical properties and will not consider quantization 
of gravity in any of the backgrounds.

The paper is organized as follows: In section two the full equations of motion of AIDG in 
3d are discussed and in section three linearized gravity around Minkowski background and the 
ghost-free conditions for the propagator are discussed. In section four we have shown how AIDG 
can resolve point like curvature singularities and in section five, we will discuss how new mas-
sive gravity can be treated as an IR limit of ghost-free AIDG. In section 6, we briefly discuss 
maximally symmetric solutions of this action and in section 7, we consider the conditions for 
AIDG to be ghost-free in (A)dS backgrounds.1

1 We will use the following conventions:

• ηab = diag (−1,1,1)

• a, b, ... are abstract indices in 3d, μ, ν, ... are coordinate indices in 3d and i, j, ... are purely spatial coordinate 
indices

• (a1, ..., an) and [a1, ..., an] denote (anti-)symmetrization including a factor 1
n!• c = GN = h̄ = 1.
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2. The full equations of motion

The 3d analogue of AIDG can be constructed in a very similar fashion as in 4d , see for 
detailed derivations in 4d from the most general ansatz of parity invariant and torsionless setup 
in [5–7]. The action in 3d can be captured by the Ricci scalar and the Ricci tensor, with two form 
factors:

SAIDG =
∫

d3x
√−g

[
R

2
+ RF1 (�)R + RabF2 (�)Rab

]
(1)

where � = gab∇a∇b has a mass dimension of 2. Therefore, � ≡ �/M2
s , where Ms is a new scale 

of gravity in 3d , beyond which the infinite derivative part becomes important, while below Ms

GR becomes a viable option.2

The two form factors are assumed to be analytic and given by an infinite power series in �3:

Fi(�) =
∑
n

fi,n�n . (2)

This is the most general form of a covariant action with terms quadratic in curvature containing 
infinitely many derivatives with reduces to GR in the IR regime. The equations of motion can be 
derived in a very similar fashion in the 4d case, which was first derived in [53]. The only major 
difference is that the Weyl tensor is identically zero in three dimensions, hence there are only 
two quadratic curvature terms in the action. Here we present the 3d version of that:

Gab + 4GabF1 (�)R + gabRF1 (�)R − 4 (∇a∇b − gab�)F1R − 2�1ab

+gab

(
�c

1c + �1
) + 4Rc

aF2 (�)Rcb − gabRcdF2 (�)Rcd − 4∇c∇bF2 (�)Rc
a

+2�F2 (�)Rab + 2gab∇c∇dF2 (�)Rcd − 2�2ab + gab

(
�c

2c + �2
) − 4�2ab = τab (3)

where τab is the energy momentum tensor and Gab is the Einstein tensor. We have defined the 
symmetric tensors4

�1ab =
∞∑

n=1

f1n

n−1∑
l=0

∇aR
(l)∇bR

(n−l−1), �1 =
∞∑

n=1

f1n

n−1∑
l=0

R(l)R(n−l) (4)

�2ab =
∞∑

n=1

f2n

n−1∑
l=0

∇aR
cd(l)∇bR

(n−l−1)
cd , �2 =

∞∑
n=1

f2n

n−1∑
l=0

Rcd(l)R
(n−l)
cd (5)

�2ab = 1

2

∞∑
n=1

f2n

n−1∑
l=0

∇c

(
R

c(l)
d ∇(aR

d(n−l−1)
b) − ∇(aR

cd(l)R
(n−l−1)
b)d

)
. (6)

Obviously, these equations containing all the double sums are very hard to solve exactly. Nev-
ertheless, one can see that constant curvature backgrounds are indeed solutions of this theory, 
i.e.

2 We will suppress writing Ms in order not to clutter our formulae, but while discussing physical situation, we will 
invoke Ms and then we will take care of mentioning it appropriately.

3 The fin have to have the dimension [mass]−2−2n according to our conventions. Further note that here we will only 
consider analytic operators of �, and not non-analytic operators such as 1/� [48,52] or ln(�) [49–51].

4 The notation A(l) is an abbreviation of �lA for any tensor A.
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R = constant, Rab = constant × gab,

see section 6. In 4d such solutions exist, in fact non-trivial solutions are conformally flat in 
asymptotically Minkowski background, see for details [20]. We can also consider the linearized 
equations of motion: If we only keep the terms linear in curvature we obtain

Gab − 4 (∇a∇b − gab�)F1R − 4∇c∇bF2 (�)Rc
a

+2gab∇c∇dF2 (�)Rcd + 2�F2 (�)Rab = τab. (7)

3. Unitarity and propagator around Minkowski background

The linearized limit is particular useful to examine the mechanical properties of the theory, 
such as tree-level unitarity and the propagator. As usual, we will write the metric as

gab = ηab + hab (8)

and treat hab � 1 as a small quantity. Since we want to reduce the equations of motion to linear 
order in hab , the action should contain only terms up to quadratic order in hab and, moreover, 
we expect it to be constructed solely out of hab, ηab (the Minkowski metric) and ∂a . The most 
general action of this kind consists of several terms according to the various index contractions 
and reads

Squa = 1

4

∫
d3x

√−g

[
1

2
hab�a (�) hab + hc

bb (�) ∂c∂ah
ab + hc (�) ∂a∂bh

ab

+1

2
h�d (�)h + hcd f (�)

2� ∂c∂d∂a∂bh
ab

]
(9)

with analytic functions a (�) , ..., f (�) (the exact definitions are merely a convention, of course; 
extra factors of 1

2 or � are inserted for later convenience). The resulting linearized equations of 
motion read

1

2
�a (�) hab + b (�) ∂c∂(ah

c
b) + 1

2
c (�)

(
ηab∂c∂dhcd + ∂a∂bh

)
+1

2
�d (�) hηab + f (�)

2� ∂a∂b∂c∂dhcd = −τab . (10)

5 To compute a (�) , ..., f (�) in terms of F1 (�) and F2 (�), we insert the linearized expressions 
for the curvature quantities

R
(1)
ab = ∂c∂(ah

c
b) − 1

2
∂a∂bh − 1

2
�hab , (11)

R(1) = ∂a∂bh
ab −�h , (12)

into Eq. (7) and compare the coefficients of the different terms. We get [5]:

a (�) =1 + 2F2 (�)� = −b (�) ,

c (�) =1 − 8F1 (�)�− 2F2 (�)� = −d (�) ,

f (�) =8F1 (�)�+ 4F2 (�)� . (13)

5 The definition of τab here defers from the previous section by an unimportant numerical factor.
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The constant terms correspond to the Einstein-Hilbert contribution, so for F1, F2 → 0 we re-
cover pure Einstein gravity.

