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Using effective field theory methods, we calculate for the first time the complete fourth-order term in the 
Fermi-momentum or kFas expansion for the ground-state energy of a dilute Fermi gas. The convergence 
behavior of the expansion is examined for the case of spin one-half fermions and compared against 
quantum Monte-Carlo results, showing that the Fermi-momentum expansion is well-converged at this 
order for |kFas| � 0.5.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The dilute Fermi gas has been a central problem for many-
body calculations for decades [1–11]. Renewed interest in this 
problem has been triggered by striking progress with ultracold 
atomic gases. In particular, by employing so-called Feshbach res-
onances [12] one can tune inter-atomic interactions and thereby 
probe Fermi systems over a wide range of many-body dynam-
ics [13]. On the theoretical side, a systematic approach towards 
the dynamics of fermions (or bosons) at low energies has emerged 
in the form of effective field theory (EFT) [14–19]. Motivated by 
this, we revisit the expansion in the Fermi momentum kF of the 
ground-state energy density E(kF) of a dilute gas of one species of 
interacting fermions. Using perturbative EFT methods, we calculate 
E(kF) up to fourth order in the expansion, including for the first 
time the complete fourth-order term. From this, we analyze the 
convergence behavior of the expansion, and obtain precise predic-
tions for E(kF) with systematic uncertainty estimates. Our analytic 
results have important applications for various problems in many-
body physics, including benchmarks for experimental and theoret-
ical studies of cold atoms, the construction of improved models of 
neutron star crusts, and for constraining nuclear many-body calcu-
lations at low densities.

Short-ranged EFT represents a systematic framework for the dy-
namics of fermions (or bosons) at low momenta Q < �b , where 
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�b denotes the breakdown scale. At low momenta, details of the 
underlying interactions are not resolved and can be replaced by 
a series of contact interactions. Few- and many-body observables 
are then expressed in terms of a systematic expansion in Q /�b

(called “power counting”). The EFT Lagrangian is given by the 
most general operators consistent with Galilean invariance, par-
ity, and time-reversal invariance. The low-energy constants of the 
Lagrangian have to be fitted to experimental data or (if possi-
ble) can be matched to the underlying theory. Assuming spin-
independent interactions, the (unrenormalized) Lagrangian reads 
(see, e.g., Refs. [14–19])

LEFT = ψ†

[
i∂t +

−→∇ 2

2M

]
ψ − C0

2
(ψ†ψ)2

+ C2

16

[
(ψψ)†(ψ

←→∇ 2ψ) + h.c.
]

+ C ′
2

8
(ψ

←→∇ ψ)† · (ψ←→∇ ψ) − D0

6
(ψ†ψ)3 + . . . , (1)

where ψ are nonrelativistic fermion fields, ←→∇ = ←−∇ − −→∇ is the 
Galilean invariant derivative, h.c. the Hermitian conjugate, and M
the fermion mass.

The ultraviolet (UV) divergences that appear beyond tree level 
in perturbation theory can be regularized by introducing a cutoff 
� for relative momenta p(′) and Jacobi momenta q(′) . The two-
and three-body potentials emerging from LEFT are then given by
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〈p′|V (2)
EFT|p〉 =

[
C0(�) + C2(�)(p′2 + p2)/2

+ C ′
2(�)p′ · p + . . .

]
× θ(� − p)θ(� − p′), (2)

〈p′q′|V (3)
EFT|pq〉 =

[
D0(�) + . . .

]
× θ(� − p)θ(� − q)

× θ(� − p′)θ(� − q′). (3)

Perturbative renormalization is carried out by introducing coun-
terterms such that the divergent contributions are canceled. In the 
two-body sector, this leads to

C0(�) = C0 + C0

3∑
ν=1

(
C0

M

2π2
�

)ν

+ C2C0
M

3π2
�3 + . . . , (4)

C2(�) = C2 + C2C0
M

π2
� + . . . , (5)

C ′
2(�) = C ′

2 + . . . , (6)

where the cutoff-dependent parts are counterterms. For the renor-
malized two-body potential the residual cutoff dependence due to 
terms O(1/�) in perturbation theory vanishes in the limit � →
∞. Matching the two-body low-energy constants to the effective-
range expansion (ERE) then leads to (see, e.g., Ref. [14])

C0 = 4πas

M
, C2 = C0

asrs
2

, C ′
2 = 4πa3

p

M
, (7)

where as and ap is the S- and P -wave scattering length, respec-
tively, and rs is the S-wave effective range.

