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1 Introduction

The strong couplings of heavy-light pseudoscalar and vector mesons with the pion belong to
the most important hadronic parameters of heavy flavour physics. Our ability to calculate
these couplings reflects the currently achieved progress in QCD and related effective theo-
ries. In the charm sector, the D∗Dπ coupling has been measured, combining the branching
fractions of the D∗ → Dπ decays with the total width of D∗. The latter is currently avail-
able from the two experiments [1–3] and has a small error. The B∗Bπ coupling cannot be
directly measured, due to the lack of phase space for a B∗ → Bπ decay. Still, this coupling
is phenomenologically very important. It enters the residue of the B∗-meson pole in the
vector B → π form factor used for the determination of the CKM parameter Vub. Located
very close to the kinematical threshold of the B → π`ν̄` semileptonic transitions, the B∗
pole significantly influences the form factor at small hadronic recoil.

In the infinitely heavy-quark limit mb →∞, the B∗Bπ coupling turns into the “static”
strong coupling of heavy-light mesons with the pion, a key parameter in the heavy-meson
chiral perturbation theory (HMχ PT) [4–6]. There are several lattice QCD calculations of
the heavy-meson strong couplings and their static limit, the most advanced ones, calculated
with dynamical quarks, are in [7–12].

In [13], the D∗Dπ and B∗Bπ couplings have been calculated, employing the method of
light-cone sum rules (LCSRs) in QCD [14–16]. The extension of LCSRs to strong couplings

– 1 –



J
H
E
P
0
3
(
2
0
2
1
)
0
1
6

goes back to [17] where the pion-nucleon and ρωπ couplings were calculated. The under-
lying object in this method is the vacuum-to-pion correlation function calculated near the
light cone in terms of the operator product expansion (OPE) involving the universal pion
light-cone distribution amplitudes (DAs) of growing twist. The same correlation function is
used in the well established LCSRs for the B → π and D → π form factors, see e.g., [13, 18–
22]. Importantly, the calculation of the D∗Dπ and B∗Bπ couplings is performed at a finite
heavy-quark mass. Hence, not only the infinitely heavy quark limit of these couplings can
be taken, but also the inverse mass corrections are accessible. The LCSR is obtained, em-
ploying analyticity in the two external momenta squared and matching the resulting double
dispersion relation to the OPE result. The further steps follow the standard QCD sum
rule technique and involve the quark-hadron duality approximation and the double Borel
transformation. Due to the approximate degeneracy of vector and pseudoscalar heavy-light
mesons (becoming exact in the infinitely heavy quark limit), equal Borel parameters are
taken in both channels of the double dispersion relation. As a result, the LCSR predic-
tions [13] for the D∗Dπ and B∗Bπ strong couplings at the leading order (LO) in αs are
sensitive to the values of the pion DAs at u = ū = 1/2 where u and ū ≡ 1− u are the frac-
tions of the pion momentum carried by the collinear quark and antiquark in the two-parton
state of the pion. The shape of the pion twist-2 DA is usually described by an expansion
in Gegenbauer polynomials based on the conformal partial-wave expansion. The value of
this DA at the middle point provides a nontrivial constraint on the polynomial coefficients
(Gegenbauer moments). Thus, LCSR for the strong coupling complements the information
on the first few Gegenbauer moments available from other sources (e.g., lattice QCD calcu-
lation of the second moment and LCSRs for the pion form factors). Assessing the accuracy
of the LCSR for the heavy-light strong couplings, one has to mention that the use of the
double dispersion relation makes this sum rule more sensitive to the quark-hadron duality
approximation than the LCSR for heavy-to-light form factors based on the single-variable
dispersion relation. On the other hand, the accuracy of OPE in both sum rules is the same.

The interval for gD∗Dπ obtained in [13] appeared to be below the measured value
by about 30%. The heavy-quark limit of this coupling obtained from LCSR was also
smaller than the results of lattice QCD calculations. The gluon radiative correction to
the twist-2 term of LCSR calculated in [23] did not remove this discrepancy. However,
one should mention that theoretical uncertainties quoted in the previous analyses [13, 23]
are incomplete and include only a part of parametrical uncertainties. In particular, the
perturbative correction to the twist-3 term was not taken into account. The dependence on
the form of duality region was also not completely investigated, moreover, the subleading
twist-3, 4 contributions were included without the duality subtraction at tree level. Another
critical point is the choice of decay constants of pseudoscalar and vector heavy-light mesons
which multiply the strong coupling in LCSR, making the final result very sensitive to the
values of these hadronic parameters.

A possibility to explain the deficit of the LCSR prediction for the heavy-light strong
coupling is to allow for large contributions of excited heavy-light states to the double
dispersion relation, as pointed out in [24] and discussed in more detail in [25]. Note
however that this conjecture introduces an almost uncontrollable model-dependence in the
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hadronic part of the sum rule and leaves open the most important question: is there a
duality region which effectively corresponds only to the ground-state contribution to the
LCSR? Taking into account all above mentioned open aspects, it is timely to revisit the
LCSR calculation of the strong couplings B∗Bπ and D∗Dπ, upgrading and updating the
earlier analyses in [13, 23].

In this paper we pursue three main goals. The first one is to improve the accuracy
of the OPE for the underlying correlation function. To this end, we will include the
next-to-leading-order (NLO) twist-3 term, calculating the corresponding gluon radiative
corrections. We remind that in the LCSRs for the strong couplings the twist-3 part is
comparable to the twist-2 part, their ratio being of O(µπ/mQ), where the chirally enhanced
parameter µπ = m2

π/(mu + md) is comparable with the heavy quark mass mQ = mc,b.
Hence, by adding the gluon radiative correction to the twist-3 term, we will achieve the
same NLO accuracy for both equally important parts of the OPE. Furthermore, we will,
for the first time, represent both NLO corrections in a form of double dispersion relation
with compact analytical expressions for the double spectral density.

Due to the importance of the twist-3 part, the LCSR considered here involves a double
hierarchy of even (2, 4, 6,. . . ) and odd (3, 5,. . . ) twist terms. The twist-4 contributions
known from previous analyses will be added in LO, which is sufficiently accurate since the
twist-4 part is small with respect to the twist-2 LO part. Moreover, the twist-5, 6 contri-
butions to the underlying correlation function calculated recently [26] in the factorizable
approximation were found negligible. Also the next-to-next-to-leading-order (NNLO) cor-
rection to the twist-2 part obtained in [27] (in the large β0 approximation) is very small.
All this ensures that the OPE adopted here, including the twist-2, 3 terms at NLO, and
the twist-4 term at LO, is sufficiently accurate.

Our second goal in this work is to update the input parameters in LCSR. In particular,
in this paper we employ the MS mass scheme for the highly off-shell heavy quarks in the
correlation function, which is a more appropriate choice than the pole-mass scheme em-
ployed in the earlier calculation. We also use the latest knowledge on the input parameters
of pion DA’s. For the decay constants of the vector and pseudoscalar heavy-light mesons
we use the QCD two-point sum rules with the same NLO accuracy as LCSRs, employing
the results of the updated analysis in [28] as well as the recent lattice QCD results. A more
complete analysis of parametrical uncertainties of the sum rule results is done.

