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1 Introduction

Non-Abelian quantum field theories have become a cornerstone of our description of na-

ture, ever since it has been understood that they allow for the interaction strength to

become weaker as the energy rises, a property called ‘asymptotic freedom’ [1–3]. Provid-

ing for an explanation of quark confinement and hence a successful theory of the strong

interactions that bind together quarks into protons, Quantum Chromodynamics (QCD),

much theoretical work has been focused on this central part of the Standard Model. The

change (or ‘running’) of its couplings and masses with energy is governed by renormaliza-

tion group equations, which in turn need the theory’s anomalous dimensions as an input. In

the light of ever-increasing precision of collider experiments conducted at various energies,

a first-principles determination of these parameters with the highest achievable theoretical

accuracy has become necessary.

One of the hallmarks of perturbative renormalization is the so-called Beta function,

governing the scale dependence of the renormalized strong coupling constant. For scalar

φ4 theory, for example, renormalization has recently been pushed to the 6-loop level [4, 5].

For the case of QCD, the current precision frontier is at five loops [6], and most recently,

results for a generalization from the gauge group SU(3) to general simple Lie groups have

appeared [7, 8]. The Beta function represents one of the above-mentioned anomalous

dimensions that are contained in the renormalization group equations. In total there are

five linearly independent ones, such as the quark mass anomalous dimension (for 5-loop

results, see [9, 10]) that is of key phenomenological importance when evolving the masses

typically measured at a few GeV to the electroweak scale, as well as three further non-

physical coefficients that we will discuss in the following section.
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In the present paper, our aim is to push the knowledge of the remaining renormalization

constants to the same level. We follow up on our earlier works [7, 10] and complete the

renormalization program by evaluating the anomalous dimension of the ghost field, and

that of the ghost-gluon vertex. Using the same general techniques as in our previous works,

we have been able to compute these coefficients in Feynman gauge (although a result for

general covariant gauges is conceptionally not more involved, and could be obtained in a

straightforward way given more computational resources).

The structure of the paper is as follows. After briefly summarizing our setup and

introducing some notation in sections 2, we give our results for the anomalous dimensions

of the ghost sector in 3. In section 4 we display the relations needed to obtain the remaining

anomalous dimensions, and to derive all corresponding renormalization constants. All these

results are lengthy and given in ancillary files for convenience. We conclude in section 5.

In the appendix, the known Beta function coefficients are summarized in our notation.

2 Setup

In this section, we start by fixing some necessary conventions and notation, and comment

on the computational strategy that we employ for our five-loop computation.

2.1 Renormalization constants

The fields and parameters of the gauge theory are renormalized via

ψb =
√
Z2ψr , Ab =

√
Z3Ar , cb =

√
Zc3cr , (2.1)

mb = Zmmr , gb = µεZggr , ξL,b = ZξξL,r , (2.2)

where the subscript b (r) stands for bare (renormalized) quantities, and all Zi = 1+O(g2r ).

There is no need to renormalize the gauge-fixing term ∼ (∂A)2/ξL, such that setting

Zξ = Z3 leaves five independent renormalization constants (RCs) Zi. It is sometimes

convenient to consider products of the Zi as ‘vertex RCs’, such as those multiplying the

3-gluon, 4-gluon, ghost-gluon and quark-gluon vertex. These are usually denoted as Zj1 ,

where j ∈ {3g, 4g, ccg, ψψg}, and we will find it convenient to evaluate the combination

Zccg1 =
√
Z3 Z

c
3 Zg instead of Zg. For a complete set of relations among these constants,

see section 4 below.

Instead of explicitly listing the renormalization constants Zi, we will for simplicity only

give the corresponding anomalous dimensions, defined by

γi = −∂lnµ2 lnZi . (2.3)

Two of them, γm and γ2, corresponding to the renormalization of the quark mass and wave

function, have already been given in [10]. Three more are required, in order to complete

the set of independent RCs. A popular choice is to evaluate γ3, γ
c
3 and γccg1 , the latter

two of which we provide in the present paper, while γ3 can then be reconstructed from the

Beta function given in [8], see eq. (4.1) below.