If we wish to demand that the IR limit of the action Eq. (1) is that of Einstein’s GR, then 
similar to the argument provided in Refs. [5–7], we want the equations of motion and hence the 
propagator to be proportional to the GR-case, so we demand that f (�) should be zero. As a 
result, a (�) = c (�), and the equations of motion can now be written in momentum space, using

hab (x) =
∫

d3k eikνxν

hab (k) , (14)

and
1

2
a

(
−k2

)(
−k2hab + 2kck(ah

c
b) − ηabkckdhcd − kakbh + k2hηab

)
= −τab . (15)

To obtain the free propagator, we have to invert the field equations which is not possible directly, 
because they contain zero modes corresponding to gauge degrees of freedom. An easy way to 
get rid of the gauge modes is to use spin projection operators [5,54,55], see Appendix A.1 for 
the details. We arrive at the propagator where the momentum dependent part is given by:

�AIDG = P 2
s

a
(−k2

)
k2

− P 0
s

a
(−k2

)
k2

= 1

a
(−k2

)�GR . (16)

As promised, the propagator is proportional to the GR-propagator and by choosing a (�) in a 
clever way, namely as exponential of an entire function, we will not introduce any new pole in the 
graviton propagator in flat background.6 Therefore, by going from UV to IR only the 3 dynam-
ical degrees of freedom, namely the spin-2 and spin-0 components propagate in a sandwiched 
propagator, sandwiched between two conserved currents. Otherwise the propagator would have 
additional poles associated to additional particle excitations. The simplest choice is [5]

a (�) = e−�/M2
s , (17)

with a certain mass scale Ms that can be interpreted as the scale of non-locality. The choice of 
sign in 4d was obtained by demanding that the Newtonian gravitational potential recovers 1/r

behavior in the IR, see for details [33]. The negative sign in the exponent also helps the UV 
properties which we will exhibit below. Since the propagator is suppressed in the high energy 
regime, there is an indication that the theory may become asymptotically free. It implies from 
a(�) = c(�) [5] that the form factors are now constrained in the Minkowski background:

2F1(�) + F2(�) = 0 , (18)

F1 (�) = −e−�/M2
s − 1

4� , F2 (�) = e−�/M2
s − 1

2� . (19)

Note that in the low-energy-limit Ms → ∞ the Fi (�) tend to zero so we get Einstein gravity as 
expected. There is one more important issue: The second term in Eq. (16) has the wrong sign and 
therefore indicates the presence of a ghost state. However, this is an example of a benign ghost
which does not spoil unitarity of the associated quantum theory.7

Benign ghosts are a common feature of gauge theories in general.

6 There actually exist exceptions to this principle, e.g. by using complex conjugate poles, see [34–37].
7 Since we do not quantize the theory in a rigorous way, what is shown here is just tree-level unitarity. For a discussion 

of perturbative unitarity to all orders see [63,64].
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It is a well known fact that Einstein gravity in 3d has no on-shell propagating degrees of 
freedom, and since per construction we did not change the number of local excitations, we expect 
that statement still to be true (the derivation can be found in Appendix A.2). One should however 
keep in mind that this is only true on-shell; if we do not demand the vacuum field equations 
to hold we can only remove three degrees of freedom through Eq. (115). The remaining three 
propagate off-shell as it can be seen in the propagator, see Eq. (16).

Moreover, due to non-locality we conclude that also causality must be violated in the UV 
regime. In [66] it was argued that those violations can never be detected in any laboratory exper-
iment. We will not go into detail regarding this issue and refer to the discussions in [66,30].

4. Adding a Dirac-delta source

In this section, we wish to show that by adding sources (or more precisely, a point source) 
will change the behavior of the solutions drastically. Let us briefly recall the situation in Einstein 
gravity: Due to the local field equations Rab = 0 space is always flat everywhere, adding a point 
source τab ∼ δ(xi) (where xi denote the two spatial coordinates) will merely change the behavior 
of Rab at x = 0, leading to a conical singularity.

To analyze the problem in AIDG, we wish to work again with the linearized field equations 
for hab . In momentum space, we have

τab (k) =
∫

d3x e−ikxδ2
(
xi

)
mδ0

aδ
0
b = 2πmδ0

aδ
0
bδ

(
k0

)
. (20)

Acting on it with the propagator yields

� cd
ab τcd (k) = hab (k) = 2πm

1

k2a
(−k2

) (
δ0
aδ

0
b + ηab

)
δ
(
k0

)
, (21)

so hab takes the form takes the simple form 

⎛⎝0 0 0
0 ψ 0
0 0 ψ

⎞⎠ with

ψ =
∫

d3k

(2π)3 eikx δ
(
k0

) 2πm

k2a
(−k2

) =
∫

d2k

(2π)2 eikix
i m

kikia
(−kiki

) . (22)

Plugging that into the linearized Ricci tensor Eq. (11) yields

Rab = −1

2

⎛⎝0 0 0
0 �ψ 0
0 0 �ψ

⎞⎠ , (23)

where � denotes the two dimensional (purely spatial) Laplacian. �ψ can now be evaluated 
straight forwardly for our preferred choice a = ek2/M2

s :

�ψ = ∂i∂
i

∫
d2k

(2π)2 eikix
i m

kiki

e

−ki k
i

M2
s = −m

∫
d2k

(2π)2 eikix
i

e

−ki ki

M2
s = −M2

s m

4π
e− M2

s
4

(
x2

1+x2
2

)
.

(24)

So the Ricci tensor turns out to be a Gaussian distribution around the point source. If we take the 
limit Ms → ∞ the Gaussian turns into a delta distribution and we recover the expected result of 
pure Einstein gravity. The infinitely many derivatives have the effect of smearing out the conical 
singularity and the Ricci scalar stays finite, in strong analogy with the 4d case [5].
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5. New massive gravity as an IR limit of AIDG

So far we have analyzed AIDG under the condition that it reduces to Einstein gravity in 
the limit Ms → ∞. In 3d , however, there exists another possible low-energy-limit called New 
Massive Gravity, see [45–47].8

It consists more or less in Stelle’s fourth order theory adapted to three dimensions, with the 
action

SNMG =
∫

d3x
√−g

[
R

2
+ αR2 + βRabR

ab

]
, (25)

(Note that R and Rab here denote the actual Ricci tensor and scalar again, not the background 
quantities.) In contrast to four dimensions, there is a possibility to get rid of the Weyl ghost; 
namely for the choice α = − 3

8β . More specifically, we will consider the action [45,46]

SNMG =
∫

d3x
√−g

[
−R

2
− 3

8m2 R2 + 1

m2 RabR
ab

]
, (26)

where m is a new mass parameter. Notice that we changed the sign of the Einstein-Hilbert term 
deliberately. The propagator can be straight forwardly evaluated with the help of spin projection 
operators, and reads

�NMG = − P 2
s(

1 + 2k2

m2

)
k2

+ P 0
s

k2 = −�GR + P 2
s

k2 + m2

2

, (27)

so we have one additional propagating mode compared to GR which is a spin two tensor with 
mass squared m2

2 . This is the usual Weyl-ghost familiar from Stelle’s theory, however, we have 
reversed its sign here so that it has positive energy. As a result, the GR-part comes with the wrong 
sign. But this is not a problem since the GR-excitations do not propagate and the theory is still 
unitary.

