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We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values 
of baryon (B), strangeness (S), electric charge (Q ), and isospin (I) chemical potentials μX=B,Q ,S,I . 
The results were obtained using lattice QCD calculations carried out with two degenerate up and 
down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical 
values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures 
as Tc(μX ) = Tc(0) 

[
1 − κ X

2 (μX /Tc(0))2 − κ X
4 (μX /Tc(0))4

]
, we determined κ X

2 and κ X
4 from Taylor 

expansions of chiral observables in μX . We obtained a precise result for Tc(0) = (156.5 ± 1.5) MeV. For 
analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., μS(T , μB )

and μQ (T , μB ) fixed from strangeness-neutrality and isospin-imbalance, we found κ B
2 = 0.012(4) and 

κ B
4 = 0.000(4). For μB � 300 MeV, the chemical freeze-out takes place in the vicinity of the QCD phase 

boundary, which coincides with the lines of constant energy density of 0.42(6) GeV/fm3 and constant 
entropy density of 3.7(5) fm−3.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The spontaneous breaking of the chiral symmetry in quan-
tum chromodynamics (QCD) is a key ingredient for explaining the 
masses of hadrons that constitute almost the entire mass of our 
visible Universe. Lattice-regularized QCD calculations have demon-
strated (near) restoration of the broken chiral symmetry in QCD at 
high temperature (T ) through a smooth crossover [1]. The chiral 
crossover temperature of QCD marks the epoch at which mas-
sive hadrons were born during the evolution of the early Universe. 
The chiral crossover in the early Universe took place at vanish-
ingly small baryon chemical potential μB , although the electric 

1 Deceased.
https://doi.org/10.1016/j.physletb.2019.05.013
0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
charge chemical potential μQ at that stage might have been non-
vanishing [2]. For μB > 0, i.e., when QCD-matter is doped with 
an excess of quarks over antiquarks, the chiral crossover in QCD 
might lead to a rich phase diagram in the T -μB plane [3]. The 
phase structure of QCD-matter in the T -μB plane can be probed 
in various ongoing and upcoming relativistic heavy-ion collision 
experiments [4]. The phase diagram of QCD can be explored in 
these experiments if the so-called chemical freeze-out takes place 
in the proximity of the chiral crossover phase boundary in the 
T -μB plane [5]. Since the colliding heavy-ions do not carry any 
net strangeness, the medium formed in the process is strangeness-
neutral, i.e., characterized by nS = 0, nS being the net strangeness-
density. Additionally, the proton-to-neutron ratio of the colliding 
nuclei determines the ratio of net charge-density (nQ ) to net 
baryon-density (nB ) of the produced medium. For the most com-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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mon relativistic heavy-ion collisions with Au+Au and Pb+Pb this 
ratio turns out to be nQ /nB = 0.4; consequently, the correspond-
ing chemical freeze-out stages also respect the conditions nS = 0
and nQ = 0.4nB .

With the aid of state-of-the-art lattice-regularized QCD calcu-
lations this work aims at determining chiral pseudo-critical tem-
peratures in QCD at zero and non-zero chemical potentials μB,Q ,S , 
as well as for the situation analogous to the chemical freeze-out 
stage of relativistic heavy-ion collision experiments. We will be-
gin by providing the necessary backgrounds in Sec. 2, describe our 
methods in Sec 3, follow up with our results in Sec. 4, and end 
with comparisons of our results with extant lattice QCD results 
and a short summary in Sec. 5.

2. Observables and definitions

2.1. Chiral observables

To define the chiral order parameter we choose the combina-
tion

� = 1

f 4
K

[
ms〈ūu + d̄d〉 − (mu + md)〈s̄s〉

]
. (1)

Here, 〈q̄q〉 = T (∂ln Z/∂m f )/V denotes chiral condensates of the 
up (u), down (d), and strange (s) quarks; m f denotes the masses 
of the quarks; Z is the partition function for 2 + 1 flavor QCD, 
with mu = md = ms/27, volume V , temperature T , and 〈·〉 denotes 
average over gauge configurations corresponding to Z . The suscep-
tibility corresponding to the chiral order parameter is defined as