Note that γ3 is conveniently traded for the Beta function, since the latter is a physical

gauge invariant object and hence much more compact. Following usual conventions, instead

of considering Zg, one renormalizes the gauge coupling squared (which in our notation is
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a ∼ g2, see eq. (3.1) below) with the factor Za ≡ Z 2
g and calls the corresponding anomalous

dimension the Beta function, β ≡ γa = 2γg. Note that, due to the renormalization scale

independence of the bare gauge coupling, using eqs. (2.2) and (2.3) this immediately implies

β = ε+ ∂lnµ2 ln a ⇔ ∂lnµ2a = −a
[
ε− β

]
, (2.4)

where a is the renormalized coupling of eq. (3.1).

2.2 Computational strategy

In order to evaluate the coefficients of the perturbative expansions for the renormaliza-

tion constants and anomalous dimensions, we rely on the setup that we have developed

and successfully tested in our previous works. While we refer to the literature for more

detailed descriptions of our chain of computer-algebra programs [7, 10] and for technical

details concerning our procedure for integral reduction and evaluation [11–14], let us briefly

summarize the main components of our strategy here.

As is standard procedure in perturbative multiloop calculations, we start with expres-

sions produced by the diagram generator qgraf [15, 16] linked with some own FORM [17–19]

codes. Taking the required set of 2- and 3-point functions, we perform the group algebra

with the help of color [20]. Next, we introduce a common mass term into all our massless

propagators [21–23], in order to regulate the infrared behavior of the dimensionally reg-

ularized [24, 25] d = 4 − 2ε dimensional momentum-space integrals. While this does not

change the ultraviolet (UV) behavior that we are interested in when extracting the (mass-

independent) UV counterterms in the MS scheme [26], it allows us to perform a systematic

expansion in external momenta, which can eventually be nullified. This leaves us with ex-

pansions coefficients that belong to the well-studied class of fully massive vacuum integrals.

At five loops, this class of integrals can be labelled by 15 indices (corresponding to

maximally 12 propagators plus 3 scalar products) [12]. To tame the enormous number of

integrals that enter our calculation, we choose to perform a reduction to a small set of mas-

ter integrals. To this end, we make use of our own codes crusher [11] and TIDE [12], which

are based on integration-by-parts (IBP) identities [27] and use Laporta-type algorithms [28].

Both C++ codes are largely independent, utilize GiNaC [29] and Fermat [30] for simple and

complicated algebraic manipulations, respectively, and in conjunction provide us with a

welcome verification of the time- and resource-consuming integral reduction process.

After reduction, we end up with a set of 110 five-loop master integrals. Their high-

precision numerical ε-expansion has been studied previously [12, 13], much along the lines

of previous work on the four-loop case [21, 31–34], relying again on IBP reductions, gen-

erating large coupled systems of linear difference equations that can be solved formally

with factorial series [28]. A truncated version of these series then delivers high-precision

numerical results for the coefficients of the ε-expansion of each individual master integral.

This allows to employ the integer-relation finding algorithm PSLQ [35], testing for relations

between some of these numbers, and discovering the analytic content of others.

Our high-precision evaluation of all 5-loop master integrals has not yet produced re-

sults for the 12-line families [7]. Fortunately, it turns out that in all our results, only three
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independent linear combinations of 12-line master integrals contribute. While standard in-

tegration over the Feynman parametric representation (see e.g. [36]) with subsequent sector

decomposition, using the strategy explained in [37, 38] and as implemented in FIESTA [39]

as well as own code [14] gives 3-6 digits only, we were able to fix the three unknown linear

combinations to 260 digits, as explained in [10]. Owing to this last step, we are able to

provide analytic expressions for the specific combinations of master integrals that appear

in all of our results below.