The other open issue is renormalizability: As Stelle has proved, fourth-order gravity is renor-
malizable and in three dimensions we still expect that statement to hold. While this is true in 
principle, there are specific combinations of α and β which destroy the renormalizability, namely 
exactly those which provide unitarity! Hence, like in four dimensions, we cannot have unitarity 
and renormalizability at the same time in fourth-order gravity.

Here our aim is to embed NMG in AIDG, and see how it arises in the IR. We now want 
to construct a theory containing infinitely many derivatives which reduces to NMG in the limit 
Ms → ∞ and does not change the particle content. Note that we have now two mass parameters 
in the theory and will assume the hierarchy m � Ms . As before, we want the propagator be 
proportional to �NMG, but suppressed in the UV-limit. The factor of proportionality must not 
have any zeros and shall therefore be of the form Ceγ

(−k2)
with C a constant and γ

(−k2
)

an 
entire function. The AIDG-action will be again of the form

SAIDG =
∫

d3x
√−g

[
−R

2
+ RF1 (�)R + RabF2 (�)Rab

]
, (28)

(with the reversed sign in front of Einstein-Hilbert term again), and we demand

8 A similar embedding of massive gravity into infinite derivative gravity has been done in four dimensions, see [56].
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F1 (�) → − 3

8m2 and F1 (�) → 1

m2 , (29)

in the limit Ms → ∞. The relations (13) containing the new sign now, read

a (�) = −1 + 2F2 (�)� = −b (�) ,

c (�) = −1 − 8F1 (�)�− 2F2 (�)� = −d (�) ,

f (�) = 8F1 (�)�+ 4F2 (�)� , (30)

and the propagator (now written in the momentum space) is still given by

�AIDG = P 2
s

a
(−k2

)
k2

+ P 0
s(

a
(−k2

) − 2c
(−k2

))
k2

= 1

Ceγ
(−k2

) �NMG . (31)

We can now read off the relations

a
(
−k2

)
= C

(
1 + 2k2

m2

)
eγ

(−k2)
and a

(
−k2

)
− 2c

(
−k2

)
= Ceγ

(−k2)
, (32)

which implies

F1

(
−k2

)
= Ceγ

(−k2) + 1

4k2 + 3

8

Ceγ
(−k2)

m2 , F2

(
−k2

)
= −Ceγ

(−k2) + 1

2k2 − Ceγ
(−k2)

m2 .

(33)

We see that analyticity of the Fi requires C = −1. For the function γ
(−k2

)
, we can choose the 

simplest analytic possibility γ = k2/M2
s , with Ms the scale of non-locality. The form factors 

then take the form

F1

(
−k2

)
= −e

k2

M2
s − 1

4k2 − 3

8

e
k2

M2
s

m2 , F2

(
−k2

)
= e

k2

M2
S − 1

2k2 + e

k2

M2
S

m2 , (34)

and we see that the constant terms are given by

f10 = − 1

4M2
s

− 3

8m2 , f20 = 1

2M2
s

+ 1

m2 , (35)

and fulfill Eq. (29) in the limit when Ms → ∞.
Hence, we have constructed a viable infinite derivative extension of New Massive Gravity 

which does not alter the particle content. As per construction it is tree-level unitary, renormaliz-
ability has to be checked separately and no proof is available yet.

6. Maximally symmetric solutions

In this section we want to go beyond the linearized limit and study maximally symmetric 
solutions of the full field equations. The solutions we find will be important in the consequent 
chapters about AIDG in (A)dS-background. In a maximally symmetric spacetime, the relations

Rabcd = R

6
(gacgbd − gadgbc) and Rab = R

3
gab , (36)

hold with R constant over the manifold. That implies that every curvature quantity is annihilated 
by the covariant derivative, so most of the terms in Eq. (3) drop out. From the infinite derivative 
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terms only the zeroth order terms without boxes denoted as f10 and f20, contribute. Plugging in 
the expressions above yields

R2
(

1

3
f10 + 1

9
f20

)
− R

6
+ � = 0 , (37)

which is a quadratic equation, so we will in general have two solutions of curvature for a given 
�. A particularly interesting case is � = 0: Here we get additionally to R = 0 also the second 
solution

R = 1

2f10 + 2
3f20

, (38)

so an “effective cosmological constant” is generated by the higher-order terms.
One could ask now: Is it then even necessary to include � in the action? The answer is yes, 

because, as we will see in section 7.4, the form factors and hence also their zero’th coefficients 
will be constrained to certain values.9

So if � = 0, we have only one specific numerical value available for the background curva-
ture. To obtain the full variety of backgrounds, we have to include �.

The situation is fundamentally different in four dimensions because the Weyl tensor Cabcd is 
not necessarily zero, so we have to include a term CabcdF3 (�)Cabcd in the action. However, 
Cabcd is zero for maximally symmetric spacetimes, so the additional term does not change the 
calculation. Computing Eq. (37) in a general number of dimensions d using arbitrary fi0 gives

R2
(

f10
4 − d

d
+ f20

4 − d

d2

)
+ R

2 − d

2d
+ � = 0 , (39)

and one sees that for d = 4 the quadratic part completely drops out. That means in four dimen-
sions we have always the familiar relation

R = 4�, (40)

and the background geometry is independent of the form factors Fi (�). This apparent simpli-
fication is absent in three dimensions which leads to some caveats as can be seen in the next 
chapter.

As a side remark, we see from these results that also the famous BTZ black hole is an exact 
solution: As shown in detail in Ref. [43,44], the BTZ is just an orbifold of AdS space and hence 
locally indistinguishable from global AdS. The non-trivial boundary conditions do not cause any 
problems and the BTZ is a perfectly viable background for AIDG in 3d . We should point out 
here that the infinitely many derivatives did not play any role in this section, only the zeroth order 
terms entered the calculation. The result Eq. (37) is also true in Stelle’s fourth order gravity.

7. AIDG in (A)dS(3)

7.1. The perturbations around (A)dS

We would like to derive the linearized equations of motion in a stable (A)dS background.10

9 However, the constraints are not the same as derived in sections 3 and 5 because those results were obtained in 
Minkowski background with R = 0.
10 Recently this analysis was extended to more general backgrounds like conformally flat spacetimes [65].
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The whole procedure is in close analogy with Refs. [6,7,57]. The action we will consider here 
is in 3 dimension, and it is given by:

SAIDG =
∫

d3x
√−g

[
R

2
+ RF1 (�)R + RabF2 (�)Rab − �

]
. (41)

In this paper, we will consider the details of the scalar, vector and tensor decomposition of the 
quadratic part of the action around (A)dS. For later convenience we will rewrite this action using 
the traceless Ricci tensor

Sab = Rab − 1

3
gabR,

as

SAIDG =
∫

d3x
√−g

[
R

2
+ RF̂1 (�)R + SabF̂2 (�) Sab − �

]
. (42)

This amounts just to a trivial redefinition of the Fi’s, we obtain:

F̂1 (�) = F1 (�) + 1

3
F2 (�) , F̂2 (�) = F2 (�) . (43)

To obtain the linearized equations of motion, we have to compute the second variation, which is 
a straight forward but laborious task. We have to replace all the quantities by their second order 
perturbation (for the details see Appendix A.3) using

gab = gab + hab , (44)

and keep only terms quadratic in hab. The bars on the background quantities have been omitted 
for simplicity. The different parts of the action shall be analyzed separately.