Finally, our third goal is to extend the quark-hadron duality approximation for the
continuum subtraction to all twist-3 and 4 terms, in order to improve the procedure of
subtraction of excited states in LCSR which was incomplete in [13]. The sensitivity of
LCSRs to the form of the quark-hadron duality region in the double dispersion relation
will be investigated.

The plan of this paper is as follows. After outlining the LCSR method in section 2,
we present in section 3 the double spectral density of the correlation function in updated
form, including the new twist-3 radiative correction. In section 4 we discuss different forms
of the quark-hadron duality ansatz for the double dispersion relation. Section 5 contains
the numerical analysis and section 6 is devoted to the concluding discussion. We present
in appendix A necessary details on the pion DAs, in appendix B the expressions for the
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double spectral densities at NLO and in appendix C the sum rules for the heavy-light
meson decay constants.

2 The LCSR method

Hereafter we use a generic notation H(∗) for both pseudoscalar (vector) mesons D(∗) and
B(∗). The strong H∗Hπ coupling gH∗Hπ is defined as the invariant constant parametrizing
the hadronic matrix element

〈H∗(q)π(p)|H(p+ q)〉 = −gH∗Hπ pµε(H
∗)

µ , (2.1)

where the vector and pseudoscalar meson have four-momenta q and p + q, respectively,
and ε(H

∗)
µ is the polarization vector of H∗. The infinitely heavy quark limit of the strong

coupling:
lim

mQ→∞
gH∗Hπ/(2mH) = ĝ/fπ , (2.2)

where fπ is the pion decay constant, determines the static coupling ĝ that does not depend
on the heavy mass scale and enters the HMχPT Lagrangian.

In [13] it was suggested to calculate the strong couplings (2.1) employing the LCSR
based on the light-cone OPE for the vacuum-to-pion correlation function:

Fµ(q, p) = i

∫
d4xeiqx〈π(p)|T{jµ(x), j5(0)}|0〉 = F (q2, (p+ q)2) pµ + . . . , (2.3)

where jµ = q̄1γµQ and j5 = (mQ + mq2)Q̄ iγ5q2 are the interpolating currents for the H∗
and H mesons, respectively. In the above, Q is a generic notation for the heavy quarks
c and b, and q1,2 stand for the light quarks u or d. The decay constants of heavy-light
mesons needed here are defined as:

〈0|jµ|H∗(q)〉 = mH∗ε
(H∗)
µ fH∗ , 〈0|j5|H(p+ q)〉 = m2

HfH . (2.4)

In (2.3) the relevant invariant amplitude F multiplying pµ is singled out, and the second
Lorentz structure proportional to qµ is indicated by ellipses. The pion is on shell and in
what follows we adopt the chiral symmetry, putting p2 = m2

π = 0 and neglecting the u, d
quark masses in the correlation function, adopting also the isospin symmetry. Note that
the enhanced parameter

µπ = m2
π

mu +md
(2.5)

is retained in the chiral limit, since m2
π ∼ O(mu + md). For the finite heavy quark mass

in (2.3) we employ the MS scheme.
To derive LCSR for the strong coupling, following [13] one inserts the complete set

of intermediate states with H and H∗ quantum numbers in (2.3) and employs the double
dispersion relation1 for the amplitude F (q2, (p + q)2) in the two independent variables q2

1Double dispersion relations were used for QCD sum rules based on the local OPE, starting from [29]
where the sum rules for charmonium radiative transitions were obtained. Another important application
of double sum rules is the pion form factor [30, 31]; for the others see, e.g., the review [32]. The first
application of LCSRs for hadronic couplings are presented in [14–17].
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and (p+ q)2:

F (q2, (p+ q)2) = m2
HmH∗fHfH∗gH∗Hπ

(m2
H − (p+ q)2)(m2

H∗ − q2)

+
∫∫
Σ

ds2ds1
ρh(s1, s2)

(s2 − (p+ q)2)(s1 − q2) + . . . , (2.6)

where the possible subtraction terms are not shown. The latter include, in general, sin-
gle dispersion integrals in the first variable (p + q)2 combined with polynomials in the
second variable q2 and vice versa. All subtraction terms vanish after the double Borel
transformation which will be applied to the relation (2.6).

The ground-state double-pole term in the above relation contains the product of H∗Hπ
strong coupling and decay constants. We denote by Σ the two-dimensional region with the
lower boundary {s1 ≥ (mH+mπ)2; s2 ≥ (mH∗+mπ)2}, where the hadronic spectral density
of the continuum and excited states (with the H∗ and H quantum numbers, respectively)
denoted as ρh(s1, s2) contributes.

At q2, (p+q)2 � m2
Q, the dispersion relation (2.6) is matched to the result of the QCD

calculation of F (q2, (p + q)2). For the latter, we use the light-cone OPE in terms of pion
DAs, and employ the most complete and up-to-date calculation in [21] that was used to
obtain the LCSR for the B → π form factor. (see also [20], where, however the complete
analytical expressions are not presented). Following the general outline of QCD sum rule
derivation [33], we employ the quark-hadron duality ansatz. To this end, we will represent
the OPE result for the correlation function in a form of double dispersion integral:

F (OPE)(q2, (p+ q)2) =
∞∫
−∞

ds2
s2 − (p+ q)2

∞∫
−∞

ds1
s1 − q2 ρ(OPE)(s1, s2) , (2.7)

with the double spectral density

ρ(OPE)(s1, s2) ≡ 1
π2 Ims1Ims2F

(OPE)(s1, s2) , (2.8)

to be derived in the next section. Hereafter, we denote the variables q2 and (p + q)2

continued to their timelike regions as s1 and s2, respectively. For the sake of compactness,
the lower limits of integration in (2.7) corresponding to the thresholds s1,2 = m2

Q are
formally included in the spectral densities in a form of step functions and their derivatives.
We also omit in (2.7) all subtraction terms that vanish after double Borel transformation.

Adopting the quark-hadron duality, we assume that the integral of the hadronic spec-
tral density ρh(s1, s2) taken over the two-dimensional region Σ in (2.6) is equal to the
integral of the OPE spectral density (2.8) taken over a certain region Σ0 in the (s1, s2) plane∫∫

Σ

ds2 ds1
ρh(s1, s2)

(s2 − (p+ q)2)(s1 − q2) =
∫∫
Σ0

ds2 ds1
ρ(OPE)(s1, s2)

(s2 − (p+ q)2)(s1 − q2) . (2.9)

To proceed, we equate the double dispersion representations (2.6) and (2.7), substi-
tute (2.9) to (2.6) and subtract the equal integrals over the region Σ0 from both sides of this
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equation. For the remaining region dual to the ground-state contribution of the H∗ → Hπ

transition to (2.6) we introduce a generic notation:
Σ0∫∫

ds2 ds1 . . . =
∞∫
−∞

ds2

∞∫
−∞

ds1 . . .−
∫∫
Σ0

ds2 ds1 . . . . (2.10)

The actual choice of this duality region will be discussed below. As a next step, we perform
the double Borel transformation, defined as

f(M2
1 ,M

2
2 ) =

 lim
{−q2, n}→∞,
−q2/n=M2

1

(−q2)n+1

n!

(
d

dq2

)n (2.11)

×

 lim
{−(p+q)2, k}→∞,
−(p+q)2/k=M2

2

(−(p+ q)2)k+1

k!

(
d

d(p+ q)2

)k f(q2, (p+ q)2) .