χ� = ms

(
∂

∂mu
+ ∂

∂md

)
�. (2)

χ� contains both quark-line connected, as well as quark-line dis-
connected pieces. Since the singlet-axial U A(1) symmetry of QCD 
is expected to remain broken at all T , the quark-line connected 
piece is expected to remain finite even for mu = md → 0. Thus, we 
also separately consider the quark-line disconnected chiral suscep-
tibility

χ = m2
s

f 4
K

[
〈
(

ūu + d̄d
)2〉 −

(
〈ūu〉 + 〈d̄d〉

)2
]

. (3)

Note that, all chiral observables defined here are free of additive 
power divergences and renormalization group invariant, ensuring 
existence of a continuum limit up to small logarithmic corrections 
in m f . Additionally, all chiral observables are defined to be dimen-
sionless in units of the kaon decay constant f K = 156.1/

√
2 MeV, 

the quantity used to determine lattice spacing (a) [6].

2.2. Taylor expansions in chemical potentials

The chemical potentials μu,d,s of quarks in Z can be traded 
with the chemical potentials μX corresponding to any 3 other lin-
early independent conserved charges, such as μB , μS , μQ or μI . 
Here, we choose to work with 2 independent sets {B, Q , S} and 
{B, I, S}. μB,Q ,S are related to μu,d,s through μu = μB/3 +2μQ /3, 
μd = μB/3 −μQ /3, and μs = μB/3 −μQ /3 −μS . Similar relations 
for the {B, I, S} set are μu = μB/3 +μI/2, μd = μB/3 −μI/2, and 
μs = μB/3 − μS .

The μX dependence of an observable, e.g., of �, can be obtained 
by following the well-established Taylor expansion method [7–9]
given by
�(T ,μX ) =
∞∑

n=0

C�
2n(T )

(2n)!
(μX

T

)2n
, where

C�
2n(T ) = ∂2n�

∂ (μX/T )2n

∣∣∣∣
μX =0

.

(4)

For simplicity, here we have assumed all μY �=X = 0. Due to 
CP-symmetry of Z , Taylor expansions of the chiral observables 
contain only even powers of μX . Similar expansions can be written 
for χ(T , μX ), with Taylor coefficients Cχ

2n(T ). For brevity, we have 
introduced the notations C�

0 (T ) = �(T , 0) and Cχ
0 (T ) = χ(T , 0). 

The detailed expressions for C�
2n and Cχ

2n in terms of the u, d, s
quark propagators can be found in Refs. [10,11].

If μu,d,s in Z are replaced by μB,Q ,S and, subsequently, μQ =
μS = 0 are imposed, then μB will be given by the combina-
tion μB/3 = μu = μd = μs . Exactly the same will happen for the 
μB,I,S basis if μI = μS = 0 conditions are imposed. Similarly, for 
μB = μQ = 0 or μB = μI = 0 both bases will lead to μS = −μs , 
μu = μd = 0. Thus, while computing the Taylor coefficients for 
B and S there is no need to distinguish between {B, Q , S} and 
{B, I, S} bases. However, for μB = μS = 0, in contrast to the μB,I,S
basis, Taylor coefficients with respect to μQ will receive additional 
contributions from the strange quark.

2.3. Definitions of pseudo-critical temperatures

The nature of the QCD chiral transition for mu = md → 0 and 
ms > 0 remains an open issue. Nevertheless, increasing numbers 
of sophisticated lattice QCD calculations are now showing that, 
in this limit, the QCD chiral transition is most likely a genuine 
second order phase transition that belongs to the 3D, O (4) univer-
sality class [12–16]. On the other hand, for physical values of the 
quark masses and vanishing chemical potentials, it is well estab-
lished that chiral symmetry restoration takes place via a smooth 
crossover [6,17,18]. The present work solely focuses on physical 
mu,d,s . To ascribe precise meaning to chiral crossover temperatures 
we resort to the well-defined notion of pseudo-critical tempera-
tures Tc(μX ).