7.1.1. Einstein-Hilbert part of the action including �
The pure Einstein-Hilbert part of the action from Eq. (42) becomes

SEH 

∫

d3x
√−g

(
1 + h

2
+ h2

8
− habh

ab

4

)[
1

2

(
Rab + δRab + δ2Rab

)
×

(
gab − hab + hachb

c

)
− �

]
, (45)

where δRab and δ2Rab are the first and second order variations of the Ricci tensor, defined in 
Eq. (120). After a lengthy calculation outlined in Appendix A.4, collecting all the quadratic terms 
yields

δ2SEH =
∫

d3x
√−g

[
1

8
hab�hab − 1

8
h�h + 1

4
h∇a∇bh

ab+

1

4
∇ah

ab∇ch
c
b + 1

48
h2R − 1

12
habh

abR − �

(
h2

8
− habh

ab

4

)]
. (46)

For future purposes we shall write this quantity as

δ2SEH ≡ 1

2

∫
d3x

√−gδ0 , (47)

with

δ0 = δ2R + h
δR +

(
h2

− habh
ab

)
(R − 2�) . (48)
2 8 4
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7.1.2. Terms containing F̂1(�)

The part of the action containing the Ricci scalar reads:

SR 

∫

d3x
√−g

(
1 + h

2
+ h2

8
− habh

ab

4

)(
R + δR + δ2R

)
(
F̂1(�) + δF̂1(�) + δ2F̂1(�)

)(
R + δR + δ2R

)
. (49)

Again, collecting all terms quadratic in hab results in

δ2SR =
∫

d3x
√−g

[
RF̂1 (�) δ2R + RδF̂1 (�) δR + Rδ2F̂1 (�)R + F̂1 (�) δR

+δRδF̂1 (�)R + δ2RF̂1 (�)R + h

2

(
RF̂1 (�) δR + RδF̂1 (�)R + δRF̂1 (�)R

)
+

(
h2

8
− habh

ab

4

)
RF̂1 (�)R

]
. (50)

The variation of � acting on a scalar is given by

δ (�)ϕ =
(
−hab∇a∂b − gabδ�c

ab∂c

)
ϕ , (51)

where δ�c
ab denotes the variation of the Christoffel symbol (see Appendix A.3). We conclude 

that the constant background curvature R is annihilated by all variations, δiF̂1 (�), but the zeroth 
coefficient f̂10 in the expansion of F̂1 (�) = ∑∞

n=0 f̂1n�n survives. A reorganization of the terms 
now yields

δ2SR =
∫

d3x
√−g

[(
hδR +

(
h2

8
− habh

ab

4

)
R + 2δ2R

)
f̂10R + δRF̂1 (�) δR

+h

2
R

(
F̂1 (�) − f̂10

)
δR + RδF̂1 (�) δR

]
. (52)

It can be further simplified by using Eq. (48), and we arrive at

δ2SR =
∫

d3x
√−g

[
2f̂10Rδ0 + 2f̂10R

(
2� − R

2

)(
h2

8
− habh

ab

4

)
+ δRF̂1 (�) δR

+h

2
R

(
F̂1 (�) − f̂10

)
δR + RδF̂1 (�) δR

]
. (53)

11 In the second line, the two terms can be seen to cancel away. First, the variation in the last 
term has to appear at the extreme left, otherwise the term becomes a total derivative. Next, by 
expanding the power series in both of the terms gives:

∞∑
n=1

f̂1nR

∫
d3x

√−g

(
h

2
�+ δ (�)

)
�n−1δR , (54)

11 In four dimensions, the second term vanishes due to the background constraint � = R .
4
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and by using Eq. (51) again, we find

∞∑
n=1

f̂1nR

∫
d3x

√−g

(
h

2
�− hab∇a∂b − gabδ�c

ab∂c

)
�n−1δR

=
∞∑

n=1

f̂1nR

∫
d3x

√−g

(
h

2
�− hab∇a∂b − ∇ah

ab∂b + ∇ah∂a

)
�n−1δR

=
∞∑

n=1

f̂1nR

∫
d3x

√−g

(
h

2
�nδR − ∇a

(
hab∂b�n−1δR

)
− h∇a∂

a�n−1δR

)

=
∞∑

n=1

f̂1nR

∫
d3x

√−g
(
−∇a

(
hab∂b�n−1δR

))
, (55)

which is a total derivative and therefore vanishes. Hence the final result is given by:

δ2SR =
∫

d3x
√−g

[
2f̂10Rδ0 + 2f̂10R

(
2� − R

2

)(
h2

8
− habh

ab

4

)
+ δRF̂1 (�) δR

]
.

(56)

7.1.3. Terms containing F̂2(�)

The last variation is particularly simple because the traceless Ricci tensor vanishes for maxi-
mally symmetric spacetimes, so the two variations have to act on both Sab to produce a non-zero 
result. We have

δ2SS =
∫

d3x
√−g

(
δRab − 1

3
gabδR

)
F̂2 (�)

(
δRab − 1

3
gabδR

)
=

∫
d3x

√−g

[
δRabF̂2 (�) δRab − 1

3
δRF̂2 (�) δR

]
, (57)

so that we can write the complete variation as

δ2S =
∫

d3x
√−g

[(
1

2
+ 2f̂10R

)
δ0 + f̂10R (4� − R)

(
h2

8
− habh

ab

4

)

+δRF1 (�) δR + δRabF2 (�) δRab

]
, (58)

using the unhatted Fi (�) again. This expression can be simplified considerably by inserting the 
relation Eq. (37) between the cosmological constant and the background curvature. Some of the 
terms of higher order in R cancel away and we are left with

δ2S =
∫

d3x
√−g

[(
1

2
+ f̂10R

)
δ̃0 + δRF1 (�) δR + δRabF2 (�) δRab

]
, (59)

where ̃δ0 is defined as

δ̃0 = 1

4
hab�hab − 1

4
h�h + 1

2
h∇a∇bh

ab + 1

2
∇ah

ab∇ch
c
b − R

12
habh

ab. (60)

Note that ̃δ0 is exactly what we have had obtained in pure Einstein gravity: Eq. (37) would then 
reduce to � = 6R and from Eq. (46) we would obtain
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δ2SEH ≡ 1

2

∫
d3x

√−gδ̃0. (61)

So the terms generated by the non-trivial relation Eq. (37) cancel away and Eq. (59) has the same 
form as in 4d, apart from the fact that the Weyl term is absent.