2.3 Notation for group invariants

In order to render the present paper self-contained, we wish to recall some group-theoretic

notation that we had already utilized in our previous works [7, 10], and which we employ

to present all of our results below. We study a Yang-Mills theory coupled to fermions,

working over a semi-simple Lie algebra with hermitian generators T a. The commutation

relations T aT b − T bT a = ifabcT c define the real and antisymmetric structure constants

fabc. Following standard conventions, the quadratic Casimir operators of the fundamen-

tal and adjoint representations (of dimensions NF and NA, respectively) are defined via

T aT a = CF11 and facdf bcd = CAδ
ab. The trace normalization reads Tr(T aT b) = TFδ

ab, the

number of quark flavors is denoted by Nf , and we will make use of the following normalized

combinations of group invariants:

nf =
Nf TF
CA

, cf =
CF

CA
. (2.5)

In loop diagrams, higher-order group invariants arise when one encounters traces of

more than two group generators. It is useful to classify these higher-order traces in terms

of combinations of symmetric tensors [20], of which we presently need the following three

(rewriting the generators of the adjoint representation as [F a]bc = −ifabc, and again nor-

malizing conveniently):

d1 =
[sTr(T aT bT cT d)]2

NAT 2
FC

2
A

, d2 =
sTr(T aT bT cT d) sTr(F aF bF cF d)

NATFC3
A

, d3 =
[sTr(F aF bF cF d)]2

NAC4
A

.

(2.6)

In the above, sTr denotes a fully symmetrized trace (such that sTr(ABC) = 1
2Tr(ABC +

ACB) etc.).

As a concrete example, picking SU(N) as gauge group (and setting TF= 1
2 and CA=N),

our set of normalized invariants reads [20]

SU(N) : nf =
Nf

2N
, cf =

N2−1

2N2
, d1 =

N4−6N2+18

24N4
, d2 =

N2+6

24N2
, d3 =

N2+36

24N2
.

(2.7)

In the case of SU(3) (corresponding to physical QCD), we therefore have

SU(3) : nf =
Nf

6
, cf =

4

9
, d1 =

5

216
, d2 =

5

72
, d3 =

5

24
. (2.8)

Results for the group U(1) (corresponding to QED) can be obtained by setting

U(1) : CA = 0 , CF = 1 , TF = 1 , NA = 1 , sTr(T aT bT cT d) = 1 , sTr(F aF bF cF d) = 0 ,

(2.9)
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which, due to our normalization, is sometimes only possible after multiplying with the

corresponding power of the gauge coupling (that we normalize with a positive power of

CA, see eq. (3.1) below), eliminating all inverse powers of CA.

3 Renormalization of ghost field and -vertex

In this section, we present our new results for the ghost field and ghost-gluon vertex anoma-

lous dimensions at five loops. Since these are gauge-dependent quantities, let us stress once

more that we have worked in Feynman gauge only. For lower loops, we display the full

gauge parameter dependence, where ξ = 0/1 corresponds to Feynman/Landau gauge.

3.1 Ghost field anomalous dimension

In contrast to the physical and gauge-independent Beta function and quark mass anomalous

dimension, the anomalous dimension of the ghost field depends on the gauge parameter ξ.

Its structure is

γc3 = −a
[
−1

4
(2 + ξ) + γc31a+ γc32a

2 + γc33a
3 + γc34a

4 + . . .

]
, a ≡ CA g

2(µ)

16π2
, (3.1)

where g(µ) is the gauge coupling constant that depends on the renormalization scale µ,

and we work in the MS scheme, in d = 4 − 2ε space-time dimensions. The 2- and 3-loop

coefficients are known to be (see, e.g. [40])

25 31 γc31 = 5[16nf ]− 2(98− 3ξ) , (3.2)

28 33 γc32 = 35[16nf ]2 +
(
324(15− 16ζ3)cf + 2(5 + 189ξ + 1944ζ3)

)
[16nf ]

− 4(14656 + 1485ξ − 405ξ2 + 81ξ3)− 648(4− ξ)(2− ξ)ζ3 . (3.3)

The 4-loop coefficient γc33 is known for the gauge group SU(N) [40], while for a general Lie

group the result is only available up to the linear term in an expansion around Feynman

gauge ξ = 0 [33]. Unfortunately, due to the SU(N) degeneracies 2d2 = 7/12− cf and d3 =

37/24−3cf , it is not possible to uniquely reconstruct its remaining gauge dependence (up to

three loops the reconstruction works, since only quadratic Casimir operators contribute).

