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Abstract We compute the two-loop effects induced by an
anomalous Higgs trilinear self-coupling in the partial decay
width �(h → γ Z). The computation is performed using
the anomalous coupling approach, working in the unitary
gauge, and in a theory in which the anomalous coupling is
generated via the addition to the scalar potential part of the
Standard Model Lagrangian of an (in)finite tower of (�†�)n

terms. The former computation is automatically finite while
the latter requires the renormalization of the lowest order
contribution. We discuss the renormalization conditions that
should be employed in order to obtain the same result in the
two approaches. We find that the h → γ Z process is one
of the most sensitive mode to an anomalous trilinear Higgs
self-coupling. As a by-product of this work we confirm one
of two different results present in the literature concerning
the contribution of an anomalous Higgs trilinear coupling in
the h → γ γ decay.

1 Introduction

The properties of the scalar particle with mass around 125
GeV discovered at the Large Hadron Collider (LHC) in 2012
[1,2] have been extensively studied since its observation.
These studies show strong evidence that the couplings of
this particle to fermions and vector bosons are compatible
within 10–20% with those of the Higgs boson as predicted
in the Standard Model (SM) of elementary particles.

The complete identification of the scalar particle discov-
ered in 2012 with the Higgs boson of the SM requires also
the study of the Higgs self-interactions that come from the
scalar potential part in the SM Lagrangian. In the SM, the
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Higgs potential in the unitary gauge reads

V (h) = m2
H

2
h2 + λ3vh

3 + λ4

4
h4 (1)

where the Higgs mass (mH ) and the trilinear (λ3) and
quartic (λ4) interactions are linked by the relations
λSM

4 = λSM
3 = λ = m2

H/(2 v2), where v = (
√

2 Gμ)−1/2 is
the vacuum expectation value, and λ is the coefficient of the
(�†�)2 interaction, � being the Higgs doublet field.

The experimental verification of these relations relies on
the measurements of double Higgs and triple Higgs produc-
tions. However, since the cross sections for these processes
are quite small, constraining λ3 and λ4 couplings within few
times their predicted SM value is already extremely chal-
lenging. In the case of double Higgs production, at present
only exclusion limits are available. The most stringent
result, coming from the ATLAS combination of the
bb̄bb̄, bb̄ττ and bb̄γ γ channels, allows to set a bound
−5 λSM

3 < λ3 < 12 λSM
3 at 95% CL [3]. It is not yet clear

whether double Higgs production will be observed at the
end of the high luminosity (HL) period of LHC with a col-
lected luminosity of 3000 fb−1 or just O (1) bounds on λ3

are going to be set. Concerning λ4, given the smallness of
the triple Higgs production cross section (around 0.1 fb at√
s = 14 TeV), this self-coupling will be only very loosely

constrained at the HL-LHC.
In order to constrain the trilinear Higgs self-coupling,

a complementary strategy based on precise measurements
was proposed. In this approach the effects induced at the
loop level on various processes by a modified λ3 coupling
are studied. This approach builds on the assumption that
New Physics (NP) couples to the SM via the Higgs poten-
tial in such a way that the lowest-order Higgs couplings
to the other fields of the SM (and in particular to the top
quark and vector bosons) are still given by the SM prescrip-
tions or, equivalently, modifications to these couplings are
so small that do not swamp the loop effects one is consid-
ering. This strategy was first applied to ZH production at
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an e+e− collider in Ref. [4], later to Higgs production and
decay modes at the LHC [5–11] and also to the study of
electroweak precision observables [12,13]. Using this strat-
egy a recent analysis of the ATLAS Collaboration set a more
stringent bound, −2.3 λSM

3 < λ3 < 10.3 λSM
3 at 95% C.L.,

by combining the single Higgs boson analyses targeting the
γ γ, Z Z�, WW �, τ+τ− and bb decay channels and the dou-
ble Higgs boson analyses in the bb̄bb̄, bb̄ττ and bb̄γ γ decay
channels using data collected at

√
s = 13 TeV [14].

