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We investigate the Casimir-Polder physics within the simplified framework of the Unruh-DeWitt detector 
model mimicking the full matter-field interaction. This model is frequently used in the context of 
Relativistic Quantum Information theory and more recently for investigating atomic physics phenomena. 
Here we show that within this model an interesting relation can be shown between the excitation rate 
of the atom and the Casimir-Polder energy, allowing to map one onto the other, and introducing an 
alternative method of investigating the Casimir-Polder effect.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Quantization of light leads to the prediction of numerous new 
effects providing one with experimentally accessible methods of 
verifying the quantum theory. Among these effects involving the 
weak electromagnetic field a seminal role has been played by the 
Casimir-Polder effect. Casimir and Polder showed that even in the 
limit of a photonless state – the quantum vacuum – a neutral atom 
near a dielectric wall feels a force mediated through the quantum 
fluctuations [1]. Not before 1990s was such a behavior experimen-
tally demonstrated, providing another confirmation of the quanti-
zation of the light and opening perspectives on investigating the 
quantum vacuum [2–4]. However, introducing the vacuum energy 
is not necessary to understand the existence of the Casimir-Polder 
force. It has been known that the Casimir-Polder effect can also 
be interpreted as a consequence of the second-order interaction 
in the quantum field theory – a relativistic and retarded van der 
Waals force [5]. It is therefore tempting to investigate a connection 
between excitation rate of a detector coupled to the field and the 
Casimir-Polder force acting on it.

The presence of Casimir-Polder forces was demonstrated in var-
ious setups, involving different types of plates, from conducting to 
dielectric ones, and different types of probes, from atomic, through 
mechanical, to Bose-Einstein condensates [6–12]. In most cases, 
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Casimir forces are attractive, however it was proposed that a repul-
sive character of the interaction is also possible [13,14,9,15–17], as 
recently showed experimentally [18,19]. Also the recent research 
shows that the repulsive character of the strength of Casimir forces 
can be adjusted by inserting optically active or gyrotropic me-
dia between bodies and modulated by external fields [20]. The 
QED minimal coupling is usually a model of choice in describing 
Casimir phenomena, however we will utilize one of the simplest 
models allowing the system to exhibit both attractive and repul-
sive character of Casimir force, namely the Unruh-DeWitt (UDW) 
model [21]. This model was used to probe the state of an opti-
cal cavity [22] or as a pointlike particle detector in the quantum 
field theory [23–27] and relativistic quantum information [28–33]. 
Despite being noticeably simpler than the full QED Hamiltonian, it 
was shown to be a reasonable approximation to the atom-field in-
teraction when no orbital angular momentum is exchanged [34]. 
Moreover, it was used to study Casimir-Polder forces [35–38].

Additionally, it was shown that moving point-like detectors 
coupled to quantum fields can be used to carry quantum infor-
mation in spacetime [29,31], to extract entanglement from the 
Minkowski vacuum [30,32] or to perform quantum teleportation 
[39]. The Unruh-DeWitt detector is well understood and used as 
a basic tool of the relativistic quantum information theory. It was 
also utilized as a suitable tool in quantum metrology [40,41] and 
for thermometry in the detection of the Unruh effect [42,43]. Be-
cause of its simplicity, the Unruh-DeWitt model is frequently used 
in the early stages of developing new ideas in relativistic quantum 
information theory [44–46]. However, it is not known how far the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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predictions made by this toy model correspond to reality modeled 
e.g. by quantum electrodynamics. Therefore, we propose to con-
sider the system allowing us to examine the prediction made by 
the Unruh-DeWitt model and compare it with the standard prob-
lem from atomic physics which is the Casimir-Polder force.

In this work, we analyze UDW model in the optical cavity, 
focusing on the following two aspects. Using the second order 
perturbation theory, we calculate the Casimir-Polder (CP) poten-
tial as a function of the atom’s position in the cavity. We find that 
under some assumptions, it is intrinsically connected to the excita-
tion probability of the two-level system that models the atom. Our 
finding provides an alternative method of investigaing the Casimir-
Polder physics, as well as the tool to verify the validity of the 
toy model used here and applied often in the context of atomic 
physics.