This transformation removes the subtraction terms and suppresses the higher-state contri-
butions. The resulting LCSR for the product of the strong coupling and decay constants
then reads

fHfH∗ gH∗Hπ = 1
m2
HmH∗

exp
(
m2
H

M2
2

+ m2
H∗

M2
1

)

×
Σ0∫∫

ds2 ds1 exp
(
− s2
M2

2
− s1
M2

1

)
ρ(OPE)(s1, s2) . (2.12)

The above sum rule yields the desired H∗Hπ strong coupling, after dividing out the decay
constants of H∗ and H. For the latter we will use the two-point QCD sum rules with the
same NLO accuracy and the recent lattice QCD results.

3 Double spectral density of the correlation function

In this section, we derive the double spectral density ρ(OPE)(s1, s2) of the correlation func-
tion (2.3) calculated from the light-cone OPE. We will use the results presented in detail
in [21]. The procedure to obtain the double spectral density was originally used in [13] at
LO, including the twist-2, 3, 4 contributions. In [23], the NLO, O(αs) correction to the
twist-2 contribution was added to the double spectral density. The result was deduced from
the NLO correction to the twist-2 term of the correlation function obtained in [18] (see
also [19]). The new element to be included in our calculation is the NLO correction to the
twist-3 part of ρ(OPE)(s1, s2). Apart from that, here we derive the double spectral density
at LO in a more universal form, valid for any polynomial structure of the pion DA. We also
use the updated nomenclature of the pion twist-4 DAs which differs from the one in [13].

3.1 Double spectral density at LO

The OPE near the light-cone x2 ∼ 0 for the correlation function (2.3) is valid if both
external momenta squared q2 and (p + q)2 are far below the heavy quark threshold m2

Q.
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More specifically, to warrant the power counting in the OPE, it is sufficient that

m2
Q − q2 ∼ m2

Q − (p+ q)2 ∼ O(mQτ) , (3.1)

where τ � ΛQCD does not scale with mQ. The heavy quark propagating in the correlation
function is then highly virtual. The initial expression (2.3) is transformed into

Fµ(q2, (p+ q)2) = −imQ

∫
d4xeiqx〈π(p)|q̄1(x)γµSQ(x, 0)γ5q2(0)|0〉 , (3.2)

where the heavy quark propagator SQ(x, 0) = −i 〈0|T{Q(x), Q̄(0)}|0〉 is expanded near the
light-cone. In the adopted approximation, SQ(x, 0) consists of the free-quark propagator
and one-gluon emission term. In the correlation function (3.2) with the free heavy-quark
propagator we encounter the vacuum-to-pion matrix element of the bilocal quark-antiquark
operator q̄1(x) . . . q2(0). In its turn, the gluon component of the propagator SQ(x, 0) gen-
erates the contributions of the quark-antiquark-gluon operators q̄1(x) . . . Gµν(vx) . . . q2(0)
with 0 ≤ v ≤ 1. The emerging vacuum-to-pion matrix elements are expanded in terms
of the pion quark-antiquark (quark-antiquark-gluon) DAs of growing twist t = 2, 3, 4 (t =
3, 4), respectively. For the leading twist-2 DA we use the well-known standard definition:

〈π+(p)|ū(x)γµγ5d(0)|0〉 = −ifπ pµ
1∫

0

du eiup·xϕπ(u) , (3.3)

where the gauge link has been suppressed for brevity. All other pion light-cone DAs in-
volved in the expressions presented below are defined e.g. in [21]. With the adopted twist-4
accuracy the resulting LO expression [21] for the invariant amplitude in (3.2) represents a
sum of the separate twist and multiplicity contributions:

F (LO)(q2, (p+ q)2) =
[
F (tw2,LO) + F (tw3p,LO) + F (tw3σ,LO) (3.4)
+ F (tw3,q̄Gq) + F (tw4,ψ) + F (tw4,φ) + F (tw4,q̄Gq)](q2, (p+ q)2) ,

where the twist-2 contribution is

F (tw2,LO)(q2, (p+ q)2) = fπm
2
Q

1∫
0

du

m2
Q − (q + up)2 ϕπ(u) , (3.5)

and the two contributions of the pion two-particle twist-3 DAs are

F (tw3p,LO)(q2, (p+ q)2) = fπµπmQ

1∫
0

du

m2
Q − (q + up)2 uφ

p
3π(u) , (3.6)

and

F (tw3σ,LO)(q2, (p+q)2) = fπµπ
6 mQ

1∫
0

du

m2
Q − (q + up)2

(
2+

m2
Q + q2

m2
Q − (q + up)2

)
φσ3π(u) . (3.7)
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The second line in (3.4) contains subleading contribution of the twist-3 quark-antiquark-
gluon DA:

F (tw3,q̄Gq)(q2, (p+q)2) = −4f3πmQ

1∫
0

du

m2
Q − (q + up)2

(
1−

m2
Q − q2

m2
Q − (q + up)2

)
Φ3π(u) , (3.8)

where we transformed the expression presented in [21] into a compact form, denoting the
integrated three-particle DA as Φ3π(u). The remaining terms in (3.4) contain the twist-4
quark-antiquark DAs:

F (tw4,ψ)(q2, (p+ q)2) = −fπm2
Q

1∫
0

du

(m2
Q − (q + up)2)2 ψ̄4π(u) , (3.9)

F (tw4,φ)(q2, (p+ q)2) = −fπm4
Q

1∫
0

du

2(m2
Q − (q + up)2)3 φ4π(u) , (3.10)

and the integrated linear combinations of the twist-4 quark-antiquark-gluon DAs,

F (tw4,q̄Gq)(q2, (p+ q)2) = fπm
2
Q

1∫
0

du

(m2
Q − (q + up)2)2 Φ4π(u) . (3.11)

The expressions for all pion DAs and their combinations entering (3.5)–(3.11) are
given in appendix A. We use the same updated set of twist-3 and 4 DAs from [34] as
in [21]. Their definitions go back to the original work in [35]. The form of each DA
follows from the conformal partial-wave expansion and is given by a combination of certain
orthogonal polynomials in the momentum variables, such as the variable u in (3.3). The
input parameters in DAs include the overall normalization factors, e.g., fπ in (3.3), and
the coefficients at the polynomials normalized at a certain default normalization scale.

Our task is to derive a double dispersion relation in the form (2.7) for each separate
term in the OPE (3.4). To this end, we notice that all contributions of the three-particle
DAs in (3.4) have the form of a convolution integral of a single variable u, similar to the
contributions of the two-particle DAs. Moreover, all expressions in (3.5)–(3.11) are reduced
to linear combinations of the two generic integrals

F
(φ)
` (q2, (p+ q)2) ≡

1∫
0

du
φ(u)[

m2
Q − ūq2 − u(p+ q)2]` ,

F̃
(φ)
` (q2, (p+ q)2) ≡

1∫
0

du
q2φ(u)[

m2
Q − ūq2 − u(p+ q)2]` , (3.12)

where ` = 1, 2, 3 and φ(u) has to be replaced by a respective DA, entering (3.5)–(3.11):

φ = {ϕπ, uφp3π, φσ3π,Φ3π, ψ̄4π, φ4π,Φ4π}.