The aim of this work is twofold. On one side we continue
the program of identifying in single Higgs processes the λ3-
dependent loop contributions by examining the h → γ Z
decay. On the other side we use this decay to show in detail,
for contributions that arise at two-loop level, the equivalence,
at the loop order we are working, of two approaches. In the
first one, following Ref. [5], the λ3-dependent loop contri-
butions are studied via the introduction of a rescaling factor
multiplying the trilinear SM coupling, λ3 = κλλ

SM
3 , with

λSM
3 ≡ Gμ m2

H/
√

2, working in the unitary gauge (UG):
this is the so called κ-framework or anomalous coupling
approach. The second one is based on the modification of the
SM scalar potential via the addition of higher-dimensional
operators that affect only the Higgs self-coupling, i.e an
(in)finite tower of (�†�)n terms (n > 2). The latter, when
only the term n = 3 is assumed, corresponds to the SM
effective field theory (SMEFT) approach with one single
dimension-six operator, the O6 = (�†�)3 one.1

The calculation of λ3-dependent loop contributions in the
h → γ Z decay shares many similarities with the analogous
calculation for h → γ γ . For this process the results in the
literature obtained using the anomalous coupling approach
[5] and the SMEFT approach [6] are not in agreement. In
Ref. [6] the Wilson coefficient, c6, of the operator O6 of
the SMEFT approach was found to be dependent upon the
energy scale at which it is evaluated. On the contrary, in Ref.
[5] the parameter κλ of the anomalous coupling approach
was found to be energy-scale independent.2 As a by-product
of our h → γ Z analysis we resolve this discrepancy.

The paper is organized as follows. In Sect. 2 we present
the general structure of the λ3-dependent contribution in
�(h → γ Z) outlining the (approximate) way this contribu-
tion is evaluated. In Sect. 3 we discuss the renormalization
conditions that should be imposed on the scalar potential of
a (�†�)n theory in order to obtain a result for the anomalous
trilinear contribution that is identical to the one obtained in
the κ-framework working in the UG, where the renormal-
ization of the one-loop contribution is not needed. Section 4

1 Analyses of the h → γ Z decay in the SMEFT without the O6
operator are presented in Refs. [15,16].
2 At the level of the two computations there is a one-to-one correspon-
dence between κλ and c6 that depends on the normalization employed
in the dimension-six part of the SMEFT Lagrangian.

presents our results for the λ3-dependent contribution in the
partial width �(h → γ Z) and its corresponding branching
ratio (BR). Finally, in the Conclusions we shortly discuss the
contribution due to an anomalous trilinear Higgs coupling
in �(h → γ γ ) confirming the equivalence between the κ-
framework and the SMEFT with the O6 operator.

2 λ3-dependent contribution in �(h → γ Z)

We begin by recalling the structure of the λ3-dependent con-
tribution in single Higgs processes as discussed in Ref. [5].
This contribution arises from next-to-leading order (NLO)
electroweak (EW) corrections and can be organized in two
categories: a universal part proportional to (κλ)

2 due to the
wave-function renormalization of the external Higgs boson,
and a process-dependent part linear in κλ that in general
depends on the kinematics of the process under consider-
ation.

Specializing to the h → γ Z decay we write for the λ3-
dependent contribution in the width

�λ3 = ZH �LO (1 + κλC1), (2)

with

ZH = 1

1 − κ2
λ δZH

, (3)

δZH = − 9

16

Gμ m2
H√

2 π2

(
2π

3
√

3
− 1

)
= −1.536 · 10−3 . (4)

In Eq. (2) C1 is the process-dependent contribution that will
be presented in this paper while �LO stands for the LO pre-
diction. Neglecting O(κ3

λ α2) terms the relative corrections
induced by an anomalous trilinear Higgs self-coupling can
be expressed as

d�λ3 ≡ �NLO − �SM
NLO

�LO
= (κλ − 1)C1 + (κ2

λ − 1)C2 , (5)

where �SM
NLO is the NLO SM result3 and

C2 = δZH

(1 − κ2
λδZH )

. (6)

The range of validity of Eq. (5) can be identified according to
Ref. [5] with |κλ| � 20, where this bound was derived via an
estimate of the missing terms in the perturbative calculation
of single Higgs processes.