In the vicinity of the second order chiral phase transition, be-
haviors of chiral observables are governed by scaling properties of 
the 3D, O (4) universality class [16,19]:

�(T ,μB) ∼ m1/δ fG ; χ(T ,μB),χ�(T ) ∼ m(1−δ)/δ fχ (5)

and

∂T χ�(T ), ∂T Cχ
0 (T ), Cχ

2 (T ) ∼ m(β−βδ−1)/βδ f ′
χ ;

∂T C�
0 (T ), C�

2 (T ) ∼ m(β−1)/βδ f ′
G .

(6)

Here, C�
2n and Cχ

2n are the coefficients of the Taylor series for 
μB > 0 and μQ = μS = 0. The two relevant scaling functions 
of the 3D, O (4) universality class, fG(z) and fχ (z) [20,21], are 
functions of the so-called scaling variable z = t/m1/βδ , where 
m ∼ mu,d/ms , t ∼ (T − T 0

c )/T 0
c + K (μB/T )2, T 0

c is Tc(0) in the 
chiral limit m → 0, β and δ are the critical exponents, and K is a 
non-universal constant.

The chiral critical temperature T 0
c is defined as the temperature 

at which ∂T � and χ� diverge in the limit V → ∞ and m → 0. For 
any m > 0, residing within the scaling regime, universality dictates 
that ∂T � and χ� , scaled with appropriate (non-integer) powers of 
m, will have maxima located exactly at the maxima of the corre-
sponding scaling functions f ′

G(z) and fχ (z). Thus, for m > 0 the 
locations of the maxima of f ′

G(z) and fχ (z), denoted by zG
p and 

zχ
p , respectively, define two pseudo-critical temperatures T G,χ

c (0). 
As m → 0, ∂T � and χ diverge, and T G,χ

c (0) reduce to T 0
c according 
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to the scaling relation T G,χ
c (0) = T 0

c + AzG,χ
p m1/βδ , with a non-

universal constant A.
Physical values of mu,d might not reside within the scaling 

regime of the second order chiral phase transition; consequently, 
chiral observables may also contain additional non-singular, poly-
nomial in m, corrections. Thus, for physical values of mu,d we 
define Tc(0) using the following criteria

∂2
T C�

0 (T ) = 0 , ∂T C�
2 (T ) = 0 ,

∂T χ�(T ) = 0 , ∂T Cχ
0 (T ) = 0 , Cχ

2 (T ) = 0 ,
(7)

where C�
2n and Cχ

2n are the coefficients of the Taylor series for 
μB > 0, μQ = μS = 0. Each of these 5 criteria may lead to 5 dif-
ferent values of Tc(0), all of which will reduce to the unique T 0

c
as m → 0. If the physical values of mu,d happen to be in the scal-
ing regime, then all these 5 criteria will lead to only two values 
of pseudo-critical temperatures T G,χ

c (0). The above definitions ex-
haust all second order fluctuations of the chiral order parameter 
through which locations of the maxima of f ′

G and fχ can be de-
termined.

Following the spirit of Taylor expansions, μX dependence of 
pseudo-critical temperatures, up to O(μ4

X ), can be written as

Tc(μX ) = Tc(0)

[
1 − κ X

2

(
μX

Tc(0)

)2

− κ X
4

(
μX

Tc(0)

)4
]

. (8)

As we will see later in Sec. 4.1, for μX = 0, the Tc(0) defined 
through all 5 criteria listed in Eq. (7) actually lead to the same 
result, within our errors, in the continuum limit. Thus, for μX > 0
it is sufficient to define Tc(μX ) by the 2 criteria

∂2
T �(T ,μX )

∣∣∣
μX

= 0 , ∂T χ(T ,μX )|μX
= 0 . (9)

Expressions for κ X
2 and κ X

4 can be obtained by: (i) Expanding 
�(T , μX ), χ(T , μX ) in μX using Eq. (4); (ii) Taylor expanding C�

2n , 
Cχ

2n in powers of (Tc(μX ) −Tc(0)); (iii) Expanding (Tc(μX ) −Tc(0))

using Eq. (8), keeping terms up to O(μ4
X ); (iv) Taking ∂T at fixed 

μX of the fully-expanded expression up to O(μ4
X ), and imposing 

Eq. (9) order-by-order in μB . Since all quantities are assumed to 
be analytic in μX around μX = 0, all expansions in μX and taking 
∂T can be carried out in any order, as long as all terms contribut-
ing up to O(μ4

