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Abstract

The muon-to-electron conversion in aluminum, titanium and gold nuclei is studied in the context of a 
class of mirror fermion model with non-sterile right-handed neutrinos having masses at the electroweak 
scale. We show that the electric and magnetic dipole operators from the photon exchange diagrams provide 
the dominant contributions, which enables us to derive a simple formula to relate the conversion rate with the 
on-shell radiative decay rate of muon into electron at the limit of zero momentum transfer and large mirror 
lepton masses. Current experimental limits (SINDRUM II) and projected sensitivities (Mu2e, COMET and 
PRISM) for the muon-to-electron conversion rates in various nuclei and latest limit from MEG for the 
radiative decay rate of muon into electron are used to put constraints on the parameter space of the model. 
Sensitivities to the new Yukawa couplings can reach the range of one tenth to one hundred-thousandth, 
depending on the mixing scenarios and mirror fermion masses in the model as well as the nuclei targets 
used in future experiments.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

As is well known, lepton flavor is an accidental conserved quantity in Standard Model (SM) 
with strictly massless neutrinos. For example, a muon never decays radiatively into an elec-
tron plus a photon and neutrinos do not oscillate in the SM. However various experiments have 
now established firmly that neutrinos do oscillate from one flavor to another. The common wis-
dom, motivated by the physics of K − K oscillation in the kaon system, is to give tiny masses 
with small mass differences to the various light neutrino species. Radiative decay of the muon 
into electron is then possible but with an unobservable rate highly suppressed by the minus-
cule neutrino masses [1,2]. Searches for lepton flavor violating rare processes in high intensity 
experiments are thus important for new physics beyond the SM.

The most recent limit on the branching ratio B(μ → eγ ) is from the MEG experiment [3]

B(μ → eγ ) ≤ 4.2 × 10−13 (90% C.L.) (MEG 2016) , (1)

and its projected improvement [4] is

B(μ → eγ ) ∼ 4 × 10−14 . (2)

Recent data from the T2K experiment [5] agrees well with the global analysis of neutrino oscil-
lation data [6–9], suggesting that the normal neutrino mass hierarchy (NH) with a CP violating 
Dirac phase δCP ∼ 3π/2 is slightly preferred. The best fit result for the central values of the 
PMNS matrix elements in the normal neutrino mass hierarchy can be extracted from [6]

UNH
PMNS =

⎛
⎝ 0.8240 0.5471 −0.02302 + 0.14536i

−0.40085 + 0.08042i 0.63131 + 0.053399i 0.65685
0.38169 + 0.09054i −0.5437 + 0.06012i 0.73952

⎞
⎠ .

(3)

For the μ − e conversion in nuclei, the present experimental upper limits on the branching 
ratios were obtained by SINDRUM II experiment [10,11] for the targets titanium and gold,

B(μ− + Ti → e− + Ti) < 4.3 × 10−12 (90% C.L.) , (4)

B(μ− + Au → e− + Au) < 7 × 10−13 (90% C.L.) . (5)

Significant improvements are expected for μ − e conversion at future experiments like the Mu2e 
at Fermilab in US and the COMET at J-PARC in Japan. Projected sensitivities of μ − e conver-
sion are [12,14,13,15,16]

B(μ− + Al → e− + Al) < 3 × 10−17 (Mu2e,COMET) , (6)

B(μ− + Ti → e− + Ti) < 10−18 (Mu2e II,PRISM) . (7)

A positive signal of any of the above processes (or any process with charged lepton flavor vi-
olation (CLFV)) at the current or projected sensitivities of various high intensity experiments 
would be a clear indication of new physics as well, just like neutrino oscillations. Given the fact 
that no new physics has showed up yet at the high energy frontier of the Large Hadron Collider 
(LHC), it is not a surprise that many recent works have been focused on new physics implication 
of CLFV in the high intensity frontier. For a review on this topics and its possible connection 
with the muon anomaly, see [17] and references therein.

In a recent work [18], we updated a previous calculation [19] for the radiative process μ → eγ

in the mirror fermion model with electroweak scale non-sterile right-handed neutrinos [20] to an 



P.Q. Hung et al. / Nuclear Physics B 932 (2018) 471–504 473
extended version [21] where a horizontal A4 symmetry was imposed in the lepton and scalar 
sectors. In this work we extend this previous analysis [18] to the μ − e conversion in nuclei, in 
particular for aluminum, gold and titanium.

The μ − e conversion had been studied extensively in many low-scale seesaw models beyond 
the SM [22–27]. One crucial difference is that the right-handed neutrinos are sterile in these 
models while in the mirror fermion model that we are studying they are non-sterile. This may 
lead to distinctive signatures like two jets or same sign dilepton in association with missing 
transverse energies and displaced vertices at the collider searches for the mirror quarks [28] or 
leptons [29].

This paper is organized as follows. In Sec. 2, we provide some highlights of the crucial 
features of the extended mirror fermion model. In Sec. 3, we briefly review the effective La-
grangian [30,31] for describing μ − e coherent conversion processes. In Sec. 4, we present the 
detailed calculation of μ − e conversion in the model. In Sec. 5, we derive a simple relation 
between the μ − e conversion rate and the radiative decay rate of μ → eγ in the limit of zero 
momentum transfer and large mirror lepton masses. Numerical results are shown in Sec. 6. We 
summarize our results in Sec. 7. In Appendix A, we collect some useful formulas used in Secs. 4
and 5.

2. Mirror fermion model

In this section, we will provide some highlights for the original mirror fermion model [20]
and its A4 extension [21].

2.1. Motivation

The motivation of introducing mirror fermions in [20] was manifold. First of all, it is aes-
thetically satisfactory to have parity restoration at a higher energy scale while the maximal 
parity violating interaction (V−A interaction) in the SM emerges from spontaneous symmetry 
breaking. This is one of the main reasons for various left-right symmetric models in the litera-
ture [32–35]. Secondly, it is important to study non-perturbative effects in the SM by discretizing 
it on the lattice. However it is well known that putting chiral fermion on the lattice is plagued 
by fermion doubling – an unavoidable consequence of the no-go theorem proved by Nielsen and 
Ninomiya [36]. Sophisticated techniques like using Wilson fermion, Wilson–Ginsparg fermion, 
staggered fermion, or domain wall fermion etc., which by violating at least one of the assump-
tions in the no-go theorem gets rid of the unwanted species, are often employed to handle this 
problem in practise. For new physics model builders, it is attractive to add mirror fermions to 
the SM which makes the theory becomes vector-like at a higher scale and hence one can avoid 
the fermion doubling problem if formulating on the lattice. Chiral gauge anomalies will then be 
cancelled automatically in this class of models. The third motivation is the electroweak scale 
non-sterile right-handed neutrinos introduced in [20]. For each generation, the right-handed neu-
trino is introduced together with a right-handed heavy charged fermion partner to form a SM 
SU(2) doublet. Similarly a left-handed heavy mirror charged lepton will be introduced for each 
right-handed SM charged lepton. Majorana masses can then be given to these right-handed neu-
trinos via the vacuum expectation value (VEV) of a hypercharge Y/2 = 1 Higgs triplet with mass 
at the electroweak scale, rather than the grand unification scale in the usual scheme. Tiny Dirac 
masses can also be given via small VEVs of Higgs singlets with Y = 0. This is the electroweak 
scale see-saw mechanism in mirror fermion model which is testable at the LHC [28,29].
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Table 1
The SM quantum numbers of the fermion and scalar sectors in the extended 
mirror fermion model together with their assignments under the horizontal A4
symmetry. Subscript ‘i’ labels the generation. The electric charge Q equals 
T3 + Y/2 in unit of e.

Fields (SU(3) , SU(2) , U(1)Y ; A4)

lLi =
(

νL

eL

)
i

, lM
Ri

=
(

νR

eM
R

)
i

(1, 2, − 1
2 ; 3)

eRi , eM
Li

(1, 1, −1 ; 3)

qLi =
(

uL

dL

)
i

, qM
Ri

=
(

uM
R

dM
R

)
i

(3, 2, 1
6 ; 3)

uRi , uM
Li

(3, 1, 2
3 ; 3)

dRi , dM
Li

(3, 1, − 1
3 ; 3)

φ0S (1, 1, 0 ; 1)
�φS (1, 1, 0 ; 3)

�2 , �2M (1, 2, 1
2 ; 1)

ξ (1, 3, 0 ; 1)
χ̃ (1, 3, 1 ; 1)

The original model in [20] has been shown to be consistent with electroweak precision test 
data [37]. Later on, the original model was extended by including a mirror Higgs doublet [38]
so as to accommodate the 125 GeV Higgs data from the LHC. In [21], the model with the 
mirror Higgs doublet [38] was further extended with a horizontal A4 symmetry imposed in the 
lepton and Higgs sectors to address various issues of lepton mixings. We will briefly review these 
extensions of the original model in the next subsection.

2.2. Particle content and its A4 assignments

The particle content of fermions and bosons of the model are shown in Table 1. The fields 
lMRi and eM

Li are the mirrors of the SM lepton doublet lLi and singlet eRi respectively for the 
i-th generation. Similarly, qM

Ri , u
M
Li and dM

Li are the mirror partners of the SM quarks qLi , uRi

and dRi respectively. For the scalars, �2M introduced in [38], is the mirror partner of SM Higgs 
doublet �2; ξ and χ̃ are the Georgi–Machacek (GM) triplets [39,40]; and φ0S and �φS are gauge 
singlets introduced in [21]. The A4 assignments of these particles are also listed in Table 1.