We have therefore computed γc33 in general covariant gauge from scratch, obtaining (to

clearly expose the group structure of the coefficients, we employ a notation resembling

scalar products with vectors in curly brackets, such as e.g. {cf , 1}.{a, b} = cfa+ b)

21134γc33 = (83− 144ζ3)[16nf ]3

+
{
cf , 1

}
.
{

24(1080ζ3−648ζ4−115), 2(779ξ−8315)/3− 432(43+2ξ)ζ3+11664ζ4

}
[16nf ]2

+
{
c2f , d2, cf , 1

}
.
{
− 864(271 + 888ζ3 − 1440ζ5), 124416(4ζ3 − 5ζ5),

24
(
22517+3825ξ − 864(43+ξ)ζ3 + 1296(23− ξ)ζ4 − 25920ζ5

)
, 432(2983 + 42ξ − 6ξ2)ζ3

− 648(846− 46ξ + ξ2)ζ4 − 570240ζ5 + 14(128354− 722ξ − 837ξ2)/3
}

[16nf ]

+
{
d3, 1

}
.
{

1296(12(28− 6ξ + ξ2)− 4(2392 + 108ξ − 63ξ2 − 17ξ3 + 16ξ4)ζ3

+ 5(1696 + 544ξ − 252ξ2 + 42ξ3 + 7ξ4)ζ5),

− 4(8202784 + 512546ξ − 111402ξ2 + 28107ξ3 − 3888ξ4)/3

− 36(159040− 19104ξ − 162ξ2 + 1092ξ3 − 123ξ4)ζ3 + 1296(492− 376ξ + 91ξ2 − 9ξ3)ζ4

+ 270(28832 + 320ξ − 732ξ2 + 186ξ3 − 7ξ4)ζ5

}
. (3.4)
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We observe that eq. (3.4) agrees, in the SU(N) limit and for all powers of ξ, with the

4-loop results of [40]. Furthermore, its terms of order ξ0 and ξ1 coincide exactly with the

corresponding terms given in [33], leading us to the conclusion that it represents the correct

generalization of the known results to general covariant gauge. As a side note, we notice

that the structure cf n
0
f is absent, and that the coefficient of d2 nf does not depend on the

gauge parameter. In retrospect, since the same could have been observed — at least to NLO

in ξ — already in [33], assuming this pattern to hold for all powers of the gauge parameter

would have allowed for a correct lift of the SU(N) results of [40] to a general gauge group.

We have evaluated the five-loop contribution in Feynman gauge (ξ = 0) as

214 35 γc34 = γc344 [16nf ]4 + γc343 [16nf ]3 + γc342 [16nf ]2 + γc341 [16nf ] + γc340 +O(ξ) , (3.5)

γc344 = 3(65 + 80ζ3 − 144ζ4) , (3.6)

γc343 =
{
cf , 1

}
.
{
− 2(14765 + 12528ζ3 − 38880ζ4 + 20736ζ5),

− 3(8325 + 15664ζ3 + 12240ζ4 − 33408ζ5)
}
, (3.7)

γc342 =
{
c2f , cf , d1, d2, 1

}
.
{
−72(53927−182112ζ3+48384ζ23 +42768ζ4+144000ζ5−86400ζ6),

− 4(364361 + 484488ζ3 − 1804032ζ23 + 1868184ζ4 − 2239488ζ5 + 777600ζ6),

20736(107− 109ζ3 − 96ζ23 − 36ζ4 + 180ζ5),

− 41472(52ζ3 + 18ζ23 − 36ζ4 − 125ζ5 + 75ζ6),

2(239495− 3082212ζ3 − 1721088ζ23 + 3863376ζ4 − 156384ζ5 − 1425600ζ6)
}
, (3.8)