X ) are systematically included at each step. E.g., for 
χ we obtained [10]

κ X
2 = 1

2T 2∂2
T Cχ

0

[
T ∂T Cχ

2 − 2Cχ
2

]
,

κ X
4 = 1

24T 2∂2
T Cχ

0

[
−72κ X

2 Cχ
2 − 4Cχ

4 + T ∂T Cχ
4

+ 12κ X
2

(
4T ∂T Cχ

2 − T 2∂2
T Cχ

2 + κ X
2 T 3∂3

T Cχ
0

)]
,

(10)

where Cχ
2n are the expansion coefficients of χ with respect to μX , 

and the expressions are to be evaluated at T = Tc(0). Similar ex-
pressions can be obtained for � [10].

The expression for our κ B
2 corresponding to the order param-

eter is different from that used in Ref. [22], where Tc(μB) was 
defined through temperature derivatives at constant μB/T , rather 
than at constant μB . We have checked that the numerical results 
using both definitions are same within our errors.

3. Computational details

All computations presented in this study were carried out with 
the lattice actions previously used by the HotQCD collaboration 
[6,23,24], viz., the 2 + 1 flavor highly improved staggered quarks 
(HISQ) [25] and the tree-level improved Symanzik gauge action. 
The bare parameters of the lattice actions, mu = md , ms , and the 
bare gauge coupling, are fixed by the line of constant physics de-
termined by the HotQCD collaboration [6,23,24]. The temperature 
is given by T = 1/(aNτ ), where Nτ is the extent of the lattices 
along the Euclidean temporal direction. The extents of the lattices 
along all 3 spatial directions were always chosen to be 4Nτ , and 
the temporal extents were varied from Nτ = 6, 8, 12, and 16, go-
ing towards progressively finer lattice spacing at a fixed T . Bare 
quark masses were chosen to reproduce, within a few percent, the 
physical value of the kaon mass and a pseudo-Goldstone pion mass 
of 138 MeV in the continuum limit at vanishing temperature and 
chemical potentials.

The fermionic operators needed to construct C�
4 and Cχ

2,4 were 
obtained using the so-called linear-μ formalism [24,26,27], but the 
traditional exponential-μ formalism [28] was used for C�

2 . On di-
mensional grounds, within the linear-μ formalism no additive ul-
traviolet divergence (or constant) is expected in Cχ

2n for all n, and 
in C�

2n for n > 1 [10]. To confirm these theoretical expectations we 
computed Cχ

2 by employing both linear- and exponential-μ for-
malism and found identical results for both cases [10]. The nth 
order Taylor coefficients of the chiral observables contain up to 
n + 1 quark propagators, compared to n quark propagators for that 
in case of the pressure (T V −1 ln Z ). Hence, the computational cost 
of C�

2n and Cχ
2n increases accordingly.

All fermionic operators needed to construct the chiral observ-
ables and their Taylor coefficients were measured on about 100K, 
500K, 100K and 4K gauge field configurations for Nτ = 6, 8, 12 
and 16 lattices, respectively. In each case, the gauge field configura-
tions were separated by 10 rational hybrid Monte-Carlo trajectories 
of unit length. The fermionic operators were calculated using the 
standard stochastic estimator technique; more details about these 
computations can be found in Ref. [10].

As discussed in Sec. 2.3, determinations of Tc(0), κ X
2 and κ X

4
involve computing derivatives of the basic chiral observables and 
their Taylor coefficients with respect to the temperature. To com-
pute these derivatives, we interpolated the basic observables in 
T between the computed data via the following procedure. For 
each observable several [m, n] Padé approximants were used for 
N (> m + n) computed data, and N was varied by leaving out 
data away from the crossover region. Statistical error of each Padé 
approximant was estimated using the bootstrap method; the boot-
strap samples for each computed data were drawn from a Gaus-
sian distribution centered around the mean value of the data and 
with a standard deviation equal to the 1σ statistical error of that 
data. The final T -interpolation for each observable was obtained 
by weighted averaging over all the Padé approximants where the 
weight for an approximant was determined using the Akaike infor-
mation criterion [29,30]. This procedure gave reliable results for all 
the required T -derivatives, especially for T in the vicinity of the 
chiral-crossover [10].