In the extended mirror fermion model of [38], the scalar sector consists of the two doublets �2
and �2M , and the GM triplets ξ and χ̃ . It has a total of 17 real scalar fields. A global symmetry 
U(1)SM × U(1)MF was also introduced in [38] such that �2 only couples to the SM fermions 
and �2M only couples to the mirror fermions. Thus there is no flavor changing neutral current 
interactions at tree level in the Yukawa couplings. Besides the three Nambu–Goldstone bosons, 
eaten by the longitudinal components of the W± and Z bosons after spontaneous symmetry 
breaking of SU(2) × U(1)Y −→ U(1)em, the remaining fourteen real fields are grouped into 
5 + 3 + 3 + 1 + 1 + 1 of a SU(2)D , which is a residual symmetry of the breaking of the global 
custodial symmetry SU(2)L × SU(2)R −→ SU(2)D . The three singlets are the CP-even neutral 
Higgses, Re(�0

2), Re(�0
2M) and 1

3 (
√

2Re(χ̃0) +ξ0). While the states within the 5-plet and 3-plet 
are degenerate in masses, the three singlets can in general be mixed together. It was shown 
in [38] that the 125 GeV Higgs is an admixture of these three singlets, and these mixing effects 
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are essential to make the model consistent with the LHC data of the 125 GeV Higgs. All these 
scalars are A4 singlets. While both ξ and χ̃ are crucial to maintain the custodial symmetry at 
tree level, χ̃ is responsible for providing the Majorana masses to the right-handed neutrinos 
mentioned earlier. Furthermore, the large contribution to the electroweak oblique parameters 
from the triplets was shown in [37] to be offset by the opposite contribution from the mirror 
fermions such that the model is safe against the electroweak precision data. To be specific, it 
was demonstrated in [37] that it is possible to find any combination of the parameter space, 
mZ ≤ mHiggses, mqM ≤ 600 GeV, 150 ≤ mlM ≤ 600 GeV, mZ/2 ≤ mνR

≤ 600 GeV, that can 
satisfy the electroweak precision data constraints on the oblique parameters within the 2σ region.

The weak singlet scalars φ0S and �φS introduced in [21] are singlet and triplet under A4 re-
spectively. They are the only fields connecting the SM fermions and their mirror counterparts. 
Recall that the tetrahedron symmetry group A4 has four irreducible representations 1, 1′, 1′′, and 
3. The multiplication rule that is relevant to us is1:

3 × 3 = 31(23,31,12) + 32(32,13,21)

+ 1(11 + 22 + 33) + 1′(11 + ω222 + ω33) + 1′′(11 + ω22 + ω233) (8)

where ω = e2πi/3. In the gauge eigenbasis (fields with superscript 0), one can write down the 
following A4 invariant Yukawa couplings,2

−LY l ⊃ g0Sφ0S(l0
Ll0M

R )1 + g1S
�φS · (l0

L × l0M
R )31 + g2S

�φS · (l0
L × l0M

R )32 + H.c.

+ g′
0Sφ0S(e0

Re0M
L )1 + g′

1S
�φS · (e0

R × e0M
L )31 + g′

2S
�φS · (e0

R × e0M
L )32 + H.c. (9)

Similar couplings can be written down for the quarks as well and we will describe them later.
As shown in [21], after the scalar singlets develop VEVs with v0 = 〈φ0S〉 and vk = 〈φkS〉, one 

obtains the neutrino mass matrix from the first line of (9)

MDirac
ν =

⎛
⎝ g0Sv0 g1Sv3 g2Sv2

g2Sv3 g0Sv0 g1Sv1
g1Sv2 g2Sv1 g0Sv0

⎞
⎠ . (10)

Reality of the mass eigenvalues of MDirac
ν implies g0S is real and g2S = g∗

1S . Furthermore, if one 
assumes vi = v, MDirac

ν reduces to

MDirac
ν =

⎛
⎝ g0Sv0 g1Sv g∗

1Sv

g∗
1Sv g0Sv0 g1Sv

g1Sv g∗
1Sv g0Sv0

⎞
⎠ . (11)

The above form of MDirac
ν can be diagonalized by an unitary matrix Uν , i.e. U†

ν MDirac
ν Uν =

M
Diag
ν with [21]

Uν ≡ U
†
CW = 1√

3

⎛
⎝ 1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠ , (12)

1 31 is differ from 32 because A4 is nonabelian.
2 After spontaneous symmetry breaking the scalar singlets φ0S and �φS might be mixing among each other as well as 

with other scalars in the model. We have assumed the quartic couplings responsible to these mixing effects are negligibly 
small so that φ0S and �φS are the physical states.
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where ω is the same as in the multiplication rules of A4 given in (8). The matrix UCW in (12)
was first discussed by Cabibbo [41] and also by Wolfenstein [42] in the context of CP violation 
for three generations of neutrino oscillations.

On the other hand, the Majorana mass term for the right-handed neutrinos can be generated 
by the following A4 invariant Lagrangian [21]

LM = gM

(
l
0M,T
R σ2

)
(iτ2χ̃) l0M

R + H.c. . (13)

When the neutral component of the A4 singlet χ̃ develops a VEV 〈χ0〉 = vM , one obtains the 
Majorana mass matrix MR [21]

MR = gMvM

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ . (14)

The full neutrino mass matrix is given by

Mν =
(

0 MDirac
ν(

MDirac
ν

)T
MR

)
, (15)

with MDirac
ν and MR given by (11) and (14) respectively. The light neutrino mass matrix is then

mν ∼ −MDirac
ν M−1

R

(
MDirac

ν

)T = − 1

gMvM

MDirac
ν

(
MDirac

ν

)T
, (16)

where we have used the fact that MR in (14) is proportional to the unit matrix. We note that an 
unitary matrix Uν that diagonalizes the Dirac mass matrix MDirac

ν in general won’t diagonalize 
the light neutrino mass matrix mν . However, with MDirac

ν given by (11) in the model, one can 
check readily that the light neutrino mass matrix mν in (16) can be diagonalized by Uν given by 
(12) as well.

Note also that the true light neutrino masses should be obtained by block-diagonalization [43–
46] of the full neutrino mass matrix Mν in (15). The mν given by (16) can only be regarded as 
an effective light neutrino mass matrix obtained by integrating out the heavy degrees of freedom 
represented by the heavy Majorana fermions with mass of order MR. Thus it may receive sub-
leading corrections upon block-diagonalization of Mν . For the purposes of this work, since 
MR  〈φ0S〉, 〈φiS〉, it is sufficient to consider the effective light neutrino mass matrix. The 
PMNS neutrino mixing matrix is then given by UPMNS = U†

ν Ul
L where Ul

L is the unitary ma-
trix that diagonalizes the charged lepton mass matrix squared. A phenomenological approach 
was proposed in [21] to parameterize Ul

L as deviating from unity in the form of a Wolfenstein-
like unitary matrix. Using the experimental input for the matrix elements of UPMNS, the allowed 
ranges for the Wolfenstein parameters in Ul

L can be deduced [21].
We note that this discrete A4 symmetry does not forbid the quartic couplings of the Higgs 

singlets with the doublets and triplets. After symmetry breaking, these would lead to additional 
scalar mixings not considered before in [38] which can give contributions to the invisible width 
for the 125 GeV Higgs. As shown in [38], the mixings between the neutral components of the 
two Higgs doublets and the GM triplets are tightly constrained already by the LHC data for the 
signal strengths of the 125 GeV Higgs. Including the singlets in the mixings is beyond the scope 
of this work. However they are expected to be tightly constrained as well. We will assume these 
additional scalar mixings are small enough in order to circumvent the LHC data on the Higgs 
invisible width and signal strengths.
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In recent years, advocating A4 symmetry in the lepton sector was mainly due to Ma [47]. For 
an elementary introduction of the A4 discrete group, see for example [48].

2.3. Mixings

Let Ul
L,R and UlM

R,L be the unitary matrices relating the gauge eigenstates and the mass eigen-
states (fields without superscripts 0) of the SM and mirror fermions defined as

l0
L = Ul

LlL , e0
R = Ul

ReR , l
M,0
R = UlM

R lMR , e
M,0
L = UlM

L eM
L . (17)

Following [18], we express the Yukawa couplings in (9) as follows

LY l ⊃ −
3∑

k=0

3∑
i,m=1

(
l̄Li UL k

im lMRm + ēRi UR k
im eM

Lm

)
φkS + H.c. (18)

The coupling coefficients UL k
im and UR k

im are given by

UL k
im ≡

(
U

†
PMNS · Mk · UM

PMNS

)
im

,

=
3∑

j,n=1

(
U

†
PMNS

)
ij

Mk
jn

(
UM

PMNS

)
nm

, (19)

and

UR k
im ≡

(
U

′ †
PMNS · M ′ k · U ′ M

PMNS

)
im

,

=
3∑

j,n=1

(
U

′ †
PMNS

)
ij

M ′ k
jn

(
U ′ M

PMNS

)
nm

, (20)

where the matrix elements for the four auxiliary matrices Mk(k = 0, 1, 2, 3) are listed in Table 2, 
and M ′ k

jn can be obtained from Mk
jn with the following substitutions for the Yukawa couplings 

g0S → g′
0S and g1S → g′

1S ; UPMNS is the usual neutrino mixing matrix defined as

UPMNS = U†
ν Ul

L , (21)

and its mirror and right-handed counter-parts UM
PMNS, U ′

PMNS and U ′M
PMNS are defined analogously 

as

UM
PMNS = U†

ν UlM

R , (22)

U ′
PMNS = U†

ν Ul
R , (23)

and

U ′M
PMNS = U†

ν UlM

L . (24)
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Table 2
Matrix elements for the four auxiliary Mk(k = 0, 1, 2, 3) where ω ≡
exp(i2π/3) and g0S and g1S are complex Yukawa couplings. M ′ k can be ob-
tained from Mk with the following substitutions g0S → g′

0S
and g1S → g′

1S
.

