
Eur. Phys. J. C (2024) 84:646
https://doi.org/10.1140/epjc/s10052-024-12977-2

Regular Article - Experimental Physics

IceCube – Neutrinos in Deep Ice

The top 3 solutions from the public Kaggle competition

Habib Bukhari4, Dipam Chakraborty5, Philipp Eller1,2,a , Takuya Ito6, Maxim V. Shugaev3,
Rasmus Ørsøe1,2,b

1 Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
2 Munich Data Science Institute, Technical University of Munich, 85748 Garching, Germany
3 Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
4 Ashburn, VA, USA
5 Bangalore, India
6 Tokyo, Japan

Received: 24 October 2023 / Accepted: 3 June 2024 / Published online: 25 June 2024
© The Author(s) 2024

Abstract During the public Kaggle competition “IceCube
– Neutrinos in Deep Ice”, thousands of reconstruction algo-
rithms were created and submitted, aiming to estimate the
direction of neutrino events recorded by the IceCube detec-
tor. Here we describe in detail the three ultimate best, award-
winning solutions. The data handling, architecture, and train-
ing process of each of these machine learning models is laid
out, followed up by an in-depth comparison of the perfor-
mance on the Kaggle datatset. We show that on cascade
events in IceCube above 10 TeV, the best Kaggle solution is
able to achieve an angular resolution of better than 5◦, and for
tracks correspondingly better than 0.5◦. These results indi-
cate that the Kaggle solutions perform at a level comparable
to the current state-of-the-art in the field, and that they may
even be able to outperform existing reconstruction resolu-
tions for certain types of events.

1 Introduction

The IceCube Neutrino Observatory [1] consists of a detec-
tor installed deep within the antarctic glacier and spans a
cubic kilometer of ice. Its mission is to probe the properties
of fundamental particles and the astrophysics of these parti-
cles. The main subject of study, so-called neutrinos, are the
most abundant matter particle in the universe. They are nearly
massless and do not carry an electric charge, making them
particularly difficult to detect. An important step in analysing
the data collected by the detector is to estimate the direction

a e-mail: philipp.eller@tum.de (corresponding author)
b e-mail: rasmus.orsoe@tum.de

the neutrinos came from based on the measurements of the
faint traces of Cherenkov radiation resulting from neutrino
interactions in the ice. This direction information is needed,
for example, to unveil violent astrophysical neutrino sources
[2,3], or to study neutrino properties [4–6].

1.1 Reconstruction in IceCube

Reconstruction of events is the process of turning the detec-
tor read-out data into high-level, physical quantities (such
as the neutrino direction in our case), which is a parameter
inference problem [7]. Traditional direction reconstruction
algorithms in IceCube range from fast line fits [8] to increas-
ingly sophisticated maximum likelihood estimators (MLEs).
A key component to MLE techniques is the event reconstruc-
tion likelihood itself that describes the scattering and absorp-
tion of photons in the South Pole ice, which is considered
intractable and therefore requires approximation. Simpler
techniques rely on parameterized distributions as approxi-
mations [9], or simplify the likelihood by describing only
the direction reconstruction by removing pulses originating
from scattered light [10]. Such algorithms are often used as
first-guesses and fast reconstruction of real-time alerts [11].
More accurate but slower approaches make use of the full
reconstruction likelihood, as described in [12]. For instance,
the method described in Ref. [13] is based on sophisticated
photon ray tracing to approximate the full reconstruction like-
lihood, and can reconstruct all event topologies, but is lim-
ited to the GeV energy range. Beyond the GeV scale, similar
approaches are followed that typically target a specific type
of event [6,14]. Such methods have been widely used, most

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12977-2&domain=pdf
http://orcid.org/0000-0001-6354-5209
http://orcid.org/0000-0001-8890-4124
mailto:philipp.eller@tum.de
mailto:rasmus.orsoe@tum.de

646 Page 2 of 19 Eur. Phys. J. C (2024) 84 :646

recently in finding evidence for neutrino emissions from the
NGC1068 Seyfert galaxy [15].

In recent years, new reconstruction techniques relying on
neural networks (NNs) have emerged. In theory, NNs are able
to approximate arbitrary functions, and once trained, they can
reconstruct neutrino events many orders of magnitude faster
than traditional methods. Techniques based on NNs are there-
fore both fast and flexible, as they can replace likelihoods,
and can generalize to the entire energy range of IceCube.
However, it has been an ongoing effort to identify model
architectures that provide equal or superior reconstruction
performance compared to the current traditional methods.
This search is further complicated by the nature of neutrino
telescope data; geometric time series is a data type that falls
in-between established machine learning paradigms, mak-
ing an a priori identification of ideal model architecture non-
trivial. Some early attempts used convolutional neural net-
works (CNNs) to reconstruct energy and direction of high-
energy cascade events [16]. A similar method was used for
the energy reconstruction of neutrinos from NGC 1068 [17].
Also for the GeV energy range, an adaptation of CNNs have
been used to perform a variety of reconstruction tasks [18].
Graph Neural Networks (GNNs) have been shown to further
improve the reconstruction accuracy for low energy events
[19], and have also been adapted for novel tasks such as pulse
cleaning [20], but struggle to outperform traditional recon-
struction methods beyond the GeV energy range. Hybrid
approaches combine MLE techniques with deep learning,
where the likelihood is either fully or partly approximated
by neural networks [21,22]. Such a technique was recently
used to find evidence of neutrino emissions from the galactic
plane [23].

1.2 “Neutrinos in Deep Ice” Kaggle competition

Kaggle is an online platform where companies and institu-
tions can present data science problems to the general pub-
lic through competitions. In these competitions, members
of the public can compete in teams to develop algorithms
that perform best on a well-defined problem specified by
the competition. We created the Kaggle competition “Ice-
Cube – Neutrinos in Deep Ice” [24], where the participants
were tasked with developing direction reconstruction algo-
rithms for various IceCube neutrino events. Given a detec-
tor response x which was induced by a neutrino with direc-
tion vector rtruth , the algorithms had to produce an estimate
rrecon. of the true neutrino direction. The scoring metric used
to evaluate the quality of the algorithms was the mean open-
ing angle between rtruth and rrecon. computed over a large set
of events. This particular choice of metric was based on the
physics question of interest, and considerations on robustness
imposed by Kaggle. A so-called “public” leader board score
was computed on roughly half of the hidden test set upon

submission and the score made available to the participants,
while the “private” leader board score remained hidden from
everyone until the completion finished. This private score
determined the final ranking. This division of leaderboards
is a technique used by Kaggle to encourage participants to
produce solutions that generalize well to unseen data.

During the 3 month competition period from January 19th
to April 19th 2023, a total of 6460 people entered the com-
petition and 901 submitted at least one valid solution. At
the end of the competition, the participants were distributed
across 812 competing teams and a grand total of 11,206 solu-
tions had been submitted [25], of which the top three, prize-
winning solutions are presented in this article.

2 Competition details and dataset

The IceCube detector [1] consists of 5160 Digital Optical
Modules (DOMs) [26] distributed on 86 strings at depths
from 1450 m to 2450 m, see Fig. 1. The main array of the
detector consists of 78 strings arranged in a near-hexagonal
pattern each carrying 60 DOMs with a vertical separation of
17 m and an average horizontal distance between neighbour-
ing strings of 125 m. Each DOM holds a 10′′ Photomultiplier
Tube (PMT) directed towards the center of the Earth. At a
depth of around 2000 m, a layer of optical impurities lies
embedded in the ice. The layer is mostly comprised of min-
eral dust, referred to as “the dust layer” and effects the scat-
tering and absorption of light [27]. An additional 8 strings
have been installed around the center string of the main array.
On these strings, the DOMs are distributed differently than
in the main array: Above the dust layer, at around 1750 m to
1850 m, 10 DOMs comprise the so-called “veto cap”, a clus-
ter of DOMs used to identify electrically charged particles
entering the detector from above. Below the dust layer, from
around 2100 m to 2450 m, a part of the ice where the opti-
cal transparency is highest, a second cluster of DOMs have
been installed. This second cluster, named “DeepCore” [28],
uses DOMs with higher quantum efficiency compared to the
main array and the modules have a vertical spacing of just
7 ms, making it the detector volume with the highest density
of DOMs.

When neutrinos interact in the ice, charged particles are
produced that emit Cherenkov radiation as they transverse the
ice. The PMTs in IceCube DOMs can detect these photons,
and the amount of signal detected for a neutrino interaction
may range from a few to more than 105 photons. The number
of detected photons, however, is many orders of magnitudes
lower than those emitted, and this signal is interspersed with
noise from primarily radioactive decays in the glass housing
of the DOMs.

123

Eur. Phys. J. C (2024) 84 :646 Page 3 of 19 646

Fig. 1 Illustration showing the IceCube detector with its 86 strings
vertically deployed in ice, instrumenting the depth between 1450 m and
2450 m. The 78 strings of the main array are arranged in a nearly hexag-
onal pattern, while the remaining 8 strings have a denser sensor spacing
forming “DeepCore” and are highlighted in green. (Image courtesy of
the IceCube collaboration.)

2.1 Neutrino events in IceCube

When photo-electrons produce a sufficiently large voltage at
the PMT anode, a digitization process is triggered where the
PMT waveforms are read out either partially or fully. If at
least one neighboring DOM on the same string also records
a signal within 1µs, the hard local coincidence (HLC) con-
dition is satisfied and the full waveform is read out. If this
condition is not met, only minimal information around the
peak voltage is read out [1]. The digitized waveforms are sub-
ject to an unfolding process [12] that estimates photon arrival
times and the charge of individual photo electrons – each of
which is referred to as a so-called “pulse”. Based on the HLC
hits recorded by the DOMs, event triggers set certain criteria
for reading out all signal recorded by DOMs, including non-
HLC pulses, for further processing. Different event trigger
definitions are used in the IceCube online systems [29], and
the events used in the Kaggle competition satisfy at least one
of them.

Neutrino events in IceCube come mainly in two broad cat-
egories that have distinct geometric shapes. “Tracks”: suffi-
ciently energetic charged-current (CC) muon neutrinos (and
roughly 17% of ντ interactions) produce a track signature.
These events produce a muon that can travel long distances
in the ice while emitting Cherenkov radiation, effectively
producing a track-like signature.“Cascades”: other neutrino
interactions that are not described by the track class. These
interactions produce electromagnetic and hadronic particle
showers in which the energy tends to be deposited over

Fig. 2 A 22.4 PeV νμ CC event from the Kaggle dataset where the
neutrino interacted outside the detector volume, allowing the muon to
travel from above and through the detector with zenith and azimuth
angles of 52◦ and 189◦, respectively. HLC pulses are shown in blue.
Solid grey points indicate non-HLC pulses. Not shown is the time infor-
mation of the pulses. Neutrino direction reconstructions are shown with
coloured lines, and the grey line depicts the true neutrino direction. The
reconstructed directions were (53, 190), (52, 188), (53,189) for the 1st,
2nd and 3rd place solution respectively. Top: A side view of the event
– the muon passes through the entire detector. Bottom: Close-up of the
end of the track highlighting the differences in predictions

relatively small distances, effectively producing a localized
deposit of light.