Note that in (3.12) we have transformed the denominator, making use of

m2
Q − (q + up)2 = m2

Q − ūq2 − u(p+ q)2,
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valid at p2 = 0 i.e. in a massless pion approximation utilized throughout the paper. Fur-
thermore, since we aim at the most general form of the double dispersion relation, it is
convenient to perform a Taylor expansion of all pion DAs or their integrated combinations
entering (3.5)–(3.11)

φ(u) =
∞∑
k=0

c
(φ)
k uk . (3.13)

The expansion (3.13) is convergent for all DAs including the twist-4 two-particle DA φ4π(u)
in (3.10), which contains logarithmic terms of the type uk ln u and ūk ln ū with k ≥ 3.

Consequently, it is sufficient to find the double spectral representation for the first
integral in (3.12) in which φ(u) is replaced by the power uk:

1∫
0

du
uk[

m2
Q − ūq2 − u(p+ q)2]` =

∫
ds2

s2 − (p+ q)2

∫
ds1

s1 − q2 ρ`k(s1, s2) , (3.14)

at arbitrary ` ≥ 1 and k > 0, so that the second integral in (3.12) is obtained by a simple
replacement of ρ`k(s1, s2) with ρ̃`k(s1, s2) where

ρ̃`k(s1, s2) = s1ρ`k(s1, s2) . (3.15)

As already said before, we hereafter neglect the typical subtraction terms which vanish
after the double Borel transformation. The formula for the spectral density ρ`k can be
directly taken from the recent work [36] where it was derived in a different context (see
also [37] for an alternative technique suitable for the analogous problems but with the
nonvanishing light-hadron mass). We have:

ρ`k(s1, s2) = (−1)`−1(−1)k
(`− 1)! k!

d `−1

dm2
Q
`−1

[(
s1 −m2

Q

)k
θ
(
s2 −m2

Q

)]
δ(k)(s1 − s2) , (3.16)

where δ(k)(x) ≡ dk/dxk[δ(x)]. Note that at ` = 1 the expression for ρ1k(s1, s2) coincides
with the one used in [13].

The integrals in (3.12) containing a generic DA φ(u) can be written as

F
(φ)
` (q2, (p+ q)2) =

∫
ds2

s2 − (p+ q)2

∫
ds1

s1 − q2 ρ
(φ)
` (s1, s2) , (3.17)

and the analogous representation for F̃ (φ)
` with ρ̃

(φ)
` (s1, s2), where the cumulative spec-

tral densities are obtained combining the expansion (3.13) with the “elementary” spectral
densities (3.16),

ρ
(φ)
` (s1, s2) =

∞∑
k=0

c
(φ)
k ρ`k(s1, s2), ρ̃

(φ)
` (s1, s2) =

∞∑
k=0

c
(φ)
k ρ̃`k(s1, s2). (3.18)

Replacing one by one all twist and multiplicity components in the sum (3.4) by their double
dispersion forms, we obtain the double spectral density for the LO part of the correlation
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function

ρ(LO)(s1, s2) = fπm
2
Q

[
ρ

(ϕπ)
1 + µπ

mQ

(
ρ

(uφp3π)
1 + 1

3 ρ
(φσ3π)
1 +

m2
Q

6 ρ
(φσ3π)
2 + 1

6 ρ̃
(φσ3π)
2

)
(3.19)

+ 4 f3π
fπmQ

(
−ρ(Φ3π)

1 +m2
Q ρ

(Φ3π)
2 − ρ̃(Φ3π)

2

)
− ρ(ψ̄4π)

2 −
m2
Q

2 ρ
(φ4π)
3 + ρ

(Φ4π)
2

]
(s1, s2) ,

where each term has a form of expansion (3.18) with the coefficients c(φ)
k easily determined

from the polynomial form of the DAs explicitly presented in appendix A. The expres-
sion (3.19) is new. Note that it is valid in the chiral limit, i.e. at p2 = m2

π = 0. To give
useful examples, we present the contribution to ρ(LO) of the twist-2 and twist-3 DAs taken
in the asymptotic form:

ρ
(ϕπ)
1 (s1, s2) = −6

[
(s1 −m2

Q)δ(1)(s1 − s2) + 1
2(s1 −m2

Q)2δ(2)(s1 − s2)
]
θ(s2 −m2

Q) ,

ρ
(uφp3π)
1 (s1, s2) = −(s1 −m2

Q)δ(1)(s1 − s2) θ(s2 −m2
Q) ,

ρ
(φσ3π)
1 (s1, s2) = ρ

(ϕπ)
1 (s1, s2) ,

ρ
(φσ3π)
2 (s1, s2) = −6

[
δ(1)(s1 − s2) + (s1 −m2

Q)δ(2)(s1 − s2)
]
θ(s2 −m2

Q)

− 6
[
δ(1)(s1 − s2) + 1

2(s1 −m2
Q)δ(2)(s1 − s2)

]
(s1 −m2

Q)δ(s2 −m2
Q) ,

ρ̃
(φσ3π)
2 (s1, s2) = s1 ρ

(φσ3π)
2 (s1, s2) . (3.20)

The expression (3.19) enables to write down the double spectral representation of F (LO)

in a form (2.7) and to perform a double Borel transformation in a general case of the two
unequal parameters M2

1 ,M
2
2 . In what follows we put M1 = M2 as motivated by the heavy

quark symmetry. After integrating (3.19) over the duality region specified in the next
subsection, we will see that the resulting LO part of the sum rule is substantially simplified
and reduced to a linear combination of DAs or their derivatives at the middle point.

3.2 Double spectral density at NLO

To NLO accuracy, the invariant amplitude we are interested in the correlation function (2.3)
becomes

F (OPE)(q2, (p+ q)2) = F (LO)(q2, (p+ q)2) + αsCF
4π F (NLO)(q2, (p+ q)2) , (3.21)

where the gluon radiative corrections at O(αs) have been calculated in [18, 19] for the
twist-2 part and in [21, 38] for the twist-3 part. The result of this calculation is cast in a
form of the convolution of the hard-scattering amplitudes and the twist-2 and twist-3 DAs:

F (NLO)(q2, (p+ q)2) = fπ

1∫
0

du

{
ϕπ(u)T1(q2, (p+ q)2, u) (3.22)

+ µπ
mQ

[
φp3π(u)T p1 (q2, (p+ q)2, u) + φσ3π(u)T σ1 (q2, (p+ q)2, u)

]}
,
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where the expressions for the twist-2 amplitude T1, and the twist-3 amplitudes T p1 and
T σ1 can be found in [21]. Here we do not show explicitly the residual scale dependence
of the hard-scattering amplitudes and of the nonasymptotic parts of pion DAs. Note
that, as explained in [21], the twist-3 part of (3.22) is only applicable to the asymptotic
DAs φp3π(u) and φσ3π(u), (obtained by putting in (A.4) the parameter f3π → 0) because the
hard-scattering amplitudes T p,σ1 are determined perturbatively without taking into account
the renormalization-mixing effects between the two- and three-particle DAs. Furthermore,
in [21] the NLO part of the correlation function was represented in a form of a single-variable
dispersion relation, calculating the imaginary part in s2 which is the timelike continuation
of the variable (p+ q)2:

Ims2F
(NLO)(q2, s2) =

1∫
0

du

{
ϕπ(u) Ims2T1(q2, s2, u, µ) (3.23)