Mk
jn

Value

M0
12,M0

13,M0
21,M0

23,M0
31,M0

32 0

M0
11,M0

22,M0
33 g0S

M1
11,M2

11,M3
11; M1

23,M1
32

2
3 Re (g1S)

M1
22,M2

22,M3
22; M1

13,M1
31

2
3 Re

(
ω∗g1S

)
M1

33,M2
33,M3

33; M1
12,M1

21
2
3 Re (ωg1S)

M2
12,M3

21
1
3

(
g1S + ωg∗

1S

)
M3

12,M2
21

1
3

(
g∗

1S
+ ω∗g1S

)
M2

13,M3
31

1
3

(
g1S + ω∗g∗

1S

)
M3

13,M2
31

1
3

(
g∗

1S
+ ωg1S

)
M2

23,M3
32

2ω∗
3 Re (g1S)

M3
23,M2

32
2ω
3 Re (g1S)

3. Effective Lagrangian for μ − e conversion

Effective Lagrangian is a powerful technique to analyse low energy processes like μ → e

conversion in nuclei since the momentum transfer q2 is typically of the order O(m2
μ) � m2

N

for nucleus N . The most general CLFV effective Lagrangian which contributes to the μ − e

conversion in nuclei has been studied by various groups [30,31,49]. At the scale  where the 
heavy particles (including particles beyond the SM as well as the heavy top, bottom and charm 
quarks) being integrated out, the relevant terms for the model we are studying are

Leff = − 1

2

[(
CDRmμeσαβPLμ + CDLmμeσαβPRμ

)
Fαβ

+
∑

q=u,d,s

(
C

(q)
V Reγ αPRμ + C

(q)
V Leγ αPLμ

)
qγαq

+
∑

q=u,d,s

mμmqGF

(
C

(q)
SRePRμ + C

(q)
SLePLμ

)
qq

+ mμ

(
CGQRGF ePLμ + CGQLGF ePRμ

) βL

2g3
s

GaαβGa
αβ + H.c.

]
.

(25)

Here GF , mμ and mq are the Fermi constant, muon and quark masses respectively; PL,R =
(1 ∓ γ5)/2, σμν = i

[
γμ, γν

]
/2; Fαβ is the electromagnetic field strength; Ga

αβ is the QCD 
gluon field strength with βL its beta function βQCD ≡ (g3

s /16π2)(11 − 2NF /3) of three light 
flavors (NF = 3) and gs is the strong coupling constant; finally, CD(L,R), C

(q)

V (L,R), C
(q)

S(L,R) and 
CGQ(L,R) are dimensionless coupling constants depending on specific LFV model. In (25) the 
following quark bilinears qγ5q , qγμγ5q and qσμνq are not included since they do not contribute 
for coherent conversion processes in which the initial and final states of the nucleus are the same.

To determine the conversion rate, the above effective Lagrangian (25) is needed to scale 
down to the nuclear scale where the hadronic matrix elements 〈N |qq|N〉, 〈N |qγμq|N〉, 
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〈N |FαβFαβ |N〉 and 〈N |GaαβGa
αβ |N〉 are evaluated. In addition, the muon and electron wave 

functions may be significantly deviating from plane wave due to distortion by the coulomb poten-
tial of the nuclei. For high Z nuclei, relativistic corrections to their wave functions are important 
as well. The formula for the conversion rate is given by [31,49]

�conv = m5
μ

44

(∣∣∣∣CDRD + 4C̃
(p)
V RV (p)

+ 4C̃
(n)
V RV (n) + 4GF mμ

(
mpC̃

(p)
SR S(p) + mnC̃

(n)
SRS(n)

)∣∣∣∣
2

+
∣∣∣∣CDLD + 4C̃

(p)
V LV (p) + 4C̃

(n)
V LV (n)

+ 4GF mμ

(
mpC̃

(p)
SL S(p) + mnC̃

(n)
SLS(n)

)∣∣∣∣
2
)

.

(26)

In (26) the coupling constants C̃(p,n)

V (R,L) are defined as [49]

C̃
(p)
V R =

∑
q=u,d,s

C
(q)
V Rf

(q)
Vp ,

C̃
(n)
V R =

∑
q=u,d,s

C
(q)
V Rf

(q)
V n ,

C̃
(p)
V L =

∑
q=u,d,s

C
(q)
V Lf

(q)
Vp ,

C̃
(n)
V L =

∑
q=u,d,s

C
(q)
V Lf

(q)
V n ,

(27)

where f (q)
Vp and f (q)

V n are the known nucleon vector form factors

f
(u)
Vp = 2, f

(d)
Vp = 1, f

(s)
Vp = 0 ,

f
(u)
V n = 1, f

(d)
V n = 2, f

(s)
V n = 0 ; (28)

and

C̃
(p)
SR =

∑
q=u,d,s

C
(q)
SRf

(q)
Sp + CGQR

⎛
⎝1 −

∑
q=u,d,s

f
(q)
Sp

⎞
⎠ ,

C̃
(n)
SR =

∑
q=u,d,s

C
(q)
SRf

(q)
Sn + CGQR

⎛
⎝1 −

∑
q=u,d,s

f
(q)
Sn

⎞
⎠ ,

C̃
(p)
SL =

∑
q=u,d,s

C
(q)
SLf

(q)
Sp + CGQL

⎛
⎝1 −

∑
q=u,d,s

f
(q)
Sp

⎞
⎠ ,

C̃
(n)
SL =

∑
C

(q)
SLf

(q)
Sn + CGQL

⎛
⎝1 −

∑
f

(q)
Sn

⎞
⎠ ,

(29)
q=u,d,s q=u,d,s
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Table 3
Values of the dimensionless overlap integrals for aluminum, titanium and gold, evaluated under the assumption that the 
proton and neutron distributions within each nuclei are the same [31].

Nucleus D V (p) V (n) S(p) S(n)

27
13Al 0.0362 0.0161 0.0173 0.0155 0.0167

48
22Ti 0.0864 0.0396 0.0468 0.0368 0.0435

197
79 Au 0.189 0.0974 0.146 0.0614 0.0918

where f (q)
Sp and f (q)

Sn are the scalar nucleon form factors, which can be expressed in terms of 
nucleon matrix elements and ratios of quarks masses according to [50]:

f
(u)
Sp = mu

mu + md

σπN

mp

(1 + ξ) ,

f
(d)
Sp = md

mu + md

σπN

mp

(1 − ξ) ,

f
(s)
Sp = ms

mu + md

σπN

mp

y ,

f
(u)
Sn = mu

mu + md

σπN

mp

(1 − ξ) ,

f
(d)
Sn = md

mu + md

σπN

mp

(1 + ξ) ,

f
(s)
Sn = ms

mu + md

σπN

mp

y ,

(30)

where

σπN = mu + md

2
〈N |ūu + d̄d|N〉 ,

ξ = 〈p|ūu − d̄d|p〉
〈p|ūu + d̄d|p〉 ,

y = 2
〈p|s̄s|p〉

〈p|ūu + d̄d|p〉 .

(31)

To evaluate the nucleon matrix elements in (31), one can adopt a recent updated analysis given 
in [51]. Choosing the second row of Table I of [51], corresponding to an input value of σs =
ms〈p|s̄s|p〉 = 50 MeV, we have the central values

σπN = 39.8 MeV , ξ = 0.18 , y = 0.09 , (32)

where the current quark masses have been taken to be [51,52]

mu = 2.5+0.6
−0.8 MeV , md = 5.0+0.7

−0.9 MeV , ms = 100+30
−20 MeV , (33)

normalized at the scale μ = 2 GeV.
The dimensionless quantities D, V (p,n) and S(p,n) in (26) are the overlap integrals of the 

relativistic wave functions of muon and electron in the electric field of the nucleus weighted by 
appropriate combinations of proton and neutron densities [31]. Their values for the three nuclei 
aluminum, titanium and gold are listed in Table 3 for reference.
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Table 4
Standard model values of the capture rates 
for aluminum, titanium and gold in unit of 
106 s−1 taken from Ref. [53].

Nucleus �capt (106 s−1)
27
13Al 0.7054

48
22Ti 2.59

197
79 Au 13.07

Fig. 1. One-loop induced Feynman diagrams from photon and Z boson exchanges for μ − e conversion in electroweak-
scale νR model.

The μ − e conversion branching ratio is defined as

BμN→eN (Z,A) ≡ �conv

�capt
, (34)

where �conv is given by (26) and �capt is the standard model muon capture rate. The SM capture 
rates for aluminum, titanium and gold have been determined experimentally [53] and they are 
listed in Table 4 for convenience.

4. Mirror Fermion model calculation

4.1. Photon contributions and the monopole and dipole form factors

In this subsection we will focus on the contributions from the photon exchange Feynman 
diagrams as shown in Fig. 1. We also compute the contributions from the Z-exchange, Higgs 
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exchange as well as box diagrams but we will demonstrate in Sec. 6 they are numerically in-
significant in the model. We note that the right-handed neutrinos do not contribute to μ − e

conversion since there is neither li − νRj− charged Higgs nor li − νRj − W boson vertex in the 
model [38].