In the so-called natural case the low-energy constants scale ac-
cording to

C0 ∼ 1

M�b
, C2 ∼ C ′

2 ∼ 1

M�3
b

, (8)

so in this case low-energy observables can be calculated systemati-
cally by ordering contributions in perturbation theory with respect 
to powers of Q /�b .

In the two-body sector there are only power divergences, but in 
systems with more than two particles also logarithmic divergences 
can occur, starting at order (Q /�b)

4. The counterterm for the 
leading logarithmic divergences is provided by the leading term 
of the three-body potential V (3)

EFT. Neglecting O(1/�) terms, cutoff 
independence in the N-body sector with N � 3 at order (Q /�b)

4

is tantamount to
∂

∂�

[
−(C0)

4β ln� + D0(�)
]

= 0. (9)

The coefficient of the ln � term in Eq. (9) is β = M3(4π −
3
√

3 )/(4π3), which can be obtained from the UV analysis of the 
two logarithmically divergent three-body scattering diagrams at or-
der (Q /�b)

4, see Refs. [7,14,20]. Integrating Eq. (9) leads to

D0(�) = D0(�0) + (C0)
4β ln(�/�0). (10)

The low-energy constant D0(�0) has to be fixed by matching to 
few-body data. For �0 ∼ �b it is D0(�0) ∼ 1/(M�4

b) in the nat-
ural case [21]. The scale �0 is however completely arbitrary, with 
D0(�

′
0) = D0(�0) + (C0)

4β ln(�′
0/�0).

Applying the EFT potential V EFT = V (2)
EFT + V (3)

EFT in many-body 
perturbation theory (MBPT) leads to the Fermi-momentum expan-
sion for the ground-state energy density E(kF) of the dilute Fermi 
gas, i.e.,
E(kF) = n
k2

F

2M

[
3

5
+ (g − 1)

∞∑
ν=1

Cν(kF)

]
, (11)

where n = g k3
F/(6π2) is the fermion number density and g is the 

spin multiplicity. The dependence of a given MBPT diagram on g
is obtained by inserting a factor δσ1,σ ′

1
δσ2,σ ′

2
− δσ1,σ ′

2
δσ2,σ ′

1
for each 

vertex and summing over the spins σ (′)
1 , σ (′)

2 of the in- and out-
going lines. Each MBPT diagram contributes only to a given order 
in the Fermi-momentum expansion, as specified by the EFT power 
counting. This is in contrast to pre-EFT approaches to the dilute 
Fermi gas [6–10], which are complicated by summations to all or-
ders and expansions for each diagram.

The leading term in the expansion was first obtained by 
Lenz [1] in 1929, and the second-order term was calculated by 
Lee and Yang [2] as well as de Dominicis and Martin [3] in 1957. 
They are given by

C1(kF) = 2

3π
kFas, (12)

C2(kF) = 4

35π2
(11 − 2 ln 2)(kFas)

2. (13)

The third-order term was first computed by de Dominicis and Mar-
tin [3] in 1957 for hard spheres with two isospin states, by Amusia 
and Efimov [5] in 1965 for a single species of hard spheres, and 
then by Efimov [7] in 1966 for the general dilute Fermi gas. It was 
also computed subsequently by various authors [8–11,14,22–24]. 
The most precise values have been obtained by Kaiser using semi-
analytic methods [22–24]:

C3(kF) =
[

0.0755732(0) + 0.0573879(0) (g − 3)
]
(kFas)

3

+ 1

10π
(kFas)

2kFrs + 1

5π

g + 1

g − 1
(kFap)3. (14)

We have reproduced these results. Our result for the fourth-order 
term is given by