The work is structured as follows. In Sec. 2 we introduce the 
model, underline its connection to the full QED interaction Hamil-
tonian, and compute both CP potential and the excitation rate of 
the UDW detector. In Sec. 3 we find the connection between the 
two. The final Sec. 4 concludes the manuscript with the recapitu-
lation and the outlook.

2. Model

We will work in natural units, h̄ = c = 1. Let us consider a scalar 
field of a mass m governed by the Klein-Gordon equation:(� + m2

)
φ̂ = 0 (1)

in the cavity with a length of L fulfilling Dirichlet boundary condi-
tions, φ̂(x = 0) = φ̂(x = L) = 0 with the following mode solutions:

un(x, t) = 1√
ωn L

sin (knx)e−iωnt ≡ un(x)e−iωnt, (2)

where ωn =
√

k2
n + m2, kn = nπ

L , n ∈ Z. Using these modes, the 
field φ̂ can be decomposed as:

φ̂(x) =
∑

n

[
â†

nu∗
n(x) + ânun(x)

]
, (3)

where ân and â†
n are annihilation and creation bosonic operators 

satisfying the canonical commutation relations, 
[

ân, â†
k

]
= δnk and [

ân, âk
] =

[
â†

n, â†
k

]
= 0.

In the distance d from the boundary let us place a two-level 
system corresponding to the simplest model of an atom with an 
energy gap �. Such a description approximates e.g. a hydrogen 
atom which is not placed in a strong classical background field 
and therefore no transition is resonantly coupled to the cavity. As 
we are interested in working with the vacuum state of the cavity, 
this proves to be a valid approximation.

Then, the full Hamiltonian of the considered model includes 
free Hamiltonians of the scalar field and of the atom, and the 
term accounting for the interaction between both of them, Ĥ I . 
One of the simplest possible choices of the interaction between 
the scalar field and the two-level system is the pointlike Unruh-
DeWitt Hamiltonian. In the Schrödinger picture it takes the fol-
lowing form:

ĤUDW = λ μ̂S φ̂(x), (4)

where λ – dimensionless coupling constant, μ̂S – the monopole 
moment of the detector, μ̂S = σ̂+ + σ̂− = |g〉 〈e| + |e〉 〈g|, where 
|g〉 is the ground state of the two-level system and |e〉 is its ex-
cited state. Moreover, φ̂(x) is the scalar field operator evaluated at 
the point at which the pointlike detector is placed. In the spirit of 
2

electromagnetic field considerations, this first order term would be 
called a paramagnetic one.

This simple model of interaction can be extended to a more re-
alistic form including the second order term in the Hamiltonian 
corresponding to a diamagnetic, self-interaction term of the full 
QED Hamiltonian. This quadratic term of the Unruh-DeWitt Hamil-
tonian has the form:

Ĥ2
UDW =

(
λ (|g〉 〈e| + |e〉 〈g|) φ̂

)2

= λ2 (|g〉 〈g| + |e〉 〈e|) φ̂2 = λ2φ̂2. (5)

It is worth to notice that such a term does not change a detector 
state.

At this point, let us recall some key results from Refs. [34] that 
compare QED Hamiltonian and UDW one. The minimal electromag-
netic coupling in the Coulomb gauge reads:

ĤQED = − e

m
A(x) · p + e2

2m
[A(x)]2 , (6)

where e is the unit charge. The main difference is the vector char-
acter of the EM interaction in contrast to the scalar one that we 
consider. However, a scalar field can be readily utilized to describe 
electric and magnetic contributions separately, given appropriate 
boundary conditions. Indeed, such a description has been used to 
analyze Casimir-Polder interaction in the past. It has to be noted 
that such a scalar model does not allow any exchange of the or-
bital momentum, however we retreat to the simple case of atomic 
transitions that obey this rule.

