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All measurements are comparisons. The only physically accessible degrees of freedom (DOFs) are 
dimensionless ratios. The objective description of the universe as a whole thus predicts only how 
these ratios change collectively as one of them is changed. Here we develop a description for classical 
Bianchi IX cosmology implementing these relational principles. The objective evolution decouples from 
the volume and its expansion degree of freedom. We use the relational description to investigate both 
vacuum dominated and quiescent Bianchi IX cosmologies. In the vacuum dominated case the relational 
dynamical system predicts an infinite amount of change of the relational DOFs, in accordance with the 
well known chaotic behaviour of Bianchi IX. In the quiescent case the relational dynamical system evolves 
uniquely though the point where the decoupled scale DOFs predict the big bang/crunch. This is a non-
trivial prediction of the relational description; the big bang/crunch is not the end of physics – it is 
instead a regular point of the relational evolution. Describing our solutions as spacetimes that satisfy 
Einstein’s equations, we find that the relational dynamical system predicts two singular solutions of GR 
that are connected at the hypersurface of the singularity such that relational DOFs are continuous and 
the orientation of the spatial frame is inverted.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The generic nature of singularities beyond which physics can-
not be deterministically continued is a cornerstone of General 
Relativity (GR). The Hawking–Penrose theorems [1] show that a 
large class of solutions of Einstein’s equations are geodesically in-
complete. In cosmological settings this leads to the big bang (or 
crunch) – the inevitable end of classical evolution of the Lorentzian 
spacetime geometry. To establish this result, it is important to 
disentangle singularities of spacetime geometry from singular evo-
lution. The classical singularity theorems are derived from a con-
tradiction that arises between the properties of maximal time-like 
geodesics in Lorentzian spacetimes and the properties of time-like 
(or null) geodesics that can be derived from Einstein’s equations 
for generic initial conditions when matter satisfies suitable energy 
conditions after finite proper time (or affine parameter). This leads 
to the conclusion that Einstein’s equations predict the breakdown 
of spacetime geometry. What is not implied by these theorems 
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is that the evolution of the dynamical system that describes the 
physical observables has to break down. These physical observ-
ables are far fewer than the auxiliary structure that is needed to 
describe spacetime geometry: In particular the lapse function, shift 
vector and spatial conformal factor are identified as non-dynamical 
in York’s (see e.g. [2]) canonical description of GR in which only 
the pure spin-2 part of the metric evolves with matter. We refer 
to a dynamical system that evolves the observables of GR without 
reference to auxiliary spacetime structure; a relational description 
of gravity. This raises the possibility that the celebrated singularity 
theorems of GR solely predict the breakdown of auxiliary, non-
dynamical structure, while they do not predict the breakdown of 
the relational system, so evolution equations for physical observ-
ables remain predictive in the sense that initial data determines 
a unique solution. In this letter we explore precisely this possibil-
ity in the relational description of homogeneous cosmology, where 
the singularity theorems predict a big bang or big crunch singu-
larity of spacetime geometry. In particular, we show in this letter 
that when one considers cosmology from a relational perspective – 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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constructing only observables available within a toy model universe 
then the resulting dynamical system evolves all observables. We 
show that there exists a unique, deterministic, and entirely classi-
cal extension of Einstein’s equations through the big bang/crunch. 
We achieve this result without appealing to quantum effects or 
new ad-hoc principles. Rather, the strict insistence on describing 
the dynamics in terms of relational variables alone ensures the 
existence and uniqueness of the evolution through the apparent 
singularity. The relational system predicts that the other side of 
the apparent singularity is a qualitatively similar yet quantitatively 
distinct cosmology inverted in spatial orientation. Space–time en-
counters a curvature singularity but the relational system remains 
well defined throughout. We establish our result through a three-
step process. First we rewrite the dynamics of a homogeneous 
(but not necessarily isotropic) cosmology entirely in terms of rela-
tional variables. Second, we observe that the relational degrees of 
freedom form an autonomous subsystem that decouples from the 
evolution of the total size of the universe. Third, we show that the 
relational dynamical system remains deterministic while the sys-
tem encounters (in finite physical time) a point at which Einstein’s 
equations become singular.