C4(kF) = −0.0425(1) (kFas)
4 + 0.0644872(0) (kFas)

3kFrs

+ γ4 (g − 2) (kFas)
4, (15)

with

γ4(kF) = M D0(�0)

108π4a4
s

+ 0.2707(4) − 0.00864(2) (g − 2)

+ 16

27π3

(
4π − 3

√
3
)

ln(kF/�0). (16)

Here, the effective-range contribution stems from the two second-
order diagrams with one C0 and one C2 vertex (plus the corre-
sponding tree-level counterterm), which can be evaluated using 
the semianalytic formula of Kaiser [23]. The remaining part of 
C4(kF) corresponds to diagrams with four C0 vertices and the tree-
level contribution from V (3)

EFT.
We note that Baker has published three different results for 

C4(kF) for g = 2 in Refs. [6,9,25]. In all of them, C4(kF) involves 
an additional parameter A′′

0 that is presumed to be “not deter-
mined by the two-body phase shifts” [8,9]. As is clear from the 
EFT perspective, the appearance of such a non-ERE parameter is 
not justified at this order (for g = 2). The first publication by Baker 
on the kFas expansion [6] was criticized by Efimov and Amusia in 
Ref. [8]. Baker acknowledged this criticism and revised his result in 
Ref. [9]. He later revised his g = 2 result for C4(kF)/(kFas)

4 again 
in Ref. [25] (see Ref. [26]), where he gives for rs = ap = 0 the value 
−0.0372, which is close to our −0.0425(1). Note that we calculate 
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Table 1
Results for the regular contributions to C4(kF). Diagrams with ∗ (∗∗) have UV power 
(logarithmic) divergences, which are subtracted by the respective counterterm con-
tributions. Diagrams with ∗∗∗ have infrared singularities. The uncertainty estimates 
take into account both the statistical Monte-Carlo uncertainties and variations of 
the cutoff. The g factors are listed without the generic factor g(g − 1).

Diagram g factor Value

I1∗ 1 +0.0383115(0)

I2∗+I3+I4∗+I5∗ 1 +0.0148549(0)

I6 1 −0.0006851(0)

IA1 g(g − 3) + 4 −0.003623(1)

IA2 g(g − 3) + 4 −0.001672(1)

IA3 g(g − 3) + 4 −0.003343(1)

II1∗+II2∗ g − 3 +0.058359(1)

II3+II4 g − 3 −0.003358(1)

II5∗∗ g − 3 +0.0645(1)

II6∗∗,∗ g − 3 −0.0265(2)

II7+II12 g − 3 +0.003923(1)

II8+II11 g − 3 +0.007667(1)

II9 g − 3 −0.000981(1)

II10 g − 3 −0.000347(1)

IIA1∗∗ 3g − 5 +0.0647(1)

IIA2+IIA4 3g − 5 +0.004122(1)

IIA3 3g − 5 −0.000461(1)

IIA5 3g − 5 +0.003542(1)

IIA6 3g − 5 +0.003331(1)

III1∗∗∗,∗∗,∗+III7+III8∗∗∗,∗ g − 1 −0.0513(2)

III2∗∗∗+III9+III10∗∗∗ g − 1 +0.001650(1)

(II5+IIA1)g=2 1 +0.00018(1)

(II6+III1+III7+III8)∗g=2 1 −0.0248(1)∑
diagrams,g=2 1 −0.0425(1)

C4(kF) independently for both g = 2 and for general g , with g → 2
matching the g = 2 result.

Setting �0 = 1/|as| one obtains from the nonanalytic part of 
γ4(kF) the known form of the logarithmic term at fourth order [4,
7–10,14,20]. Note again that �0 is an arbitrary auxiliary scale: 
from Eq. (9), γ4(kF) is independent of �0. Therefore, the logarith-
mic term should not be treated as a separate contribution in the 
kF expansion.

For a momentum-independent potential (i.e., for the C0(�) part 
of V (2)

EFT), only diagrams without single-vertex loops contribute at 
zero temperature. There are 39 such diagrams at fourth order in 
MBPT [9,27], which can be divided into four topological species:

• I(1-6): ladder diagrams,
• IA(1-3): ring diagrams,
• II(1-12), IIA(1-6): other two-particle irreducible diagrams,
• III(1-12): two-particle reducible diagrams.