+ µπ
mQ

[
φp3π(u) Ims2T

p
1 (q2, s2, u, µ) + φσ3π(u) Ims2T

σ
1 (q2, s2, u, µ)

]}
,

at fixed q2 < m2
Q. The above expression was used to derive the NLO terms in LCSRs for

the H → π form factors.
Here we need to make a step further and obtain the double spectral density

ρ(NLO)(s1, s2) ≡ 1
π2 Ims1Ims2F

(NLO)(s1, s2) , (3.24)

analytically continuing (3.23) in the variable q2 → s1. This double density consists of the
three contributions stemming from the twist-2 and twist-3 quark-antiquark DAs:

ρ(NLO)(s1, s2) = ρ(tw2,NLO)(s1, s2) + ρ(tw3p,NLO)(s1, s2) + ρ(tw3σ,NLO)(s1, s2) . (3.25)

We will use the asymptotic DAs for all three NLO terms. To justify this approximation,
we note that at LO the nonasymptotic contributions due to the Gegenbauer moments in
the twist-2 DA (see (A.1)) contribute at the level of a few percent to LCSR, if a typical
magnitude of the moments a2, a4 is taken (see the section on numerical results below).
An additional O(αs) factor will suppress these contributions well below the level of the
parametric uncertainties of the sum rule. For the twist-3 part the nonasymptotic effects at
NLO are even smaller, because already at LO these effects are determined by a combination
of parameters f3π/(µπfπ) ∼ 0.01.

For the asymptotic DAs, the calculation of ρ(NLO)(s1, s2) simplifies since the integral
over u in (3.23) is performed before analytically continuing the variable q2 to q2 = s1 > m2

b .
The expressions for the imaginary parts in (p + q)2 of the hard scattering amplitudes
in (3.23) are taken from [21].

The twist-2 term in (3.25) was already calculated in [23]. We have recalculated it and
confirm the expression presented there. The resulting expression for ρ(tw2,NLO)(s1, s2) is
presented in the appendix B. Note that, since we are now using the MS scheme for the
heavy quark mass, an additional O(αs) piece has to be added to the expression in [23]
obtained for the pole mass of the heavy quark.
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The derivation of the NLO twist-3 terms in the double spectral density (3.25) is new.
In the course of calculation we found that the resulting expressions for ρ(tw3p,NLO)(s, s2) and
ρ(tw3σ,NLO)(s1, s2) contain terms which cancel each other. Therefore the final expression
of the sum of the two denoted as ρ(tw3,NLO)(s, s2) is more compact. It is presented in
appendix B.

4 Quark-hadron duality and the sum rule

Having calculated the double spectral density (2.8) as

ρ(OPE)(s1, s2) = ρ(LO)(s1, s2) + αsCF
4π ρ(NLO)(s1, s2) , (4.1)

where the LO part is given in (3.19) and the NLO part represents the sum of the twist-2
and twist-3 parts given, respectively in (B.1) and (B.4), we are in a position to perform
the integration over a duality region in the LCSR (2.12). In the {s1, s2} plane, the lower
boundary of that region is determined by the heavy quark threshold (in the chiral limit
for light quarks) and is given by the straight lines s1 = m2

Q and s2 = m2
Q. For the upper

boundary symbolized by Σ0 in (2.12) there is a multiple choice.
As argued in [39], the triangular-type duality region is preferable in the HQET sum

rule for the Isgur-Wise function, based on the local OPE. This choice was also supported
in [40] by invoking the double sum rules in nonrelativistic quantum mechanics. Here we
follow the same guidelines in choosing the duality region, notwithstanding that the LCSR
for the H∗Hπ coupling is based on a different type of OPE, with an interplay of the
collinear and soft QCD dynamics. In [40] it was shown that duality ansatz works only if
the spectral densities are integrated first over the direction perpendicular to the diagonal
s1 = s2 in the s1,2 plane. Therefore, we only choose among the regions which process a
smooth border crossing of the diagonal and allow for evaluating the obtained dispersion
integrals properly, implying that the square duality region with a sharp corner on the
diagonal has to be discarded as discussed below.

The working duality region includes an interval of the diagonal s1 = s2 with a length
characterized by the effective threshold s0, as illustrated in figure 1. The value of this
parameter is expected in the ballpark of the duality threshold in the LCSRs for the H → π

form factors. Our choice for the duality region is motivated by the fact that the domi-
nant LO part of the spectral density (4.1) is concentrated near diagonal, since ρ(LO)(s1, s2)
represents a sum of terms proportional to δ(s1 − s2) and its first few derivatives. Due to
this property of the LO spectral density, the shape of the two-dimensional duality region
becomes inessential. However, since we also include the ρ(NLO)(s1, s2) part, which contains
nonvanishing terms at s1 6= s2, a certain dependence on the adopted shape of the duality
region will occur. In order to assess this effect in the NLO part, we will probe the duality re-
gions with different shapes but possessing the same diagonal interval along the line s1 = s2.
To this end, it is convenient to use the parameterization of the boundaries suggested in [15]:(

s1
s∗

)α
+
(
s2
s∗

)α
≤ 1 , s1, s2 ≥ m2

Q . (4.2)
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Figure 1. The duality regions defined in eq. (4.2).

We will probe the three regions, generated at

α = 1 , s∗ = 2s0 , (triangle);

α = 1
2 , s∗ = 4s0 , (concave);

α = 2 , s∗ =
√

2s0 , (convex); (4.3)

where s∗ is adjusted to provide equal diagonal intervals. These regions are shown, respec-
tively, in figure 1.

Note that in the limit {α → ∞, s∗ → s0}, the parameterization (4.2) represents a
square with the side s0. In this limiting case, the integration of both NLO twist-2 and twist-
3 spectral densities (B.1) and (B.4) develops a spurious divergence at the vertex s1 = s2 =
s0 of the square. This divergence can be traced back to the presence of the terms involving

d3

ds3
1

(
ln |s1 − s2|

)
.

To avoid such spurious divergences, it is sufficient to replace the outmost vertex of the
square duality region with a smooth, infinitesimally small curve. It is clear that the terms
in the NLO spectral density containing δ(s1− s2) and its derivatives, after integration over
any of the duality regions defined by (4.2) and (4.3) and shown in figure 1 yield equal
contributions. Consequently, only those contributions at the NLO, eqs. (B.1) and (B.4),
which do not contain the delta-function and its derivatives are sensitive to the choice of
the duality region.
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Apart from this, presumably minor effect, which we will numerically study in the
next section, the whole LO and the main part of NLO contributions originate from the
integration over the interval on the diagonal which is equal for all duality regions.

Hence, we hereafter adopt the most convenient choice: the triangular region, satisfying
the condition

s1 + s2 ≤ 2 s0. (4.4)

Returning to the LCSR (2.12), we subsequently assume equal Borel parameters

M2
1 = M2

2 = 2M2

and rewrite the sum rule as

fHfH∗ gH∗Hπ = 1
m2
HmH∗

exp
(
m2
H +m2

H∗

2M2

)[
F (LO)(M2, s0) + αsCF

4π F (NLO)(M2, s0)
]
,

(4.5)
introducing the compact notation for the integrals over the triangular duality region,

F (LO),(NLO)(M2, s0) ≡
∞∫
−∞

ds1

∞∫
−∞

ds2 θ(2s0 − s1 − s2) exp
(
−s1 + s2

2M2

)
ρ(LO),(NLO)(s1, s2) .