We assumed that for all observables the leading discretization 
errors are of the type a2 ∝ 1/N2

τ . Extrapolations to the continuum 
limit a → 0 were carried out by fitting data at different Nτ to 
a function linear in 1/N2

τ and extrapolating it to Nτ → ∞ limit. 
The error on each continuum-extrapolated result was obtained us-
ing the above described bootstrap method. For all observables we 
found that 1/N2

τ -fits were satisfactory. To check the systematics of 
our continuum extrapolations, we used fits including higher order 
1/N4

τ corrections, as well as carried out the extrapolation proce-
dure using an alternative T -scale determined using the Sommer 
parameter r1; all results were found to be consistent within our 
errors [10].
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Fig. 1. Left: Chiral order parameter C�
0 (T ) = �(T , μB,Q ,S = 0). The inset shows derivative of C�

0 with respect to temperature T . Middle: Disconnected chiral susceptibility 
Cχ

0 (T ) ≡ χ(T , μB,Q ,S = 0). Right: Susceptibility, χ�(T , μB,Q ,S = 0), of the chiral order parameter.
Fig. 2. Continuum extrapolations of pseudo-critical temperatures Tc(0) ≡
Tc(μB,Q ,S = 0), defined using criteria listed in Eq. (7). The solid gray band depicts 
the continuum-extrapolated result Tc(0) = (156.5 ± 1.5) MeV (see text for details).

4. Results

4.1. Zero chemical potential: Tc(0)

In Figs. 1 and 3, we show all observables used for the deter-
mination of pseudo-critical temperatures as defined in Eq. (7) for 
lattices with Nτ = 6, 8, 12, and 16. The results of the temper-
ature interpolations, obtained following the procedure described 
in Sec. 3, are shown by the corresponding solid bands. Using the 
interpolated results, and applying the definitions in Eq. (7), we 
obtained 5 values of Tc(0) for Nτ = 6, 8, and 12. These results 
are shown in Fig. 2. Since we have not computed C�

2 and Cχ
2 for 

Nτ = 16, we only show results for the other 3 definitions of Tc(0). 
On coarser lattices, different definitions resulted in different values 
of Tc(0). These differences progressively reduce with increasingly 
finer lattice spacing. Results of Tc(0) for each of the definitions 
were separately extrapolated to the continuum (see Sec. 3 for de-
tails). The continuum-extrapolated results for all 5 definitions of 
Tc(0) were all consistent with each other within errors. We took 
an unweighted average of all the 5 continuum results, and added 
the statistical errors of each continuum-extrapolation in quadra-
ture to quote our final result for the chiral crossover tempera-
ture at zero chemical potentials Tc(0) = (156.5 ± 1.5) MeV. It is 
an interesting fact that continuum results for different pseudo-
critical temperatures coincide within a couple of MeV. However, 
if the value of T 0

c [12] is significantly different from Tc(0), then, 
based on the scaling properties of T G,χ

c (0), it is natural to ex-
pect more dispersion among the values of Tc(0). Coincidence of 
different pseudo-critical temperatures for physical quark masses 
may accidentally arise due to the presence of non-singular and/or 
sub-leading corrections to scaling. Further work will be needed to 
clarify this issue.
4.2. Non-zero chemical potentials: κ B,Q ,S,I
2 and κ B,Q ,S,I

4

Now, we present continuum-extrapolated results for the expan-
sion coefficients κ X

2 and κ X
4 , defined by Eq. (8), of Tc(μX ) for all 

conserved charges X = B, S, Q , I . In all cases, extrapolations to the 
continuum were carried out using results for Nτ = 6, 8, and 12. 
We discuss an example in detail, viz., κ B

2 and κ B
4 at μQ = μS = 0. 