1. Relational description of physics

The description of the universe as a whole can not depend on 
external units of length or duration since all physical clocks and 
rods are part of the universe itself. The universe differs funda-
mentally from its subsystems in this aspect. The problem with 
GR’s distance defining spacetime geometry is thrown into focus 
when considering cosmology. In a laboratory experiment an ob-
server can easily justify the separation between the measuring 
apparatus (the external clock and rod) and the objects being mea-
sured. Cosmologists however are part of the universe and can not 
separate themselves form the studied system. Cosmological mea-
surements are intrinsic, as rods and clocks are constructed from 
the dynamical objects in the universe. Units are constructed intrin-
sically using physical reference structures that define GR’s notion 
of geometry. Hence, all dimensional quantities are intrinsic ratios. 
This leads us to concentrate on the dynamics of relational variables,
i.e. dimensionless ratios and their relative infinitesimal variations1

[5]. Remarkably, the dynamics can be expressed entirely in terms 
of relational variables, which turn out to evolve autonomously and 
predict all intrinsic observables of GR.

In this letter we study spatially homogeneous cosmology 
(Bianchi IX) with a massless scalar field. This model is believed 
to correctly describe the near-singularity behaviour of full GR due 
to the BKL conjecture and Wheeler’s insight that “matter doesn’t 
matter” except a stiff component (such as a massless scalar field). 
In fact, the theorems of [3], show that a dense set of inhomo-
geneous GR solutions obey the BKL conjecture, i.e. spatial points 
decouple in the approach to the singularity and evolve as inde-
pendent Bianchi IX systems. Moreover, a massless scalar field is 
compatible with Standard Model physics2 (e.g. the Goldstone mode 
of the Higgs field). We thus distinguish two cases:
1. In absence of a massless scalar the approach to the singularity is 
given by the vacuum Bianchi IX evolution, in which the dynamics 
never actually reaches the singularity. It rather goes through an in-
finite amount of change, with infinitely many billiard-like ‘bounces’ 
against steep triangular potential walls, alternating with intervals 

1 E.g. the scale factor is not a relational variable, while Misner’s anisotropy param-
eters β+ , β− [4] and the ratio of their variations dβ+/dβ− are relational variables.

2 Interestingly, an RG improved gravitational action, as obtained in the functional 
renormalization group setting, also offers a mechanism to achieve this quiescent 
behavior [6].
of free geodesic evolution (Kasner epochs). This fact was observed 
by Misner [7], and its consequences for the status of the singu-
larity was discussed in [4]. This has an important consequence in 
the relational framework, where physical clocks necessarily pos-
sess internal relational DOFs which register time. An infinitesimal 
clock can not be treated as the idealized worldline of a point with 
its proper time, but has to be viewed as the infinitesimal limit of 
a sequence of ever smaller time-recording systems with internal 
structure [8]. It has been noted [8] that the change of the internal 
relational DOFs of an infinitesimal limit clock will be subject to the 
same tidal effects as measured by its large counterparts. It follows 
that infinitesimal clocks register an unbounded lapse of time (i.e.
change of internal relational DOFs), when the gravitational field ex-
periences an infinite number of Kasner epochs. It follows that the 
infinitesimal clocks, unlike their pointlike idealizations i.e. proper 
time, will not reach the big bang/crunch in a finite time.
2. In the presence of a massless scalar one experiences “quiescent” 
behaviour [5]. The potential becomes irrelevant for the dynamics 
and the equations of motion asymptote into a geodesic evolution. 
Matter clocks will measure a finite amount of change between the 
singularity and any other point. It remains to investigate this case, 
because it is the one in which the singularity is reached in finite 
relational time and we have to establish what happens to the re-
lational DOFs there.