γc341 =
{
c3f , c

2
f , cfd2, cf , d2, d3, 1

}
.
{

746496(7 + 26ζ3 + 490ζ5 − 560ζ7),

576(24617− 301866ζ3 − 196560ζ23 + 177066ζ4 + 274680ζ5 − 491400ζ6 + 725760ζ7),

165888(4 + 66ζ3 + 216ζ23 − 705ζ5 + 357ζ7), 16(4796303− 9571932ζ3 + 6399648ζ23

+ 11100240ζ4 − 16127424ζ5 + 8845200ζ6 − 10809288ζ7),

− 5184(4192− 87152ζ3 + 21432ζ23 + 5616ζ4 + 89300ζ5 − 27300ζ6 − 20139ζ7),

− 864(2805− 86018ζ3 − 15960ζ23 + 43542ζ4 − 70360ζ5 − 68700ζ6 + 192906ζ7),

2(52725013 + 136974540ζ3 + 1505088ζ23 − 118046052ζ4 − 226012536ζ5

+ 84380400ζ6 + 143718624ζ7)
}
, (3.9)

γc340 =
{
d3, 1

}
.
{
− 6912(5326 + 771746ζ3 − 17934ζ23 − 209916ζ4 − 1172870ζ5 + 377625ζ6

+ 396669ζ7),−8(192342607 + 174080040ζ3+36201384ζ23−103216464ζ4−855002232ζ5

+ 222650100ζ6 + 492202872ζ7)
}
, (3.10)

where eq. (3.6) (as well as the leading-Nf terms at lower loops given in eqs. (3.2)–(3.4))

agrees with the respective term of the known all-loop large-Nf Landau-gauge expression1

of [41], which in full form can be written as

γc3|ξ=1=−η(af )/nf+O(1/n2f ) , af =4anf/3 , η(ε)=
(2ε−3)Γ(4−2ε)

16Γ2(2−ε)Γ(3−ε)Γ(ε)
. (3.11)

1Note that the 1-loop fermion bubble is transverse, such that the leading-Nf does not pick up the

gauge-parameter dependence of the bare gluon propagator. Hence, Feynman- and Landau-gauge expres-

sions coincide.
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As a second check, specializing to SU(3) allows us to compare with the Feynman-gauge

5-loop result given in eq. (3.2) of [42]. Again, we find full agreement.

3.2 Ghost-gluon vertex anomalous dimension

The anomalous dimension of the ghost-gluon vertex has the structure

γccg1 = −a(1− ξ)
[

1

2
+

6− ξ
8

a+ γccg12 a
2 + γccg13 a

3 + γccg14 a
4 + . . .

]
, (3.12)

where the prefactor is consistent with the known fact that the ghost vertex in Landau

gauge is finite [43, 44] and hence does not need to be renormalized, γccg1 |ξ=1 = 0. The

3-loop coefficient can be found in [40]

27 γccg12 = −15[16nf ] + 2(250− 59ξ + 10ξ2) . (3.13)

The 4-loop coefficient suffers from the same degeneracy of color factors as mentioned above,

obstructing a direct generalization from SU(N) to a general gauge group. We have therefore

computed it from scratch, in general covariant gauge, obtaining

27 35 γccg13 = (−251 + 324ζ3)[16nf ]2

+
(
324(96ζ3+36ζ4−161)cf−6166+4077ξ/2−162(164−5ξ)ζ3−8748ζ4

)
[16nf ]

+ 1944
(
(272− 60ξ + 3ξ2 + 7ξ3)ζ3 − 5(56− 12ξ + 3ξ2 + ξ3)ζ5

)
d3

+ 751120− 27ξ(5434− 1332ξ + 171ξ2) + 81(2528− 548ξ + 99ξ2 − ξ3)ζ3
+ 1458(4− ξ)(2− ξ)ζ4 − 405(496− 72ξ + 9ξ2 + 2ξ3)ζ5 . (3.14)

Once again, the SU(N) limit reproduces all orders of ξ as known from [40], while the terms

of order ξ0 and ξ1 coincide with those in the the linear combination γccg1 = γψψg1 − γ2 + γc3
assembled from [33]. As above, in retrospect, one could have observed the absence of a

cf n
0
f term to NLO in ξ from the results of [33], and by conjecturing this to hold for the

full gauge-dependent result as well one could have correctly reconstructed the full 4-loop

coefficient eq. (3.14) from the SU(N) results of [40].