(4.6)
where the lower limits determined by the heavy quark mass are implicitly given by the
theta functions in the expressions of the spectral densities.

To calculate the LO part in (4.5), we use (3.19) where the spectral density ρ(LO) is
expressed via contributions of the separate DAs. We then reduce F (LO)(M2, s0) to a linear
combination of the integrals:

F (φ)
` (M2, s0) ≡

∞∫
−∞

ds1

∞∫
−∞

ds2 θ(2s0 − s1 − s2) exp
(
−s1 + s2

2M2

)
ρ

(φ)
` (s1, s2) , (4.7)

where φ = ϕπ, uφ
p
3π, φ

σ
3π, etc. In addition, we define the similar integrals F̃ (φ)

` (M2, s0)
over ρ̃(φ)

` . It is now straightforward to replace each DA by its Taylor expansion (3.13)
and expand the density ρ(φ)

` in the elementary components according to (3.18). In fact, in
the case of triangular duality region the resulting formulas for the integrals F (φ)

` and F̃ (φ)
`

can be written in a universal form valid for a generic DA. To this end, following [13], we
transform the integration variables in (4.7):

s1 = s(1− v) , s2 = sv (4.8)

or, inversely
s = s1 + s2 , v = s2

s1 + s2
,

so that (s1 − s2) → s(1 − 2v), allowing us to integrate out the δ(s1 − s2) = δ(1 − 2v)/s
functions and their derivatives over v. On the other hand, the exponential factor in (4.7)
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becomes independent of v. As a result, the Taylor expansion of an arbitrary DA φ(u)
reduces to its value or its derivative at u = 1/2 and we obtain

F (φ)
` (M2, s0) (4.9)

= (−1)`
(`− 1)!

{
(−1)`

(
M2)2−` exp

(
−
m2
Q

M2

)
+ δ`1M

2 exp
(
− s0
M2

)}
φ(u)

∣∣∣∣
u= 1

2

,

F̃ (φ)
` (M2, s0)

= − (−1)`
2(`− 1)!

d`−1

dm2
Q
`−1

∫ 2 s0

2m2
Q

ds exp
(
− s

2M2

) [
u

(
s

2 −m
2
Q

)
φ′(u) + s

2 φ(u)
] ∣∣∣∣
u= 1

2

.

As we will see below, only F̃2 contributes, hence for convenience we quote the second
integral in (4.9) at ` = 2

F̃ (φ)
2 (M2, s0) = m2

Q exp
(
−
m2
Q

M2

)
φ(u) +M2

[
exp

(
−
m2
Q

M2

)
− exp

(
− s0
M2

)]
uφ′(u)

∣∣∣∣
u= 1

2

.

(4.10)
The above formulas are also valid for the twist-4 DA φ4π which contains the specific uk ln u
and ūk ln ū terms with k ≥ 3.

Finally, the LO part of the LCSR in (4.5) is obtained in a form of a linear combination
of the separate DA contributions:

F (LO)(M2,s0) = fπm
2
Q

[
F (ϕπ)

1 + µπ
mQ
F (uφp3π)

1 + 1
6
µπ
mQ

(
2F (φσ3π)

1 +m2
QF

(φσ3π)
2 + F̃ (φσ3π)

2

)
−4 f3π

fπmQ

(
F (Φ3π)

1 −m2
QF

(Φ3π)
2 + F̃ (Φ3π)

2

)
−F (ψ̄4π)

2 −
m2
Q

2 F
(φ4π)
3 +F (Φ4π)

2

]
(M2,s0) . (4.11)

Using (4.9), we obtain a compact explicit expression which is straightforward to use in the
numerical analysis of the LCSR (4.5):

F (LO)(M2, s0) = fπm
2
Q

{
M2

[
exp

(
−
m2
Q

M2

)
− exp

(
− s0
M2

)][
ϕπ(u) (4.12)

+ µπ
mQ

(
uφp3π + 1

3 φ
σ
3π + 1

6 u
dφσ3π
du

)
(u)− 4 f3π

fπmQ

(
Φ3π + u

dΦ3π
du

)
(u)
]

+ exp
(
−
m2
Q

M2

)[
µπmQ

3 φσ3π − ψ̄4π −
1
4
m2
Q

M2 φ4π + Φ4π

]
(u)
}∣∣∣∣
u= 1

2

.

Comparing term by term this expression with the one obtained in [13], we found that they
coincide, although no explicit duality subtraction was applied to the twist-4 terms in [13].
In fact, the peculiar feature of the latter terms is that at equal Borel parameters the s0-
dependent terms vanish, as one can realize using the expressions for the double spectral
density derived here and valid for a generic Taylor-expandable DA.

It remains to obtain the NLO part of (4.5). We have to calculate F (NLO)(M2, s0) de-
fined in (4.6) by substituting the sum of the twist-2 and twist-3 NLO double spectral den-
sities ρ(tw2,NLO)(s1, s2) and ρ(tw3,NLO)(s1, s2) presented in (B.1) and (B.4) of appendix B.
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The resulting expressions of F (NLO)(M2, s0) for the triangular duality region reads:

F (NLO)(M2, s0) = fπm
2
Q

2s0∫
2m2

Q

ds exp
(
− s

2M2

)

×
[
f (tw2)

(
s

m2
Q

− 2
)

+
(
µπ
mQ

)
f (tw3)

(
s

m2
Q

− 2
)]

, (4.13)

with the NLO contributions of twist-2 and twist-3:

f (tw2)(σ) = 3
(

3 ln
m2
Q

µ2 − 4
)[

δ(σ − 0+)− 1
2

]
+ π2

2

+ 6Li2
(
−σ2

)
− 3Li2

(
− σ

σ + 2

)
+ 3Li2

(
σ

σ + 2

)
+ ln σ2

[
3 ln σ + 2

2 − 3
2
σ (σ + 4) (3σ + 10) + 24

(σ + 2)3

]
+ 6 ln(σ + 1)σ (σ + 1)

(σ + 2)3 −
3
4

3σ2 + 20σ + 20
(σ + 2)2 , (4.14)

f (tw3)(σ) =
(

3 ln
m2
Q

µ2 − 4
) [
δ(σ − 0+) + 2 δ′(σ − 0+)

]
+
(4

3 π
2 + 1

)
δ(σ − 0+) + π2

3

+ 4Li2
(
−σ2

)
− 2Li2

(
− σ

σ + 2

)
+ 2Li2

(
σ

σ + 2

)
+ ln σ2

[
2 ln σ + 2

2 + σ2 + 4
2 (σ + 2)2

]
+ 4 ln(σ + 1)σ

2 + 2σ + 2
σ (σ + 2)2

+ ln σ + 2
2

(
σ

8 −
2
σ

)
+ 3σ3 + 4σ2 − 16σ − 16

16 (σ + 2)2 , (4.15)

where Li2(x) is the Spence function. The expression for twist-2 part exactly matches the
one given in [23], whereas the expression of the twist-3 NLO correction (4.15) obtained in
the MS scheme is a new result. To switch to the pole-mass scheme for the heavy quark, it
is sufficient to add to (4.14) and (4.15) the terms ∆f (tw2)(σ) and ∆f (tw3)(σ), respectively,
given in (B.11). As an additional check of our results, we have explicitly verified that the
factorization-scale independence of both the twist-2 and twist-3 terms in the LCSR (4.5)
at O(α2

s) in the asymptotic limit.
The LCSR (4.5) for the strong H∗Hπ coupling, where H = B or D and, respectively,

mQ = mb or mc with the LO and NLO terms given in (4.12) and (4.13) is now complete
for the triangular duality region and ready for the numerical analysis.