An illustration of a simulated track event is shown in Fig. 2.
In this event, the neutrino interacted outside the detector vol-
ume, producing a muon that enters the detector from above.
Because the neutrino had 22 PeV of total energy, the result-
ing muon is able to travel through most of the detector and a
large number of DOMs measure Cherenkov radiation from
the interaction. The true direction and reconstructed direc-
tions from each winning solution are added for comparison.

The participants of the kaggle competition were provided
with nearly 140 million simulated neutrino events together
with the true directions. These events span the energy range
from 100 GeV to 100 PeV, and contain all flavours and inter-
action types, and hence both tracks and cascades. The neu-
trino events were simulated with an energy spectrum follow-

123

646 Page 4 of 19 Eur. Phys. J. C (2024) 84 :646

Table 1 Input data for Kaggle competition: neutrinos in deep ice

Feature Description Unit

(x, y, z) Position of DOMs in IceCube coordinates m

t Pulse time relative to trigger time ns

q Charge of a pulse P.E.

Aux . If 0, the pulse is in HLC –

ing a power law of E−1.5 between 100 GeV and 1 PeV, and
E−1 at the highest energies between 1 and 100 PeV. The
ratio of neutrino flavors was roughly kept equal, resulting in
a sample dominated by cascade events (∼2/3) and a sizable
fraction of tracks (∼1/3). These events were grouped into 660
random sub-samples, so-called “data batches”, each contain-
ing the detector response from 200,000 events. Each detector
response x is a [npulses, 6]-dimensional array, where npulses is
the number of observed pulses in the trigger window, which
can range from a few to several hundreds of thousands. For
each pulse, the in-ice position of the PMT, arrival time, the
associated charge and an auxiliary flag is provided. These six
features are the input to the reconstruction algorithms and are
shown in Table 1.

If the auxiliary flag is 1 it indicates that the specific pulse
did not meet HLC criteria, and is thus more likely to origi-
nate from noise, but could also be scattered light. Each event
is simulated using a unique set of nuisance parameters that
represents the systematic uncertainties of the detector. This
includes assumed scattering and absorption of light, and lets
the collection of events represent a wide range of detection
scenarios [30]. In addition, the detector responses have not
undergone any pulse cleaning, a procedure that attempts to
remove noise-induced pulses.

2.2 A competition baseline with DynEdge

To provide the participants with a baseline to compare
against, we decided to train a GNN from GraphNeT [31],
an open-source ML library for neutrino telescopes, on parts
of the competition data. We submitted the predictions from
the GNN to the leaderboard for comparison, and shared the
trained model and technical material that allowed partici-
pants to fully tinker with every aspect of this method. Many
solutions, including the winning solutions documented in this
paper, took inspiration from the techniques in our baseline
submission and produced their own versions aimed specif-
ically for this competition. In this section we elaborate on
some of those techniques. This baseline model also serves as
a reference in the results section, where performance of the
winning solutions is assessed and compared.

2.2.1 DynEdge

The specific GNN called “DynEdge” [19], is a flexible algo-
rithm capable of reconstruction and classification for many
different physics tasks on both a per-pulse and per-event
level. DynEdge is a convolutional graph neural network
which represents neutrino event as point cloud graphs. A
graph is a collection of nodes n and edges e. In the competi-
tion baseline, we represented individual pulses of Cherenkov
radiation as nodes, and edges are initially drawn to each
node’s k Nearest Neighbours (kNN) based on the Euclidean
distance between the in-ice PMTs that measured the pulse.
The data associated with each node is the pulse information
shown in Table 1. The graphs are then convolved by an Edge-
Conv [32] layer, which updates the feature vector of the i’th
node by adding the pair-wise differences between i’th node
and each of its k neighbours. The layer is defined by

x′
i =

j=k∑

j∈N (i)

h�(xi , x j − xi) (1)

where xi represents the un-convolved feature vector of the
i’th pulse, x j the feature vector of the j’th neighbour of
the i’th pulse and h� is a learned function applied to all
neighbourhoods. The convolved values of the i’th node is
represented by x′

i . DynEdge applies multiple of these lay-
ers in series, and between each layer the neighbourhoods are
re-calculated based on each node’s position in latent space,
effectively letting the GNN learn the optimal edges for the
given task. The most recent use of DynEdge in IceCube is in
a study of IceCube Upgrade’s expected sensitivity to atmo-
spheric neutrino oscillations, where it was used to remove
noise pulses, classify event topologies and for reconstruc-
tion [20].

2.2.2 Von Mises–Fisher loss

In our baseline submission we used the von Mises–Fisher
(vMF) distribution for 3D vectors as a loss function [19]. By
taking the natural logarithm, one obtains

loss = −κ · cos(�θ) − ln(C3(κ)) (2)

where �θ is the opening angle between the true and recon-
structed 3D direction vector, and κ is a measure of uncer-
tainty, analogous to 1

σ
for normal distributions. The quantity

C3(κ) represents the normalization constant of the vMF dis-
tribution, which requires numerical approximation for 3D
vectors. The vMFs distribution for 3D vectors represents a
2-sphere embedded in R

3 and is conceptually close to con-
ventional choices in loss functions such as 1 − cos(�θ) but
has the added benefit of the uncertainty estimation through
κ , which is estimated alongside the direction by DynEdge.

123

Eur. Phys. J. C (2024) 84 :646 Page 5 of 19 646

For the baseline, we trained DynEdge according to the
procedure documented in [19] using the 3D vMF loss on
7.8% of the competition data without further optimization.
This version was submitted to the leaderboard early in the
competition, along with technical material, and achieved a
score of around 1.018 on the public leaderboard, which is
calculated as the mean opening angle taken over the eval-
uation dataset. When using the full dataset for training, the
score drops to around 0.985.

3 Winning solutions

In this section, the technical details behind each winning solu-
tion are described. The details include core model architec-
tures, choices in data preprocessing, standardization, training
techniques and ensembling methods.

3.1 1st place solution

We designed a simple, lightweight model combining the
EdgeConv [32] and the transformer architecture, allowing
us to leverage the strengths of both architectures. By creat-
ing six variations of this model and ensembling them, we
achieved a private leaderboard score of 0.960.

3.1.1 Preprocessing

Transformers can achieve a high accuracy even without
extensive feature extraction when provided with adequate
training data. Given this, our approach emphasized retain-
ing the inherent characteristics of the data, applying minimal
preprocessing.

The input features are as defined in Table 1. Due to com-
putational constraints, the sequence for each event was trun-
cated to a maximum of 6000 pulses for inference, and only
events with a maximum of 200 to 500 (depends on model)
pulses or less were used for training. Each input feature is
scaled as follows.

x ′, y′, z′ = x

500
,

y

500
,

z

500
(3)

t ′ = t − 104

115
(4)

q ′ = log10(q)

3
(5)

In addition to these elementary features, the node homophily
ratio [33] of (x, y, z, t) is extracted as an additional global
statistic. These global statistics features are concatenated
with the output from the global pooling layer shown in Fig. 3.
These preprocessing steps were similar to those of DynEdge
[19].

Fig. 3 This illustrates the overall architecture of the 1st place model.
The left part represents the core structure of our method, combining
EdgeConv and a Transformer layer, while the right part depicts the
stacking process

3.1.2 Base model architecture

An overview of our model is shown in Fig. 3. The base model
uses multiple blocks of EdgeConv followed by a transformer.

3.1.3 EdgeConv

In the original EdgeConv layer implementation, the feature
vector xi associated with DOMi is updated based on the dif-
ference x j −xi , where x j represents the feature vector of the
k-nearest neighbor DOM j to DOMi , as seen in Eq. (1). This
scheme works well for features like x, y, z, and time. But for
features like charge and the auxiliary flag, its absolute values
are important. Therefore, we updated xi based on both the
difference x j − xi and x j itself.

x′
i =

j=k∑

j∈N (i)

h�(xi , x j − xi , x j) (6)

3.1.4 Edge selection

In the original EdgeConv implementation, edges are cal-
culated in each layer dynamically by k-Nearest Neighbors
(kNN). However, this edge selection scheme is not differen-
tiable in itself and therefore does not have gradients. This
methodology worked well for the segmentation task in the
original EdgeConv paper [32], as points in the same segment
are trained to be close in the latent space. However, direc-
tion reconstruction is fundamentally different, and therefore
the edges used in the EdgeConv layers of this method are
calculated based on the input features only once.

As illustrated in Fig. 3, our method first calculates the
edges of a neutrino event. The event graph containing node

123

646 Page 6 of 19 Eur. Phys. J. C (2024) 84 :646

features x and edges e is then passed through EdgeConv
which uses the edges to convolve the node features. These
latent, convolved node features x′ are then added together
with the original, unconvolved node features x in a skip-
connection, and the result is normalized. The normalized
quantity is passed to a transformer with multiple attention
heads, and this output is also subject to skip-connection addi-
tion and normalization. The output is given to a MLP block
with a final addition and normalization skip connection. This
combination of EdgeConv and a Transformer layer forms
the backbone of our method and may be repeated in serial n
times, as denoted in the diagram. The Number of layers n is
a hyperparameter which has been subject to tuning, and our
final method utilizes multiple instances of this base model
with different choices in n in an ensemble. The output of this
series of EdgeConv + Transformer blocks is fed through an
MLP block and is subject to global max pooling, producing
a latent column vector for each event. This column vector is
concatenated with global statistics, i.e. a set of engineered
features that describe the entire event. This column vector is
given to a final MLP with two prediction heads.

3.1.5 Loss function

While the von Mises Fisher Loss shown in Eq. (2) serves as
a reliable and consistent loss function, it represents θ using
cosine values. However, the metric of this competition is
the angle θ itself. To minimize θ itself, we defined the loss
function as follows:

Loss = −θ − κ cos(θ) − ln(C3(κ)) (7)

This simple modification resulted in a 0.005 decrease in open-
ing angle compared to von Mises–Fisher Loss, which corre-
sponds to a difference of several places on the final Kaggle
leader board.

3.1.6 Ensemble members

We made an ensemble of six models, whose configuration can
be seen in Table 2. The dimensions of both EdgeConv and
transformer layers are set to 256 and the number of attention
heads for the transformer is set to 8 for all ensemble mem-
bers. The number of EdgeConv+Transformer block in each
model is either 3 or 4. The variables used to calculate the
distance used for edge selection by kNN are either the 3d
position (x, y, z) or the 4d input (x, y, z, t) and 6 edges are
extracted for each node. The maximum sequence length for
the transformer layers ranges between 200 and 500 pulses
per event for training, but is set to 6000 pulses per event for
inference. A maximum of about 30 epochs was used as we
found training beyond this point gave increasingly diminish-
ing returns.