Here, we have followed Baker’s [9] convention for the labeling 
of these diagrams according to groups that are closed under ver-
tex permutations. Diagrams III(3,6,11,12) are anomalous and thus 
give no contribution in zero-temperature MBPT [28]. The remain-
ing diagrams are listed in Table 1. The following diagrams involve 
divergences:

• I(1,2,4,5), II(1,2,6), III(1,8): UV power divergences,
• II(5,6), IIA1, III1: logarithmic UV divergences,
• III(1,2,8,10): infrared divergences.

The UV divergences are removed by renormalization; i.e., the UV 
power divergences, which correspond to particle-particle ladders, 
are canceled by the counterterm contributions from the first-, 
second-, and third-order diagrams obtained by removing the lad-
ders. The diagrams with logarithmic divergences II(5,6), IIA1 and 
III1 are shown in Fig. 1. Using dimensionless momenta i ≡ ki/(αkF)

one can analytically extract (in the limit � → ∞) from each dia-
Fig. 1. Hugenholtz diagrams representing the fourth-order contributions with log-
arithmic divergences II(5,6), IIA1, and III1. Also shown are the other diagrams that 
are part of the sum III(1+7+8).

gram a contribution ∼ ln(�/(αkF)). The parameter α is arbitrary, 
and can be set to α = 1. Adding the logarithmic part of the tree-
level contribution from V (3)

EFT, this leads to the logarithmic part 
of C4(kF) given in Eq. (16). Finally, the infrared divergences are 
due to repeated energy denominators. This is a generic feature 
of two-particle reducible contributions in zero-temperature MBPT 
(see also [9], Sec. III.C., and [29], Sec. 1.4.). At each order, the 
infrared singularities are removed when certain two-particle re-
ducible diagrams are combined, in the present case III(1+8) and 
III(2+10). More details on the calculation of the fourth-order MBPT 
diagrams are given in the appendix. We have carried out the nu-
merical calculations using the Monte-Carlo framework introduced 
in Ref. [30] to evaluate high-order many-body diagrams.

Our results for the various contributions to the regular (i.e., 
nonlogarithmic) part of C4(kF) are listed in Table 1. The numeri-
cal values for the diagrams without divergences are similar (but 
small differences are present) to the ones published by Baker in 
Table IV of Ref. [9]. The contributions that involve logarithmic di-
vergences, II5, II6, IIA1, and III(1+7+8), have the largest numerical 
uncertainties. For g = 2 slightly more precise results can be given 
for II5+IIA1 and II6+III(1+7+8), because then no logarithmic diver-
gences occur.

For spin one-half fermions, the logarithmic term at fourth order 
(and beyond, up to a certain order Nlog) is Pauli blocked, so in that 
case the kF expansion is (for N < Nlog) given by

g = 2 : E(kF) = E0

(
1 +

N∑
ν=1

Xνδν

)
+ o(δN), (17)

where δ = kFas and E0 = 3nk2
F/(10M). The coefficients Xν are com-

pletely determined by the ERE parameters. For rs = ap = 0 (LO), the 
coefficients are

(X1, X2, X3, X4) = (+0.354,+0.186,+0.030,−0.071), (18)

and for the hard-sphere gas (HS) with as = 3rs/2 = ap , we obtain

(X1, X2, X3, X4) = (+0.354,+0.186,+0.384,+0.001). (19)

The results for N ∈ {2, 3, 4} are plotted in Fig. 2. For comparison, 
we also show results obtained from quantum Monte-Carlo (QMC) 
calculations [31–33]. Overall, the perturbative results are very close 
to the QMC results for |δ| � 0.5 and start to deviate strongly for 
|δ| � 1. In the LO case, the relative error with respect to the QMC 
point at δ = −0.5 is 4.5% at first, 0.8% at second, 0.4% at third, and 
0.1% at fourth order. In the HS case X4 is very small and the N = 3
and N = 4 curves are almost indistinguishable.