As mentioned above, the QED Hamiltonian consists of two 
terms – paramagnetic and diamagnetic ones. The simplified light-
matter interaction Hamiltonians often neglect the second term 
while working with weak fields. The minimal coupling in the 
vacuum implies interaction only with the quantum fluctuations 
< A2 >. However, in the vacuum, the value of < A2 > depends 
on the region in which an atom resides – or in the language of 
quantum field theory – on the region these quantum fluctuations 
are smeared over. It happens that while approaching a limit of a 
pointlike atom (detector), this variance diverges. So, it introduces a 
necessity to allow for a finite size of the atom, unlike in the simple 
UDW model.

In the original Casimir and Polder paper, such a problem was 
also present – it was taken care of by the means of introducing 
a regularizing factor e−γ k in the integrals over momentum space. 
However, we follow a procedure used by [34], where an explicit 
spatial form of the ground state of the atom is assumed:


(x) = e−x/a0

a0
, (7)

where a0 is some characteristic length associated to the spherically 
symmetric atomic profile (meant to be of the order of magnitude 
of Bohr radius). Such an approach modifies the UDW Hamiltonian 
by effectively coupling the detector to an effective field,

φ̂R(x) =
∑

n

fn

[
â†

nu∗
n(x) + ânun(x)

]
, (8)

where

fn = 2

(a0kn)
2 + 1

(9)

are Fourier transforms of the spatial profile (7) evaluated at mo-
mentum kn . Such a momentum-space profile is typical for zero 
angular momentum orbitals and can describe the simplest case of 
a hydrogen atom and its lowest transition, 1s → 2s.
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The next simplification of the UDW model involves assuming 
equal contributions from both of the nondiagonal parts of the 
Hamiltonian acting on the space spanned by the internal states of 
the atom. In a general case, their relative weight can be unequal, 
but in the case of a spherical symmetry of both the ground and 
the excited states, they happen to be equal.

The other difference between QED and UDW Hamiltonians 
comes from the fact that in the former the relative strength of 
para- and diamagnetic terms is given explicitly. It is not the case 
in the latter, as it has to be computed for specific profiles of the 
ground and the excited states. It can be done, however we will 
take the advantage of our model by considering a general, dimen-
sionless parameter quantifying this relative strength.

Combining all of these considerations, we finally get the ex-
tended version of the UDW Hamiltonian that mimics the QED one:

Ĥ I = λ (|g〉 〈e| + |e〉 〈g|) φ̂R + α
λ2

�
φ̂2

R, (10)

where α is a dimensionless constant that tunes the relative 
strength between para- and diamagnetic terms in the particular 
model. In the more detailed model, this parameter could be re-
lated to the interaction between atoms depending on quantities 
like electric and magnetic polarizabilities [47]. Numerical values of 
these coefficients for specific systems, such as two hydrogen atoms 
have been found in [48]. It is worth noting that we keep an un-
specified α parameter to show the full generality of our results.

Energy � is introduced here to provide the correct units. Such a 
Hamiltonian can effectively mimic some forms of the full QED in-
teraction [34]. It has to be noted that such a Hamiltonian is only a 
one-dimensional toy model that is utilized to model the qualitative 
effects coming from the full electromagnetic one. By keeping free 
parameters λ and α explicitly in the calculations, we will show 
that some interesting conclusions stay the same for their arbitrary 
values.

2.1. Casimir-Polder potential

The first step is to find how the full energy of the system 
changes with the position of the atom in the cavity. The differ-
ence between this full energy, E , and the sum of the ground state 
energies of noninteracting cavity and the atom, E0, is called the 
Casimir-Polder potential, ECP. The usual Casimir-Polder force act-
ing on the atom in the fixed cavity is then understood as a spatial 
derivative of the Casimir-Polder potential, F = −∇ECP. We con-
sider a system prepared in the state |g,0〉 – the scalar field is in 
the vacuum state and two-level system is in the ground state. The 
system is then slightly perturbed by the extended UDW Hamilto-
nian (10) with λ being the perturbation parameter. We will calcu-
late the following energy in the second order of the perturbation 
theory. It takes form:

E = E0 + E(1) + E(2) +O(λ4),

E(1) = 〈g,0| Ĥ I |g,0〉 ,

E(2) =
∞∑

n=0

∑
s={g,e}

| 〈s,n| Ĥ I |g,0〉 |2
E0 − (E0 + ωn + �s)