These models were selected from experiments conducted
during the limited competition period and were not designed
to achieve the best result. In particular, model dimension and
depth of the EdgeConv+Transformer block is very small,
model parameters are only 6 M for the largest model, and we
believe that a larger model would give better performance.

3.1.7 Ensemble method: stacking

Our approach to ensembling incorporates a stacking strategy,
where the predictions from the models listed in Table 2 are
used as input for a final model. The six ensemble members
have been trained with varying configurations, each capturing
different nuances of the data. By using these as embedding
extractors, the stacking model can benefit from the diverse
representations and deliver a more comprehensive prediction.

The stacking model is a three-layered Multi-Layer Per-
ceptron (MLP) with 512 dimensions. It takes as input the
prediction of x , y, z, κ and the last 256-dimensional hid-
den layer from each of the ensemble members. The detailed
architecture of this process is illustrated in Fig. 3. The same
loss functions used in base models are used for this stack-
ing model. Through stacking, a further decrease in average
opening angle by 0.003◦ was achieved.

3.1.8 Training procedure

The Adam optimizer [34] was used for all models. For mod-
els M1, M3, M4, and M6, which were trained from scratch,
the learning rate was set to 10−3 for the first 15 epochs, and
then it was linearly decayed from 10−3 to 10−6 for the sub-
sequent 15 epochs. The fine-tuned models M2 and M5 had
a learning rate of 10−4 in the initial half of their training,
and during the latter half, their learning rate was linearly
decayed from 10−4 to 10−7. To effectively train our mod-
els on this voluminous dataset, we employed several opti-
mization techniques. Specifically, by incorporating Mixed-
Precision Training [35] and Sequence Bucketing, we man-
aged to reduce the GPU memory consumption to about a
third, while achieving over three times faster computational
speed. This approach allowed us to handle the data very effi-
ciently while preserving the accuracy of our models.

3.1.9 Mixed-precision training

Mixed-precision training is a technique where input data and
model weights are cast from the high-precision 32-bit to 16-
bit floating point precision during training. This is known
to both decrease memory usage and speed up computa-
tions. When we first used mixed-precision, it made the train-
ing unstable. However, by appropriately placing the batch
normalization at specific positions as shown in Fig. 3, we
achieved stable progression in the training process.

123

Eur. Phys. J. C (2024) 84 :646 Page 7 of 19 646

Table 2 Overview of ensemble members and their configurations. nl :
Number of EdgeConv+Transformer block layers in serial connection.
k: The positional information used for computation of edges, 3d denot-
ing the three spatial dimensions and 4d denoting the inclusion of time.

bs : Batch size used for training. sl : Maximum input sequence length
used for training. ne Number of epochs. O: Origin of model, “–” indi-
cates training from scratch. Svalid .: Local validation score. Spublic and
Sprivate. are the public and private leaderboard scores, respectively

ID l k bs sl ne Svalid. Spublic Sprivate O

M1 4 3d 1000 200 30 0.967 0.964 0.964 –

M2 4 3d 1000 200 2 0.967 0.964 0.963 M1

M3 3 3d 500 300 30 0.969 0.965 0.965 –

M4 3 4d 1000 250 30 0.971 0.968 0.968 –

M5 4 3d 1000 200 12 0.966 0.963 0.963 M2

M6 4 4d 500 500 30 0.968 0.964 0.964 –

3.1.10 Sequence bucketing

In transformer models, the self-attention mechanism inher-
ently has a quadratic computational complexity with respect
to sequence length. As sequence lengths increase, this
leads to significant computational and memory challenges.
Sequence bucketing addresses this issue by grouping sequences
of similar lengths together in “buckets” [36]. As illustrated
in Fig. 4, this approach minimizes the need for exces-
sive padding, optimizes GPU memory use, and reduces the
number of unnecessary computations. Consequently, using
sequence bucketing can enhance the computational effi-
ciency of training transformer models without compromising
on performance. In our training, we chose the threshold a in
Fig. 4 such that the samples within a batch are split in a 8 : 2
ratio. This ratio was determined experimentally to minimize
the GPU memory usage.

In addition, some ensemble members were not trained
from scratch, but further trained from other ensemble mem-
bers. M2 was fine-tuned from M1 and M5 was fine-tuned
from M2. Out of the 660 batches of competition data, the
last batch was used for local validation of ensemble members

Fig. 4 Illustration of sequence bucketing for sequence data with vary-
ing lengths. The y-axis denotes the sequence lengths, whereas the x-
axis denotes the order of appearance in a batch of training data. Left:
Unordered set of sequences in a batch. Right: The set of sequences
are sorted according to their lengths and sliced into two “buckets”. Sl
denotes the sequence length and a represents a threshold choice

during training. The batch size was set as large as possible to
fit in GPU memory, ranging from 500 to 1000. A maximum
of about 30 epochs was used for all ensemble members as we
found training beyond this point gave increasingly diminish-
ing returns, however some models trained for fewer epochs
as seen in Table 2.

3.2 2nd place solution

In our pursuit to better predict the direction of neutrino par-
ticles based on data from the IceCube Neutrino Observatory,
we have critically assessed the constraints of conventional
GNNs. These include their predominantly local function and
unexpectedly slow computational processing in comparison
to transformer models. In particular, in our tests, 1.4M param-
eters and a 4 layer DynEdge reference model requires the
same computational budget for training as a 16 block and
7.4M parameters transformer T model, with the latter pro-
viding a significant improvement of the mean opening angle.
Therefore, our proposed solution hinges on transformer mod-
els, which we see as evolved GNNs that operate on a fully
connected graph, dynamically estimating edge weights via
attention mechanisms [37]. In addition to transformers, a
Fourier encoder is central to our method, which embeds the
continuous input variables, shown in Table 1, into a mul-
tidimensional space used in the model. This addition sig-
nificantly improved the quality of our direction reconstruc-
tions. Also, our method relies on a DynEdge-inspired feature
extractor and a custom implementation of the Minkowski
space-time line element as an attention bias, which refined
our method further. Our code is available as open source [38].

3.2.1 Preprocessing

This section details the techniques used for data standardiza-
tion, feature engineering, and data subselection.

123

646 Page 8 of 19 Eur. Phys. J. C (2024) 84 :646

3.2.2 Standardization techniques

Each of the detector coordinates was divided by 500. The
time was shifted by 1 × 104 towards the beginning of the
event and then was divided by 3 × 104. For the charge, we
took base-10 logarithm and divided the result by 3. This stan-
dardization is similar to the reference DynEdge model [19].
For the length of the event, we took the base-10 logarithm
of the total number of pulses. The Minkowski space-time
interval used the same normalization as the detector coordi-
nates. The ice properties data was taken from [39]. The depths
were adjusted by subtracting 1950 m and subsequently nor-
malized by dividing by 500 m. The scattering and absorption
lengths were standardized using the RobustScaler from
the scikit-learn library [40], ensuring the robustness of the
transformation to outliers.

3.2.3 Feature engineering

The input to the model consists of a sequence of pulses
described by the variables in Table 1. The base-10 logarithm
of the total number of pulses is included as an event-level
feature to provide the model with information on the event
length in case of under-sampling of long events, as described
in the next subsection.

We found it crucial to process the continuous variables,
e.g. time and charge, into a representation suitable for trans-
formers using the Fourier encoding method. Fourier encod-
ing is a technique from signal processing and is frequently
used for language models to describe the position of a word in
a sentence [37]. This encoding method, however, generalizes
beyond natural language processing and, when applied to a
continuous signal, can be viewed as soft digitization of the
input into a set of Fourier sine/cosine modes with 10,0002 j/d

frequencies, where d is the embedding width, and integer j
is changing from 0 to d/2 − 1 [37].

In our setup, the continuous input variables undergo the
Fourier encoding method, while the discrete auxiliary vari-
able is transformed using a learnable embedding. By mul-
tiplying the normalized time and position by 4096 and
charge by 1024, we attained sufficient digitization resolu-
tion. Specifically, this resolution is dictated by the highest
considered Fourier frequency, which is equal to 1. A change
of the normalized input continuous variable by 2π results
in the identical value in this lowest bit of the digitization.
The model may capture lower variations of the input due to
the continuous nature of the Fourier encoding, but the sig-
nal change may be too weak for the model to be treated
effectively. For example, with the above-described scaling,
we increased the sensitivity of the embedding to small input
variations and can achieve 3 × 104 ns/4096 × 2π = 1.2 ns
digitization resolution for time (3 × 104 ns comes from the
time normalization). This input up-scaling is critical, and the

use of the Fourier encoding method with sufficiently large
scaling coefficients significantly improved the model perfor-
mance in our experiments.

In addition to Fourier encoding, in part of our experimental
setups we have incorporated an optional DynEdge-inspired
encoder with several adaptations, which provides an addi-
tional set of latent features as input to our base model.

Lastly, to combat the noise induced pulses, we further
introduced a relative space-time interval bias based on the
Minkowski metric given by ds2 = c2dt2 −dx2 −dy2 −dz2.
The metric is used to compute the line element between all
pulses in a given neutrino event and encodes their causality.
We define the element as ds = sign(ds2) · √|ds2| clipped
at (−4, 4) and to achieve higher digitization resolution, we
divide ds by 1024 before passing ds through the Fourier
encoding. This engineered feature is added to the first trans-
former blocks in our base architecture as a relative attention
bias [41], which provided a noticeable improvement in the
performance.

In addition to the feature engineering above, we explored
the impact of including ice transparency and absorption as
additional features. Despite these extended features offering
an alternate representation for the z-coordinate, because of
their z-dependence, no noticeable improvement to the mean
opening angle was found when including the optical proper-
ties of the ice.

3.2.4 Sub-selections and filtering

The IceCube challenge considers relatively short events with
62 median and 163.4 average number of pulses, and only
1.4% of events are longer than 768 pulses. Therefore, we
trained our models with the maximum sequence length of 192
and used 512 lengths in validation and 768 in the final submis-
sion. In scenarios where events exceeded the pre-determined
maximum sequence length, a tiered selection mechanism was
employed. The primary preference was given to HLC pulses
and in cases where the number of available HLC pulses
fell below the pre-determined sequence length, non-HLC
pulses were sampled. Other sampling techniques based on
charge and arrival time were investigated but did not improve
upon the choice described above. Consideration of longer
sequences may improve the model performance on cascade
events with a large number of pulses.