At five loops, we have obtained the new Feynman gauge (ξ = 0) result

214 35 γccg14 = γccg143 [16nf ]3 + γccg142 [16nf ]2 + γccg141 [16nf ] + γccg140 +O(ξ) , (3.15)

γccg143 = −2989− 1440ζ3 + 5184ζ4 , (3.16)

γccg142 =
{
cf , 1

}
.
{

1296(557− 736ζ3 + 108ζ4 + 192ζ5),

251891 + 1591056ζ3 − 335016ζ4 − 717984ζ5

}
, (3.17)

γccg141 =
{
c2f , cf , d2, d3, 1

}
.
{

5184(3731 + 9588ζ3 − 1440ζ23 + 1332ζ4 − 10800ζ5 − 3600ζ6),

− 1296(45129− 14192ζ3 − 4032ζ23 + 5616ζ4 − 19296ζ5 − 7200ζ6),

− 31104(1360ζ3 + 168ζ23 + 144ζ4 − 1260ζ5 − 300ζ6 − 441ζ7),

− 10368(1126ζ3 + 150ζ23 − 567ζ4 − 1200ζ5 + 975ζ6 − 441ζ7),−42165410

− 432(145015ζ3 + 3564ζ23 − 9168ζ4 − 114001ζ5 − 10950ζ6 + 17640ζ7)
}
, (3.18)

γccg140 =
{
d3, 1

}
.
{

20736(70330ζ3 + 11076ζ23 − 8856ζ4 − 81380ζ5 + 16500ζ6 − 12607ζ7 − 2451),

8(114251711 + 54643392ζ3 + 7060608ζ23 − 7531704ζ4 − 143288568ζ5 + 9023400ζ6

+ 52599078ζ7)
}
. (3.19)
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As an important check, we find full agreement with eq. (40) of [45], where the 5-loop term

had been given for SU(3) and in Feynman gauge. Compared to the other anomalous dimen-

sions, note that in γccg1 there are no terms proportional to a` n`−1
f at ` loops; these would

correspond to renormalon contributions, which are absent in this case due to consistency

with the vanishing of γccg1 in Landau gauge, as has been mentioned already above.

4 Complete set of renormalization constants

Now that the minimal set of renormalization constants is known, all remaining anomalous

dimensions can be reconstructed easily, since they are related via gauge invariance of the

QCD action (see e.g. [40]). From the results listed here, the anomalous dimensions of the

gluon field, the gluon vertices as well as the quark-gluon vertex can be obtained from the

linear relations

γ3 = 2(γccg1 − γc3)− β , γ3g1 = 3(γccg1 − γc3)− β , (4.1)

γ4g1 = 4(γccg1 − γc3)− β , γψψg1 = γccg1 − γc3 + γ2 , (4.2)

with γ2 from [10]. For the convenience of the reader, we attach an electronic version of the

complete set of anomalous dimensions to the present paper.2

To reconstruct the renormalization constants Zi from the set of anomalous dimensions

γi, one starts from eq. (2.3), recalling that in general, renormalization scale dependence

enters Zi(a, ξL) through both of its variables. Therefore,

γi = −(∂lnµ2a)(∂a lnZi)− (∂lnµ2 ln ξL)(∂ln ξL lnZi)

= −a(β − ε)(∂a lnZi)− γ3(ξ − 1)(∂ξ lnZi)

= −a(β − ε)(∂a lnZi)− (2γccg1 − 2γc3 − β)(ξ − 1)(∂ξ lnZi) , (4.3)

where in the second line we have have been careful to use the d-dimensional version of

the Beta function of eq. (2.4), exploited that the bare gauge parameter renormalizes as

the gluon field ξL,b = Z3ξL,r and changed the gauge parameter to our preferred notation ξ

whose powers correspond to an expansion around Feynman gauge, the relation to ξL being

ξL + ξ = 1. Finally, we have for convenience traded the gluon field anomalous dimension

for the ones that we have given explicitly above. Writing the renormalization constants

as Zi = 1 +
∑

n>0 z
(n)
i /εn, the coefficients z

(n)
i then follow by solving eq. (4.3), requiring

γ3 (viz γccg1 , γc3 and β) at one loop lower only. Since the expressions for the complete

5-loop renormalization constants are somewhat large, we refrain from listing them here,

but provide electronic versions thereof.2

Once the RCs Zi are known, the corresponding anomalous dimensions can simply be

extracted from the single poles, as γi = a∂az
(1)
i .