Because the photon does not couple directly to neutral par-
ticles, the decay process h → γ Z receives contribution at
LO from one-loop diagrams. Then, the evaluation of the C1

coefficient requires a two-loop calculation. An exact eval-
uation of the λ3-dependent two-loop diagrams is currently

3 In the SM NLO result on top of the LO only the contribution propor-
tional to λSM

3 is included.
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not possible. Then, we employ the same strategy used in the
analogous calculation of �(h → γ γ ) [5], namely the rel-
evant diagrams are computed via a Taylor expansion in the
external momenta. Calling q1 and q2 the momenta of the
photon and of the Z , respectively, we make an expansion
in the parameters q2

1/(4m2), q2
2/(4m2) and (q1 · q2)/(4m2)

where m is the mass of any particle running into the loops,
i.e. m = mt , mH , mW , mZ , and at the end of the computa-
tion we set q2

1 = 0, q2
2 = m2

Z and (q1 · q2) = (m2
H −m2

Z)/2.
We point out that our expansion parameters are all smaller
than 1 although not always very small.

In order to test the consistency of our small-momentum
expansion approach we first compare the LO contribution
computed exactly, with its evaluation via a small momentum
expansion in the UG.

The h → γ Z decay width can be written as

�(h → γ Z) = G2
μm

2
Zα m3

H

64π4

(
1 − m2

Z

m2
H

)3

|F |2 (7)

with

F = NcQt (I3t − 2Qt sin2 θW )Ft + cos2 θWFW (8)

where θW is the weak angle, while Ft and FW are the
fermionic and bosonic contributions to the amplitude, respec-
tively. In the former we are considering only the dominant
top quark contribution that sets the color factor, the electric
charge and the weak isospin to be Nc = 3, Qt = 2/3, I3t =
1/2.

At LO the Ft and FW terms can be written [17,18]

FLO
t = 2

[
I1(1/h4t , 1/z4t ) − I2(1/h4t , 1/z4t )

]
(9)

FLO
W = 4(3 − tan2 θW )I2(1/h4w, 1/z4w)

+
[
(1 + 2h4w) tan2 θW − (5 + 2h4w)

]
I1(1/h4w, 1/z4w) (10)

where h4i = m2
H/(4m2

i ) and z4i = m2
Z/(4m

2
i ). The functions

I1 and I2 are defined as

I1(τ, λ) = τλ

2(τ − λ)
+ τ 2λ2

2(τ − λ)2

[
f (τ ) − f (λ)

]

+ τ 2λ

(τ − λ)2

[
g(τ ) − g(λ)

]
,

(11)

I2(τ, λ) = − τλ

2(τ − λ)

[
f (τ ) − f (λ)

]
, (12)

where (for x ≥ 1)

f (x) = arcsin2
(

1√
x

)
,

g(x) = √
x − 1 arcsin

(
1√
x

)
. (13)

Using the small-momentum expansion we obtain the fol-
lowing expressions for the fermionic and bosonic contribu-
tions

FLO
t = 2

3
+ 1

45
h4t (7 + 11zh) + 4

315
h2

4t

(
5 + 8zh + 11z2

h

)

+ 4

1575
h3

4t

(
13 + 21zh + 29z2

h + 37z3
h

)

+ 128

51975
h4

4t

(
8 + 13zh + 18z2

h + 23z3
h + 28z4

h

)
+ O(h5

4t ) (14)

FLO
W = −7 − 2

15
h4w(11 − 37zh)

+ 4

105
h2

4w

(−19 − zh + 31z2
h

)

− 8

1575
h3

4w

(
87 + 19zh − 39z2

h − 97z3
h

)

− 16

17325
h4

4w

(
328 + 93zh − 32z2

h − 157z3
h − 282z4

h

)
+ O(h5

4w) (15)

where zh = m2
Z/m

2
H .

We checked that Eqs. (14) and (15) match exactly the
expansion of the expressions in Eqs. (9) and (10) in the limit
of small h4i and z4i .