3.2.5 Base model architecture

Central to our method is a transformer model that interprets
each event as a sequence of pulses, and the base model
diagram can be seen in Fig. 5. We use transformer blocks
with learnable shortcuts, similar to BEiT [42], and the first
4 transformer blocks are modified according to [41] in order
to incorporate the relative space-time as attention bias. The

123

Eur. Phys. J. C (2024) 84 :646 Page 9 of 19 646

continuous input variables are processed with the Fourier
encoder and the optional DynEdge-inspired encoder to create
features, which are then concatenated and fed to the trans-
former. In the DynEdge encoder, we switched all ReLU acti-
vations to GELU. Unlike the standard implementation, we
opted not to employ pooling operations and instead utilized
the latent features from the encoder. In the first 4 blocks of
the transformer, relative space-time intervals are given to the
Fourier-encoder as attention bias.

The first 4 transformer blocks are followed by 12 regu-
lar transformer blocks with learnable shortcuts. The input
sequence to these blocks is expanded with a cls token [43],
which is a special token often used in transformer architec-
tures, primarily to represent the entire input sequence for
tasks like classification. In the context of our model, the cls
token is targeted to aggregate the information about the neu-
trino direction when the data propagates through the trans-
former blocks. After the last transformer blocks, this cls token
is projected into a 3-dimensional vector, which characterizes
the predicted direction of the neutrino and the model’s con-
fidence in the prediction (the vector length).

The details of the models, considered in our experiments,
are summarized in Table 3. Our model sizes are referred to
according to ViT [44] notation: T for tiny (192), S for small
(384), and B for base (768). The computational cost of the
smallest considered T model is similar to the competition
DynEdge baseline.

3.2.6 Ensemble members

Several experiments were carried out to determine the effect
of the model size, pooling mechanism, head size, and use
of the Fourier and DynEdge-inspired encoders on the model
performance, and to derive the optimal sets of hyperparame-
ters for the base model architecture. Our experimental efforts
are summarized in the table below for a series of key config-
urations. In our evaluations, the Cross-Validation (CV) score
was gauged at L = 512 maximum sequence length (denoted
as CV512). The last five data batches (655 through 659)
served as our validation set. Columns Spublic and Sprivate

refer to the evaluation on the test data of the IceCube chal-
lenge for the public and private leaderboard, respectively.
The models included in our final ensemble are highlighted
in bold.

T d32 is our baseline model used for the optimization
of the training pipeline, which provides a significant boost
over the DynEdge reference model. To disentangle the effect
of the Fourier encoder on the performance, we have per-
formed an experiment T d32 no Fourier using a simple
projection of the continuous input variables into the trans-
former dimension. This experiment results in a significantly
lower mean opening angle suggesting that it is crucial to
convert the continuous input variables into a form suitable

for transformers. The next experiment T d32 avr pool uses
a simple masked average pooling over all tokens in the
sequence instead of cls token based pooling. This experi-
ment results in nearly identical performance to our T d32
baseline, and we have chosen cls token setup for all fur-
ther experiments. S d32 and B d32 experiments highlight
the effect of the model size on the performance, suggest-
ing an approximately 0.003 decrease in the mean opening
angle with each increase of the model from T to S to B size.
This up-scaling, however, carries the trade-off of a four-fold
increase in model parameters and the computational cost. In
addition, we have noticed the onset of over-fitting in training
B models, and the size of the dataset provided for the Ice-
Cube challenge may be insufficient for training B and larger
models. B d64 experiment illustrates the effect of the head
size on the model performance, suggesting that a smaller
head size of 32 is preferable to 64, typically used in compa-
rable size language and vision transformer models [43,45].
The next series of experiments (B+DynEdge, *S+DynEdge,
and *B+DynEdge) are targeted at the study of the effect of
the DynEdge-inspired encoder. These experiments exhibit
rather contradictive results and may be affected by the use of
different hardware, which permits a larger actual batch size.
Overall we see a small improvement or no improvement from
using DynEdge-inspired encoder. Our best final submission
to the competition was an ensemble of 5 experiments high-
lighted in bold in Table 4 because their combination provided
the best validation score.

3.2.7 Ensembling method

Our best final submission achieved a score of 0.9594 at the
public and 0.9602 at the private test sets (0.9610 CV512).
We considered a simple weighted average of the 3-d vec-
tors predicted by the models with weights listed in Table 4,
which are fitted to maximize the validation score. The use of
the weighted average is partially dictated by the property of
von Mises–Fisher Loss (applied in training) that enforces the
model to correlate the vector length with the confidence [46].
Therefore, a weighted average of the model predictions auto-
matically biases the final prediction toward the most confi-
dent direction. Ensembling only offered a marginal improve-
ment over our best single model result, which stands at 0.9608
public and 0.9618 leaderboard (0.9627 CV512). We also con-
sidered stacking with fitting a second-level few-layer neural
network model combining predictions of the first-level mod-
els (Table 4) and additional features, e.g. sequence length,
first detection time, and the total charge. However, these
experiments did not bring any improvement over the sim-
ple weighted average baseline.

123

646 Page 10 of 19 Eur. Phys. J. C (2024) 84 :646

Fig. 5 Illustration of the 2nd place transformer-based setup for inter-
preting events as sequences of pulses. The flow begins with feeding
pulses to the Fourier encoder to process continuous input variables. In
parallel, there is an option to use the DynEdge-inspired encoder for
additional feature extraction. The outputs from these stages are then

concatenated. The first 4 transformer blocks employ relative space-
time interval bias for clustering pulses based on their causality. In later
blocks, the input sequence is expanded with a cls token, which is pro-
jected at the end into a 3-dimensional vector with the neutrino direction

Table 3 Model specifications summary. In the “Depth Conf.” column,
the depths are represented in the order: Relative Bias Blocks, Dynamic
Edge Blocks, and Transformer Blocks. Each entry denotes the number

of blocks (or layers for DynEdge-inspired encoder) in each respective
component. A dash “–” indicates that a component is not present in the
model

Model Dims Head size Depth conf. Parameters

T 192 32 4/-/12 7.57M

S 384 32 4/-/12 29.3M

B 768 32 or 64 4/-/12 115.6M

S+DynEdge 384 32 4/4/8 23.3M

B+DynEdge 768 32 or 48 4/4/12 116.5M

Table 4 Performance breakdown of model configurations across
benchmarks. d in the Model column refers to the head size. Models with
an asterisk (*) were trained on 2×A6000 hardware, a distinct choice
from the RTX4090 that permits a significantly larger actual batch size.

Models used in our final ensemble are highlighted in bold, and the We
column represents the weight used for each ensemble member in the
final linear combination of predictions

Model We CV512 Spublic Sprivate

T d32 – 0.9704 0.9693 0.9698

T d32 no Fourier – 0.9900 0.9883 0.9871

T d32 avr pool – 0.9705 0.9693 0.9692

S d32 – 0.9671 0.9654 0.9659

B d32 0.0825 0.9642 0.9623 0.9632

B d64 0.1535 0.9645 0.9635 0.9629

B+DynEdge d48 0.1937 0.9643 0.9624 0.9627

*S+DynEdge d32 0.2360 0.9639 0.9620 0.9628

*B+DynEdge d32 0.3343 0.9633 0.9609 0.9621

123

Eur. Phys. J. C (2024) 84 :646 Page 11 of 19 646

3.2.8 Training procedure

For the effective management and utilization of the dataset
provided by the organizers, several data loading techniques
were employed during training, each summarized below.

– Data chunk caching: The provided dataset [24] is too
large to be fully stored in RAM on small workstations.
On the other hand, loading each data chunk and group-
ing the pulses based on the event takes a substantial time
and makes it prohibitively expensive to perform random
access to the dataset during training. To mitigate the com-
putational overhead from data loading and preprocessing,
a caching mechanism was employed, i.e. recently used
data chunks are stored in RAM, while the older chunks
are removed. This strategy enables fast random access to
data from recent chunks and at the same time drastically
reduces the RAM requirement compared to storing the
entire dataset.

– Chunk-based random sampling: The limitation of the
plant chunk caching, however, is that under random sam-
pling there is only little chance that the same chunk is
sampled multiple times within a short time, and the com-
putational overhead on data loading is still significant. To
enable effective cache utilization, we have implemented
a strategy that selects a random data chunk first and then
samples randomly all events within this chunk before
going to the next one, i.e. each data chunk is loaded only
once per epoch while the sampling is randomized. This
strategy provides a good balance between random access
and utilization of computational resources.

– Sequence bucketing: All sequences in the input batch
(not to be confused with “data batches” used above to
refer to individual files in the dataset) must be padded
to the longest sequence length in the batch before feed-
ing to a transformer model. Meanwhile, the processing
of these padding tokens brings an additional computa-
tional overhead. For random batch sampling (the default
option in deep learning libraries, e.g. Pytorch [47]) each
batch has a substantial chance of having at least one
sequence significantly exceeding the median sequence
length of the dataset. Processing of padding tokens in a
such batch may take several times more computational
budget than processing of actual sequence tokens. For
example, the competition dataset has a median sequence
length of 62 while the maximum sequence length in our
training is set to 192. To minimize this computational
overhead we adopted a length-matching batch sampling
strategy that constructs batches of events with approxi-
mately the same length (buckets of the length multiple of
16). This sequence bucketing has enabled training with
the maximum sequence length of 192 and inference at
lengths up to 768 without a substantial increase in com-

putational time. Using a sequence length of 768 during
inference yielded a noticeable performance improvement
when compared to the 192 length.

Data chunks 655 to 659 were reserved for local valida-
tion, while the remaining data chunks were used in training.
In all experiments, the AdamW optimizer [48] with a weight
decay of 0.05 was utilized. We employed a cosine anneal-
ing scheduler with a warm-up, adjusting the learning rate
according to a cosine function over the course of training.
The scheduler was reset at each epoch. The effective batch
size was maintained at 4096 using the gradient accumulation
[49] technique to navigate hardware limitations.

In our training in the first 2–3 epochs, we used the von
Mises–Fisher loss. In the remaining epochs, the model is
fine-tuned with a loss function defined as

Loss = θ + 0.05 · vMF (8)

where θ denotes the opening angle, and vMF represents the
loss defined in Eq. (2). This definition of loss emphasises the
competition metric, while retaining a small contribution from
the vMF loss, which gives access to the prediction confidence
in terms of the κ-parameter, which is a useful variable for
ensembling multiple models.

The training was carried out for 4–5 epochs depending on
the loss plateau, but the most notable performance improve-
ment occurred within the first epochs. At the initial epoch, T
and S models had the maximum learning rate of 5 × 10−4,
whereas the B models utilized a rate of 1 × 10−4. In the
following epochs, the maximum learning rate was reduced
from 2 × 10−5 to 0.5 × 10−5. Mixed precision is used to
accelerate the training. From the second epoch onward, the
incorporation of Stochastic Weight Averaging (SWA) [50], a
method that averages model weights across multiple training
steps for better generalization, was helpful in improving the
model performance.