The invariant amplitude for μ−(p) → e−(p′)γ ∗(q) with an off-shell photon can be 
parametrized as

iMγ = −eue(p
′)i�μ

γ (q)uμ(p)A∗
μ(q) (35)

where �μ
γ (q) has the following Lorentz and gauge invariant decomposition

�μ
γ (q) =

(
fE0(q

2) + γ5fM0(q
2)

)(
γ μ − qμ/q

q2

)
+

(
fM1(q

2) + γ5fE1(q
2)

) iσμνqν

mμ

.

(36)

The monopole form factors fE0, fM0 and the dipole form factors fM1, fE1 can be obtained by 
generalizing our previous on-shell calculation of μ → eγ in the same model [18] to the case of 
off-shell photon γ ∗. From the Feynman diagrams of Fig. 1, we obtain the following expressions

fE0,M0(q
2) = + 1

32π2

∑
k,m

1∫
0

dx

1−x∫
0

dy

{
xyq2

M2
m�km(q2)

(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)

−
[

log

(
�km(q2)

�km(0)

)
−

(
M2

m ± (1 − x − y)2mμme

)(
1

M2
m

)

×
(
�−1

km(q2) − �−1
km(0)

)]
×

(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)
+ (1 − x − y)(mμ ± me)

(
1

Mm

)(
�−1

km(q2) − �−1
km(0)

)

×
(
UL k

1m

(
UR k

2m

)∗ ± UR k
1m

(
UL k

2m

)∗)}
(37)

for the monopole form factors, and

fM1,E1(q
2) = − mμ

32π2

∑
k,m

1∫
0

dx

1−x∫
0

dy
1

M2
m�km(q2)

×
{
(1 − x − y)

(
ymμ ± xme

)(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)

+ (x + y)Mm

(
UL k

1m

(
UR k

2m

)∗ ± UR k
1m

(
UL k

2m

)∗)}
(38)

for the dipole form factors. Here, we have defined

�km(q2) = (x + y) + (1 − x − y)(m2
k − xm2

e − ym2
μ)

1

M2
m

− xy
q2

M2
m

− i0+ , (39)

where mk denotes the mass of scalar singlet φkS for k = 0, 1, 2, 3 and Mm the mass of mirror 
lepton lMm for m = 1, 2, 3.
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At q2 = 0, we have fE0,M0(0) = 0 as one would expect. Thus the following reduced 
monopole form factors f̃E0,M0 with an explicit factor of q2 extracted from fE0,M0 are often 
defined in the literature,

fE0,M0(q
2) = q2

m2
μ

f̃E0,M0(q
2) . (40)

For small q2, one can set f̃E0,M0(q
2) ≈ f̃E0,M0(0) with

f̃E0,M0(0) = m2
μ

32π2

∑
k,m

1∫
0

dx

1−x∫
0

dy
xy(

M2
m�km(0)

)2

{(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)

×
(

2M2
m�km(0) + M2

m ± (1 − x − y)2mμme

)
+

(
UL k

1m

(
UR k

2m

)∗ ± UR k
1m

(
UL k

2m

)∗)
(1 − x − y)(mμ ± me)Mm

}
. (41)

The explicit factor of q2 in (40) will cancel the 1/q2 of the photon propagator in Fig. 1. This 
leads to four-fermion vector–vector interaction and hence the reduced monopole form factors 
will contribute to the effective coupling C(q)

V (R,L) in the effective Lagrangian of (25) in Sec. 3. We 
will discuss more about these four-fermion interactions in the next subsection.

At q2 = 0, the contributions from the magnetic and electric dipole terms of (36) to the ampli-
tude Mγ in (35) can be reproduced by the following effective Lagrangian

Lγ,eff = e

2mμ

eσαβ (fM1(0) + γ5fE1(0))μFαβ + H.c. , (42)

where Fαβ is the electromagnetic field strength. Comparing (42) with the first line of the general 
form of the Lagrangian for μ − e conversion given in (25) in Sec. 3, one can deduce the dimen-
sionless effective couplings CDR,DL as linear combinations of the static limit of the dipole form 
factors fE1 and fM1,

CDR,DL

2 = e

2m2
μ

(±fE1(0) − fM1(0)) . (43)

4.2. Four-Fermion coupling coefficients

4.2.1. Photon exchange
The amplitude for μ(p)q(k) → e(p′)q(k′) from the monopole form factors of the photon 

exchange in Fig. 1 can be obtained as

Mγ = −e2Qque(p
′)

(
fE0(q

2) + fM0(q
2)γ5

)(
γμ − qμ/q

q2

)
uμ(p)

1

q2 uq(k′)γ μuq(k) ,

(44)

where q = p − p′ = k′ − k, and fE0, fM0 are given in (37). The qμ term in (44) can be dropped 
due to quark current conservation. As mentioned earlier, the 1/q2 of the photon propagator will 
be cancelled from a factor of q2 in fE0,M0. Thus in terms of the reduced form factors f̃E0,M0 of 
(40), the amplitude Mγ can be rewritten as
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Mγ = − e2Qq

m2
μ

[(
f̃E0 − f̃M0

)
uLe(p

′)γμuLμ(p) +
(
f̃E0 + f̃M0

)
uRe(p

′)γμuRμ(p)
]

× [
uLq(k′)γ μuLq(k) + uRq(k′)γ μuRq(k)

]
, (45)

where f̃E0,M0 are defined in (41) for small q2. At q2 = 0, this amplitude can be reproduced by 
the following Fermi interaction

L′
γ,eff = −e2Qq

m2
μ

[(
f̃E0(0) − f̃M0(0)

)
eLγμμL +

(
f̃E0(0) + f̃M0(0)

)
eRγμμR

]
· [qγ μq

]
. (46)

By matching (46) with the second line of the general form of the Lagrangian for μ − e conver-
sion given in (25) in Sec. 3, we deduce the following relations for the dimensionless effective 
couplings C(q)γ

V (L,R)

C
(q)γ

V (L,R)(0)

2 = e2Qq

m2
μ

(
f̃E0(0) ∓ f̃M0(0)

)
. (47)

Note that we have the relation C(u)γ

V (L,R)
= −2C

(d)γ

V (L,R)
. This implies the vector effective couplings 

C̃
(n)γ

V (L,R)
for the neutron from the photon exchange are vanishing. This is expected since neutron 

carries no electric charge.

4.2.2. Z boson exchange
For the Z boson contributions from Fig. (1), in the limit of |q2| � m2

Z , we obtain the following 
amplitude

MZ ≈ GF√
2

[
f Z

L (q2) uLe(p
′)γμuLμ(p) + f Z

R (q2) uRe(p
′)γμuRμ(p)

]
×

[
uq(k′)

(
C

q
V γ μ + C

q
Aγ μγ 5

)
uq(k)

]
, (48)

where the f Z
L,R(q2) are the form factors given by

f Z
L (q2) = 1

2π2

∑
k,m

1∫
0

dx

1−x∫
0

dy

{[
log

(
�km(q2)

�km(0)

)
Cl

L −
(
�−1

km(q2) − �−1
km(0)

)
Cl

R

]
UL k

1m

(
UL k

2m

)∗

− mμme

1

M2
m

(1 − x − y)2
(
�−1

km(q2) − �−1
km(0)

)
Cl

R UR k
1m

(
UR k

2m

)∗

− 1

Mm

(1 − x − y)
(
�−1

km(q2) − �−1
km(0)

)
Cl

R

(
mμ UL k

1m

(
UR k

2m

)∗

+ meUR k
1m

(
UL k

2m

)∗) − xyq2

M2
m�km(q2)

Cl
L UL k

1m

(
UL k

2m

)∗}

+
(
Cl

L − Cl
R

)
16π2(m2

μ − m2
e)

∑
k,m

1∫
dx log

(
�e

km(x)

�
μ
km(x)

){
M2

m

1 − x
UL k

1m

(
UL k

2m

)∗
0
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+ mμme(1 − x)UR k
1m

(
UR k

2m

)∗ + Mm

(
mμ UL k

1m

(
UR k

2m

)∗ + meUR k
1m

(
UL k

2m

)∗)}
,

(49)

and f Z
R (q2) can be obtained from f Z

L (q2) in (49) with L ↔ R for all the quantities with L , R

subscripts or superscripts. Here Cf
L = T 3(f ) − Qf sin2 θW and Cf

R = −Qf sin2 θW are the 
chiral couplings of fermion f with the Z boson. We have used the fact that for muon, electron 
and mirror charged leptons they all have the same Cl

L,R . �km(q2) in (49) is given by (39) and 
�

μ,e
km (x) is given by

�
μ,e
km (x) = x + (1 − x)

m2
k

M2
m

− x(1 − x)
m2

μ,e

M2
m

. (50)

In the derivation of (49) for f Z
L (q2) (and the analogous f Z

R (q2)), we have dropped terms propor-
tional to qμ and iσμνq

ν from the Z-vertex diagram. The qμ = (k′ − k)μ term when multiplying 
the quark current u(k′)γ μ(C

q
V + γ 5C

q
A)u(k) in (48) will give zero in the vector part by using 

the free quark equation of motion, while for the axial vector part it will produce term propor-
tional to the light quark mass. The iσμνq

ν term will give rise to dimension 7 4-fermion operators 
from (48) with one derivative in the position space. Both contributions will be suppressed by 
O(mμ,q/M) where M is the mass of heavy mirror fermion running inside the loop as compared 
with the dimension 6 4-fermion operators that we are interested in. We will ignore these two 
terms in our analysis for μ − e conversion.