In Fig. 2 we also plot uncertainty bands obtained by setting 
XN+1 = ± max[Xν≤N ]. Going to higher orders in that scheme re-
duces the width of the bands in the perturbative region |δ| � 1. 
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Fig. 2. Results for E/E0 from the Fermi-momentum expansion and from QMC calculations [31–33], see text for details. For clarity, in the left panel the order-by-order results 
are plotted only up to kFas = −2.5. Note the systematic order-by-order improvement with overlapping uncertainty bands.
For |δ| � 0.5 the bands are very small for N = 4, which supports 
the conclusion that the expansion is well-converged at fourth or-
der in this regime. Note that these results do not depend on as
being of natural size; only kFas has to be small.

For the case where as is large, resummation methods provide a 
means to extrapolate to larger values of kFas . One possible method, 
which was employed also by Baker [25,26], is to use Padé ap-
proximants [34,35]. The LO results obtained from the Padé [1, 1]
and [2, 2] approximants are plotted in Fig. 2. Only diagonal Padé 
approximants have a meaningful unitary limit. The Padé [2, 2] re-
sults are very close to the QMC points for δ � −1.2, while the 
Padé [1, 1] ones are in better agreement with the QMC points 
close to the unitary limit δ → −∞. Note that pairing effects, which 
become relevant for larger values of −δ, can be expected to in-
fluence the large-order behavior of the Fermi-momentum expan-
sion [36]. The range for the Bertsch parameter obtained from the 
Padé [1, 1] and [2, 2] approximants, ξPadé ∈ [0.33, 0.54], is consis-
tent with the value ξ ≈ 0.376 extracted from experiments with 
cold atomic gases, and also with the extrapolated value for the 
normal (i.e., non-superfluid) Bertsch parameter ξn ≈ 0.45 [37]. Al-
together, these results may indicate that Padé approximants con-
verge in a larger region, compared to the Fermi-momentum ex-
pansion. To further investigate this one would need to construct 
the subsequent Padé [ν, ν] approximants, which require the ex-
pansion coefficients up to order 2ν � 6.

In summary, using EFT methods we have calculated the com-
plete fourth-order term in the Fermi-momentum expansion for the 
ground-state energy of a dilute Fermi gas. A detailed study of the 
convergence behavior and comparison against QMC calculations for 
the case of spin one-half fermions showed that this (asymptotic) 
expansion is well-converged at this order for |kFas| � 0.5, and ex-
hibits divergent behavior for |kFas| � 1. Our results provide im-
portant high-order benchmarks for many problems in many-body 
physics, ranging from cold atomic gases to dilute nuclear matter 
and neutron stars.

Acknowledgements

We thank R.F. Bishop, R.J. Furnstahl, A. Gezerlis, K. Hebeler, 
S. König, K. McElvain, D. Phillips and A. Tichai for useful dis-
cussions, and S. Gandolfi as well as S. Pilati for sending us their 
QMC results. This work is supported in part by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation) – 
Projektnummer 279384907 – SFB 1245, the US Department of 
Energy, the Office of Science, the Office of Nuclear Physics, and Sci-
DAC under awards DE-SC00046548 and DE-AC02-05CH11231. C.D. 
acknowledges support by the Alexander von Humboldt Foundation 
through a Feodor-Lynen Fellowship. Computational resources have 
been provided by the Lichtenberg high performance computer of 
the TU Darmstadt.

Appendix A

Here, we provide more details regarding the evaluation of the 
fourth-order MBPT diagrams.

The diagrams in the pairs I(3,4), III(7,8) and III(9,10) can be 
combined to get simplified energy denominators; I(2,5), II(1,2), 
II(3,4), II(7,8), II(11,12) and IIA(2,4) give identical results for a spin-
independent potential; and for a momentum-independent poten-
tial the contribution from I(3+4) is half of that from I(2+5). The 
diagrams I(1-6) can be calculated using the semianalytic expres-
sions derived by Kaiser [22], which can be obtained from the usual 
MBPT expressions [27] by applying various partial-fraction decom-
positions and the Poincaré-Bertrand transformation formula [38]. 
For the numerical evaluation of the IA diagrams it is more conve-
nient to use single-particle momenta instead of relative momenta, 
because then the phase space is less complicated. The II, IIA and 
III diagrams without divergences can be evaluated in the same way 
as the IA diagrams.