Training time varies according to the model configuration.
Specifically, the T model with 7.57M parameters takes about
10 h per epoch, whereas the B+DynEdge model with 116.5M
parameters required 56 h per epoch on an Nvidia RTX4090.

3.3 3rd place solution

Recent literature that applies machine learning to IceCube
data often use Graph Neural Networks (GNNs). DynEdge
presents neutrino events as point cloud graphs where edges
are dynamically learned in small neighbourhoods, thus treat-
ing reconstruction of neutrino events as a dominantly geo-
metric learning problem. We posit that treating IceCube data
as a sequence learning problem is the optimal choice. Follow-
ing this, we make use of the transformer architecture in our
solution. Empirically we found transformers to have higher
utilization of GPUs, and run faster than GNNs both during

123

646 Page 12 of 19 Eur. Phys. J. C (2024) 84 :646

training and inference, despite doing more computations. We
also find that transformers scale well with the amount of
data, closely following known scaling laws that guide the
training of large language models [51]. We model angle pre-
diction of IceCube data as both a classification and regres-
sion task in our solution. We found each to have their own
strengths and weaknesses. Finally, we combine both predic-
tions using scikit-learn’s HistGradientBoostingClassi-
fier [40], a method that uses an ensemble of decision trees.
The training1 and inference2 code for our solution is open-
sourced. Figure 6 depicts the high level architecture of the
solution.

3.3.1 Preprocessing

We treat each event as a sequence of pulses sorted by their
arrival time from early to late. We represent the neutrino
events as sequences with lengths up to 3072. If an event has
more than 3072 pulses, we prioritize HLC pulses. For events
with more than 3072 HLC pulses, we randomly sample 3072
HLC pulses. For each event, we set the time of first pulse of
the sampled sequence to 0. Each element in the sequence is
a vector of pre-processed data about each pulse.

3.3.2 Standardisation techniques

The x , y, and z coordinates are each divided by 500. Relative
time values are divided by 30,000. We take the logarithm of
the charge values and divide it by 3. These choices are similar
to the standardization done for DynEdge.

3.3.3 Feature engineering

We have engineered features specific for each ensemble
member in our final method. First, for the transformer model
we add quantum efficiency of the PMTs, and optical proper-
ties of the ice near each sensor taken from [26]. While we use
the features mentioned in the final models, we note the per-
formance without these features in early experiments done
with small transformers only gave a small benefit than that
without the features.

Second, for the gradient boosting model, we added many
features, as shown in Table 5. Most of the features do not
seem to affect the performance. SHAP values indicate only
few are important, namely κ , first pulse absolute time, and
disagreement between predicted angles. Third, we prepared
the zenith and azimuthal angles as binned truth values for the
angle classifiers. The angles are quantized into 128 bins and

1 https://github.com/dipamc/kaggle-icecube-neutrinos.
2 https://www.kaggle.com/code/dipamc77/3rd-place
-attention-xgboost-ensembler.

Fig. 6 Model architecture of the 3rd place solution. We use a multi-
staged architecture to produce the angle for each event. The main com-
ponent is the transformer backbone, which is trained from scratch on
preprocessed events. Each event is modelled as a sequence of pulses
for which the transformer produces a sequence of embeddings. These
embeddings are then average pooled and used to produce independent
classification predictions of azimuth and zenith. The same embeddings
are also used to do perform regression for the 3D vector corresponding
to the angle. Finally, the regression and classification predictions are
combined using a gradient boosting classifier, which takes the predic-
tions as well as some hand engineered features as it inputs. The final
solution uses three independent copies of this architecture, and their
predictions are combined to produce the predictions we submitted to
the competition

the spacing between azimuth bins is uniform. The spacing
between zenith bins is uniform in cosine space.

3.3.4 Base model architecture

We use a multi-stage approach to predict the angles for each
event, as shown in Fig. 6. The main component of our model
is the transformer. We use standard GPT3 [52] layers as the
main building block. We preprocess and optionally subsam-
ple each sequence to as the input to the transformer, which
produces a sequence of latent vectors for each element in
the sequence. This sequence is then average pooled to pro-
duce a single vector, that feeds into classification heads. The
transformer predicts the classification of azimuth and zenith
with separate classification heads. Subsequently, the classifi-
cation outputs and averaged pooled vector are passed into the

3 https://github.com/karpathy/minGPT.

123

https://github.com/dipamc/kaggle-icecube-neutrinos
https://www.kaggle.com/code/dipamc77/3rd-place-attention-xgboost-ensembler
https://www.kaggle.com/code/dipamc77/3rd-place-attention-xgboost-ensembler
https://github.com/karpathy/minGPT

Eur. Phys. J. C (2024) 84 :646 Page 13 of 19 646

Table 5 Features used in the gradient boosting model. Along with
statistics of the pulse information, and the actual predicted angles from
both the classifier and regressor, we included some hand engineered
features. Features marked with * indicate custom hand engineered fea-
tures. The primary motivation for the features is to mitigate the bias of
the zenith classifier. We categorized HLC pulses that are on vertically
adjacent sensors and close in time as HLC pulse pairs. Then we com-
pute the features based on this categorization, note that we ignore HLC
pulses in this categorization if they do not have a corresponding paired
pulse. From the regressor predictions, we compute kappa, which is the
square root of the inverse norm of the predicted vector

Feature Description

zstats Min, max, mean and std
z-coordinate

tstats Min, max, mean and std of
absolute values arrival time

qstats Std and sum of charge

Phlc Percent of total pulses being HLC

Savg. Average speed between pulses

Ppair * Percentage of pulses that are HLC
pulse pairs

�12 * Difference of time and
z-coordinate between first HLC
pulse pair and second HLC pulse
pair

Z1 * Z value of first HLC pulse pair

θ Actual angles predicted by the
classifier and regressor

κ kappa – Proxy for confidence of
prediction

SA Softmax of azimuth classifier
predictions

SZ Softmax of zenith classifier
predictions

�θ Angular distance between all
direction predictions

regression head, which predicts a 3D vector corresponding
to the angle of the event. Finally, the predictions of both the
regression and classification heads concatenated with a set of
hand-engineered features, and passed to an Gradient boost-
ing classifier, which is essentially an ensemble of decision
trees.

For the transformers, each layer contains 8 attention heads,
with an embedding size of 512 (64 per head). The transformer
layers form the backbone of the model, producing an embed-
ding for each pulse in the sequence. These embeddings are
then averaged to make a single embedding per sequence.
This embedded sequence is passed to an MLP with hidden
dimension 12288 and output dimension 3072, which we call
the neck. The neck for the classification head and regression
head are separate. The neck embeddings are passed to the
final layers for classification and regression.

The total number of trainable parameters of the 18 layer
classification model is 72 M. The transformer backbone has
57 M parameters and the neck has 15 M parameters. The clas-
sification head is comprised of two independent fully con-
nected layers of 128 values for azimuth and 142 (128 + 14)
values for zenith. Note that extra 14 zenith values are due to
the specific design of our loss function, which we describe
in the training details subsection below. The regression head
is comprised of a single fully connected layer of 3 values,
for predicting the 3D vector corresponding to the azimuth
and zenith. Additional to the averaged embeddings of the
sequence from the transformer backbone, the regression head
gets the outputs of the prediction head as inputs, for a total
of 782 (= 512 + 128 + 128 + 14) inputs.

To combine the predictions of classification and regression
heads, we use a gradient boosting model, specifically scikit-
learn’sHistGradientBoostingClassifier [40]. The boost-
ing model receives hand engineered features built from the
predictions and the event data, and does a binary classifica-
tion of whether to use the regression or classification head for
a given event. These engineered features are shown in Table
5.

We noticed that a significant boost in performance is also
obtained due to the feature of first pulse absolute time. Note
that the transformers are trained only with relative time infor-
mation, setting the first pulse time to 0. We did not experiment
with absolute time values as inputs to the transformers, but
results of other participants indicates that using absolute time
gives a significant improvement.

3.3.5 Ensembling

Our final solution was an ensemble of three copies of the same
architecture, which is a full instance of the model shown in
Fig. 6. One of the models is a 15 layer transformer, and the
other two are 18 layer transformers. The 18 layer transform-
ers had weights taken from the same training run, where one
was taken when 90 percent of the training was complete,
and the other when the the training was fully completed,
hence their predictions had high agreement. The final pre-
dictions of each model are combined using the HistGradi-
entBoostingClassifier, note that this is separate from the
gradient boosting classifier used for combining classification
and regression heads.

Each of the three ensemble members independently pro-
duce the azimuth and zenith angles for each event. The pre-
dictions, along with all the hand engineered features of each
event described in the feature engineering subsection above,
are passed into the classifier, which only decides which of the
three predictions to use for each event. We tried other ensem-
ble methods such as averaging the predictions, but found the
gradient boosting model to be most effective.

123

646 Page 14 of 19 Eur. Phys. J. C (2024) 84 :646

3.3.6 Training procedure

The training of the 18 layer backbone transformer and clas-
sifier model was done on a single Nvidia RTX4080 GPU
over approximately 5 days. The 15 layer model takes about
10 percent less time to train than the 18 layer. For efficiency,
we train the transformer and the classifier separately, which
takes nearly all the training time. We also perform fine tun-
ing of the trained model on longer sequences, which takes
an additional 4 h. The regression head is trained after the
classification model training is complete, and the backbone
is kept frozen, training the regression head takes 6 h on the
same hardware. The gradient boosting model takes only a
few minutes to train. The training procedure can be broken
into a few stages, outlined below.

– Stage 1: In the first stage, we train the transformer from
scratch for 4 epochs on 650 of the 660 batches of data
provided by the organizers. We train for a maximum
sequence length of 256, this was a practical choice due
to the constraints of our hardware. We use the softmax
cross-entropy loss with a custom smoothing operation
for the classification loss. Unlike the standard softmax
cross entropy setting, our classes are adjacent in angular
space, and hence are not independent. To address this,
we apply smoothing using a 1D Gaussian kernel for the
local bins. The Gaussian kernel is of length 15 and sigma
3. For azimuth, since the space forms a closed loop, the
smoothing operation also wraps around. For zenith, we
pad the space with extra values to allow the Gaussian ker-
nel to smooth beyond the boundary angles. At inference
time, any predictions beyond the zenith boundary limits
are clipped. The learning rate scheduler, weight decay
and optimizer play an important role in the final perfor-
mance. For classification models, we tune these parame-
ters on smaller models and scale down the learning rate
for larger models. We use a maximum learning rate of
1 × 104 and a weight decay of 1 × 105, with a OneCycle
learning rate schedule, the final decayed learning rate is
2g × 106. We use AdamW optimizer for all the models.
We keep a batch size of 384 for the sequence length of
256, and use gradient accumulation where needed, to fit
out VRAM constraints. We also do gradient clipping with
norm of 0.5 to stabilize training.