Neglecting the last known contribution in Eqs. (14, 15), i.e.
O(h4

4t ) and O(h4
4w), the numerical result for the decay width

obtained with the small-momentum expansion differs from
the evaluation of the exact expression by 2.6%. Including also
this last term the difference reduces to 1.3%. Then, we can
estimate that the evaluation of the two-loop contribution via
a small momentum expansion including O(h3

4t ) and O(h3
4w)

is expected to differ from the exact result by O(5%).
The C1 coefficient in Eq. (5) can be defined as [5]

C1 =
∫
d� 2Re

(
M0∗M1

λSM
3

)
∫
d� |M0|2 (16)

where the integration in d� is over the phase space of the
final-state particles, M0 is the Born amplitude and M1

λSM
3

is the λSM
3 -linearly-dependent contribution in the the loop-

corrected amplitude evaluated in the SM. However, since in
the h → γ Z case the phase-space integral is just a multi-
plicative factor and both amplitudes are purely real, C1 can
be more easily written as

C1 = 2 FNLO
1PI

FLO , (17)

where FNLO
1PI represents the one-particle irreducible (1PI)

two-loop diagrams containing an h3 interaction.
In order to evaluate the C1 coefficient we generated, in

the UG, the two-loop diagrams contributing to the h → γ Z
amplitude using the Mathematica package FeynArts [19].
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Fig. 1 Examples of two-loop
diagrams contributing to the
h → γ Z amplitude: a diagram
contributing to Ft ; b diagram
contributing to FW
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h
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γ

Z
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h

W

Z

W

W

(b)

As in the one-loop case the diagrams can be assigned to the
two categoriesFt , FW , see Fig. 1. The diagrams were manip-
ulated using the package FeynCalc [20,21], expanded in
the external momenta and reduced to scalar integrals using a
private code. After the reduction to scalar integrals we were
left with the evaluation of two-loop vacuum integrals that
were computed analytically using the results of Ref. [22].

The result for C1 is automatically finite in the unitary
gauge, i.e. no renormalization is needed, since the LO result
does not depend on the trilinear coupling. As expected the
fermionic and bosonic contributions are separately finite.

3 λ3-dependent contribution in a (�†�)n theory

This section is devoted to discuss how the result obtained in
the κ-framework working in the UG can be recovered using
a SM Lagrangian with a modified scalar potential of the form

V N P =
N∑

n=1

c2n(�
†�)n ,

� =
(

φ+
1√
2
(v + h + iφ2)

)
, (18)

working in a renormalizable gauge that we choose for sim-
plicity to be the Feynman gauge (FG). In Eq. (18) N can be a
finite integer or infinite, and in the latter case we assume the
series to be convergent, while the SM potential is recovered
setting N = 2 with c2 = −m2 and c4 = λ, where −m2 is
the Higgs mass term in the SM Lagrangian in the unbroken
phase.

A simplified discussion of the equivalence of the κ-
framework with a (�†�)n theory, when the modification
of the trilinear Higgs self-coupling appears at the two-loop
level, was presented in Ref. [12]. In that reference the renor-
malization of the scalar potential in Eq. (18) was not dis-
cussed in detail because it was not needed. While the calcu-
lation of �(h → γ Z) in the κ-framework is automatically
finite, the one in a (�†�)n theory requires to address the
renormalization of the scalar potential. It is then natural to try
to devise a renormalization procedure such that one obtains
automatically the same result in the two approaches.