7.2. Scalar, vector and tensor decompositions of the metric perturbations

To proceed further, we have to decompose the metric perturbation into the different spin 
states [6,7]. However, there is one big difference: In an AdS background we cannot go to 
Fourier space globally, hence the group theoretic arguments outlined in Appendix A.1 do not 
work straight forwardly anymore. Instead, we will follow the procedure outlined in [58,6,7], see 
also Refs. [59–62] where the authors have found the graviton propagator in dS in 4 dimensions. 
Let us define the metric perturbation as

hab = h⊥
ab + ∇aA

⊥
b + ∇bA

⊥
a + ∇a∇bB − gabφ , (62)

where the tensor part obeys the transverse and traceless condition

∇ah⊥
ab = h⊥ = 0,

and so does the vector part ∇aA⊥
a = 0. This decomposition corresponds exactly to the one which 

was done in flat space using the spin projection operators, i.e. h⊥
ab corresponds to P 2

s , A⊥
a corre-

sponds to P 1
w , B corresponds to P 0

w and φ to P 0
s . Since we do not want to increase the number 

of degrees of freedom as compared to Einstein’s gravity, we have to demand that A⊥
a and B drop 

out of the quadratic action Eq. (59). This we will show explicitly below. Then, h⊥
ab and φ will 

correspond exactly to the 3 off-shell propagating degrees of freedom. Let us start with decom-
posing the variation of the Ricci tensor δRab which appears in the higher-derivative terms. δR
can then be obtained by a simple contraction.

7.2.1. Decomposition of δRab

We note that the content of this subsection is entirely geometrical, without referring to any 
particular theory.

• We start with the vector mode A⊥
b ; inserting Eq. (62) into Eq. (119) (see Appendix A.3) and 

contracting with δc
a yields

δRa
b

(
A⊥)

= − R

12

(∇bA
a + ∇aAb

) + 1

2

(
∇c∇a∇bA

c + ∇c∇a∇cAb

−�∇bA
a −�∇aAb + ∇b�Aa + ∇b∇c∇aAc

)
, (63)

already using ∇aA
a = 0. With the help of the Riemann tensor substitution and the commu-

tation relation Eq. (127) in Appendix A.5, we can rewrite this as

δRa
b

(
A⊥)

= − R

12

(∇bA
a + ∇aAb

) + 1

2

(
∇a∇c∇bA

c + R a d
c b ∇dAc

+R ac
c d∇bA

d + Rac
bd∇cA

d − R

3

(∇bA
a + ∇aAb

) + Rca
cd∇bA

d
)

= − R (∇bA
a + ∇aAb

)

12
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+1

2

(
R

3
∇aAb + R

6
∇aAb + R

3
∇bA

a − R

6
∇bA

a − R

3

(∇bA
a + ∇aAb

)
+R

3
∇bA

a

)
= 0 , (64)

which is zero as desired.
• For the scalar mode B , we again insert Eq. (62) into Eq. (119) and contract with δc

a to get

δRa
b (B) = − R

12

(∇a∇bB + δa
b�B

) + 1

2

(∇c∇a∇c∇bB +�∇a∇bB − ∇b∇a�B

+ ∇b∇c∇a∇cB
)
. (65)

Exchanging ∇a and ∇c in the first and the last term of the second parenthesis yields

δRa
b (B) = − R

12

(∇a∇bB + δa
b�B

) + 1

2

(
Rac d

b ∇c∇dB + Rca d
c ∇b∇dB

)
= − R

12

(∇a∇bB + δa
b�B

) + 1

2

(
R

6
δa
b�B − R

6
∇a∇bB + R

3
∇a∇bB

)
= 0 . (66)

• For the remaining two modes we expect a non-zero result: The scalar φ inserted into (119)
yields

δRab
cd (φ) = R

6
δab
cd φ − 1

2

(
∇c∇bδa

d − ∇c∇aδb
d − ∇d∇bδa

c + ∇d∇aδb
c

)
φ. (67)

It is now practical to define the traceless differential operator

Da
b = ∇b∇a − δa

b

�
3

. (68)

Using Da
b the equation above can be rewritten as

δRab
cd (φ) = 1

2

(
Da

c δb
d + Db

dδa
c − Db

c δa
d − Da

dδb
c

)
φ + 2�+ R

6
δab
cd φ , (69)

and

δRa
b (φ) =

(
1

2
Da

b + R + 2�
3

δa
b

)
φ and δR (φ) = (2�+ R)φ , (70)

follow straight forwardly.
• Similarly, the tensor mode gives

δRab
cd = R

12

(
δa
dh⊥b

c − δa
c h⊥b

d + δb
c h⊥a

d − δb
dh⊥a

c

)
+

1

2

(
∇c∇bh⊥a

d − ∇c∇ah⊥b
d − ∇d∇bh⊥a

c + ∇d∇ah⊥b
c

)
, (71)

and after contracting with δc
a , and using the Riemann tensor substitution[∇c,∇a

]
h⊥

cb = Rcd
cah

⊥
db + R dc

b ah
⊥
cd , (72)

we obtain
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δRa
b

(
h⊥)

= − R

12
h⊥a

b − 1

2
�h⊥a

b + 1

2
∇c∇ah⊥

cb = −1

2

(
�− R

3

)
h⊥a

b , and

δR
(
h⊥)

= 0 . (73)

7.2.2. Decomposition of the Einstein-Hilbert part
Of course we want to find the same non-vanishing degrees of freedom also in the pure GR-

part. Though, it is a well-known result that linearized Einstein gravity does not contain any 
longitudinal excitations, we will verify it here explicitly.

• By inserting Eq. (62) into δ2SEH , we obtain for the vector mode

δ̃0

(
A⊥

a

)
=1

4
(∇aAb + ∇bAa)�

(
∇aAb + ∇bAa

)
+ 1

2

(
�Ab + ∇a∇bAa

)
× (

�Ab + ∇a∇bA
a
) − R

12
(∇aAb + ∇bAa)

(
∇aAb + ∇bAa

)
. (74)

δ̃0 is an integrand, so we can perform partial integration, moreover utilizing the commutation 
relations Eqs. (127), (129), we obtain:

δ̃0

(
A⊥

a

)
= −1

2
Ab∇a�

(
∇aAb + ∇bAa

)
+ 1

2
Ab

(
�+ R

3

)2

Ab + R

6
Ab

(
�+ R

3

)
Ab.

(75)

The first term can be further simplified using Eqs. (128), (129):

δ̃0

(
A⊥

a

)
= − 1

2
Ab

(
�+ 2R

3

)(
�+ R

3

)
Ab + 1

2
Ab

(
�+ R

3

)2

Ab

+ R

6
Ab

(
�+ R

3

)
Ab = 0 . (76)

• For the scalar mode B , we obtain similarly

δ̃0 (B) = 1

4
∇a∇bB�∇a∇bB − 1

4
�B�2B + 1

2
�B∇a∇b∇a∇bB +

1

2
�∇aB�∇aB − 1

12
R∇a∇bB∇a∇bB

= B

(
1

4
∇b

(
�+ 2R

3

)
�∇b − R

12
�2 + 1

4
�3 +

1

2
�∇aR

a
b∇b − 1

2

(
�+ R

3

)
∇a�∇a − 1

12
R

(
�+ R

3

)
�

)
B

= B

(
−1

4

(
�+ R

3

)2

�+ R

6

(
�+ R

3

)
�+ 1

4
�3 − 1

36
R2�

)
B

= 0 . (77)