– Stage 1 Fine-tuning: The classification models are fine-
tuned for longer sequences with 20 data batches for 1
epoch. We increase the maximum sequence length of
events from 256 to 3072 in this stage, and only train
on the events that are higher than 256 in length. Dur-
ing inference, we only use the weights of the fine-tuned
model for the sequences longer than 256. Since the sub-
set of data above 3072 is quite small, the total number

of events that was used for fine-tuning is small, and the
training is completed in 4 h.

– Stage 2: After completing the classifier training, we run
inference on 100 data batches to save the outputs. Regres-
sion model is trained on these 100 data batches for 35
epochs. Since the regression head was trained with the
backbone frozen, it is significantly faster to cache the
outputs of the backbone and directly train the regression
head. Caching outputs training the regression head takes
6 h. For the regression head, we use the von Mises–Fisher
loss shown in Eq. (2). In our experiments, we found it to
be unstable when training the full transformer backbone.
Hence we opted to the freeze the backbone after training
of the classification head, and only train the regression
neck and head. The vMF also allows to use the kappa fea-
ture as a proxy for prediction confidence. Kappa is anal-
ogous to the inverse of the norm of the predicted vector.
The choice of hyperparameters didn’t affect performance
much for the regression models. We keep the same hyper-
parameters as the classification models, except the batch
size which was increased to 1024.

– Stage 3: In the final stage the gradient boosting classifier
is trained with the outputs of both the regressor and clas-
sifier. We save predictions of 2 data batches from both
models, and train the HistGradientBoostingClassi-

fier with the labels set to the predictions of whichever
model was closer to the ground truth for every event.
Our primary motivation to add this stage was the obser-
vation that the distribution of predictions for zenith and
azimuth had unwanted structure for both the classifier
and regressor. Through experimentation, we found that
these predictions were independently not close to the
ground truth, but when combined using the HistGradi-
entBoostingClassifier in this stage, the performance
was significantly improved.

In addition, we employ several training optimizations to
reduce the training time. We used Flash Attention v1 [53] dur-
ing transformer training, which reduced the memory require-
ment and training time. The memory reduction allowed usage
of longer sequence length for fine tuning. We train the trans-
former in float16 precision. Approximately halfway through
the training, we switch to float32 precision for stability.
We also used sequence bucketing by sorting the dataset
by sequence length and packing mini-batches by sequence
length, the longest sequence in a batch will determine the
padding for the rest of the batch.

4 Comparison of solutions

The three solutions were evaluated on a sample of nearly 1
million neutrino events of all flavours and interaction types

123

Eur. Phys. J. C (2024) 84 :646 Page 15 of 19 646

Fig. 7 Example of KDEs constructed for each solution on cascade
events between 1 and 10 PeV. Estimated primary mode is denoted with
the vertical lines. Top: Up-going cascade events. Bottom: Down-going
cascade events

that originates from the same simulation used for the compe-
tition, but is sub-sampled such that it includes more events at
the lower and higher energy range to facilitate comparisons
there. Since this event sample, like the training data in the
competition, contains many events that consist of only noise
pulses, or events that are highly contaminated with atmo-
spheric muons, the distribution of opening angles between
reconstructed and true neutrino directions are relatively wide
(see Figs. 7 and 8). In order to report numbers that corre-
spond to the resolution of the well-reconstructable events,
we decided to use the mode of the opening angle distribution
instead of other summary statistics like the median or the
mean which are strongly affected by the non-reconstructable
events that span almost uniformly all opening angles between
0◦ and 180◦. This procedure gives an approximation of the
expected resolution on analysis level neutrino samples, where
low quality events that occupy the wide tails have been
excluded.

The opening angle distribution is binned in true neutrino
energy and for each energy bin, a kernel density estimator
(KDE) is used to estimate the primary mode of the distribu-
tion. Examples of such KDEs are also shown in Figs. 7 and
8.

The comparisons of the achieved resolutions as a func-
tion of neutrino energy are provided for up- and down-going

Fig. 8 Example of KDEs constructed for each solution on track events
between 1 and 10 PeV. Estimated primary mode is denoted with the
vertical lines. Top: Up-going track events. Bottom: Down-going track
events

events separately, and are shown for cascade events in Fig. 9
and tracks in Fig. 10.

The corresponding curves from the baseline model
(Sect. 2.2) are also included in all figures to provide a refer-
ence.

As seen in Fig. 9, all methods have difficulties reconstruct-
ing cascade events up to energies of a few TeV, which is
likely due to the composition of the competition dataset that
provides only few events in this energy range, and that the
signal-to-noise ratio becomes increasingly unfavourable as
energy decreases. Beyond a few TeV, the 1st place solution
achieves its best of around 5◦ for up- and down-going cas-
cade events between 10 to 100 TeV but worsens as the energy
increases. Similarly, the 2nd place solution reaches around
7◦ for both regions, but stays below 10◦ towards the higher
energy end. The 3rd place solution performs best across the
energy range and reaches an opening angle of less than 5◦
for the events with highest energies for both up- and down-
going events. In comparison, the provided baseline stagnates
at opening angles of around 20◦, which is a factor 3−4×
worse.

In Fig. 10, the resolutions on track events is shown. An
additional curve has been added that depicts the median kine-
matic opening angle between the initial neutrino and the out-
going muon from the interaction, representing the expected

123

646 Page 16 of 19 Eur. Phys. J. C (2024) 84 :646

Fig. 9 Estimated primary mode of opening angle vs. neutrino energy
for cascade events. Each curve represents a solution. Solid lines depict
estimated modes and bands denote 1 sigma uncertainty. Top: Estimated
primary mode for up-going cascade events. Bottom: Estimated primary
mode for down-going events

information limit from only reconstructing the track direc-
tion.

Around 1 TeV and lower, all methods follow the kinematic
angle closely but flatten beyond a few TeV for both up- and
down-going tracks. The 1st place solution settles below half
a degree for up-going track events after around 10 TeV but
for down-going tracks it reaches a low of around 0.6◦ at
10 TeV where after the resolution worsens considerably. The
2nd place solution settles under 0.5◦ after around 5 TeV and
reaches a low of around 0.4◦ for both up- and down-going
events. Although the 3rd place solution performs similarly
to the 1st place solution on the up-going tracks, it is closer to
the 2nd place solution on the down-going tracks. At the same
time, the provided baseline is not able to achieve sub-degree
resolutions anywhere, and has in general resolution that are
worse by a factor 2 − 3×.

From Figs. 9 and 10 it is evident that the three solutions
find different ways of minimizing the average opening angle:
The 1st place solution appears to resolve up-going tracks
significantly better than down-going, the 2nd place solution
reconstructs tracks very well, whereas the 3rd place solution
appears to resolve cascade events significantly better than the
other methods.

It can be noted from the figures discussed in this section,
that the 1st place solution may not be the first choice when

Fig. 10 Estimated primary mode of opening angle vs. neutrino energy
for track events. Each curve represents a solution, and the kinematic
angle is shown in grey

evaluated based on the mode of the opening angle, but rather
the 3rd place for cascade events and the 2nd place for tracks.
There is a strong correlation between mean and mode of
the opening angle, and therefore all three solutions provide
largely improved reconstruction compared to the baseline
reference, but the differences seen are expected.

The 1st, 2nd and 3rd solutions used sequence lengths of up
to 6000, 768 and 3072 for inference with their transformers,
respectively. These choices in hyper-parameters were con-
ditioned on the competition dataset, where less than 2% of
the events had a sequence length larger than 800, making the
number of events subject to significant sub-sampling small.
Because the sequence length increases with neutrino energy,
these choices in sequence length might be sub-optimal for
the high-energy neutrinos shown in Figs. 9, 10 and further
improvements in the high energy range might be possible.

5 Conclusions

While thousands of solutions were submitted during the 3-
month “IceCube – Neutrinos in Deep Ice” Kaggle compe-
tition, here we focused on the three winning ones. Data
processing, model architectures, and training procedures for
each of the top three solutions were described in this article,
providing insight into these novel ways of applying machine
learning to IceCube data. While the three approaches have

123

Eur. Phys. J. C (2024) 84 :646 Page 17 of 19 646

several aspects in common, they also differ in many ways.
The final Kaggle scores of the three solutions were almost
on par, but differences can be observed when analyzing and
comparing the performance in greater detail. In this work, a
comparison differentiating between track and cascade events,
as well as up- and down-going events, and shown as a func-
tion of the neutrino energy was provided. These comparisons
reveal, although all three solutions provided highly accu-
rate reconstructions in general, that there are stark differ-
ences. Overall, the 3rd place solution delivers the best cas-
cade reconstruction with a resolution consistently below 5◦
for neutrino events with energies above 10 TeV. For the track
events, the 2nd place solution performs overall best with reso-
lutions that are consistently below the 0.5◦ mark for neutrino
events with energies above 10 TeV.

The current IceCube state-of-the-art reconstruction that
specifically targets cascade events reports a median angular
resolution of 5◦–15◦ for a comparable energy range as quoted
above [16]. Another recently published IceCube reconstruc-
tion optimized for track events quotes median opening angles
of around 0.2–0.6◦ [14] in a similar energy range. Although
these numbers cannot be compared one-to-one with those
reported by our comparisons, as these are computed on dif-
ferent event samples and the median is not necessarily equal
to the mode, they indicate that the solutions found in the
Kaggle competition are strong contenders and possibly able
to outperform existing IceCube approaches, in particular for
cascade events.

Another strong suit of the ML-based Kaggle solutions
is their high inference speed and their applicability to dif-
ferent event types in IceCube, including noise and other
backgrounds. This means that the methods can, in principle,
be applied to the online IceCube data stream and provide
unprecedented real-time reconstruction quality.