2Electronic version of the complete set of 5-loop results for γi and Zi, to be obtained as online resource

of this article.
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5 Conclusions

In recent years, technical progress has made possible the first complete five-loop compu-

tations in non-Abelian gauge theories. Adding to the already available set of renormal-

ization constants for general Lie groups in MS-like schemes [7, 8, 10], we have presented

new analytic 5-loop Feynman-gauge results for the two missing anomalous dimensions,

which we have chosen to be those of the ghost field eqs. (3.5)–(3.10) and ghost-gluon ver-

tex eqs. (3.15)–(3.19). This completes the five-loop renormalization program for general

groups, providing a generalization — and independent confirmation — of the previously

known SU(3) coefficients [6, 9, 42, 45], relevant for physical QCD.

Along the way, we have closed a gap in the literature and provided full gauge-dependent

expressions for the renormalization constants of the ghost sector at four loops, see eqs. (3.4)

and (3.14) above. Together with our new results, we have prepared computer-readable

versions of the complete set of anomalous dimensions and renormalization constants,

available online.2

The methods we have employed here are well suited to be applied to the gluon propaga-

tor as well, and the corresponding computation of the gluon field anomalous dimension γ3
is under way [46]. The anticipated result would give an important independent check on the

Feynman-gauge expression that we have provided in the ancillary files (which was derived

using eq. (4.1)), and hence on the correctness of the Beta function from the independent

calculation of [8].

For completeness, it might be interesting to evaluate the gauge parameter dependence

of ghost field and -vertex (as well as the quark field) in the future. While this would, for

example, provide a further independent check of the correctness of the Beta function (as well

as the quark mass anomalous dimension γm) due to gauge-parameter cancellation, given the

strong constraints already discussed above we do not think this a pressing issue. However,

from the viewpoint of truly completing the 5-loop renormalization program, knowledge of

the full gauge dependence of all renormalization constants is certainly desirable.

In passing, we note that the analytic structure of the 5-loop Beta function (as well

as that of the corresponding renormalization constant Za), containing the Zeta values

{ζ3, ζ4, ζ5} only, is considerably simpler than that of the other anomalous dimensions and

RCs, which in addition need the weight-6 and weight-7 constants {ζ23 , ζ6, ζ7}. Regarding the

group-theoretic structure, the only outlier is γccg1 (and Zccg1 ), where the factor d1 is absent.
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A Beta function

Being an important fundamental parameter of gauge theories, considerable effort has gone

into evaluating the Beta function over the past four decades. After groundbreaking work at

one loop [2, 3], establishing the asymptotically free nature of the strong coupling constant,

the 2-loop [47, 48], 3-loop [49, 50] and 4-loop [21, 33] perturbative corrections have been

evaluated, made possible by major technological developments that were pushed ahead in

parallel. Five-loop results have appeared over the past 8 years or so, first for the case of

QED [51–53], later for SU(3) [6, 54], and finally for general Lie groups [7, 8].

In order to translate the recent results of [8] to our notation (as introduced in section 2.3

and eq. (3.1)), we define the L-loop coefficients bL−1 of the Beta function as

∂lnµ2 a = −a
[
ε− β

]
= −a

[
ε+ b0 a+ b1 a

2 + b2 a
3 + b3 a

4 + b4 a
5 + . . .