At q2 = 0, we note that f Z
L,R �= 0. For practical purpose, following [30], we will evaluate the 

non-photonic form factors at q2 = −m2
μ. The amplitude MZ in (48) can be reproduced by the 

following Fermi interaction

LZ,eff = GF√
2

[
f Z

L (−m2
μ)eLγμμL + f Z

R (−m2
μ)eRγμμR

]
·
[
q

(
C

q
V γ μ + C

q
Aγ μγ5

)
q
]
+ · · ·

(51)

where the · · · denotes non-local operators. Once again, matching (51) with the effective La-
grangian for μ − e conversion in Sec. 3, we obtain

C
(q)Z

V (L,R)(−m2
μ)

2 = −GF√
2

C
q
V f Z

L,R(−m2
μ) . (52)

As a bonus, we also obtain the effective axial vector coupling

C
(q)Z

A(L,R)(−m2
μ)

2 = −GF√
2

C
q
Af Z

L,R(−m2
μ) , (53)

which is nevertheless irrelevant for the coherent μ − e conversion processes in nuclei.

4.2.3. Scalar Higgs exchange
Now we consider the Feynman diagram in Fig. 2 for the CP-even scalar Higgs contributions 

to μ − e conversion. In the extended mirror fermion model [38], the physical neutral Higgses 
are mixtures of the neutral components from the two doublets �2 and �2M as well as the GM 
triplets ξ and χ̃ . They are denoted by H̃1,2,3 with H̃1 identified as the SM 125 GeV Higgs. In the 
limit of |q2| � m ˜ , we obtain the following amplitude
Ha



486 P.Q. Hung et al. / Nuclear Physics B 932 (2018) 471–504
Fig. 2. One-loop induced Feynman diagram from CP-even scalar exchanges for μ −e conversion in the electroweak-scale 
νR model. Diagrams for external leg dressings are not shown.

MS ≈ −mqGF√
2 s2

3∑
a=1

Oa1

m2
H̃a

[
f Sa

L (q2)ue(p
′)PL uμ(p) + f Sa

R (q2)ue(p
′)PR uμ(p)

]

× [
uq(k′)uq(k)

]
, (54)

where the f Sa
L,R(q2) are the form factors given by

f Sa
L (q2) = 1

8π2
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e)
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(55)
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and f Sa
R (q2) can be obtained from f Sa

L (q2) with L ↔ R for all the quantities with L , R sub-
scripts or superscripts. Here we have s2 = v2/v and s2M = v2M/v where v2 and v2M are the 
VEVs of two doublets �2 and �2M respectively, and together with the VEV vM of the triplet 
scalar χ̃ , they satisfy the constraint v2

2 + v2
2M + 8v2

M = v2 where v ≈ 246 GeV. Oa1 and Oa2 are 
the first and second columns of the Higgs mixing matrix defined in (42) of [38].

The amplitude MS in (54) can be reproduced by the following interaction

LS,eff = −mqGF√
2 s2

3∑
a=1

Oa1

m2
H̃a

[
f Sa

L (q2)e PL μ + f Sa
R (q2) e PR μ

]
· [q q] . (56)

Comparing this Lagrangian (56) with the effective Lagrangian for μ − e conversion in Sec. 3, we 
can obtain

C
(q)H

S(L,R)(−m2
μ)

2 = 1√
2 s2 mμ

3∑
a=1

Oa1

m2
H̃a

f Sa
L,R(−m2

μ) . (57)

Since we are concentrating on the coherent conversion processes in which the final state of the 
nucleus |N ′〉 is the same as the initial one |N〉, we will ignore the contributions from the CP-odd 
Higgses which give rise to vanishing matrix element 〈N ′|q̄γ5q|N〉 if |N ′〉 = |N〉.

4.2.4. Box diagrams
First, in analogy with the lepton sector, we will write down the relevant A4 invariant Yukawa 

interactions of quarks in the mirror fermion model,

LYq ⊃ −
∑

q=u,d

3∑
k=0

3∑
i,j=1

qi

{
VLqk

ij PR + VRqk
ij PL

}
qM
j φkS + H.c. . (58)

where

VLqk ≡ V
q
L

†
MQ,kV

qM

R ,

VRqk ≡ V
q
R

†
Mq,kV

qM

L .

(59)

Here V u
L,R , V d

L,R , V uM

L,R , V dM

L,R , are the unitary matrix which transform the fields to the physical 
basis

uL,0 = V u
LuL, dL,0 = V d

LdL, uM
L,0 = V uM

L uM
L , dM

L,0 = V dM

L dM
L ,

and

uR,0 = V u
RuR, dR,0 = V d

RdR, uM
R,0 = V uM

R uM
R , dM

R,0 = V dM

R dM
R .

The MQ,k in (59) are 3 × 3 matrices which are given by

MQ,0 =
⎛
⎜⎝g

Q
0S 0 0
0 g

Q
0S 0

0 0 g
Q
0S

⎞
⎟⎠ , MQ,1 =

⎛
⎝0 0 0

0 0 g
Q
1S

0 g
Q
2S 0

⎞
⎠ ,

MQ,2 =
⎛
⎝ 0 0 g

Q
2S

0 0 0
g

Q 0 0

⎞
⎠ , MQ,3 =

⎛
⎝ 0 g

Q
1S 0

g
Q
2S 0 0
0 0 0

⎞
⎠ ,

(60)
1S
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Fig. 3. Box diagrams.

and similar decompositions for Mu,k and Md,k in (59) can be obtained by the substitutions of 
g

Q
iS → gu

iS and gd
iS respectively in (60).

The amplitude for box diagram contributions from Fig. 3 is given by

MB =
(
f

Bq
V L uLe(p2)γμuLμ(p1) + f

Bq
V R uRe(p2)γμuRμ(p1)

)
uq(p4)γ

μuq(p3)

+
(
f

Bq
SL ue(p2)PLuμ(p1) + f

Bq
SR ue(p2)PRuμ(p1)

)
uq(p4)uq(p3) + · · · ,

(61)

where the · · · denotes non-local operators. In the limit of me , mμ , mq �Mm , Mn, the f Bq
V L,V R

are given by

f
Bq
V L = 1

64π2

∑
k,l

∑
i,n,m

(
VLq l

in

(
VLq k

in

)∗ − VLq k
in

(
VLq l

in

)∗ + VRq l
in

(
VRq k

in

)∗

− VRq k
in

(
VRq l

in

)∗) ×
(
UL l

1m

(
UL k

2m

)∗) 1

M2
m

Ik,l
n,m

= 0 ,

f
Bq
V R = 1

64π2

∑
k,l

∑
i,n,m

(
VLq l

in

(
VLq k

in

)∗ − VLq k
in

(
VLq l

in

)∗ + VRq l
in

(
VRq k

in

)∗

− VRq k
in

(
VRq l

in

)∗) ×
(
UR l

1m

(
UR k

2m

)∗) 1

M2
m

Ik,l
n,m ,

= 0 ,

(62)

and the f Bq
SL,SR are given by

f
Bq
SL = 1

32π2

∑
k,l

∑
i,n,m

MmMn

(
VLq l

in

(
VRq k

in

)∗ + VLq k
in

(
VRq l

in

)∗ + VRq l
in

(
VLq k

in

)∗

− VRq k
in

(
VLq l

in

)∗) ×
(
UR l

1m

(
UL k

2m

)∗) 1

M4
m

J k,l
n,m ,

f
Bq
SR = 1

32π2

∑
k,l

∑
i,n,m

MmMn

(
VLq l

in

(
VRq k

in

)∗ + VLq k
in

(
VRq l

in

)∗ + VRq l
in

(
VLq k

in

)∗

− VRq k
in

(
VLq l

in

)∗) ×
(
UL l

1m

(
UR k

2m

)∗) 1

M4
m

J k,l
n,m .

(63)

Here, the two functions Ik,l
n,m and J k,l

n,m are defined as follows
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Ik,l
n,m =

1∫
0

1−x1∫
0

1−x1−x2∫
0

dx1dx2dx3

×
(

1

rnm + x1 (rkm − rnm) + x2 (1 − rnm) + x3 (rlm − rnm)

)
,

J k,l
n,m =

1∫
0

1−x1∫
0

1−x1−x2∫
0

dx1dx2dx3

×
(

1

rnm + x1 (rkm − rnm) + x2 (1 − rnm) + x3 (rlm − rnm)

)2

, (64)

with rnm = M2
n/M2

m, rkm = m2
k/M

2
m and rlm = m2

l /M
2
m. If one ignores further the tiny masses 

of the Higgs singlets mk and ml as compared with the mirror lepton mass Mm and mirror quark 
mass Mn in the above integrals, we set rkm = rlm = 0 and obtain

Ik,l
n,m = − log rnm

2(1 − rnm)
,

J k,l
n,m = −1 − rnm − log rnm

rnm(1 − rnm)
.