It is also noteworthy that in the top 20 best performing
solutions, the vast majority relied on a combination of graph
convolutional neural networks and transformers. When com-
paring the three solutions against the baseline, it is worth
noting that all three methods outperform the DynEdge model
in this task by quite large margins across the energy range
considered in this work. Although the DynEdge baseline
provided here was not optimized for this competition or its
energy range, comparison of model architectures can provide
clues for future iterations of deep learning techniques in Ice-
Cube. As suggested in Sect. 3.1, the dynamic re-computation
of edges in the graph representation of events originates from
point cloud segmentation problems in computer vision and
provides a convenient way of applying convolutions on neu-
trino events of varying size and geometry. However, to project
the [n,d]-dimensional input into a [1,k]-dimensional event-
level prediction, aggregation of latent predictions is required.
In DynEdge, this many-to-one projection is done using sim-
ple statistical measures such as averages, minimum and max-

imum, and this aggregated information is processed by MLP-
blocks with relatively few learnable parameters. Two of the
winning solutions provide more sophisticated ways of pro-
ducing this projection; the 3rd place solution uses an elab-
orate set of engineered features in addition to the averages
of its GPT-encoder layers and the 2nd place solution uses a
CLS-token as its many-to-one projection. Another point of
comparison is the use of transformers, which all three meth-
ods relied on. As mentioned in Sect. 3.2, transformers can
be viewed as graph convolutional neural networks on fully
connected graphs, but where the edges are weighted with
attention scores, effectively letting the transformer decide
on a per-event level the optimal neighbourhood size and the
magnitude of each contribution of the pulses within. In con-
trast, DynEdge operates on a fixed neighbourhood size for
all events (8 for this baseline) and uses shared weights for
all neighbourhoods. Another interesting point is the large
size of the Kaggle training dataset. To this end, ML based
reconstruction algorithms in IceCube were trained on much
smaller datasets containing only few million events, which
has left large-scale training unexplored. Considering the role
of transformers in NLP and other fields with very large
datasets, it is not surprising to see such methods also scale
well to larger training data sets for IceCube. However, a clear
shortcoming of transformer-based solutions is their quadratic
scaling with sequence length in terms of memory require-
ments and computation speed, making it intractable to train
on events with very long sequences of pulses, which often
are the events of highest interest for certain physics analyses
within IceCube. While the winning solutions can be eval-
uated beyond the sequence lengths they were trained on, it
remains a topic for further study to characterize the accu-
racy of such methods when evaluated on sequences with
lengths many times larger than what they were trained on.
This question is an active area of research in the deep learn-
ing community, and recent developments, such as [54], offer
the promising ability to scale to very large sequence lengths.

While further studies are needed from the IceCube collab-
oration that directly compare to existing IceCube algorithms
on an equal footing, we were able to demonstrate the per-
formance of the competition winners on the Kaggle dataset.
Our resolution figures show an exciting potential of these
new methods.

Acknowledgements This project was supported by the IceCube col-
laboration, kaggle.com and the Kaggle competition research grants
program, the Munich Data Science Institute (MDSI), the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC-2094 – 390783311, the Sonder-
forschungsbereich (Collaborative Research Center) SFB1258 ‘Neutri-
nos and Dark Matter in Astro- and Particle Physics’, and the PUNCH4-
NFDI consortium fund “NFDI 39/1”.

Author contributions T.I. is the author of the 1st place solution and
detailed Sect. 3.1, H.B. and M.S. are the authors of the 2nd place solu-

123

646 Page 18 of 19 Eur. Phys. J. C (2024) 84 :646

tion and detailed Sect. 3.2, D.C. is the author of the 3rd place solution
and detailed Sect. 3.3. R.Ø. is the author of the DynEdge baseline. P.E.
and R.Ø. contributed all remaining text and edited the manuscript. R.Ø.
generated the model comparisons including the handling of all neces-
sary data. P.E. is the main organizer of the original kaggle competition.
All authors reviewed and discussed the full manuscript.

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: The datasets used for the current
study are publically available in the [kaggle competition] repository,
[https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/
data.]

Code Availability Statement This manuscript has associated code/
software in a data repository. [Author’s comment: The code/software
of the 2nd place solution is available in the following [github] repos-
itory, [https://github.com/DrHB/icecube-2nd-place], and of the 3rd
place in the following [github] repository, [https://github.com/dipamc/
kaggle-icecube-neutrinos]. The code/software of the 1st place solution
is not publically available but can be provided upon reasonable request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. R. Abbasi et al., The IceCube data acquisition system: signal
capture, digitization, and timestamping. Nucl. Instrum. Meth. A
601, 294–316 (2009). https://doi.org/10.1016/j.nima.2009.01.001.
arXiv:0810.4930

2. M.G. Aartsen et al., Observation of high-energy astrophysical
neutrinos in three years of IceCube data. Phys. Rev. Lett. 113,
101101 (2014). https://doi.org/10.1103/PhysRevLett.113.101101.
arXiv:1405.5303 [astro-ph.HE]

3. M.G. Aartsen et al., Neutrino emission from the direction of the
blazar TXS 0506+056 prior to the IceCube-170922A alert. Science
361(6398), 147–151 (2018). arXiv:1807.08794 [astro-ph.HE]

4. M.G. Aartsen, M. Ackermann, J. Adams et al., Measurement
of atmospheric tau neutrino appearance with IceCube Deep-
Core. Phys. Rev. D 99, 032007 (2019). https://doi.org/10.1103/
PhysRevD.99.032007

5. R. Abbasi et al., Measurement of atmospheric neutrino mixing with
improved IceCube DeepCore calibration and data processing. Phys.
Rev. D 108(1), 012014 (2023). https://doi.org/10.1103/PhysRevD.
108.012014. arXiv:2304.12236 [hep-ex]

6. M.G. Aartsen et al., Detection of a particle shower at the
Glashow resonance with IceCube. Nature 591(7849), 220–224
(2021) [Erratum: Nature 592, E11 (2021)]. https://doi.org/10.1038/
s41586-021-03256-1. arXiv:2110.15051 [hep-ex]

7. P. Eller, in Machine Learning for Astrophysics, Astrophysics and
Space Science Proceedings, ch. Event Reconstruction for Neutrino
Telescopes (2023)

8. M. Wellons, Robust Statistics in IceCube Initial Muon Reconstruc-
tion, in International Cosmic Ray Conference, ser. International
Cosmic Ray Conference, vol. 33, p. 3414 (2013)

9. J. Ahrens et al., Muon track reconstruction and data selec-
tion techniques in AMANDA. Nucl. Instrum. Meth. A
524, 169–194 (2004). https://doi.org/10.1016/j.nima.2004.01.065.
arXiv:astro-ph/0407044

10. J. Aguilar, I. Al Samarai, A. Albert et al., A fast algo-
rithm for muon track reconstruction and its application to the
ANTARES neutrino telescope. Astropart. Phys. 34(9), 652–662
(2011), ISSN: 0927-6505. https://doi.org/10.1016/j.astropartphys.
2011.01.003. https://www.sciencedirect.com/science/article/pii/
S0927650511000053

11. M. Aartsen, M. Ackermann, J. Adams et al., The IceCube realtime
alert system. Astropart. Phys. 92 (2016). https://doi.org/10.1016/
j.astropartphys.2017.05.002

12. M.G. Aartsen, R. Abbasi, M. Ackermann et al., Energy reconstruc-
tion methods in the IceCube neutrino telescope. J. Instrum. 9(03),
P03009 (2014). https://doi.org/10.1088/1748-0221/9/03/P03009

13. R. Abbasi, M. Ackermann, J. Adams et al., Low energy event recon-
struction in IceCube DeepCore. Eur. Phys. J. C 82(9), 807 (2022).
https://doi.org/10.1140/epjc/s10052-022-10721-2

14. R. Abbasi et al., A muon-track reconstruction exploiting
stochastic losses for large-scale Cherenkov detectors. JINST
16(08), P08034 (2021). https://doi.org/10.1088/1748-0221/16/08/
P08034. arXiv:2103.16931 [hep-ex]

15. R. Abbasi, M. Ackermann, J. Adams et al., Evidence for neu-
trino emission from the nearby active galaxy NGC 1068. Sci-
ence 378(6619), 538–543 (2022). https://doi.org/10.1126/science.
abg3395

16. R. Abbasi, M. Ackermann, J. Adams et al., A convolutional neural
network based cascade reconstruction for the IceCube Neutrino
Observatory. J. Instrum. 16(07), P07041 (2021). https://doi.org/
10.1088/1748-0221/16/07/P07041

17. R. Abbasi et al., Evidence for neutrino emission from the nearby
active galaxy NGC 1068. Science 378(6619), 538–543 (2022).
https://doi.org/10.1126/science.abg3395

18. J. Micallef and on behalf of the IceCube collaboration, Using con-
volutional neural networks to reconstruct energy of gev scale ice-
cube neutrinos. J. Instrum. 16(09), C09019 (2021) [Online]. https://
doi.org/10.1088/1748-0221/16/09/C09019

19. R. Abbasi, M. Ackermann, J. Adams et al., Graph neural networks
for low-energy event classification and reconstruction in icecube. J.
Instrum. 17(11), P11003 (2022) [Online]. https://doi.org/10.1088/
1748-0221/17/11/P11003

20. P. Eller, K. DeHolton, J. Weldert et al., Sensitivity of the Ice-
Cube upgrade to atmospheric neutrino oscillations, p. 1036 (2023).
https://doi.org/10.22323/1.444.1036

21. P. Eller, A.T. Fienberg, J. Weldert, G. Wendel, S. Böser, D.
Cowen, A flexible event reconstruction based on machine learn-
ing and likelihood principles. Nucl. Instrum. Methods Phys. Res.
Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1048, 168011
(2023) ISSN: 0168-9002. https://doi.org/10.1016/j.nima.2023.
168011 [Online]. https://www.sciencedirect.com/science/article/
pii/S0168900223000013

22. M. Huennefeld et al., Combining maximum-likelihood with deep
learning for event reconstruction in IceCube. PoS ICRC2021, 1065
(2021). arXiv:2107.12110 [astro-ph.HE]

23. I. Collaboration*†, R. Abbasi, M. Ackermann et al., Observation of
high-energy neutrinos from the galactic plane. Science 380(6652),
1338–1343 (2023). https://doi.org/10.1126/science.adc9818

24. A. Chow, L. Heinrich, P. Eller, R. Ørsøe, S. Dane, IceCube - Neutri-
nos in Deep Ice (2023) [Online]. https://kaggle.com/competitions/
icecube-neutrinos-in-deep-ice