When Tc(μB) is defined as the temperature where χ(T , μB ) peaks 
at a given μB , the corresponding κ B

2 and κ B
4 can be obtained 

using Eq. (10). The zeroth-, Cχ
0 (T ), second-, Cχ

2 (T ), and the fourth-
order, Cχ

4 (T ), expansion coefficients of χ(T , μB ) in μB/T (with 
μQ = μS = 0) are shown in Fig. 1 (middle), Fig. 3 (top-left) and 
Fig. 3 (top-middle), respectively. The interpolations in T are shown 
by the corresponding solid bands. Having determined Tc(0), κ B

2
and, subsequently, κ B

4 were obtained using the T -interpolations of 
Cχ

0,2,4. Similarly, κ B
2 and κ B

4 were computed also from the inflec-
tion point of �(T , μB) in T , for a given μB , using the expansion 
coefficients C�

0,2,4, which are shown in Fig. 1 (left), Fig. 3 (bottom-
left) and Fig. 3 (bottom-middle), respectively. Fig. 3 (bottom-right) 
exemplifies the very mild dependence of κ X

2 and κ X
4 on lattice 

spacing.
We also carried out similar computations to determine con-

tinuum-extrapolated κ X
2 and κ X

4 corresponding to (i) Tc(μS) at 
μB = μQ = 0, (ii) Tc(μQ ) at μB = μS = 0, and (iii) Tc(μI ) at 
μB = μS = 0; the values are listed in Table 1. In all the cases, 
for both κ X

2 and κ X
4 , the results obtained using two different defi-

nitions of Tc(μX ), given in Eq. (9), gave the same result within our 
errors. In each case, we took unweighted averages of continuum-
extrapolated results corresponding to both definitions for Tc(μX ), 
and added the respective statistical errors in quadrature to arrive 
at the final values for κ X

2 and κ X
4 ; these final results also are listed 

in the third row of Table 1. In all cases, κ X
4 were found to be 

zero within errors, with central values about an order of magni-
tude smaller than the corresponding κ X

2 . Also, κ Q ,I
2 were found to 

be about a factor 2 larger compared to κ B,S
2 .

4.3. Heavy-ion collisions: κ B, f
2,4 for nS = 0, nQ = 0.4nB

In this case, i.e., for the thermal condition resembling the chem-
ical freeze-out stage of heavy-ion collision experiments, we intro-
duce the notations κ B, f

n as the Taylor coefficients of the corre-
sponding pseudo-critical temperature T f

c (μB).
The formalism for Taylor expanding an observable in μB/T , 

with the constraints nS = 0 and nQ = 0.4nB , was introduced in 
Ref. [31] and has been applied to various cases [24,32,33]. With 
these constraints, μS and μQ are no longer arbitrary, but be-
come functions of T and μB . Following Ref. [31], μS (T , μB)/T =
s1(T )μB/T + s3(μB/T )3 and μQ (T , μB)/T = q1(T )μB/T +
q3(μB/T )3 were Taylor-expanded in μB/T . Expanding nB,Q ,S in 
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Fig. 3. Top-left: Second-order Taylor-coefficient Cχ
2 (T ), defined in Eq. (4), of the disconnected chiral susceptibility χ(T , μB , μQ = μS = 0). Top-middle: Fourth-order Taylor-

coefficient Cχ
4 (T ) of χ(T , μB , μQ = μS = 0). Top-right: Order-by-order corrections in μ2n

B to χ(T , μB = 300 MeV, nS = 0, nQ = 0.4nB ) for Nτ = 8 lattices. Bottom-left: 
Second-order Taylor-coefficient C�

2 (T ) of the chiral order parameter �(T , μB , μQ = μS = 0). Bottom-middle: Fourth-order Taylor-coefficient C�
4 (T ) of �(T , μB , μQ =

μS = 0). Bottom-right: Second- (κ B
2 ) and fourth-order (κ B

4 ) Taylor coefficients, defined in Eq. (8), of the pseudo-critical temperature Tc(μB , μQ = μS = 0) obtained from 
χ(T , μB , μQ = μS = 0).