• The non-zero modes can also be evaluated straight forwardly resulting in

δ̃0 (φ) = 3
φ�φ − 9

φ�φ + 3
φ�φ + 1∇aφ∇aφ − R

φ2 = −1
φ (2�+ R)φ , (78)
4 4 2 2 4 4
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and

δ̃0

(
h⊥)

= 1

4
h⊥

ab

(
�− R

3

)
h⊥ab . (79)

7.3. Propagator of AIDG in (A)dS(3)

Finally we wish to obtain the propagators for the two remaining modes h⊥
ab and φ. The first 

question is, if those two modes really decouple from each other, i.e. that we can write the final 
quadratic action as a sum of the two separate actions. We know this to be true for the GR-part 
and in the F1-term no h⊥

ab can survive. Hence, the only suspicious term is the F2-term, but here 
we can show straight forwardly that no coupling occurs: (see also Ref. [7]). The question is now: 
do any terms survive in the combination∫

d3x
√−g δRab (φ)F2 (�) δRab

(
h⊥)

= −
∫

d3x
√−g φ

(
1

2
Dab + R + 2�

3
gab

)
F2 (�)

1

2

(
�− R

3

)
h⊥ab . (80)

The metric gab can be commuted through to annihilate h⊥ab, so the only potentially problematic 
term is of the form

∇a∇bF2 (�)

(
�− R

3

)
h⊥ab.

By expanding F2 (�) in its power series F2 =
∞∑

n=0
f2n�n and then using the commutation relation 

Eq. (128) iteratively, we can commute through ∇b all the way till it annihilates h⊥ab. Hence, we 
have shown that the physical fields decouple nicely and we can turn now to the evaluation of the 
propagators. To start with the scalar mode, we use the expressions

δRab (φ) =
(

1

2
Dab + R + 2�

3
gab

)
φ ,

δR (φ) = (2�+ R)φ ,

δ̃0 (φ) = −1

4
φ (2�+ R)φ , (81)

derived above to write

Squa (φ) =
∫

d3x
√−g

[
−

(
1

8
+ 1

2
f̂10R

)
φ (2�+ R)φ

+φ (2�+ R)F1 (�) (2�+ R)φ

+φ

(
1

2
Dab + R + 2�

3
gab

)
F2 (�)

(
1

2
Dab + R + 2�

3
gab

)
φ

]
. (82)

The last term still allows for some simplification. After expanding F2 (�) the commutation rela-
tion Eq. (130) can be used to obtain:∫

d3x
√−g

[
φDabF2 (�)Dabφ

]
=

∫
d3x

√−g

[
φF2 (�+ R)

(
2�+ R

)
�φ

]
. (83)
3
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Now, putting everything together and using the tracelessness of Dab, see Eq. (68), yields the final 
result

Squa (φ) =
∫

d3x
√−g φ

[
−

(
1

8
+ 1

2
f̂10R

)
+ F1 (�) (2�+ R)+

1

3
F2 (�) (2�+ R) + 1

12
F2 (�+ R)�

]
(2�+ R)φ. (84)

The tensor mode is a lot simpler to handle because of its transverse-traceless property. Using the 
expressions Eq. (73), (79) the final action results in

Squa

(
h⊥)

=
∫

d3x
√−g

1

8
h⊥

ab

[(
�− R

3

)(
1 + 4f̂10R

) + 2F2 (�)

(
�− R

3

)2
]

h⊥ab.

(85)

The tensor and scalar part of the propagators can now be given by:

�(φ)

= P 0
s[

1 + 4f̂10R − 16F1 (�)
(
�+ R

2

) − 16
3 F2 (�)

(
�+ R

2

) − 2
3F2 (�+ R)�

] (
�+ R

2

) ,

(86)

and

�
(
h⊥)

= − P 2
s[

1 + 4f̂10R + 2F2 (�)
(
�− R

3

)] (
�− R

3

) . (87)

An important issue here is the normalization of the propagators: Since we want to take the 
Minkowski limit R → 0 in the next section, the propagators have to be normalized correctly. 
From Eq. (16) and Eq. (13) we see that the first constant term in the denominator of � 

(
h⊥)

should be 1, hence we chose that as our normalization condition and removed a factor of 1
8 from 

both propagators. For the scalar part we had to add an additional factor of 1
2 which is contained 

in the spin projection operator.

7.4. Discussions, comparisons and IR limits

We turn now to the interpretation of the results obtained in Eqs. (86), (87). As a nice 
cross-check we can take the limit R → 0, which should of course reproduce the propagator 
in Minkowski space. We get

�
�=0

(
h⊥)

= − 1

� (1 + 2F2 (�)�)
= − 1

a (�)� , (88)

by using the relations Eq. (13) which is the desired result. For the scalar part we have to add an 
additional factor of 1

2 which is contained in the spin projection operator but after that we get

�
�=0

(φ) = − 1

� (−1 + 16F1 (�)�+ 6F2 (�)�)
= − 1

(a (�) − 2c (�))� , (89)

as expected.
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Another instructive limit is to take is Fi (�) → 0, in Eqs. (86), (87), i.e. turning off the infinite 
derivative terms. This would leave the graviton off-shell propagator in the (A)ds background:

� = P 2
s

−�+ R
3

− P 0
s

−�− R
2

, (90)

where we see that the graviton acquires a non-vanishing mass due to the spacetime curvature.
The last question remains is what is the most natural choice for the form factors Fi (�)? In flat 

space we required the propagator to be proportional to the GR-propagator and this should also 
be our goal here. By comparing Eqs. (86), (87) with Eq. (90), we obtain the necessary constraint 
on the form factors:

F1 (�) = −1

8
F2 (�)

(
�− R

3

)(
�+ R

2

) − 1

24
F2 (�+ R)

�(
�+ R

2

) − 1

3
F2 (�) . (91)

In the Minkowski limit, when R = 0, we obtain exactly 2F1(�) + F2(�) = 0, see Eq. (18).
Now, back into the (A)ds, the function of proportionality which we shall call a (�) in accor-

dance with the chapter 3 (the treatment in the Minkowski space) is given by

a (�) = 1 + 4f̂10R + 2F2 (�)

(
�− R

3

)
. (92)

For not introducing any new zeros in the propagator, a (�) has to be an exponential of an entire 
function, i.e. Ceγ

(�)
where γ (�) is an entire function and C �= 0 a constant. However, a simple 

choice of a (�) = e
− �

M2
s is not viable anymore, because F1 (�) and F2 (�) will not be analytic 

then: If we solve Eq. (92) for F2 (�) we get

F2 (�) = Ceγ
(�)

− 1 − 4f̂10R

2
(
�− R

3

) . (93)

If we expand the exponential we see that we must have

C = 1 + 4f̂10R , (94)

otherwise we produce a term proportional to 1(
�− R

3

) . Moreover, γ (�) has to contain a factor (
�− R

3

)
to cancel the denominator, so we arrive at

a (�) = (
1 + 4f̂10R

)
e

(
�− R

3

)
τ
(�)