123

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/data
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/data
https://github.com/DrHB/icecube-2nd-place
https://github.com/dipamc/kaggle-icecube-neutrinos
https://github.com/dipamc/kaggle-icecube-neutrinos
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nima.2009.01.001
http://arxiv.org/abs/0810.4930
https://doi.org/10.1103/PhysRevLett.113.101101
http://arxiv.org/abs/1405.5303
http://arxiv.org/abs/1807.08794
https://doi.org/10.1103/PhysRevD.99.032007
https://doi.org/10.1103/PhysRevD.99.032007
https://doi.org/10.1103/PhysRevD.108.012014
https://doi.org/10.1103/PhysRevD.108.012014
http://arxiv.org/abs/2304.12236
https://doi.org/10.1038/s41586-021-03256-1
https://doi.org/10.1038/s41586-021-03256-1
http://arxiv.org/abs/2110.15051
https://doi.org/10.1016/j.nima.2004.01.065
http://arxiv.org/abs/astro-ph/0407044
https://doi.org/10.1016/j.astropartphys.2011.01.003
https://doi.org/10.1016/j.astropartphys.2011.01.003
https://www.sciencedirect.com/science/article/pii/S0927650511000053
https://www.sciencedirect.com/science/article/pii/S0927650511000053
https://doi.org/10.1016/j.astropartphys.2017.05.002
https://doi.org/10.1016/j.astropartphys.2017.05.002
https://doi.org/10.1088/1748-0221/9/03/P03009
https://doi.org/10.1140/epjc/s10052-022-10721-2
https://doi.org/10.1088/1748-0221/16/08/P08034
https://doi.org/10.1088/1748-0221/16/08/P08034
http://arxiv.org/abs/2103.16931
https://doi.org/10.1126/science.abg3395
https://doi.org/10.1126/science.abg3395
https://doi.org/10.1088/1748-0221/16/07/P07041
https://doi.org/10.1088/1748-0221/16/07/P07041
https://doi.org/10.1126/science.abg3395
https://doi.org/10.1088/1748-0221/16/09/C09019
https://doi.org/10.1088/1748-0221/16/09/C09019
https://doi.org/10.1088/1748-0221/17/11/P11003
https://doi.org/10.1088/1748-0221/17/11/P11003
https://doi.org/10.22323/1.444.1036
https://doi.org/10.1016/j.nima.2023.168011
https://doi.org/10.1016/j.nima.2023.168011
https://www.sciencedirect.com/science/article/pii/S0168900223000013
https://www.sciencedirect.com/science/article/pii/S0168900223000013
http://arxiv.org/abs/2107.12110
https://doi.org/10.1126/science.adc9818
https://kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://kaggle.com/competitions/icecube-neutrinos-in-deep-ice

Eur. Phys. J. C (2024) 84 :646 Page 19 of 19 646

25. P. Eller et al., Public Kaggle Competition “IceCube – Neutrinos in
Deep ice”. PoS ICRC2023, 1609 (2023). https://doi.org/10.22323/
1.444.1609

26. R. Abbasi, M. Ackermann, J. Adams et al., The IceCube data
acquisition system: signal capture, digitization, and timestamp-
ing. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spec-
trom. Detect. Assoc. Equip. 601(3), 294–316 (2009), ISSN: 0168-
9002. https://doi.org/10.1016/j.nima.2009.01.001. https://www.
sciencedirect.com/science/article/pii/S0168900209000084

27. M. Aartsen, M. Ackermann, J. Adams et al., Efficient propaga-
tion of systematic uncertainties from calibration to analysis with
the SnowStorm method in IceCube. J. Cosmol. Astropart. Phys.
2019(10), 048 (2019). https://doi.org/10.1088/1475-7516/2019/
10/048

28. R. Abbasi, Y. Abdou, T. Abu-Zayyad et al., The design and per-
formance of IceCube DeepCore. Astropart. Phys. 35(10), 615–624
(2012), ISSN: 0927-6505. https://doi.org/10.1016/j.astropartphys.
2012.01.004. https://www.sciencedirect.com/science/article/pii/
S0927650512000254

29. J.L. Kelley and I. Collaboration, Event triggering in the IceCube
data acquisition system. AIP Conf. Proc. 1630(1), 154–157 (2014),
ISSN: 0094-243X. eprint: https://pubs.aip.org/aip/acp/article-pdf/
1630/1/154/12124858/154_1_online.pdf [Online]. https://doi.
org/10.1063/1.4902795

30. M. Aartsen, M. Ackermann, J. Adams et al., Efficient propaga-
tion of systematic uncertainties from calibration to analysis with
the snowstorm method in icecube. J. Cosmol. Astropart. Phys.
2019(10), 048 (2019). https://doi.org/10.1088/1475-7516/2019/
10/048

31. A. Søgaard, R.F. Ørsøe, L. Bozianu et al., Graphnet: graph neu-
ral networks for neutrino telescope event reconstruction (2022).
arXiv:2210.12194 [astro-ph.IM]

32. Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, Dynamic
graph CNN for learning on point clouds. ACM Trans. Graph. 38.
https://doi.org/10.1145/3326362

33. H. Pei, B. Wei, K.C.-C. Chang, Y. Lei, B. Yang, Geom-gcn: geo-
metric graph convolutional networks [Online]. https://openreview.
net/forum?id=S1e2agrFvS

34. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization
(2014). arXiv:1412.6980 [cs.LG]

35. P. Micikevicius, S. Narang, J. Alben et al., Mixed precision training.
In: International Conference on Learning Representations (2018)
[Online]. https://openreview.net/forum?id=r1gs9JgRZ

36. V. Khomenko, O. Shyshkov, O. Radyvonenko, K. Bokhan, Acceler-
ating recurrent neural network training using sequence bucketing
and multi-GPU data parallelization. In: IEEE First International
Conference on Data Stream Mining and Processing (DSMP), vol.
2016, pp. 100–103 (2016). https://doi.org/10.1109/DSMP.2016.
7583516

37. A. Vaswani, N. Shazeer, N. Parmar et al., Attention is all you need.
CoRR, vol. abs/1706.03762 (2017). arXiv:1706.03762

38. M.S. Habib Bukhari, IceCube – Neutrinos in Deep Ice (2023)
[Online]. https://github.com/DrHB/icecube-2nd-place

39. M.G. Aartsen et al., Measurement of South Pole ice transparency
with the IceCube LED calibration system. Nucl. Instrum. Meth.
A 711, 73–89 (2013). https://doi.org/10.1016/j.nima.2013.01.054.
arXiv:1301.5361 [astro-ph.IM]

40. F. Pedregosa, G. Varoquaux, A. Gramfort et al., Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830
(2011)

41. P. Shaw, J. Uszkoreit, A. Vaswani, Self-attention with relative posi-
tion representations. CoRR, vol. abs/1803.02155 (2018) [Online]

42. Z. Peng, L. Dong, H. Bao, Q. Ye, F. Wei, Beit v2: masked
image modeling with vector-quantized visual tokenizers (2022).
arXiv:2208.06366 [cs.CV]

43. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training
of deep bidirectional transformers for language understanding
(2019). arXiv:1810.04805 [cs.CL]

44. H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H.
Jégou, Training data-efficient image transformers and distillation
through attention (2021). arXiv:2012.12877 [cs.CV]

45. A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., An image is worth
16×16 words: transformers for image recognition at scale (2021).
arXiv:2010.11929

46. T.R. Scott, A.C. Gallagher, M.C. Mozer, Von mises-fisher loss:
an exploration of embedding geometries for supervised learning.
CoRR, vol. abs/2103.15718 (2021). arXiv:2103.15718

47. A. Paszke, S. Gross, S. Chintala et al., Automatic differentiation in
PyTorch (2017)

48. I. Loshchilov, F. Hutter, Fixing weight decay regularization in
Adam. CoRR, vol. abs/1711.05101 (2017). arXiv:1711.05101

49. J. Lamy-Poirier, Layered gradient accumulation and modular
pipeline parallelism: fast and efficient training of large language
models (2021). arXiv:2106.02679

50. P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, A.G. Wilson,
Averaging weights leads to wider optima and better generalization
(2019). arXiv:1803.05407

51. J. Hoffmann, S. Borgeaud, A. Mensch et al., An empirical analysis
of compute-optimal large language model training. Adv. Neural
Inf. Process. Syst. 35, 30016–30030 (2022)

52. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
Language models are unsupervised multitask learners (2019)

53. T. Dao, D.Y. Fu, S. Ermon, A. Rudra, C. Ré, FlashAttention:
fast and memory-efficient exact attention with IO-awareness. Adv.
Neural Inf. Process. Syst. (2022)

54. T.D. Albert Gu, Mamba: linear-time sequence modeling with selec-
tive state spaces (2024) [Online]. https://openreview.net/forum?
id=AL1fq05o7H

123

https://doi.org/10.22323/1.444.1609
https://doi.org/10.22323/1.444.1609
https://doi.org/10.1016/j.nima.2009.01.001
https://www.sciencedirect.com/science/article/pii/S0168900209000084
https://www.sciencedirect.com/science/article/pii/S0168900209000084
https://doi.org/10.1088/1475-7516/2019/10/048
https://doi.org/10.1088/1475-7516/2019/10/048
https://doi.org/10.1016/j.astropartphys.2012.01.004
https://doi.org/10.1016/j.astropartphys.2012.01.004
https://www.sciencedirect.com/science/article/pii/S0927650512000254
https://www.sciencedirect.com/science/article/pii/S0927650512000254
https://pubs.aip.org/aip/acp/article-pdf/1630/1/154/12124858/154_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/1630/1/154/12124858/154_1_online.pdf
https://doi.org/10.1063/1.4902795
https://doi.org/10.1063/1.4902795
https://doi.org/10.1088/1475-7516/2019/10/048
https://doi.org/10.1088/1475-7516/2019/10/048
http://arxiv.org/abs/2210.12194
https://doi.org/10.1145/3326362
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1109/DSMP.2016.7583516
https://doi.org/10.1109/DSMP.2016.7583516
http://arxiv.org/abs/1706.03762
https://github.com/DrHB/icecube-2nd-place
https://doi.org/10.1016/j.nima.2013.01.054
http://arxiv.org/abs/1301.5361
http://arxiv.org/abs/2208.06366
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2012.12877
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2103.15718
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2106.02679
http://arxiv.org/abs/1803.05407
https://openreview.net/forum?id=AL1fq05o7H
https://openreview.net/forum?id=AL1fq05o7H

	IceCube – Neutrinos in Deep Ice
	The top 3 solutions from the public Kaggle competition
	Abstract
	1 Introduction
	1.1 Reconstruction in IceCube
	1.2 ``Neutrinos in Deep Ice'' Kaggle competition

	2 Competition details and dataset
	2.1 Neutrino events in IceCube
	2.2 A competition baseline with DynEdge
	2.2.1 DynEdge
	2.2.2 Von Mises–Fisher loss

	3 Winning solutions
	3.1 1st place solution
	3.1.1 Preprocessing
	3.1.2 Base model architecture
	3.1.3 EdgeConv
	3.1.4 Edge selection
	3.1.5 Loss function
	3.1.6 Ensemble members
	3.1.7 Ensemble method: stacking
	3.1.8 Training procedure
	3.1.9 Mixed-precision training
	3.1.10 Sequence bucketing

	3.2 2nd place solution
	3.2.1 Preprocessing
	3.2.2 Standardization techniques
	3.2.3 Feature engineering
	3.2.4 Sub-selections and filtering
	3.2.5 Base model architecture
	3.2.6 Ensemble members
	3.2.7 Ensembling method
	3.2.8 Training procedure

	3.3 3rd place solution
	3.3.1 Preprocessing
	3.3.2 Standardisation techniques
	3.3.3 Feature engineering
	3.3.4 Base model architecture
	3.3.5 Ensembling
	3.3.6 Training procedure

	4 Comparison of solutions
	5 Conclusions
	Acknowledgements
	References