]
. (A.1)

The coefficients are polynomials in nf , and up to four loops read

31b0 =
[
− 4
]
nf + 11 , (A.2)

32b1 =
[
− 36cf − 60

]
nf + 102 , (A.3)

33b2 =
[
132cf + 158

]
n2f +

[
54c2f − 615cf − 1415

]
nf + 2857/2 , (A.4)

35b3 =
[
1232cf + 424

]
n3f + 432(132ζ3 − 5)d3 + (150653/2− 1188ζ3)+ (A.5)[

72(169− 264ζ3)c2f + 64(268 + 189ζ3)cf + 1728(24ζ3 − 11)d1 + 6(3965 + 1008ζ3)
]
n2f+[

11178c3f +36(264ζ3−1051)c2f +(7073−17712ζ3)cf +3456(4−39ζ3)d2+3(3672ζ3−39143)
]
nf ,

which the five-loop coefficient can be represented as

35 b4 = b44 n
4
f + b43 n

3
f + b42 n

2
f + b41 nf + b40 , (A.6)

b44 =
{
cf , 1

}
.
{
− 8(107 + 144ζ3), 4(229− 480ζ3)

}
, (A.7)

b43 =
{
c2f , cf , d1, 1

}
.
{
− 6(4961− 11424ζ3 + 4752ζ4),−48(46 + 1065ζ3 − 378ζ4),

1728(55− 123ζ3 + 36ζ4 + 60ζ5),−3(6231 + 9736ζ3 − 3024ζ4 − 2880ζ5)
}
, (A.8)

b42 =
{
c3f , c

2
f , cfd1, cf , d2, d1, 1

}
.
{
− 54(2509 + 3216ζ3 − 6960ζ5),

9(94749/2− 28628ζ3 + 10296ζ4 − 39600ζ5), 25920(13 + 16ζ3 − 40ζ5),

3(5701/2 + 79356ζ3 − 25488ζ4 + 43200ζ5),−864(115− 1255ζ3 + 234ζ4 + 40ζ5),

− 432(1347−2521ζ3+396ζ4−140ζ5), 843067/2+166014ζ3−8424ζ4−178200ζ5

}
,

(A.9)

b41 =
{
c4f , c

3
f , c

2
f , cfd2, cf , d3, d2, 1

}
.
{
−81(4157/2+384ζ3), 81(11151+5696ζ3−7480ζ5),

− 3(548732 + 151743ζ3 + 13068ζ4 − 346140ζ5),−25920(3− 4ζ3 − 20ζ5), (A.10)

8141995/8 + 35478ζ3 + 73062ζ4 − 706320ζ5, 216(113− 2594ζ3 + 396ζ4 + 500ζ5),

216(1414−15967ζ3+2574ζ4+8440ζ5),−5048959/4+31515ζ3−47223ζ4+298890ζ5

}
,

b40 =
{
d3, 1

}
.
{
− 162(257− 9358ζ3 + 1452ζ4 + 7700ζ5),

8296235/16− 4890ζ3 + 9801ζ4/2− 28215ζ5

}
. (A.11)
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Of these 5-loops coefficients, b44 has been known already for a long time from a large-Nf

analysis [55, 56], while b43 was given in [7], as a proof-of-concept of our setup that we

have used above to determine the anomalous dimensions of the ghost sector. The three

coefficients b42, b41 and b40 have recently been derived as well [8], using the background field

method and relying on infrared rearrangement [57] and the R∗ operation [58] to map the

ultraviolet divergences onto massless four-loop two-point functions which were evaluated

via their new code FORCER [59]. As an important check on the 5-loop expressions given

above, setting the group invariants to their SU(3) values eq. (2.8), all coefficients coincide

with the results given in [6].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[42] K.G. Chetyrkin, P.A. Balkov and J.H. Kühn, Towards QCD running in 5 loops: quark mass

anomalous dimension, PoS(RADCOR 2013)056 [arXiv:1402.6606] [INSPIRE].

[43] J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl.

Phys. B 33 (1971) 436 [INSPIRE].

[44] A. Blasi, O. Piguet and S.P. Sorella, Landau gauge and finiteness, Nucl. Phys. B 356 (1991)

154 [INSPIRE].

[45] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Massless Propagators, R(s) and Multiloop
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