, (11)

where state |s,n〉, s ∈ {g, e} corresponds to the arbitrary final state 
of the atom and the scalar field in the state |n〉 of energy ωn . Fur-
thermore, �s is the energy of the detector in the state |s〉, meaning 
that �g = 0 and �e = �. Then, we have:

E(1) = αλ2

�
〈0| φ̂2

R |0〉 = αλ2

�L

∞∑ f 2
n sin2 (knx)

ωn
,

n=1

3

E(2) = −
∞∑

n=1

λ2

ωn + �
| 〈n| φ̂R |0〉 |2 +O(λ4)

= −
∞∑

n=1

λ2

ωn + �

f 2
n sin2 (knx)

ωn L
+O(λ4).

It is useful to note that the term fn makes E(1) convergent. The 
whole second-order Casimir-Polder potential then reads

ECP = E(1) + E(2)

= λ2
∞∑

n=1

f 2
n sin2 (knx)

ωn L (ωn + �)

[
(α − 1) + α

ωn

�

]
. (12)

One can immediately see that depending on the parameter α, the 
Casimir-Polder potential, and consequently Casimir-Polder force 
can be either positive or negative. It confirms the usual phe-
nomenology in which Casimir forces can be either repulsive or 
attractive, depending on the physical scenario involved. Indeed, 
Feinberg et al. [47] conclude that Casimir forces aren’t always at-
tractive. The conditions under which the Casimir force becomes 
repulsive depend on the relation between electric and magnetic 
polarizabilities characterizing the system and the geometry of the 
setup.

2.2. Probability of excitation

The next step is to assume the same physical model but now 
with the interaction lasting for some finite time σ . As the elec-
tromagnetic interaction cannot be switched on or off, we choose 
to interpret the finite interaction time as a time between the cre-
ation of a setup and a destructive measurement. We aim to find 
the probability of measurement of the excited state of the atom, as 
it was initially prepared unexcited in the cavity. Therefore, we have 
to define the time-dependent Hamiltonian of interaction, allowing 
for a finite time interaction. We can modify previously showed 
model by adding a time-dependent switching function χ(t). The 
modified, time-dependent version of the extended UDW Hamilto-
nian in the Schrödinger picture has the following form:

ĤUDW(t) = χ(t)

[
λ μ̂S(t) φ̂R(x) + α

λ2

�

(
φ̂R(x)

)2
]

. (13)

We assume that the interaction starts and ends rapidly, so that 
χ(t) = 1 for t ∈ (0, σ) and χ(t) = 0 for any other time. As it 
was mentioned before, the full Hamiltonian includes also a time-
independent free scalar field and a free two-level system part. 
We proceed to use the Dirac picture, because the full Hamilto-
nian contains time-independent Ĥ0 = ∑

n ωnâ†
nân ⊗ �σ̂+σ̂− and 

a time-dependent interaction component coming from the Unruh-
DeWitt interaction. The evolution in such a scenario is given by 
operator in the form: Û = T exp−i

∫ ∞
−∞ dt Ĥ (D)

I (t), where (D) rep-
resents operator in the Dirac picture.

As a result of the interaction, the state of the field can be 
changed, however we are interested only in finding the probabil-
ity of the detector’s excitation. The final state after the interaction 
between the detector and the scalar field can be written as |e, l〉, 
where l ∈N ∪ {0}. Using the Born rule, we can write probability of 
excitation pg−→e in the form:

pg−→e =
∑

l∈N∪{0}
| 〈e, l|

∞∫
−∞

dt Ĥ (D)
I (t) |g,0〉 |2. (14)

The extended UDW Hamiltonian in the Dirac representation 
reads:
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Ĥ (D)
I (t) = χ(t)

[
λ μ̂(D) φ̂

(D)
R + αλ2

�

(
φ̂

(D)
R

)2
]

, (15)

where:

μ̂(D) =
(

ei�t σ̂+ + e−i�t σ̂−)
, (16)

φ̂
(D)
R (x) =

∑
n

fn

[
â†

nun(x)eiωnt + H .c.
]
. (17)