2. Quiescent Bianchi IX cosmology

Using triad variables, we describe Bianchi IX cosmology, i.e. ho-
mogeneous geometries on S3, as:

ds2 = −dt2 + δabea
i eb

j dxidx j . (1)

Imposing translational invariance, and fixing a global S O (3) rota-
tion, we write ea

i dxi = ±v1/3eγaσa , where v is the spatial volume, 
γa are three anisotropy parameters constrained by γ1 +γ2 +γ3 = 0, 
and σa are the three translation-invariant one-forms on S3. The ±
in the definition of ea

i refers to the orientation of the spatial mani-
fold and does not enter the metric. We can locally parametrize the 
anisotropy parameters with two Misner variables q1, q2, defined 
as: γ1 = −q1/

√
6 − q2/

√
2, γ2 = −q2/

√
6 + q1/

√
2, γ3 =

√
2
3 q2, 

which coordinatize half of shape space. Useful global coordinates 
for shape space are the angles (α, β), defined by(

q1

q2

)
= | tanβ|

(
cosα
sinα

)
, sign(det e) = sign(tanβ) , (2)

where the sign of β represents the two possible orientations of 
ea

i . (α, β) are spherical coordinates for the representation of shape 
space shown in Fig. 1.

We denote the shape momenta canonically conjugate to qa by 
pa , the variable conjugate to v by τ , the (homogeneous) massless 
scalar field by ϕ and its momentum density by π . Due to dynam-
ical similarity [9,10], only the latter will appear in the equations. 
Einstein’s equations are generated by the ADM Hamiltonian [11]
(which is constrained to vanish)

H = p2
1 + p2

2 + π2

2
− 3

8
τ 2 v2 − v

4
3 C(q1,q2) ≈ 0, (3)

where C(q1, q2), the shape potential shown in Fig. 1, is

C(q1,q2) = F (2 q2) + F (q1
√

3 − q2) + F (−q1
√

3 − q2) ,

F (x) = e−x/
√

6 − 1
2 e2x/

√
6 .

(4)

The equations of motion [using a vector notation �q = (q1, q2), �p =
(p1, p2)] are
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Fig. 1. Representation of shape space: The poles β = 0, π represent isotropic ge-
ometries, the equator β = π

2 degenerate ones. A typical solution is shown in yellow, 
with its asymptotic quiescent behaviour in green. The two hemisphere correspond 
to opposite spatial orientations. The shape potential C(α, β) is represented as a 
color plot on the sphere with equipotential lines in white and the GR singularity 
(the equator) in red. The FLRW spacetimes appear as unstable fixed points at the 
poles. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

�̇q = 2 �p , �̇p = v4/3 �∇C(�q) ,

v̇ = − 3
4 v2τ ,τ̇ = 4

3 v1/3C(�q) + 3
4 vτ 2 .

(5)

where �∇C =
(

∂C
∂q1 , ∂C

∂q2

)
, and “ ˙ ” is the derivative w.r.t. the coor-

dinate time t appearing in (1). We will now consider the rela-
tional description of this system and investigate the existence and 
uniqueness of solutions using the Picard–Lindelöf theorem, which 
states that a system of differential equations y′

a(x) = Fa(x, y) pos-
sesses a unique solution for the initial value problem ya = yo

a at 
x = xo if Fa is continuous in x and Lipschitz-continuous in ya in a 
neighbourhood of xo . We note that this is a coordinate-dependent 
statement, because the question whether the fa are continuous 
and Lipschitz depends on which variables ya one uses. For example 
the systems F = (y2, y3, y2/ f (x)) and F = (u2, u3e

∫ x
xo

ds
f (s) , 0) are 

equivalent when f (x) �= 0. However, considering f (x) = x reveals 
that at xo = 0 the former system fails, while the latter satisfies the 
conditions of the Picard–Lindelöf theorem.