The potential V N P in Eq. (18) up to quintic interactions
can be written as

V N P
5φ = v τ h + τ

[
φ+φ− + 1

2
φ2

2

]
+ 1

2
m2

H h2 +
(
M2

H

2v
+ v dλ3

)
h3

+ M2
H

v
h

[
φ+φ− + 1

2
φ2

2

]
+ M2

H

2 v2

[
φ+φ− + 1

2
φ2

2

]2

+
(
M2

H

2 v2 + dλ4

)
1

4
h4 +

(
M2

H

2v2 + 3 dλ3

)
h2

[
φ+φ− + 1

2
φ2

2

]

+ 1

v

{
dλ5h

5 + (−3 dλ3 + dλ4) h
3

[
φ+φ− + 1

2
φ2

2

]

+3 dλ3 h

[
φ+φ− + 1

2
φ2

2

]2
}

, (19)

where the various parameters that appear in Eq. (19), i.e.
τ, m2

H , M2
H etc., can be expressed, as explained in Ref. [12],

as a combination of c2n coefficients and powers of v that
comes from the identification inside any (�†�)n term of
the various hi [φ+φ− + φ2

2/2] j (i = 0, . . . , 5; j = 0, 1, 2)
interactions.

In particular the condition of the minimum of the potential
specifies τ , or

d V N P

d h

∣∣∣∣
h=0

= v τ = v

N∑
n=1

c2n n

(
v2

2

)n−1

= 0, (20)

while the Higgs mass term reads

m2
H = v2

N∑
n=1

c2n n(n − 1)

(
v2

2

)n−2

+
N∑

n=1

c2n n

(
v2

2

)n−1

≡ M2
H + τ (21)

that enforcing the minimum condition implies m2
H = M2

H .
The anomalous contributions in Eq. (19) are:

dλ3 = 1

3

N∑
n=3

c2n n(n − 1)(n − 2)

(
v2

2

)n−2

, (22)

dλ4 = 2

3

N∑
n=3

c2n n
2(n − 1)(n − 2)

(
v2

2

)n−2

, (23)

123



Eur. Phys. J. C           (2020) 80:307 Page 5 of 9   307 

γ

Z

h

φ+

(a)

γ

Z

h

φ+

W

(b)

γ

Z

h

φ+

(c)

Fig. 2 Examples of one-loop diagrams contributing in the FG to the h → γ Z process whose renormalization gives rise to a contribution proportional
to an anomalous Higgs self-coupling

dλ5 = 1

30

N∑
n=3

c2n n(n − 1)(n − 2)

×
(

3

2
− 4 n + 2n2

)(
v2

2

)n−2

. (24)

Equations (22–24) give rise to anomalous trilinear and
quadrilinear Higgs self-interactions as well as a quintic one.
The h5 interaction proportional to dλ5 is not relevant for
our discussion while from the h3 interaction we are going to
identify κλ = 1+2v2/m2

H dλ3, as already done in Ref. [12].
All the diagrams contributing to h → γ Z in the UG at

the one-loop level contain only quantities (i.e. the gauge cou-
plings, the top and W mass) whose one-loop renormalization
is not affected by Higgs self-interactions.4 Instead, the sit-
uation is different in the FG where, at one loop, there are
diagrams, see Fig. 2, that contain a coupling proportional
to M2

H/v whose renormalization is affected by anomalous
Higgs self-couplings. Then, the calculation in the FG requires
to set a renormalization procedure for M2

H/v as well as for
the masses of the unphysical scalars.

Before discussing the renormalization of V N P we would
like to notice few things concerning the one-particle-irreduci-
ble (1PI) two-loop diagrams in the FG. The 1PI diagrams
contain terms proportional to (dλ3)

2, i.e. (κλ)
2, see Fig. 3a,

besides those from the wave-function renormalization of the
external Higgs fields. Furthermore, there are 1PI diagrams
proportional to dλ4 from the quintic h3φ+φ− coupling, see
Fig. 3b. Neither of these two kind of contributions are present
in the κ-framework result and we expect our renormalization
procedure to cancel exactly these contributions.