Only the first part, linear in the coupling constant λ contains 
an operator changing the state of the detector. The second-order 
term does not contribute to the probability of excitation given by 

the equation (14), because 〈e| αλ2

�

(
φ̂

(D)
R

)2 |g〉 = 0. After some di-

rect calculation, by plugging (15) in (14), we get:

pg−→e = 4λ2
∞∑

n=1

f 2
n sin2 (knx)

ωn L

sin2 [ 1
2σ (ωn + �)

]
(ωn + �)2

. (18)

The above result corresponds to an arbitrarily chosen time of 
interaction σ , but if the measurement apparatus does not have 
a time resolution good enough to work withing the scale of an 
atomic transition 1/� one has to consider a coarse grained version 
of the above formula. Such an averaged out excitation probability 
reads:

pav
g−→e = 4λ2

∫
dσ

∞∑
n=1

f 2
n sin2 (knx)

ωn L

sin2 [ 1
2σ (ωn + �)

]
(ωn + �)2

= 2λ2
∞∑

n=1

f 2
n sin2 (knx)

ωn L (ωn + �)2
. (19)

This new quantity is no longer dependent on the interaction 
time and is an explicit function of a distance from the wall. In the 
next Section we will show the connection between this averaged 
probability and the Casimir-Polder force.

3. Retrieving Casimir-Polder potential from the average 
excitation rate

We now proceed to compare both results. Both energy and 
probability given by Eqs. (12) and (19) are represented by infi-
nite series. We find that contributing terms in both of these series 
occur only for small (in comparison to the energy gap �) values 
of n, ωn  �. For a numerical analysis of that fact, see Appendix. 
Therefore, we can treat ωn

�
as a small parameter and expand both 

(12) and (19) up to the first subleading order:

ECP ≈ �
∑

n

pn(x)
[
(α − 1) + ωn

�

]
(20)

and

pav
g−→e ≈ 2

∑
n

pn(x)
[

1 − 2
ωn

�

]
(21)

where

pn(x) = λ2 f 2
n sin2 (knx)

ωn L�2
. (22)

The universal function

F (x) =
∑

n

pn(x) (23)

that reproduces the general shape of both Casimir-Polder potential 
and the averaged excitation probability is shown at Fig. 1 together 
with its derivative, corresponding to the Casimir-Polder force.
4

Fig. 1. (Top) Universal function F (x) proportional to both Casimir-Polder potential 
and the average excitation probability for the atom at position x/L in the cavity. The 
parameters taken for the plot read: L = 1, m = 1 ·10−3, λ = 1 ·10−2, � = 1. (Bottom) 
The derivative of the universal function F (x), corresponding to the Casimir-Polder 
force in the optical cavity.

Up to the leading order in ωn/�, we have a proportionality 
between the Casimir-Polder energy and the averaged excitation 
probability of the atom:

ECP ≈ 1

2
�(α − 1) pav

g−→e. (24)

The proportionality constant is a function of the energy gap and 
the internal properties of the atom, implicitly contained in the 
parameter α. Unless α is extremely fine tuned to be 1, the propor-
tionality between ECP and pav

g−→e is preserved. One has to note that 
here is no realistic value of α for the three-dimensional electro-
magnetic model of interaction between atom and the field, as the 
presented one-dimensional toy model is aimed only at grasping 
qualitative effects present in the system. However, within this toy 
model, taking a0 = 10−2 in natural units, α can be calculated to be 
α ∼ 1/400 [22]. It shows that at least for hydrogen-like atoms in 
1D toy model, value α ∼ 1 is not a typical one.

4. Recapitulation and outlook

To summarize, we have analyzed a system consisting of an 
atom (described by a two-dimensional Hilbert space) interacting 
with a scalar field within a one-dimensional cavity. We have ar-
gued that an extended version of the Unruh-DeWitt Hamiltonian 
coupled to the scalar Klein-Gordon field provides a qualitatively 
reasonable approximation to the full light-matter interaction when 
the vacuum state of the cavity is involved. Utilizing the second-
order perturbation theory, we have calculated the Casimir-Polder 
energy of the system and excitation probability of the atom when 
placed in a fixed distance from the wall of the cavity. We have 
shown that up to the leading order, both of these quantities coin-
cide with each other up to multiplicative constant depending on 
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the internal structure of the atom. The result (24) shows that the 
Casimir-Polder potential modeled by the UDW detector can be in-
directly recovered through analyzing the rate of atomic excitation 
near the wall.