Decoupling of scale With the variables at our disposal, we can form 
the following three independent dimensionless and scale-invariant 
combinations:

ξ = |π |
p

, σ = v |τ |
p

, κ = v2/3

p
. (6)

The Hamiltonian constraint (3) in those variables reads

H = p2
[

3
8 σ 2 −

(
1 + 1

2 ξ2
)

+ κ2 C(q1,q2)
]

≈ 0 , (7)

which, for dynamically nontrivial solutions in which p �= 0 (this 
excludes FRLW, in which there is no shape evolution) implies a 
relationship between σ , ξ , κ , q1 and q2. It is easy to show that in 
quiescent solutions, which reach the equator of shape space β =
π
2 , the factor κ2 C(�q) vanishes as β → π

2 , and therefore:

1 + 1
2 ξ2 − 3

8σ 2 −−−−→
β→ π

2

0 , (8)

so the variables ξ , σ and κ are asymptotically redundant and they 
do not provide a good parametrization of phase space near the 
equator. We need to replace one of the variables with something 
that takes a generic value at β = π . A good choice is:
2
ω = sign(tanβ)

[
�q · �p

p
− 2p log

(
v2τ 6

)
3 vτ

]
, (9)

which is an asymptotically conserved quantity (it is preserved by 
the Bianchi I equations of motion), and moreover, thanks to the 
sign of β factor, it is continuous through the singularity in Bianchi I 
solutions.

We can now express the equations of motion (5) in terms 
of ω, σ , ξ and the angular coordinates on the shape sphere 
[α = arctan(q2/q1), β = ( 1−s

2 )π + s arctan
√

(q1)2 + (q2)2, where 
s = sign(tan β)], plus the scale-free ‘angular momentum’ variable:

γ = q1 p2 − q2 p1

p
, (10)

which is conserved by the quiescent/Bianchi I evolution, and there-
fore is conserved at the equator. Moreover we can parametrize the 
equations with the arc-length on shape space (dq1)2 + (dq2)2 =
d�2, to obtain:

α′ = γ cot2 β , β ′ = cos2 β

√
1 − γ 2

tan2 β
,

γ ′ = fγ ε , ω′ = fω ε , σ ′ = fσ ε ,

(11)

where x′ = dx
d�

and

ε = e
σ
2

(
ω−√

tan2 β−γ 2
)
, (12)

and where fγ , fω and fσ are functions of α, β , γ , ω and σ (their 
definition is in appendix). The nontrivial fact of this reformulation 
is that the variable p completely decouples from the equations of 
motion, and it is not necessary anymore to determine the solution 
curve on shape space.

A straightforward application of the Picard–Lindelöf theorem 
implies that this dynamical system possesses a unique solution for 
any initial values 

(
α,β �= π

2 , γ ,ω,σ > 0
)
. This allows us to con-

clude that the relational description of the system is predictive 
everywhere, except possibly at the equator of shape space.

Ephemeris equations Equations (11) do not contain any informa-
tion regarding scale or duration. Units of scale and time need to 
be fixed once and for all at a point on a solution, and they are 
completely immaterial. Their subsequent evolution is entirely de-
termined by the shape degrees of freedom, and it can be calculated 
using two ‘ephemeris’ equations (they are just the equations of 
motion of p and v in arclength parametrization):

d log p

d�
=e

σ
2

(
ω−√

tan2 β−γ 2
)

2 tan2 β

(
γ

∂C

∂α

+s sin(2β)

√
tan2 β − γ 2 ∂C

∂β

)
.

d log v

d�
= − 3

8
s σ .

(13)

What makes these ‘ephemeris’ equations is the fact that the un-
known variables p and v do not appear on the right-hand-side, 
so they ‘piggy-back’ on the evolution of the shape variables. More-
over the equations only determine the logarithms of p and v , and 
therefore their solution are defined modulo a constant rescaling: 
this is the arbitrariness in fixing units at one point on the solu-
tion.
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To reach the singularity v = 0 from any finite point in shape 
space, either the rhs of the ephemeris scale equation diverges 
(which requires extra symmetry) or an infinite distance of kine-
matic arc-length is reached. The second condition is generic and 
states that the singularity is reached whenever the curve in shape 
space reaches the equator, since each point on the equator has in-
finite kinematic arc-length distance from any other point. We thus 
find the singularity condition β(�) = π

2 , where, in the spacetime 
description, the big bang/crunch occurs.