The expression for III(1+7+8) is given by

E4,III(1+7+8) = −ζ(g − 1)
∑
i,j,k
a,c

nijkn̄abc
θab

D2
ab,i j

×
(

n̄d
θkaθcd

Dbcd,i jk
− n̄d′

θcd′

Dcd′,ik

)∣∣∣∣ b=i+j−a
d=k+a−c
d′=i+k−c

. (20)

Here, 
∑

i ≡ ∫
d3i/(2π)3, the distribution functions are nij... ≡

nin j · · · and n̄ab... ≡ n̄an̄b · · · , with ni ≡ θ(1 − i) and n̄a ≡ θ(a − 1), 
and the energy denominators are given by Dab,i j ≡ (a2 + b2 − i2 −
j2)/(2M). Moreover, ζ = k9

F g(g − 1)(C0)
4 and θab ≡ θ(�/kF − |a −

b|/2). For details on the diagrammatic rules, see, e.g., Ref. [27]. The 
infrared divergence corresponds to Dab,i j = 0, and in that case the 
two terms in the large brackets cancel each other, and similar for 
III(2+10). For III(1+8) also the linear UV divergences are removed 
(the counterms for the power divergences of III1 and III8 would 
come from diagrams with single-vertex loops). The remaining log-
arithmic UV divergence is given by

E4,III(1+7+8)

ln(�/kF)

�→∞−−−−→ ζ(g − 1)

√
3

3327π9
. (21)

Subtracting this term from Eq. (20) enables the numerical eval-
uation of the regular (i.e., nonlogarithmic) contribution from 
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III(1+7+8) to C4(kF). The evaluation of the regular contributions 
from II5 and IIA1 is similar, i.e., the corresponding ln(�/kF) terms 
have to be subtracted.

This leaves the diagrams with power divergences II(1,2,6), 
where diagram II6 has also a logarithmic divergence. The expres-
sion for II6 reads

E4,II6 = −ζ(g − 3)
∑
i,j,k
a,c

nijkn̄abcdeθabθkaθcdθjeθbe

× 1

Dab,i jDbe,ikDbcd,i jk

∣∣∣∣ b=i+j−a
d=k+a−c
e=k+a−j

. (22)

Here, θka , θje and θbe are redundant. Substituting K = (i + j)/2, 
p = (i − j)/2, z = k, A = (a − b)/2, and Y = (c − d)/2 leads to

E4,II6 = −8M3 ζ(g − 3)
∑
K,p,z
A,Y

nijkn̄abcde θAθY
1

A2 − p2

× 1[
(A + p) · (A − K + z)

]
(Y 2 − p2 +R)

, (23)

where R = (3A + K − z) · (A − K + z)/4 and θA ≡ θ(�/kF − A). The 
two divergences of II6 can now be separated via

1

Y 2 − p2 +R
= 1

Y 2︸︷︷︸�E4,II6(i)

+ p2 −R
(Y 2 − p2 +R)Y 2︸ ︷︷ ︸�E4,II6(ii)

, (24)

with E4,II6(i) ∼ � for � → ∞, and

E4,III6(ii)

ln(�/kF)

�→∞−−−−→ ζ(g − 3)

√
3

3327π9
. (25)

The evaluation of the contribution from III6(ii) is similar to 
III(1,7,8), II5, and IIA1. For III6(i), the effect of the counterterm can 
be implemented via the identity

�

2π2
−

∑
Y

n̄cd
θY

Y 2
�→∞−−−−→

∑
Y

(nc + nd − ncd)
θY

Y 2
. (26)

For diagrams II(1,2) as well as I(1,2,4,5), the same procedure can be 
applied. For I(1,2,4,5) we have reproduced the semianalytic results 
in this way.
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