As a future line of work, it is natural to consider a full three-
dimensional system in a realistic experimental scenario including 
the full QED model of interaction. This generalization can help us 
determine the limits of validity of the considered UDW model 
within realistic and experimentally accessible scenarios involv-
ing Casimir-Polder force. Another potential research could involve 
studying the Casimir-Polder effect by means of atomic excitations 
to confirm the predictions based on our toy model. A positive re-
sult could open an alternative route to study the Casimir-Polder 
effect through the measurement of the excited state’s population 
in large, spatially compact ensembles of atoms like Bose-Einstein 
condensates.
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Appendix A. Low frequency approximation

In this Appendix we demonstrate that the infinite series given 
by the (12) and (19), can be well approximated by a sum of fi-
nite number of terms. We will include only the lowest modes of 
the field to the sum, so it can be called a low frequency approx-
imation. Furthermore, we want to show that the frequency of the 
last mode included in the approximation sum always stays much 
smaller than the energy gap �.

Let us start from the most general case. Let us cosider a con-
verged infinite sum S = ∑∞

n=1 an . The value of S can be approxi-
mated by the SN = ∑N

n=1 an . The bigger N is, the better approx-
imation of the infinite series S we get. We can ask how many 
elements of the series need to be summed up to achieve a given 
quality of the approximation. To well define this problem we have 
to determine how to measure the quality of the approximation of 
the series. One of the possibility is to use a fidelity function de-
fined as:

F N
an

= aN∑N
n=1 an

. (A.1)

Such a function tells us how big contribution to finite sum SN
coming from the last element is. The smaller F N

an
is, the better 

the quality of S approximation given by SN becomes.
In the case presented above, we want to verify whether series 

which define Casimir-Polder potential and probability of excitation 
can be approximated by a sum including just N elements such that 
ωN is still much smaller than �. Using fidelity function (A.1) we 
can find the value of the function F N

En(�)
, where En is such that 

ECP = ∑∞
n=1 En . To answer our question we can plot F N

En(�=ωK ) as 
a function of N and K such that ωK = �. Similarly, for the prob-
ability of excitation we will plot F N

(pg−→e)n(�) , where (pg−→e)n is 
such that pg−→e = ∑

n(pg−→e)n .
For simplicity, we will consider only a detector standing in the 

middle of the cavity. As a result, only odd modes of the field have 
non zero contribution to the final value. The Fig. A.2 shows fi-
delity of the approximated series-defined Casimir-Polder potential 
and probability of excitation. We can see that the lines connecting 
5

Fig. A.2. Fidelity of the finite elements approximation used to find a value of 
Casimir-Polder potential or probability of excitation for a detector standing in the 
middle of the cavity. The parameters taken for the plot read: x = L

2 , L = 1, m =
1 · 10−3, λ = 1 · 10−2 (in the case of finding Casimir-Polder potential there is also 
α coupling constant). Fidelity of: (Top) probability of excitation, (Center) Casimir-
Polder potential for α = 1 · 10−1, (Bottom) Casimir-Polder potential for α = 2.

the points of the same value of the fidelity function have a convex 
shape.

It turns out that for every parameter describing the quality of 
the approximation by a N elements sum, we can choose � for 
which ωN  �.
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For instance, let us consider the line of constant value of fidelity 
shown on the top of Fig. A.2. The same value of a fidelity occurs 
for pair (N, K ) ≈ (7, 7) and for (N, K ) ≈ (12, 20). It means that 
for � = ω2·7+1 one has to sum N = 2 · 7 + 1 modes of the field to 
achieve the same fidelity as for � = ω2·20+1 and only N = 2 ·12 +1
modes.

For series-defined Casimir-Polder potential and coupling α > 1
it is even better, because lines of constant fidelity decrease with K , 
so the bigger � = ω2K+1 is, the smaller number of modes that are 
needed to be summed up to achieve given fidelity is.
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