(65)

The amplitude in (61) can be reproduced by the following Lagrangian

LBox,eff =
[
f

Bq
V LēγμPLμ + f

Bq
V RēγμPRμ

]
· q̄γ μq +

[
f

Bq
SL ēPLμ + f

Bq
SR ēPRμ

]
· q̄q . (66)

Matching with the effective Lagrangian in Sec. 3, we get the following box contributions,

C
(q)Box

V (L,R)(0)

2 = −f
Bq
V L,V R = 0 ,

C
(q)Box

S(L,R) (0)

2 = − 1

mμ mq

f
Bq
SL,SR .

(67)

We can summarize the four fermion coupling coefficients we have computed for the extended 
mirror fermion model from the photon, Z-boson, Higgses and box diagrams. The total contribu-
tions to C(q)

V (L,R) and C(q)

S(L,R) are given by

C
(q)

V (L,R) ≈ C
(q)γ

V (L,R)(0) + C
(q)Z

V (L,R)(−m2
μ) + C

(q)Box

V (L,R)(0) ,

C
(q)

S(L,R) ≈ C
(q)H

S(L,R)(−m2
μ) + C

(q)Box

S(L,R) (0) .
(68)

We note that the box diagrams have vanishing contributions to the vector coupling coefficients.

4.3. Two loop gluonic diagram

We also calculate the two loop gluonic contributions from Fig. 4. Once again, in the limit of 
|q2| � m

H̃a
, we obtain the following amplitude

MG = GF αs

2
√

2π

3∑
a=1

1

m2
H̃a

[
f Ga

L (q2)ue(p
′)PL uμ(p) + f Ga

R (q2)ue(p
′)PR uμ(p)

]

× (
kμ k′ν − gμνkk′) δαβεα∗(k′)εβ∗(k) , (69)
μ ν
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Fig. 4. A two-loop induced Feynman diagram from scalar and gluonic exchanges for μ −e conversion in the electroweak-
scale νR model. Diagrams for external leg dressings are not shown.

where αs = g2
s /4π with gs being the strong coupling constant and f Ga

L,R(q2) are the form factors 
given by

f Ga
L,R(q2) =

(
Oa1

s2
G(τt ) +

∑
n

(
Oa2

s2M

G(τn)

))
× f Sa

L,R(q2) . (70)

Here τt = q2

m2
t

, τn = q2

M2
n

and mt , Mn are the masses of top quark and mirror quarks respectively. 

The integral function G(τ ) is defined as

G(τ ) =
1∫

0

dx

1−x∫
0

dy
1 − 4xy

1 − xyτ
,

= 1

τ 2

{
2τ + (τ − 4)

[
Li2

(
1

2

(
τ + √

τ (τ − 4)
))

+ Li2

(
1

2

(
τ − √

τ (τ − 4)
))]}

,

(71)

where Li2(z) is the dilogarithm function.
The amplitude MG in (69) can be reproduced by the following interaction

LG,eff = GF αs

2
√

2π

3∑
a=1

1

m2
H̃a

[
f Ga

L (q2)e PL μ + f Ga
R (q2) ePR μ

]
Gα

μν Gαμν. (72)

Once again, we compare this Lagrangian (72) with the effective Lagrangian for μ − e conversion 
in Sec. 3, we can read off

CGQ(L,R)

2 = −g3
s αs√

2π mμβL

3∑
a=1

1

m2
H̃a

(
f Ga

R,L(−m2
μ)

)
, (73)

where βL is the QCD beta-function of 3 light flavors.

4.4. Other two loop diagrams

Replacing the two gluons in Fig. 4, one can obtain another two loop photonic diagram. How-
ever, the contribution from this photonic two loop diagram is smaller than that coming from the 
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gluonic two loop diagram by a factor of αem/αs . One can also consider replacing the scalar Higgs 
exchange in Fig. 4 by a neutral vector gauge boson exchange like the photon or the Z boson. For 
the resulting two loop diagrams, one needs to consider the effective γgg and Zgg vertices. For 
on-shell particles these vertices are vanishing due to the Landau–Yang theorem. Nevertheless 
there can be anomalous γ ∗g∗g∗ and Z∗g∗g∗ couplings when at least one of the external gauge 
particles is off-shell. Anomalous γ ∗γ ∗γ ∗ and Z∗γ ∗γ ∗ couplings had been studied before in 
[54]. One anticipates that similar analysis can be done for the anomalous γ ∗g∗g∗ and Z∗g∗g∗
couplings as well. We will not perform such analysis here but just mention that the resulting two 
loop diagrams are necessarily smaller than the one loop diagram we are considering in Fig. 1. 
We will only consider the two loop Higgs exchange diagram in Fig. 4 since the one loop Higgs 
exchange diagram in Fig. 2 is suppressed by light quark masses.

We will also neglect the two loop gluonic diagrams from CP-odd Higgses since they would 
lead to effective operator G̃a

μνG
aμν whose matrix element 〈N ′|G̃a

μνG
aμν |N〉 is vanishing for 

coherent μ − e conversion with |N ′〉 = |N〉.
Finally, we note that dressing the quark line or connecting the lepton and quark lines in Fig. 1

by the SM neutral gauge bosons or Higgs will promote it into two loop diagrams. This class of 
two loop diagrams are not finite and renormalization is needed to carry out to achieve meaningful 
results. Such calculation is beyond the scope of this work.

5. The relationship between μ − e conversion and μ → eγ

We will show in the next section that the contributions to the four-fermion coupling coeffi-
cients from the photon, Z-boson, Higgses, gluonic and box diagrams are negligible compared 
with the photon contributions to the two dipole moment form factors. Here we will establish an 
useful relation between the μ − e conversion rate and the radiative decay rate of μ → eγ .

Since the momentum transfer q2 in the μ − e conversion processes in nuclei is expected to 
be quite small, of order of m2

μ, we can make a Taylor expansion for the form factors fE0,M0(q
2)

and fE1,M1(q
2) of the photon contributions deduced in the previous Sec. 4 around q2 = 0. For 

the contributions from the other form factors of the Z-boson and scalar Higgs exchanges, we will 
show that they are numerically small compared with the photon contributions in the next section. 
Thus for small q2, we have

fE0,M0(q
2) ≈ q2

32π2

1

M4
m

∑
k,m

{(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)

×
[
M2

m (I(rkm) + 2I30(rkm)) ± mμmeI10(rkm)
]

(74)

+
(
UL k

1m

(
UR k

2m

)∗ ± UR k
1m

(
UL k

2m

)∗)
Mm

(
mμ ± me

)
I20(rkm)

}
,

and

fM1,E1(q
2) ≈ − mμ

32π2

∑
k,m

{
1

M2
m

(
mμ ± me

)(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)
I(rkm)

+ 1

Mm

(
UL k

1m

(
UR k

2m

)∗ ± UR k
1m

(
UL k

2m

)∗)
J (rkm)

}

− mμq2

2

{
1

4

(
mμ ± me

)(
UL k

1m

(
UL k

2m

)∗ ± UR k
1m

(
UR k

2m

)∗)
I40(rkm)
32π Mm
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+ 1

M3
m

(
UL k

1m

(
UR k

2m

)∗ ± UR k
1m

(
UL k

2m

)∗)
I50(rkm)

}
. (75)

Here rkm = m2
k/M

2
m and the expressions for the Feynman parameterization integrals I, J and 

Ii0 (i = 1, 2, · · · , 5) can be found in Appendix A.
From (26) in Sec. 3, the conversion rate (ignoring the scalar Higgs contributions which we 

will show they are negligible in the next section) is given by

�conv = m5
μ

44

(∣∣∣∣CDRD + 4C̃
(p)
V RV (p)

∣∣∣∣
2

+
∣∣∣∣CDLD + 4C̃

(p)
V LV (p)

∣∣∣∣
2
)

, (76)

where CDR,DL are given by (43), C̃(p)
V R,V L are given by (27) in Sec. 3, and lastly, D and V (p) are 

the dimensionless overlap integrals of the relativistic wave functions of muon and electron. For 
convenience, in Table 3 of Sec. 3, we list the numerical values of D and V (p) for various nuclei 
given in [31]. To obtain (76), we have used the following result valid for the neutron,

C̃
(n)
V (L,R) =

∑
u,d,s

C
(q)

V (L,R)f
(q)
V n = 0 . (77)

Using the above approximate form factors (74) and (75) for small q2, we can derive

CDR,DL(q2) ≈ e2

32π2mμ

∑
k,m

{I(rkm)

M2
m

(
mμUR,L k

1m

(
UR,L k

2m

)∗ + meUL,R k
1m

(
UL,R k

2m

)∗)

+J (rkm)

Mm

UR,L k
1m

(
UL,R k

2m

)∗

+ q2

M2
m

[I40(rkm)

M2
m

(
mμUR,L k

1m

(
UR,L k

2m

)∗

+meUL,R k
1m

(
UL,R k

2m

)∗)
+ I50(rkm)

Mm

UR,L k
1m

(
UL,R k

2m

)∗ ]}
, (78)

and summing over the contributions from light quarks, we have (keeping only the contributions 
from the photon, since the Z contributions will be shown to be numerically insignificance in the 
next section)

C̃
(p)
V L,V R ≈ e22

16π2M4
m

∑
k,m

{
M2

m (I(rkm) + 2 I30(rkm))UR,L k
1m

(
UR,L k

2m

)∗

+ mμmeI10(rkm) UL,R k
1m

(
UL,R k

2m

)∗
(79)

+ MmI20(rkm)
(
mμUR,L k

1m

(
UL,R k

2m

)∗ + meUL,R k
1m

(
UR,L k

2m

)∗)}
.