(95)

with some entire function τ (�). Now, solving Eq. (91) for F1 (�) yields

F1 (�) = − 1

16

(
1 + 4f̂10R

)(
e

(
�− R

3

)
τ
(�)

− 1

)
�+ R

2

− 1

48

(
1 + 4f̂10R

)(
e

(
�+ 2R

3

)
τ
(�+R

)
− 1

)
�(

�+ R
2

) (
�+ 2R

3

)
− 1

6

(
1 + 4f̂10R

)(
e

(
�− R

3

)
τ
(�)

− 1

)
�− R

3

(96)
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and again analyticity demands that we cancel the denominators. We see that τ (�) has to contain 
the factors � + R

2 and � − R
2 , hence the simplest choice for a (�) is

a (�) = (
1 + 4f̂10R

)
e
−

(
�+ R

2

)(
�− R

2

)(
�− R

3

)
M6

s , (97)

then the Fi (�) will be perfectly analytic:

F1 (�) = − (
1 + 4f̂10R

)(
e
−

(
�+ R

2

)(
�− R

2

)(
�− R

3

)
M6

s − 1

16
(
�+ R

2

) +⎛⎝e
−

(
�+ 3R

2

)(
�+ R

2

)(
�+ 2R

3

)
M6

s − 1

⎞⎠�

48
(
�+ 2R

3

) (
�+ R

2

) + e
−

(
�+ R

2

)(
�− R

2

)(
�− R

3

)
M6

s − 1

6
(
�− R

3

) )
, (98)

and

F2 (�) =

(
1 + 4f̂10R

)⎛⎝e
−

(
�+ R

2

)(
�− R

2

)(
�− R

3

)
M6

s − 1

⎞⎠
2
(
�− R

3

) . (99)

There is one last point to consider: Note that we have treated f̂10 as an independent variable so 
far, however, it is supposed to be the zeroth order coefficient of F̂1 (�). With the help of Eqs. (43), 
(98), we obtain:

F̂1 (�) = − (
1 + 4f̂10R

)

×

⎛⎜⎜⎜⎜⎜⎜⎝
e
−

(
�+ R

2

)(
�− R

2

)(
�− R

3

)
M6

s − 1

16
(
�+ R

2

) +

⎛⎝e
−

(
�+ 3R

2

)(
�+ R

2

)(
�+ 2R

3

)
M6

s − 1

⎞⎠�

48
(
�+ 2R

3

) (
�+ R

2

)
⎞⎟⎟⎟⎟⎟⎟⎠ . (100)

We can now extract the zeroth order term from above, and obtain

f̂10 = − (
1 + 4f̂10R

) e
− R3

12M6
s − 1

8R
, (101)

with the solution

f̂10 = 1

4R

1 − e
− R3

12M6
s

1 + e
− R3

12M6
s

. (102)

We should point out that the form factors depend explicitly on the background curvature. If one 
takes the limit R → 0 in the above expressions, we will reduce F1(�) and F2(�) to

F1 (�) = −e−�3/M6
s − 1

, F2 (�) = e−�3/M6
s − 1

(103)

4� 2�
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which defers from the flat space case in the sense that we have different powers of �
M2

s
, see 

Eq. (19). If we want to have a smooth Minkowski limit we have to replace a (�) in Eq. (17) by

a′ (�) = e−�3/M6
s . (104)

By the above choice, the desirable properties of the theory like tree level unitarity will remain 
unchanged by this modification.

8. Conclusion

This paper provides the ghost free conditions for parity invariant and torsion free AIDG in 
3d . At first we determined the full equations of motion and deduced the linearized limit in flat 
space in complete analogy to the 4d case without introducing any new degrees of freedom. As 
expected, we also found exact maximally symmetric solutions which can serve as background 
solutions for linearization. With considerable algebraic effort, it was possible to construct a well 
defined linearized theory around those (A)dS-backgrounds. We also considered New Massive 
Gravity as a low-energy limit instead of GR, and succeeded in constructing an AIDG action 
around new massive gravity around the Minkowski background.

The main highlights of the paper are following. First of all we have shown that the vacuum 
solution of AIDG in 3 dimensions respects the BTZ blackhole solution in AdS. However, adding 
a point source generates a non-trivial, non-singular solution. The solution so far has been ob-
tained only around the Minkowski background. Second important result is that we have derived 
two main equations in this paper containing the scalar and the graviton propagators for AIDG 
action in (A)dS in 3 dimensions, see Eqs. (86), (87). These have been obtained by perturbing the 
action up to quadratic in metric potential, i.e. O(h2) around (A)dS background in 3 dimensions. 
We have discussed various consistency checks, such as our results of the propagators match the 
expectations around the Minkowski background. We have also verified that the propagator re-
duces to that of Einstein gravity in 3 dimensions around the (A)dS background when we take the 
appropriate limit �/M2

s → 0, or Fi(�) → 0. We have also provided an example of the analytic 
form factors F1(�) and F2(�) around (A)dS backgrounds.

There are still some open questions remain. First, we have not proven that the maximally 
symmetric spacetimes are really the only vacuum solutions. If that is the case, it would be natural 
to assume that AIDG in the vacuum, as GR, is a topological field theory. Since it does not seem 
to be a Chern-Simons-theory (at least there is no natural connection) yet, it is an interesting 
open problem to classify it as some other topological field theory. Furthermore, one could add a 
boundary and try to find the dual conformal field theory, if it exists, to provide a new realization 
of the holographic principle. All in all, AIDG in three dimensions has shown many interesting 
features which make it worth studying these aspects further.
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Appendix A

A.1. Inverting the field equations

We can write the linearized field equations in the form 
(
�−1

) cd

ab
hcd = κτab with the linear 

operator(
�−1

) cd

ab
= k2a

(
−k2

)
δ(c
a δ

d)
b + 2b

(
−k2

)
k(ck(aη

d)
b)+

c
(
−k2

)(
ηabk

ckd + kakbη
cd

)
+ k2d

(
−k2

)
ηabη

cd + f
(−k2

)
k2 kakbk

ckd .

(105)

One can significally simplify �−1 by using invariance properties: Eq. (105) is constructed solely 
out of ηab and ka , hence the little group of ka commutes with it. If we take ka to be time-
like, then the little group is SO(2).12 By Schur’s lemma, every operator that commutes with all 
elements of a group in one of its irreducible representations, has to be proportional to the identity 
operator. The symmetric-tensor-representation of SO(2) is decomposable into four irreducible 
representations: one with spin two (2 degrees of freedom), one with spin one (2 dof) and two 
scalars (1 dof each).13 It is now useful to define the so-called spin projection operators which 
project on these four subspaces [55,54]:

P 2
s = 1

2
(θacθbd + θadθbc) − 1

2
θabθcd ,

P 1
w = 1

2
(θacωbd + θadωbc + θbcωad + θbdωac) ,

P 0
s = 1

2
θabθcd ,

P 0
w = ωabωcd , (106)

with

θab = ηab − kakb

k2 and ωab = kakb

k2 . (107)

It is easy to verify that they are all orthogonal and satisfy:

P 2
s + P 1

w + P 0
s + P 0

w = 1 and P i
aP

j
b = δij δab. (108)

12 Later it will turn out that ka is actually light-like, however, SO(2) is more useful to decompose the eoms than the 
little group of a light-like vector, ISO(1).
13 In three dimensions, the notion of spin should be regarded with care: Usually, spin refers to representations of SO(3) 
which are important for massive particles in four dimensions. The representations of SO(2) we use here are the same as 
for massless particles in 4d which we classify according to their helicity.
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P 2
s corresponds to the transverse and traceless degrees of freedom, P 1

w to the longitudinal and 
traceless ones, P 0

s represents the transverse trace part and P 0
w the scalar which is neither trans-

verse nor traceless. The operator Eq. (105) has to be proportional to unity in each subspace and 
must not mix subspaces of different spin, however, it could potentially mix P 0

s with P 0
w . Fortu-

nately, that does not happen in our case and we can write(
�−1

) cd

ab
= AP 2

s + BP 1
w + CP 0

s + DP 0
w . (109)

Determining the coefficients is straight-forward, one gets

�−1 = k2aP 2
s + k2 (a − 2c)P 0

s , (110)

so the longitudinal parts P 1
w and P 0

w simply dropped out. That implies that the energy-
momentum-tensor τab also must not have any longitudinal modes, it has to be conserved: 
kaτab = 0. So if we just remove the longitudinal degrees of freedom from our solution space, 
the equations of motion can be inverted and the resulting propagator is

�AIDG = P 2
s

ak2 + P 0
s

(a − 2c) k2 . (111)

If we want �AIDG to be proportional to the �GR such that no additional particles are introduced 
we demand a = c (or equivalently f = 0) to obtain

�AIDG = 1

k2a
(−k2

) (
P 2

s − P 0
s

)
. (112)

A.2. Degrees of freedom in Einstein gravity

It can be shown easily that Eq. (15) with τab = 0 imply k2 = 0. After removing the k2-terms 
we see that both kahab and h have to be zero, i.e. hab has to be transverse and traceless. We can 
expand hab in a light-like basis using ka and additionally a second light-like vector la and an 
orthogonal space-like vector ea as basis vectors. The Minkowski metric then takes the form

ηab =
⎛⎝ 0 −1 0

−1 0 0
0 0 1

⎞⎠ , (113)

and hab can be written as

hab = α (k) kakb + 2β (k) k(alb) + γ (k) lalb + 2δ (k) k(aeb) + 2φ (k) l(aeb) + λ (k) eaeb ,

(114)

with k-dependent coefficients. Transverse traceless now means that β = γ = φ = λ = 0. The 
remaining coefficients are gauge degrees of freedom and can be removed by a gauge transforma-
tion

hab → hab + kavb + vakb , (115)

with some vector va .
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A.3. Perturbations

Here we summarize the expressions for the perturbations up to second order of all relevant 
geometrical quantities; background quantities are indicated with a bar. The basic definition is

gab = gab + hab, (116)

raising and lowering indices is always done using gab . It follows

gab ≈ gab − hab + hachb
c ,

√−g ≈ √−g

(
1 + h

2
+ h2

8
− habh

ab

4

)
, (117)

�a
bc ≈ �

a

bc + δ�a
bc, δ�a

bc = 1

2

(
∇bh

a
c + ∇ch

a
b − ∇a

hbc

)
, (118)

δRab
cd = R

12

(
δa
dhb

c − δa
c hb

d + δb
c ha

d − δb
dha

c

)
+ 1

2

(
∇̄c∇̄bha

d − ∇c∇a
hb

d − ∇d∇b
ha

c + ∇d∇a
hb

c

)
, (119)

Rab ≈ Rab + δRab + δ2Rab, δRab = ∇cδ�
c
ab − ∇bδ�

c
ac,

δ2Rab = δ�c
dcδ�

d
ab − δ�c

dbδ�
d
ca , (120)

R ≈ R + δR, δR = −habRab + gab
(∇cδ�

c
ab − ∇bδ�

c
ac

)
. (121)

The order of expansion in hab is either first or second, depending on what we need to vary the 
action.

A.4. Quadratic action for Einstein gravity

Obtaining the second variation of SEH in a curved background is a straight forward, but 
laborious task. We start by expanding every quantity up to second order:

SEH =
∫

d3x
√−g

(
1 + h

2
+ h2

8
− habh

ab

4

)
×

[
1

2

(
Rab + δRab + δ2Rab

)(
gab − hab + hachb

c

)
− �

]
. (122)

Collecting all the quadratic terms yields

δ2SEH =
∫

d3x
√−g

[
1

2
Rabh

achb
c − 1

2
δRabh

ab + 1

2
δ2Rabg

ab

−h

4
Rabh

ab + h

4
δRabg

ab +
(

h2

8
− habh

ab

4

)(
R

2
− �

)]
. (123)

Plugging in the perturbations results in

δ2SEH =
∫

d3x
√−g

[
1

6
habhab − 1

4

(∇c∇ah
c
b − ∇c∇bh

c
a −�hab + ∇a∇bh

)
hab

+1∇bh

(
∇ah

ab − 1∇bh

)
− 1 (∇bh

a
c + ∇ch

a
b − ∇ahbc

)

4 2 8
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×
(
∇ah

bc + ∇chb
a − ∇bhc

a

)
− 1

12
h2R + h

4

(
∇a∇bh

ab −�h
)

+
(

h2

8
− habh

ab

4

)(
R

2
− �

)]

=
∫

d3x
√−g

[
1

8
hab�hab − 1

8
h�h + 1

4
h∇a∇bh

ab

−1

4
hab∇c∇ah

c
b − R

48
h2 + R

24
habh

ab − �

(
h2

8
− habh

ab

4

)]
. (124)

The fourth term can be further modified

−1

4
hab∇c∇ah

c
b = 1

4
∇ah

ab∇ch
c
b − 1

4
habRd

bach
c
d − 1

4
habRc

dcah
d
b

= 1

4
∇ah

ab∇ch
c
b − R

24
habh

ab + R

24
h2 − R

12
habh

ab , (125)

such that the final result becomes

δ2SEH =
∫

d3x
√−g

[
1

8
hab�hab − 1

8
h�h + 1

4
h∇a∇bh

ab

+1

4
∇ah

ab∇ch
c
b + R

48
h2 − R

12
habh

ab − �

(
h2

8
− habh

ab

4

)]
. (126)

A.5. Commutation relations

We list here some useful commutation relations for differential operators which hold on max-
imally symmetric backgrounds:

∇a�ta =
(
�+ R

3

)
∇at

a , (127)

for a generic vector ta ,

∇a�tab =
(
�+ 2R

3

)
∇at

ab − R

3
∇btaa , (128)

for symmetric tensors tab, and

∇a∇bAa = R

3
Ab , (129)

for transverse vectors Aa . In general,

∇a∇b�nDabφ = (�+ R)n
(

2�+ R

3

)
�φ , (130)

holds for the operator Dab defined in section 5. All of those relations can be derived by straight 
forward Riemann tensor substitution.
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