5 Numerical results

To extract the strong couplings gD∗Dπ and gB∗Bπ from the LCSR (4.5), we need to divide
out the decay constants of the pseudoscalar and vector heavy-light mesons. Here we will
use two different procedures. The first one, applied in many LCSR applications, prescribes
that, instead of adopting the fixed numerical values, one substitutes in (4.5) the two-point
QCD sum rules for decay constants fH and fH∗ (H = D,B). These sum rules presented
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parameter input value [Ref.] rescaled values

quark-gluon coupling and quark masses

αs(mZ) 0.1179± 0.0010

[3]

αs(1.5GeV) = 0.3479+0.0100
−0.0096

αs(3.0GeV) = 0.2531+0.0050
−0.0048

mc(mc) 1.280 ± 0.025 GeV mc(1.5GeV) = 1.202± 0.023 GeV

mb(mb) 4.18 ± 0.03 GeV mb(3.0GeV) = 4.46± 0.04 GeV

(mu +md)(2 GeV) 6.78± 0.08 MeV [3, 41]
(mu +md)(1.5 GeV) = 7.40 ± 0.09 MeV

(mu +md)(3.0 GeV) = 6.14 ± 0.07 MeV

condensates

〈q̄q〉(2GeV) − (286± 23 MeV)3 [41]
〈q̄q〉(1.5GeV) = − (279± 22 MeV)3

〈q̄q〉(3.0GeV) = − (295± 24 MeV)3

〈GG〉 0.012+0.006
−0.012 GeV4

[44]

—

m2
0 0.8 ± 0.2GeV2 —

rvac 0.55± 0.45 —

Table 1. QCD parameters used in the LCSRs and two-point sum rules.

in appendix C are taken from [28]. For consistency, following the arguments presented
in [13, 23], the two-point sum rules are taken2 at NLO, enabling a partial cancellation of
perturbative corrections on both sides of (4.5). As a second, independent option, we will use
the lattice QCD values for the charmed and bottom meson decay constants. Specifically,
we will employ the latest Nf = 2 + 1 + 1 results: the averages for the heavy pseudoscalar
mesons from [41] and the ratios of the vector and pseudoscalar meson decay constants
obtained in [42],

fD = 212.0± 0.7MeV, fB = 190.0± 1.3MeV,
fD∗/fD = 1.078± 0.036, fB∗/fB = 0.958± 0.022. (5.1)

Furthermore, we have to specify the parameters entering the LCSR (4.5) and the
auxiliary two-point sum rules for decay constants. The QCD input, including the quark-
gluon coupling, the quark masses in MS scheme and the vacuum condensate densities,
is listed in table 1. We adopt a very precise value of the light-quark mass combination
(mu + md) determined in lattice QCD [41] (see the average in the quark-mass review
of [3]). We also adopt the current interval of the quark condensate [41] which is consistent

2Note that in the previous analysis [23] the perturbative correction to the quark condensate contribution
in the two-point sum rules was absent and is included now.
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with the Gell-Mann-Oakes-Renner relation. The running of the QCD coupling and quark
masses is performed with the four-loop accuracy [43] and the matching scales between
nf = 5 (nf = 4) and nf = 4 (nf = 3) are, respectively 4.2GeV and 1.3GeV.

Let us discuss now our choice for the input parameters of pion DAs. In the LO
part (4.12) of the LCSR, we encounter the values of the DAs or their derivatives at the
middle point u = 1/2. Note that the midpoint value of a given DA is determined by a
complete set of the coefficients in the conformal expansion, so that the LCSR (4.5) provides
an additional source of information on the structure of DAs. In this respect it is different
from the LCSRs for the B → π and D → π form factors, where the pion DAs are weighted
by the Borel exponent and integrated over the duality interval. On the other hand, since
the NLO part of the LCSR is calculated for the asymptotic twist-2 and twist-3 two-particle
DAs, the only inputs necessary for a numerical evaluation of (4.13) are the normalization
factors of these DAs given, respectively, by the pion decay constant fπ and by the parameter
µπ defined in (2.5).

The key parameter of the LO twist-2 part of LCSR (4.5) is the value of ϕπ(1/2, µ).
Expanding this DA in the Gegenbauer polynomials according to (A.1), we find

ϕπ(1/2, 1GeV) = 1.5− 2.25 a2 + 2.8125 a4 − 3.28125 a6 + 3.69141 a8 + . . . . (5.2)

Hereafter, unless the renormalization scale µ is explicitly shown, we denote by an the
Gegenbauer moments taken at the scale µ = 1GeV. We see that the midpoint value of
the twist-2 DA contains a sign alternating series of all Gegenbauer moments with slowly
growing numerical coefficients. At larger scales, the moments decrease, e.g.:

ϕπ(1/2, 3GeV) ' 1.5− 1.471 a2 + 1.515 a4 − 1.553 a6 + 1.585 a8 + . . . , (5.3)

where the scale dependence calculated using (A.2) is absorbed in the numerical coefficients.
At µ→∞, the value of ϕπ(1/2) approaches its asymptotic limit equal to 3/2. Still, at finite
scales, ϕπ(1/2) is an important indicator of the nonasymptotic effects, complementing the
available knowledge of the lowest Gegenbauer moments.

Currently, only the second moment a2 of the pion DA is accessible in QCD on the
lattice. We will use the latest quite accurate result:

a2(2GeV) = 0.116+0.019
−0.020 (5.4)

obtained in [45]. From the same analysis, higher Gegenbauer moments cannot be extracted
reliably, e.g. for a4 only a preliminary value is quoted, which will not be considered here. To
estimate and/or constrain the values of an≥4, one has to resort to the phenomenologically
viable models of ϕπ(u) expanding them in Gegenbauer polynomials.

To choose the input value of ϕπ(1/2), we adopt two such models. The first one denoted
here as Model 1 was suggested in [45]:

Model 1 : ϕπ(u) = Γ(2 + 2απ)
[Γ(1 + απ)]2 u

απ (1− u)απ . (5.5)
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Twist Parameter input value Source [Ref.] rescaled values

2

fπ 130.4MeV [3] —

ϕπ(1/2, 2GeV) 1.31± 0.03 Model 1 [45]
ϕπ(1/2, 1.5GeV) = 1.31+0.03

−0.02

ϕπ(1/2, 3.0GeV) = 1.34+0.02
−0.02

ϕπ(1/2, 1GeV) 0.99± 0.36 Model 2 [51]
ϕπ(1/2, 1.5GeV) = 1.09± 0.26

ϕπ(1/2, 3.0GeV) = 1.18± 0.19

3

µπ(2GeV) 2.87 ± 0.03 GeV m2
π

mu+md [3, 41]
µπ(1.5GeV) = 2.63 ± 0.03 GeV

µπ(3.0GeV) = 3.17± 0.04 GeV

f3π(1GeV) (4.5± 1.5) · 10−3 GeV2

[34]

f3π(1.5GeV) = (3.6± 1.2) · 10−3 GeV2

f3π(3.0GeV) = (2.8± 0.9) · 10−3 GeV2

ω3π(1GeV) −1.5± 0.7
ω3π(1.5GeV) = −1.2± 0.6

ω3π(3.0GeV) = −1.0± 0.5

4

δ2
π(1GeV) 0.18± 0.06GeV2

[34]

δ2
π(1.5GeV) = 0.16± 0.05

δ2
π(3.0GeV) = 0.14± 0.05

επ(1GeV) 0.5± 0.3
επ(1.5GeV) = 0.4± 0.2

επ(3.0GeV) = 0.3± 0.2

Table 2. Parameters of pion DAs.