Table 1
Continuum-extrapolated values of second- (κ X

2 ) and fourth-order (κ X
4 ) Taylor coefficients, defined in Eq. (8), of pseudo-critical temperature Tc(μX=B,Q ,S,I ) obtained from 

the chiral order parameter �(T , μX ) and the disconnected chiral susceptibility χ(T , μX ). Also listed are the continuum-extrapolated values of κ B, f
2 and κ B, f

4 for thermal 
conditions resembling the freeze-out stage of relativistic heavy-ion collisions, i.e., μQ (T , μB ) and μS (T , μB ) fixed by strangeness-neutrality and isospin-imbalance of the 
colliding heavy-ions. The last row is obtained from unweighted average of the first two rows.

κ B
2 κ B

4 κ S
2 κ S

4 κ Q
2 κ Q

4 κ I
2 κ I

4 κ
B, f
2 κ

B, f
4

� 0.015(4) −0.001(3) 0.018(3) 0.001(3) 0.027(4) 0.004(5) 0.023(3) 0.004(4) 0.012(2) 0.000(2)
χ 0.016(5) 0.002(6) 0.015(4) 0.007(5) 0.031(4) 0.011(9) 0.028(3) 0.006(6) 0.012(3) 0.000(4)

Average 0.016(6) 0.001(7) 0.017(5) 0.004(6) 0.029(6) 0.008(1) 0.026(4) 0.005(7) 0.012(4) 0.000(4)
powers of μi
Bμ

j
Q μk

S (i + j + k ≤ 3), substituting expansions for 
μQ ,S(T , μB) in expansions of nB,Q ,S , and imposing the constraints 
nS = 0 and nQ = 0.4nB order-by-order in μB , expressions for 
s1,3(T ) and q1,3(T ) were obtained in terms of the Taylor coeffi-
cients of the pressure. Explicit expressions for s1,3(T ) and q1,3(T )

can be found in Ref. [24]. By Taylor expanding �(T , μB , μQ , μS)

(χ(T , μB , μQ , μS )) in powers of μi
Bμ

j
Q μk

S (i + j + k ≤ 4) and by 
using the expansions for μQ ,S (T , μB), we obtained the expan-
sions for �(T , μB) (χ(T , μB)) up to O(μ4

B). As before, by invoking 
Eq. (9), expressions were obtained for κ B, f

2,4 .

Continuum-extrapolated results for κ B, f
2 and κ B, f

4 are given in 
Table 1. κ B, f

2 came out to be same as κ B
2 and κ S

2 within errors, 
and κ B, f

4 was found to be consistent with zero. On our Nτ = 8
lattices, where we analyzed half a million gauge configurations at 
all T , we also computed μ6

B corrections to the chiral observables. 
The order-by-order μB corrections to χ are shown in Fig. 3 (top-
right) at μB = 300 MeV and for nS = 0, nQ = 0.4nB . In the vicinity 
of T f

c (μB), difference between μ4
B and μ2

B corrections are clearly 
significant; but μ6

B and μ4
B corrections are consistent within our 

errors. This shows that up to μ4
B the expansion of T f

c (μB) is con-
trolled till μB � 2Tc(0). The phase boundary of QCD for nS = 0, 
nQ = 0.4nB is shown in Fig. 4; also shown are the chemical freeze-
out points extracted from heavy-ion collision experiments at var-
ious collision energies [5,34], the line of constant energy density 
ε(T , μB) = ε(Tc(0), 0) = 0.42(6) GeV/fm3 [24], and the line of con-
stant entropy density s(T , μB) = s(Tc(0), 0) = 3.7(5) fm−3 [24].

5. Discussions and summary

The value of Tc(0) reported in this work compares quite well 
with the previous results from the HotQCD collaborations [6,17], 
but the present result is about 6 times more accurate than the 
previous continuum-extrapolated result [6]. Compared to that of 
Ref. [6], use of 100-500 times more gauge configurations for Nτ =
6, 8, 12 in the present study resulted in the 6 times more accurate 
determination of the continuum-extrapolated Tc(0). Our present 
value of Tc(0) also is compatible with the chiral pseudo-critical 
temperatures reported by other groups [35,36]. It is pertinent to 
note that all our calculations were carried out within a finite-size 
box of about 5 fm3 in the vicinity of Tc(0); finite-size corrections 
might increase the value of Tc(0) by an amount commensurate 
to our present error on that quantity [37]. κ B