Dropping the q2 terms in CDR,DL and keeping only those terms up to O(1/M2
m) in C̃(p)

V L,V R , we 
obtain the conversion rate from the photon contribution

�conv(q
2 → 0) ≈ m5

μ 1
2 2
4 (32π )
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×
∑
k,m

{∣∣∣∣16π2D

mμ

Ckm
L + 8V (p)e2 I(rkm) + 2 I30(rkm)

M2
m

UL k
1m

(
UL k

2m

)∗∣∣∣∣
2

(80)

+
∣∣∣∣16π2D

mμ

Ckm
R + 8V (p)e2 I(rkm) + 2 I30(rkm)

M2
m

UR k
1m

(
UR k

2m

)∗∣∣∣∣
2}

,

where

Ckm
L,R = e

16π2

{I(rkm)

M2
m

(
mμUR,L k

1m

(
UR,L k

2m

)∗ + meUL,R k
1m

(
UL,R k

2m

)∗)

+J (rkm)

Mm

UR,L k
1m

(
UL,R k

2m

)∗ }
. (81)

Recall that for the on-shell process μ → eγ , we have [18]

�μ→eγ = 1

16π
m3

μ

∑
k,m

(
|Ckm

L |2 + |Ckm
R |2

)
. (82)

Thus, one obtains

�conv(q
2 → 0) ≈ πD2�μ→eγ + m5

μ

(64π2)2

∑
k,m

{
2DV (p) (8πe)2 I(rkm) + 2I30(rkm)

mμM2
m

×
(
Ckm

L UL k
1m

(
UL k

2m

)∗ +
(
Ckm

L

)∗ (
UL k

1m

)∗
UL k

2m

+ Ckm
R UR k

1m

(
UR k

2m

)∗ +
(
Ckm

R

)∗ (
UR k

1m

)∗
UR k

2m

)
(83)

+
(

8V (p)e2 I(rkm) + 2I30(rkm)

M2
m

)2(
|UL k

1m

(
UL k

2m

)∗|2 + |UR k
1m

(
UR k

2m

)∗|2
)}

.

Note that since Ckm
L,R is scaled by 1/Mm, the first, second and the third terms in (83) are scaled by 

m3
μ/M2

m, m4
μ/M3

m and m5
μ/M4

m respectively. Typically the first term in (83) is about 103 and 106

times larger than the second and the third terms respectively. If one drops the last two suppressed 
terms compared with the first one in (83), one obtains a simple relation

�conv(q
2 → 0) ≈ πD2�μ→eγ . (84)

Thus,

BμN→eN = �conv

�capt
≈ πD2 �μ

�capt
Bμ→eγ , (85)

where �μ is the total decay width of the muon.

6. Numerical analysis

In our analysis, we adopt the same assumptions for the parameter space as was done in [18]. 
We summarize them as follows.

• For the mass parameters, we take the masses of the singlet scalars φkS to be

m0 : m1 : m2 : m3 = MS : 2MS : 3MS : 4MS , (86)
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where the common mass MS is set to be 10 MeV; and for the mirror lepton masses, we set

Mm = Mmirror + δm (87)

where δ1 = 0, δ2 = 10 GeV, δ3 = 20 GeV and the common mass Mmirror is varied in the 
range of 100 −800 GeV. Our results are insensitive to these choices as long as mk/Mm � 1.

• Note that the relations g2S = (g1S)∗ and g′
2S = (g′

1S)∗ hold due to the reality of the 
eigenvalues of the neutrino Dirac mass matrix. However, all the Yukawa couplings 
g0S, g1S, g2S, g′

0S, g′
1S , and g′

2S are assumed to be real in our analysis. In general these 
Yukawa couplings for the lepton sector as well as the corresponding ones in the quark sec-
tor can be complex. They will then lead to non-vanishing electric dipole moments for the 
electron [55] and the neutron [56].

• Out of the four mixing matrices, only the one UPMNS associated with the left-handed SM 
fermions are known. Following [18], we will consider two scenarios below:
– Scenario 1: UM

PMNS = U ′
PMNS = U ′M

PMNS = U
†
CW

– Scenario 2: UM
PMNS = U ′

PMNS = U ′M
PMNS = UPMNS

where UCW is given by (12). For the PMNS mixing matrix, we will use the best fit result in 
(3). In the two scenarios that we are studying, our results do not depend sensitively on the 
mass hierarchies.

• We will study the following two cases for the Yukawa couplings.
1. g0S = g′

0S and g1S = g′
1S = 10−2g0S . Hence the contributions from the A4 triplet is small.

2. g0S = g′
0S = g1S = g′

1S . Both A4 singlet and triplet terms carry the same weight.
• For the parameters in the Higgs sector, we consider two cases studied in [38]:

1. SM-like case (Eq. (50) of [38]) with the following mixing matrix of the three CP-even 
Higgses

O =
⎛
⎝ 0.998 −0.0518 −0.0329

0.0514 0.999 −0.0140
0.0336 0.0123 0.999

⎞
⎠ , (88)

s2 = 0.92, s2M = 0.16 and the masses of the three CP-even Higgses are m
H̃1

= 125.7

GeV, m
H̃2

= 420 GeV and m
H̃3

= 601 GeV. Note that H̃1 is basically SM-like in this 
case.

2. SM-unlike case (row 13, Table 4 of [38]) with the following mixing matrix of the three 
CP-even Higgses

O =
⎛
⎝ 0.131 0.075 0.985

0.979 0.146 −0.141
0.155 −0.986 0.054

⎞
⎠ , (89)

s2 = 0.3, s2M = 0.93 and the masses of the three CP-even Higgses are m
H̃1

= 125.1 GeV, 

m
H̃2

= 415 GeV and m
H̃3

= 906 GeV. In this case, H̃1 is a mixture of three CP-even 
Higgses in the model, with the SM Higgs is only a subdominant component [38].

From (26) in Sec. 3, we see that the μ − e conversion rate is determined by the following 
dimensionless coupling coefficients CDL,DR , C̃(p,n)

V L,V R and C̃(p,n)
SL,SR with CDL,DR given by (43), 

and the latter two quantities defined in (27) and (29) respectively in Sec. 3 as well.
In Fig. 5, we plot the dipole coupling coefficients of the photon |CDL|/2, |CDR|/2 versus 

the common mirror lepton mass Mmirror varied from 100 to 800 GeV, while all the Yukawa 
couplings are simply set to be the same as 10−3.
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Fig. 5. The dipole coupling coefficients of the photon versus the common mirror lepton mass. All the Yukawa couplings 
are set to be the same as 10−3.

Fig. 6. The vector coupling coefficients for the proton and neutron versus the common mirror lepton mass. All the Yukawa 
couplings are set to be the same as 10−3. Note that, the vector couplings coefficients for the neutron arise only from Z
diagrams. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

In Fig. 6, we plot the vector coupling coefficients |C̃(p)
VL,V R|/2 for the proton (upper panel) 

and |C̃(n)
V L,V R|/2 for the neutron (lower panel) versus Mmirror with all the Yukawa couplings 

set to be 10−3. For the proton case, the individual contributions from the photon (blue) and Z
(orange) contributions as well as their sums |C̃(p)

V L,V R|/2 = |C̃(p), γ

V L,V R +C̃
(p), Z
V L,V R|/2 are shown. 

For C̃(p)
V L in Fig. 6a, it is clear that as Mmirror ≤ 270 GeV, there are destructive interferences 

between the photon and Z contributions. Photon contributions dominate for Mmirror ≤ 270 GeV, 
while Z contributions dominate for Mmirror ≥ 270 GeV. For C̃(p) in Fig. 6b, Z contributions 
V R
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Fig. 7. The scalar coupling coefficients and gluonic coefficients for the proton and neutron versus the common mirror 
lepton mass for the SM-like case. All the Yukawa couplings are set to be the same as 10−3 and all mirror quark masses 
are set to be 500 GeV.

dominate only when Mmirror ≥ 400 GeV, and the interferences are always destructive. For the 
neutron case in Figs. 6c and 6d, only the Z exchange diagrams contribute. Photon’s contributions 
vanish for the neutron here due to (47) and (77).

In Figs. 7 and 8, we plot the scalar coupling coefficients GFmμmp,n|C̃(p,n)
SL,SR|/2 and their 

individual contributions from the Higgses, box and gluonic diagrams for the proton (upper panel) 
and neutron (lower panel) versus Mmirror for the SM-like and SM-unlike cases respectively. All 
the new Yukawa couplings including both lepton and quark sectors are again set to be the same 
as 10−3 and all mirror quark masses are set to be 500 GeV. Note that in order to show the 
Higgses and box contributions in the plots we have multiplied them by a factor of 10 and 108

respectively and hence they are really minuscule, compared with the gluonic two-loop diagram. 
The box contributions are particularly small since their amplitudes are proportional to the quartic 
power of the small Yukawa couplings, two from the lepton line and two from the quark line. 
Comparing Figs. 7 and 8 with Fig. 6, we see the vector couplings coefficients are about 4 to 5 
order of magnitudes smaller than the gluonic contributions.

As mentioned above, the couplings coefficients plotted in Figs. 5, 6, 7 and 8 entered in the 
conversion rate formula (26). They are multiplied by appropriate dimensionless overlap integrals 
for various nuclei, which have more or less the same magnitude as listed in Table 3 in Sec. 3. 
Thus by comparison of these three plots it is clear that the dipole coupling coefficients CDL,DR

in Figs. 5 from the photon diagrams are dominant over the other vector and scalar coupling 
coefficients CV L,V R and CSL,SR as well as the gluonic coefficient CGQL,GQR given in Figs. 6, 
7 and 8. It is then justified to use our simple relation (85) in the subsequent numerical analysis 
for the conversion rate.
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Fig. 8. Same as Fig. (7) for the SM-unlike case.