3. Continuation through the singularity

We now study the well-posedness of the system (11) in the 
only remaining region: the equator of shape space β = π

2 . For this 
purpose we use a different intrinsic parametrization, in which the 
parameter stays finite at the equator (the arc-length d� diverges 
there): the β coordinate. To do so, it is sufficient to divide Eqs. (11)

by β ′ = cos2 β

√
1 − γ 2

tan2 β
. Unlike the arc-length, this parametriza-

tion is not good everywhere on the solution curve, because β is 
not monotonic, but it is a good parametrization in a neighbour-
hood of the equator, where β ′ ∼ (β − π

2 )2 + O(β − π
2 )4 ≥ 0. The 

new equations read

dα

dβ
= γ

sin2 β

√
1 − γ 2

tan2 β

,
dγ

dβ
= fγ ε

cos2 β

√
1 − γ 2

tan2 β

,

dω

dβ
= fω ε

cos2 β

√
1 − γ 2

tan2 β

,
dσ

dβ
= fσ ε

cos2 β

√
1 − γ 2

tan2 β

.

(14)

It is easy to prove that f i ε

cos2 β

√
1− γ 2

tan2 β

is Lipschitz continuous 

around β = π
2 (and in particular they all vanish there), if the fol-

lowing bound is satisfied:

σ >

√
8
3 max

α∈(0,2π ]

(
2 sinα,±√

3 cosα − sinα
)

. (15)

This ‘quiescence’ bound on σ comes from the requirement that 
the quantities ε C(α, β), ε ∂C

∂α and ε ∂C
∂β

tend to zero as β → π
2

± . 
We thus conclude from the application of the Picard–Lindelöf the-
orem [12] that the equations of motion are deterministic through 
the point β = π/2.

Quiescent/Bianchi I behaviour Near the equator, the potential terms 
in (14) can be neglected. In this limit, the equations turn into 
Bianchi I equations (Kasner regime), whose solutions are straight 
lines in the qi plane, and the variables γ , ω and σ become con-
served:

dα

dβ
= γ

sin2 β

√
1 − γ 2

tan2 β

,
dγ

dβ
= dω

dβ
= dσ

dβ
= 0 . (16)

The general solution to the above equation is α = arcsin
( −s γ

tan β

)
+

const., γ = const., ω = const., σ = const., which represents a great 
circle on the shape sphere, evolving smoothly through the equa-
tor. This is how we confirm the well known fact that quiescent 
Bianchi IX system asymptotes into into Bianchi I behaviour. How-
ever, the relational system does more: It contains two additional 
degrees of freedom: σ and ω, whose equations of motion stay 
well defined at the equator. This means that the relational sys-
tem evolves through the equator, where General Relativity would 
place the big bang/crunch.

This establishes the main technical result of this paper. The in-
terpretation of this result in terms of spacetime geometry is that 
the purely relational description of quiescent Bianchi IX glues two 
quiescent Bianchi IX spacetimes at the big bang in such a way that 
the relational variables (α, γ , ω, σ) are continuous. Recall also that 
the crossing of β = π

2 implies an inversion of spatial orientation.
Notice that singularities can only happen at the equator β = π

2 , 
or in the exceptional FLRW case. The latter is represented on shape 
space by an unstable fixed point at a pole β = 0, π , so it is dynam-
ically unattainable. The points on the equator represent degenerate 
geometries in which some ratios between anisotropy parameters 
diverge. Furthermore, all quiescent solutions satisfy (15) when ap-
proaching the equator. This means that any initial condition set at 
β = π

2 is required to satisfy (15).

Generic nature of the result Our discussion so far only applies 
to homogeneous cosmology. However, it was shown in [3] that 
there is a dense set of inhomogeneous solutions of GR that 
satisfy the BKL conjecture, i.e. as the singularity approaches 
each spatially-separated point decouples and evolves like an au-
tonomous Bianchi IX system. This allows us to extend our result 
immediately to this dense set. As yet it remains to be seen if this 
dense set is the complete set of all solutions to GR.