We are actually interested in defining the one-loop coun-
terterms associated to M2

H , τ and v. Following closely Ref.
[23] we assumedV N P to be written in terms of bare quantities
that are shifted according to: c2n → cr2n−δc2n, v → vr−δv.
As a consequence

V N P = V N P
r − δV N P , (25)

where the renormalized potential up to quintic couplings has
exactly the same form given in Eq. (19) but written in terms

4 The tadpole contribution is assumed to be fully cancelled by the tad-
pole counterterm.

of renormalized quantities, while the relevant terms in δV N P

that require to be defined at one-loop are: τ, m2
H , M2

H , v.
To identify the vacuum as the minimum of the radiatively

corrected potential we set:

δ(v τ) = v δτ = v

N∑
n=1

(
v2

2

)n−1

×
[
δc2n n + c2n n(n − 1) 2

δv

v

]
= −T (26)

where iT is the sum of the tadpole diagrams with external leg
extracted. We identify m2

H in Eq. (19) as the on-shell Higgs
mass leading to the condition (see Eq. (21))

δm2
H = δM2

H + δτ = Re �hh(m
2
H ) (27)

where −i �hh(q2) is the sum of all 1PI self-energy diagrams
and in Eq. (27) no tadpole contribution is present because
Eq. (26) is enforced. Eqs. (26, 27) imply

δM2
H = Re �hh(m

2
H ) + T

v
. (28)

The quantities Re �hh(m2
H ) and T do contain terms pro-

portional to dλ3 and dλ4 that will be relevant for our discus-
sion. The other quantity we are interested in is v, whose renor-
malization can be set, for example, either from the muon-
decay process or the W mass. In both cases the corresponding
counterterm δv does not contain (at one-loop) terms propor-
tional to an Higgs anomalous self-coupling and therefore will
not enter in our discussion.

Equations (26) and (28) are the two definitions needed
to address the two-loop calculation in the FG of the effect
induced by an anomalous Higgs trilinear coupling on pro-
cesses that are not sensitive at the tree or one-loop level to an
h3 interaction.

We find for the contribution proportional to dλ3 and dλ4 in
T/v and Re �hh(m2

H ) in units α/(4π sin2 θW )m2
H/(8m2

W ):

T dλ

v
=

(
1 + 2

v2

m2
H

dλ3

)
3m2

H

(
1

ε
+ 1 − ln

m2
H

μ2

)
(29)

Re �dλ
hh(m

2
H ) = −

(
1 + 2

v2

m2
H

dλ3

)2

9m2
H

(
1

ε
+ 2 − π√

3
− ln

m2
H

μ2

)

−
(

1 + 2
v2

m2
H

dλ4

)
3m2

H

(
1

ε
+ 1 − ln

m2
H

μ2

)
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h

h φ+

(a)

γ

Z

h

φ+
h

(b)

Fig. 3 Examples of 1PI diagrams that contain contributions not present in the κ-framework result. The dot (square) represents a coupling containing
dλ3 (dλ4): a Contributions proportional to (dλ3)

2. b Contributions proportional to dλ4

γ

Z

h

h

Z

Z

Fig. 4 Two-loop reducible diagrams that give rise to a contribution
proportional to dλ3 in the FG. The meaning of the dot is as in Fig. 3

−
(

1 + 6
v2

m2
H

dλ3

)[
2m2

W

(
1

ε
+ 1 − ln

m2
W

μ2

)
+

m2
Z

(
1

ε
+ 1 − ln

m2
Z

μ2

)]
(30)

where ε = (4−nd)/2, nd being the dimension of the space-
time, and μ is t Hooft mass.

From the inspection of Eq. (30) one sees that the countert-
erm associated to M2

H (Eq. (28)) contains terms proportional
to (dλ3)

2 and dλ4. It is easy to show that the renormalization
of the one-loop diagrams proportional to M2

H (see Fig. 2)
cancels exactly the 1PI two-loop contribution proportional
to (dλ3)

2, see Fig. 3a, as well as the one proportional to dλ4,
see Fig. 3b, restoring in the FG the same dependence on the
anomalous coupling found in the κ-framework, i.e linear in
κλ, apart the quadratic contribution related to the wave func-
tion renormalization, and no dependence on λ4.