Fig. 9. Contour plots of B(μ − e conversion) and B(μ → eγ ) on the (log10(g0S), Mmirror) plane for normal mass 
hierarchy in Scenario 1 with g0S = g′

0S
and g1S = g′

1S
= 10−2g0S . The legend shows current experimental limits and 

projected sensitivities from COMET, Mu2e, SINDRUM II, PRISM and MEG. For details of other input parameters, one 
can refer to the text in Sec. 6.

In Figs. 9, 10, 11 and 12, we plot the contours of B(μ − e conversion) and B(μ → eγ ) with 
γ dominance in the (log10(g0S), Mmirror) plane for Scenarios 1 and 2 with the normal neutrino 
mass hierarchy for the 2 cases of couplings aforementioned respectively. The blue and green 
solid lines correspond to the current limits from SINDRUM II experiments for μ − e conversion 
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Fig. 10. Contour plots of B(μ − e conversion) and B(μ → eγ ) on the (log10(g0S), Mmirror) plane for normal mass 
hierarchy in Scenario 2 with g0S = g′

0S
and g1S = g′

1S
= 10−2g0S .

Fig. 11. Contour plots of B(μ − e conversion) and B(μ → eγ ) on the (log10(g0S), Mmirror) plane for normal mass 
hierarchy in Scenario 1 with g0S = g′

0S
= g1S = g′

1S
.

to titanium (4) and gold (5) respectively. The red solid and dashed lines correspond to the current 
limit (1) and projected sensitivity (2) for μ → eγ from MEG experiment. The cyan and blue 
dashed lines correspond to the projected sensitivities for μ − e conversion to aluminum and 
titanium from COMET, Mu2e (6) and Mu2e II, PRISM (7) experiments respectively.

Several comments are in order here regarding Figs. 9, 10, 11 and 12.

• We have studied in some details the effects of different settings of couplings on our results. 
Generally, we observe that as one varies the A4 triplet coupling g1S from 10−2g0S to g0S

(from Figs. 9 to 12) the contour plots for B(μ − e conversion) are shifted to the left. The 
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Fig. 12. Contour plots of B(μ − e conversion) and B(μ → eγ ) on the (log10(g0S), Mmirror) plane for normal mass 
hierarchy in Scenario 2 with g0S = g′

0S
= g1S = g′

1S
.

A4 triplet is playing a significant role in putting constraints on the parameter space for the 
CLFV processes, such as μ → eγ and μ − e conversion in the model.

• For the sensitivity of the two scenarios, we find that
– Generally, Scenario 2 is less constraining than Scenario 1.
– In particular, when the A4 singlet couplings are dominating (Figs. 9 and 10), Scenario 

2 is less stringent than Scenario 1 by at least two order of magnitude. For instance, at 
Mmirror = 200 GeV, current limit from SINDRUM II for titanium (blue contours) implies 
the coupling g0S ≤ 10−3 for Scenario 1 (Fig. 9), whereas for Scenario 2 (Fig. 10) we 
have g0S ≤ 10−1. This is due to the fact that in Scenario 2, the three unknown unitary 
mixing matrices are now departure from UPMNS which allows for larger effects since the 
amplitudes involve products of both the couplings and the elements of mixing matrices.

– However, as one turns on the contribution from the A4 triplet in Fig. 11 and Fig. 12, 
the discrepancy between two scenarios 1 and 2 shrink. Again, take Mmirror = 200 GeV, 
current limit from SINDRUM II for titanium (blue contours) implies the coupling g0S,1S ≤
10−3.2 for Scenario 1 (Fig. 11), whereas for Scenario 2 (Fig. 12) we have g0S,1S ≤ 10−2.2. 
Comparing the four Figs. 9, 10, 11 and 12, we can see that Scenario 2 is more sensitive to 
the changes in the structure of A4 couplings.

• From the four Figs. 9–12, we also see that the results show only weakly dependence on the 
mirror fermion masses. In Figs. 13 and 14, we pick the mirror fermion mass Mmirror = 500
GeV and plot these same contours on the (log10(g0S), log10(g1S)) plane for Scenarios 1 
and 2 respectively. We also set g0S = g′

0S , g1S = g′
1S for simplicity. Once again we see the 

constraints on the new Yukawa couplings are less severe for Scenario 2.
• Finally, regarding the incorporation of the current limit on B(μ → eγ ) from MEG experi-

ment and its projected sensitivity into the contour plots of B(μ −e conversion) in Figs. 9–14, 
one can obtain the following statements
– The plots illustrate nicely the close relation between the two CLFV processes μ → eγ

and μ − e conversion in nuclei using the simple formula (85) we derived in Sec. 5.
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Fig. 13. Contour plots of B(μ − e conversion) and B(μ → eγ ) on the (log10(g0S), log10(g1S)) plane for normal mass 
hierarchy in Scenario 1 with g0S = g′

0S
, g1S = g′

1S
and Mmirror = 500 GeV.

Fig. 14. Same as Fig. 13 for Scenario 2.

– In the same parameter space, μ → eγ shows a tighter constraint than μ − e conversion by 
the fact that it excludes almost half of the searched region for the branching ratio of μ − e

conversion. Therefore, our work helps narrow down future searches for μ − e conversion 
at Fermilab/Mu2e, J-PARC/COMET and PRISM.

– With the current upper bounds from various experiments, the radiative decay μ → eγ is 
providing more stringent constraints on the couplings than the μ − e conversion (10−4 vs. 
10−3, about one order of magnitude better). However, for the future projected sensitivities 
at Mu2e and COMET, μ − e conversion is slightly more stringent, about half an order of 
magnitude stronger constraints on the couplings. For PRISM, it can be about an order of 
magnitude more stronger.
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7. Summary

Mirror fermion model with electroweak scale non-sterile right-handed neutrinos is an inter-
esting extension of the SM. Aside from its aesthetically appealing to restoring parity symmetry 
at higher energy scale, it can have immediate impacts for experiments in both complementary 
frontiers of high energy and high intensity searching for new physics of CLFV.

In this study, we discussed μ − e conversion in nuclei and radiative decay μ → eγ in an ex-
tended mirror fermion model with a A4 horizontal symmetry in the fermion and scalar sectors. 
We showed that the four-fermion coupling coefficients arise from the photon, Z boson, Higgses 
as well as gluonic and box contributions are negligibly small compared with the photon contri-
butions to the two dipole coupling coefficients. Based on this, we established a formula relating 
μ − e conversion rate in nuclei to the partial decay rate of the on-shell radiative decay process 
μ → eγ .

Currently the most stringent constraint on the parameter space of the model is provided by the 
most recent limit on the radiative decay μ → eγ from MEG. In the future, Mu2e and COMET 
experiments can provide more stringent constraints on the model from μ − e conversion in alu-
minum. The sensitivity of the new Yukawa couplings can be probed is of order 10−5, about one 
order of magnitude improvement compared with current status from MEG. Small Yukawa cou-
plings of order 10−5 or less can give rise to distinct signatures in the search of mirror charged 
leptons and Majorana right-handed neutrinos at the LHC (or planned colliders) in the form of 
displaced decay vertices with decay lengths larger than 1 mm or so [29] plus missing energies. 
Although unrelated to the present analysis, a similar remark can be made for the search for mirror 
quarks [28].

Searches for CLFV processes at low energy facilities are important and complementary to 
direct searches at high energy machines like the LHC for probing new physics beyond the SM.
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Appendix A. Formulas for I, J , Ii0(i = 1, ··· , 5)

In the limit of zero momentum transfer, the Feynman parameterization integrals in the various 
form factors defined in Secs. 4 and 5 can be carried out analytically. We collect their results here.

I(r) = 1

12 (1 − r)4

[
−6r2 log r + r(2r2 + 3r − 6) + 1

]
,

J (r) = 1

2 (1 − r)3

[
−2r2 log r + r(3r − 4) + 1

]
,

I10(r) = 1

72 (1 − r)6

[
−12r2(3 + 2r) log r + (r − 1)

(
3r3 + 47r2 + 11r − 1

)]
,

I20(r) = 1
5

[
−6r2(3 + r) log r + (r − 1)

(
17r2 + 8r − 1

)]
, (A.90)
36 (1 − r)
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I30(r) = 1

36 (1 − r)4

[
6r3 log r + r

(
−11r2 + 18r − 9

)
+ 2

]
,

I40(r) = 1

144 (1 − r)6

[
12r3(r + 4) log r −

(
r2 − 1

)(
37r2 − 8r + 1

)]
,

I50(r) = 1

18 (1 − r)5

[
12r3 log r − r

(
3r3 + 10r2 − 18r + 6

)
+ 1

]
.

Here r denotes the mass ratio m2/M2, where m and M are the masses of the scalar singlet and 
mirror lepton respectively. Since the masses of Higgs singlets are much smaller than those of the 
mirror fermions in the model, their mass ratios are really tiny. Thus to a very good approximation, 
we can evaluate these integrals at r = 0, namely I(0) = 1/12, J (0) = 1/2, I10(0) = 1/72, 
I20(0) = 1/36, I30(0) = 1/18, I40(0) = 1/144 and I50(0) = 1/18.
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