2 determined in the 
present work is about a factor 2 larger than that reported previ-
ously in Ref. [38]. Our present value of κ B

2 also is about a factor 
2 larger than the κ B

2 estimated using the curvature of the chi-
ral critical temperature along the light quark chemical potential 
directions [19], but is consistent, within errors, with the same re-
ported in Ref. [39]. In contrast to Ref. [19], Ref. [39] used the 
much improved HISQ discretization. This clearly suggests that the 
discrepancy between the present result and that estimated from 
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Fig. 4. The phase boundary of 2 + 1 flavor QCD, with the constraints nS = 0
and nQ = 0.4nB , is compared with the line of constant energy density ε =
0.42(6) GeV/fm3 and the line of constant entropy density s = 3.7(5) fm−3 [24] in 
the T -μB plane. Also, shown are the chemical freeze-out parameters extracted from 
grand canonical ensemble based fits to hadron yields within 0-10% centrality class 
for the ALICE [5] experiment and 0-5% centrality class for the STAR [34] experiment.

Ref. [19] arises mostly due to the use of improved HISQ discretiza-
tion in the present study. On the other hand, κ B

2 reported in this 
work is, within errors, compatible with those obtained in more 
recent works of Refs. [36,40–42], obtained from analytic contin-
uations from purely imaginary μB . It is also similar with that 
obtained in Ref. [22] from Taylor expansion of chiral order param-
eter for μB > 0, μQ = 0 and μS = μB/3, in contrast to our choice 
of μB > 0 and μQ = μS = 0. Our value of κ B, f

2 is quite similar 
to that reported in Ref. [43], determined from analytic continua-
tions from purely imaginary μ . Moreover, the phase boundary in 
the T -μI plane that can be obtained using our κ I

2,4 is quite simi-
lar to that determined in Ref. [44] from lattice QCD computations 
performed directly at μI > 0, μB = μS = 0.

In summary, using state-of-the-art lattice QCD computations we 
have determined pseudo-critical temperatures, Tc(μX ) = Tc(0)[1 −
κ X

2 (μX/Tc(0))2 − κ X
4 (μX/Tc(0))4], of QCD chiral crossover for 6 

different scenarios: (i) Tc(0) for μB = μQ = μS = 0; (ii) κ B
2,4 for 

μB > 0, μQ = μS = 0; (iii) κ S
2,4 for μS > 0, μB = μQ = 0; (iv) 

κ Q
2,4 for μQ > 0, μB = μS = 0; (v) κ I

2,4 for μI > 0, μB = μS = 0; 
(vi) κ B, f

2,4 for thermal conditions resembling that at the chemical 
freeze-out of relativistic heavy-ion collision experiments, viz, for 
μB > 0, nS = 0, nQ = 0.4nB . We have found

Tc(0) = (156.5 ± 1.5) MeV , (11)

and the values of κ X
2,4 are listed in Table 1. The QCD phase bound-

ary relevant for relativistic heavy-ion collision experiments have 
been summarized in Fig. 4. For μB � 300 MeV, the chemical 
freeze-out takes place close to the QCD chiral crossover, which, 
in turn, seems to happen along lines of constant energy density of 
0.42(6) GeV/fm3 and a constant entropy density of 3.7(5) fm−3. 
At vanishing baryon chemical potential μB , the ALICE result [5]
for the chemical freeze-out temperature is in agreement with 
Tc(0). For μB � 300 MeV, all STAR results [34], except the high-
est collision-energy, agree with Tc(μB) within their 1-sigma er-
rors. The STAR result for the chemical freeze-out temperature at 
the highest collision-energy agrees with Tc(μB) within 1.5-sigma 
error. Thus, there is no discrepancy between Tc(μB) and chemi-
cal freeze-out temperatures extracted using statistical model based 
fits to the experimentally measured hadron yields. However, it 
may pose a challenge to the statistical hadronization based chem-
ical freeze-out scenario if future improved experiments deter-
mine freeze-out temperatures with statistical significance above 
Tc(μB).
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