The renormalization condition Eq. (26) specifies also the
part of the mass counterterms for the unphysical scalars that
is affected by anomalous Higgs self-couplings, i.e. δτ . A
detailed discussion of the role of this counterterm in the can-
cellations in the FG between 1PI and counterterm diagrams
can be found in Ref. [12].

To complete the calculation of the contribution of an
anomalous trilinear Higgs self-coupling in the FG one has
to take into account also the effect of the reducible diagrams
shown in Fig. 4. In a renormalizable gauge diagrams that con-
tain aγ Z self-energy evaluated at vanishing external momen-
tum also contribute to FW . These diagrams do not contribute
in the UG because in this gauge the γ Z self-energy evaluated
at vanishing external momentum is zero.

We have computed the functions Ft and FW in the FG
and found agreement with the result in the UG within the

order of our approximation, as discussed in the next section.
We remark that with our choice of renormalization conditions
the agreement is found in a straightforward way because both
results are expressed in terms of physical quantities.

As a final remark we notice that the potential in Eq. (18)
has N c2n coefficients, that are assumed to be bare quanti-
ties, while we needed to impose only two renormalization
conditions, Eq. (26) and (27). Furthermore, the modifica-
tions of the Higgs self-couplings with respect to the SM val-
ues, dλi , i = 3 . . ., involve only coefficients with n ≥ 3
(see Eqs. (22–24)). Then, on one side we have constructed
a framework such that the limit to the SM case is straight-
forward. On the other, because we did not need to specify
any renormalization condition on the modifications dλi , the
renormalization of the latter is still free and can be specified
via other processes.

4 Results

In this section we present the results for theC1 coefficient. In
Table 1 we give the numerical results for the first four orders
of the expansion of FNLO

t and FNLO
W up to and including

terms of O(h3
4t ) and O(h3

4w), respectively. The input param-
eters used are the same of Ref. [5], or

mW = 80.385, mZ = 91.1876,

mH = 125, mt = 172.5 (31)

where all the masses are in GeV.
The table shows that the expansions of both the fermionic

and bosonic contribution have a good convergence. In par-
ticular the last term in the fermionic expansion, O(h3

4t ), con-
tributes to the total fermionic contribution at the level of 1%,
while in the bosonic case the last term, O(h3

4w), contributes
to the total at the level of 2%. Given FLO = −5.29 we find
C1 = 0.72 · 10−2, a value larger than the C1 coefficient for
the h → γ γ decay (Cγ γ

1 = 0.49 ·10−2) and close to the one
of the h → Z Z decay (CZZ

1 = 0.83 · 10−2) that is the decay
mode most sensitive to an anomalous trilinear coupling.

The effect of an anomalous λ3 in the partial decay width
�(h → γ Z) and in the corresponding BR is presented in
Fig. 5 as a function of κλ. Similarly to the other decay modes
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Table 1 Small-momentum expansion results for the two-loop λ3-dependent contributions to the h → γ Z amplitude. The importance of each term
in the expansion with respect to the first one is also shown

Fermionic h0
4t h1

4t h2
4t h3

4t Total

FNLO
t (10−2) 0.197 0.086 0.016 0.003 0.303

FNLO
t /h0

4t 1.0 43.7% 8.1% 1.5%

Bosonic h0
4w h1

4w h2
4w h3

4w Total

FNLO
W (10−2) −1.645 −0.538 −0.129 −0.043 −2.355

FNLO
W /h0

4w 1.0 32.7% 7.9% 2.6%

Fig. 5 Modification of the
h → γ Z decay width (a) and
branching ratio (b) due to an
anomalous λ3

(a) (b)

Table 2 Relative importance of the difference between the UG and FG results for the bosonic contributions, for different orders of the expansion

h0
4w h1

4w h2
4w h3

4w Total

FUG
W (10−2) −1.645 −0.538 −0.129 −0.043 −2.355

FFG
W (10−2) −1.181 −0.727 −0.280 −0.113 −2.301

�FW 32.8% 13.4% 5.5% 2.3%

of the Higgs boson [5], the correction to the partial decay
width can be substantial even for −10 � κλ � 10, while
for the same range of κλ values the correction to the BR
is much smaller because in the BR the universal quadratic
dependence on κλ in Eq. (5) cancels out.