4. Discussion

We showed that the relational description of quiescent
Bianchi IX universes evolves through the big bang, which is not 
a singularity of the equations on shape space. We will therefore 
call it a ‘Janus point’, because it is the point of qualitative time-
symmetry of each solution [9,10,13]. The Janus-point data, i.e. the 
specification of (α, γ , ω, σ) at β = π

2 , determines a unique curve 
on the two hemispheres of shape space (with a single intersection 
with the equator) that can be effectively described as two quies-
cent Bianchi IX spacetimes glued together at the big bang, where 
a change of orientation occurs. The prediction of a classical change 
of orientation of the spatial manifold at the big bang could have 
profound implications for discrete symmetries in particle physics, 
particularly regarding matter/antimatter asymmetry.

In vacuum dominated Bianchi IX (i.e. in absence of massless 
scalars) on the other hand, one finds that physical time (measured 
by the change of shape of any finite clock) will go on forever in the 
relational description of vacuum-dominated Bianchi IX cosmology. 
These curves do not terminate in shape space. As such an intrinsic 
observer will never encounter any singularity.

We established that big bang/crunch singularities in homoge-
neous cosmologies with compact topology are spacetime artifacts, 
that do not have any physical (i.e. completely relational) mean-
ing. In the normal space–time picture, the curvature singularity 
remains at β = π/2 as the Hawking–Penrose theorems hold. How-
ever, this infinity does not halt the evolution of the relational sys-
tem, which is insensitive to dimensionful quantities. Equations (14)
are deterministic and well-defined at this point and give an unam-
biguous evolution beyond.3 This has important consequences for a 
dense set of GR solutions (those described in [3]) whose behaviour 
near the cosmological singularity is completely described by an in-
dependent Bianchi IX universe at each point. Moreover, the BKL 

3 The auxiliray spacetime structure, in particular the spatial volume, can be ob-
tained by quadrature and one finds that the volume indeed vanishes at the big 
bang.
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conjecture posits that this behaviour is generic in GR. Finally, this 
result allows discussing the typicality of universes in terms of their 
Janus point data, and the spontaneous emergence of an arrow of 
time (along the lines of [9,10,13]).

Throughout this work we have only considered classical GR, 
ignoring quantum effects. At present, there is no fully relational 
theory of quantum cosmology. There is no complete theory of 
quantum gravity from which to obtain a quantum cosmology rigor-
ously. Thus most efforts at quantum cosmology rely on first impos-
ing symmetry reductions before quantizing the resulting simpler 
systems. Wheeler–DeWitt quantization of the mini-superspace of 
Bianchi spacetimes still encounter the same singularities as the 
classical solutions, and these are treated as the endpoints of such 
trajectories. This work suggests a closer examination of such the-
ories in a relational light. However, it is at present unclear as to 
how one would introduce quantum corrections to such a system: 
the standard doctrine of order h̄ effects is not apparent in our sys-
tem, since h̄ is dimensionful. On the other hand, since the classical 
trajectories of the relational description are well defined at space–
time singularities, it is quite conceivable that full quantum systems 
will enjoy the same property. In this case, efforts to look for quan-
tum gravitational effects may not be well served by focusing on 
singularities.
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Appendix A

The intrinsic equations (11) and (14) are defined in terms of the 
functions fγ , fω and fσ which are functions only of the intrinsic 
variables. These are:

fγ =σ 2

2

√
1 − γ 2

tan2 β

(√
1 − γ 2

tan2 β

∂C
∂α − γ cos2 β ∂C

∂β

)
,

fω = 2
3 s

[
σ

(√
tan2 β − γ 2 − ω

)
− 4

]
C(α,β)

+ σ 2

2 | cosβ|3
[(

2γ 2 − tan2 β
) + ω

√
tan2 β − γ 2

]
∂C
∂β

+ γ σ 2

2 tan2 β

(
2
√

tan2 β − γ 2 − ω
)

∂C
∂α

}
,

fσ = 2
3 s σ 2 C(α,β)

− σ 3

2 tan β

(
γ

tan β
∂C
∂α + s cos2 β

√
tan2 β − γ 2 ∂C

∂β

)
.

(17)

Note that these functions are defined in terms of the shape po-
tential C and its derivatives, and with the appropriate choices of C
hold for all class A Bianchi models.
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