Finally we want to comment on the numerical agreement
between the calculation using the κ-framework working in
the UG and the one in a (�†�)n theory working in the FG.
While the results of the expansion for the fermionic contribu-
tion in the UG and in FG are equal at the analytic level term
by term, the same is not true for the bosonic contribution. The
reason is related to the fact that the expansion in the exter-
nal momenta is, in general, not the same in the two gauges.
Indeed, at any order of the expansion, part of the kinematic
dependence in the UG is transfer in a FG to couplings as
can be easily understood looking at the one-loop diagrams.
The diagrams in Fig. 2, that appear in the FG, are propor-
tional to mH from the coupling hφ+φ−, while in the UG the
only dependence on mH at one-loop is of kinematical origin
when the external momenta are evaluated on-shell. In this
situation we expect that the evaluation of two-loop integrals
via an expansion in kinematical variables will not give, at a

fixed order, the same number in the UG and FG. However,
we expect the numerical difference between the two results
to be of higher order with respect to the last known term.

Defining the quantity

�FW =
∣∣∣∣2(FUG

W − FFG
W )

(FUG
W + FFG

W )

∣∣∣∣ (32)

as the relative difference between the results in the UG and
the FG, we find �FW = 2.3% for the total result, that is well
within the expected accuracy of an expanded result up to and
including h3

4w terms. In Table 2 we present �FW order by
order in the expansion, to show the nice convergence pattern
between the numerical values in the UG and in the FG.

5 Conclusions

In this work we have discussed the modifications in the partial
decay width �(h → γ Z) and in its BR induced by an anoma-
lous trilinear Higgs self-coupling. The two-loop computation
has been performed in the κ-framework and in a (�†�)n the-
ory. In the latter case we had to address the renormalization
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of the scalar potential. We showed that the conditions on the
minimum of the potential (Eq. (26)) and on the Higgs mass
(Eq. (28)) are sufficient in order to obtain a finite result in
the (�†�)n theory in agreement with the one obtained in
the κ-framework within the order of our approximate cal-
culation. It should be remarked that the parameter κλ found
is not, at this order of the computation, energy-scale depen-
dent. Furthermore, the two above renormalization conditions
do not actually specify the Wilson coefficients of operators
with dimension larger than 4.

We have found that the sensitivity of the h → γ Z process
to an anomalous trilinear Higgs self-coupling is very similar
to that of theh → WW mode that is the second most sensitive
mode after the h → Z Z one [5].

The same renormalization framework employed in this
work can be used to discuss the h → γ γ decay in a (�†�)n

theory or, if only the terms n ≤ 3 are considered, in the
SMEFT with only the O6 operator. For this decay there are
in the literature two results, not in agreement, one obtained in
the κ-framework via an expansion in the external momenta
up to and including h3

4t , h
3
4w terms [5] and one in the SMEFT

where the diagrams were evaluated in the limit mW → ∞ or
equivalently mH → 0 [6]. As said in the Introduction these
two results show a different dependence on the energy scale
at which the contribution to the h → γ γ width induced by an
anomalous Higgs trilinear coupling is evaluated. Instead, the
result of Ref. [6] is expected to correspond to the leading term
in the expansion of Ref. [5] showing the same energy-scale
dependence.

We proved by an explicit calculation that, in the case of
the h → γ γ decay width, the result obtained using a (�†�)n

theory with the renormalization conditions discussed in sec-
tion 3 is identical, at the analytic level term by term, with
that obtained in the κ-framework confirming the result of
Ref. [5].

It is not easy to pin down the source of discrepancy with
the result in Ref. [6]. We suspect that it could be due to a
different way of taking into account the renormalization of
M2

H that gives a contribution also in the limit mH → 0 taken
in that work.
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