Its single free parameter is fixed by equating the second Gegenbauer moment of this
model to the lattice QCD result (5.4), yielding απ(2GeV) = 0.585+0.061

−0.055. In addition, the
first inverse moment of this DA is

1∫
0

du
ϕπ(u, 2GeV)

1− u = 2 + 1
απ(2GeV) = 3.71+0.18

−0.16 . (5.6)

The corresponding midpoint value of the DA (5.5) is given in table 2. Note that
the inverse moment serves as the main input in the QCD calculation of the photon-pion
transition form factor [46–49]. As noted in [45], applying this method with the above value,
one achieves a good description of data on this form factor.

Our Model 2 is of a different origin and is based on the comparison of the LCSR for
the pion electromagnetic form factor [50] with the experimental data. We use the results
of the recent analysis [51], where a dispersion relation and the data in the timelike region
are used to reproduce the pion form factor in the spacelike region. These results are then
used to fit the LCSR form factor calculated to the twist-2 NLO accuracy including the
subleading twist-4,6 terms. Among various versions of the fitted twist-2 DAs we choose
the optimal one with the first three moments in the Gegenbauer expansion (A.1). The fit
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results obtained in [51] at the scale of 1GeV are

Model 2 : a2 = 0.270± 0.047, a4 = 0.179± 0.060, a6 = 0.123± 0.086 , (5.7)

with the correlation matrix: 
1.0 −0.15 −0.13
−0.15 1.0 −0.13
−0.13 −0.13 1.0

 . (5.8)

The corresponding input value of ϕπ(1/2, 1 GeV) is given in table 2.
In the same table we specify the input parameters entering the pion twist-3 and twist-4

DAs presented in appendix A. These DAs were worked out in [34] to the next-to-leading
order of conformal expansion. Their normalization and nonasymptotic coefficients at µ =
1GeV used as an input here were calculated from the two-point QCD sum rules (see [34]
and references therein). We notice, in particular, the relative smallness of the twist-3
parameter f3π, which determines the nonasymptotic part of the two-particle DAs and the
normalization of the three-particle DA. Hence, the large twist-3 contribution to LCSR is,
to a good precision, determined by the asymptotic two-particle DAs φp3π and φσ3π at the
midpoint. Here we greatly benefit from the very accurate value of the twist-3 normalization
parameter µπ which is determined by the light-quark masses. Note at the same time that
the O((mu + md)2/m2

π) correction to the ratio of normalization factors for φσ3π and φp3π
is still small enough to be neglected safely. The contributions of the twist-4 two- and
three-particle DAs, as we will see, are altogether strongly suppressed. Therefore, there
is no compelling reason to go beyond the current accuracy, and e.g., calculate the NLO
corrections to the twist-4 part, which is technically a challenging task.

To complete the choice of the input, we take the meson masses from [3], considering, for
definiteness, the strong coupling 〈D∗+π−|D0〉 and, correspondingly, 〈B̄∗0π−|B−〉 in (2.1).
All other couplings with different combinations of charges are related to the above ones
via the isospin symmetry (see e.g. [13]). Finally, we specify the variable parameters of
the LCSR (4.5), which include: the renormalization scale of the quark-gluon coupling
and quark masses, the factorization scale, the Borel parameters and the quark-hadron
duality thresholds. Since we perform the calculations at finite masses, these scales and
thresholds are evidently different in the sum rules involving charmed and bottom mesons.
On the other hand, heavy-quark spin symmetry allows us to equate certain scales, most
importantly, the Borel parameters in the H and H∗ channels. The chosen default values
and intervals of all relevant scales and thresholds are presented in table 3. Here we follow
the numerical analysis of the related LCSRs for the D → π and B → π form factors. More
specifically, we employ for the charm and bottom cases of (4.5) the same variable scales
and thresholds as, respectively, in [22] and [52]. The compelling argument is that we deal
here with the same underlying correlation function and the same light-cone OPE as in the
form factor sum rules. Also, the renormalization scales of αs and quark masses are taken
equal to the factorization scale µ appearing in the OPE of the correlation function3 (2.3).

3Note that the currents jµ and j5 in (2.3) are renormalization invariant.
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Parameter default value (interval) [Ref.]

charmed meson sum rules
µ (GeV) 1.5 (1.0 - 3.0)

[22]M2 (GeV2) 4.5 (3.5 - 5.5)

s0 (GeV2) 7.0 (6.5 - 7.5)

M̄2(GeV2) 2.0 (1.5 - 2.5)
[28]s̄0 (GeV2) 5.6

s̄ ∗0 (GeV2) 6.2
bottom meson sum rules

µ (GeV) 3.0 (2.5 - 4.5)
[52]M2 (GeV2) 16.0 (12.0 - 20.0)

s0 (GeV2) 37.5 (35.0 - 40.0)
M̄2 (GeV2) 5.5 (4.5 - 6.5)

[28]s̄0(GeV2) 33.9
s̄ ∗0 (GeV2) 34.1

Table 3. The renormalization scale µ, Borel parameters M2 and M̄2 and duality thresholds s0
and s̄0 (s̄0

∗) used, respectively in the LCSR and the two-point sum rules for the H (H∗) decay
constants for both charmed and bottom mesons.

In the adopted approximation the factorization scale reveals itself in the nonasymptotic
components of DAs in the LO part, while in the NLO part we use the asymptotic DAs. For
consistency, the same scale is used in the corresponding two-point sum rules for fH and fH∗ .

In tables 1 and 2, apart from the input values of the scale-dependent parameters at a
given reference scale µ = 2.0GeV or µ = 1.0GeV, we also present, for convenience, their
rescaled values at µ = 1.5GeV and µ = 3.0GeV, to be used in the sum rules with charmed
and bottom mesons, respectively. Note that the midpoint value of the twist-2 DA can be
rescaled only if it is expressed as a linear combination of multiplicatively renormalizable
Gegenbauer moments, because the latter possess different anomalous dimensions. Hence,
for the Model 1 we first calculate the Gegenbauer moments of the DA in (5.5), and then,
forming the expansion, rescale each moment according to (A.2). For the Model 2 the
rescaling is straightforward. The resulting values of ϕπ(1/2) for both models are presented
in table 2 at the two default scales, together with the parameters used for the twist-3 and
twist-4 DAs. The formulas determining the scale dependence of the latter can be found e.g.
in the appendix A of [21]. As already mentioned above, the intervals of Borel parameter,
as well as the values of threshold parameters in the LCSR (4.5) are the same as in the
LCSR analyses for D → π [22] and B → π [52] form factors. In each of these analyses, the
duality threshold was adjusted by fitting the differentiated sum rule to the heavy meson
mass. The Borel parameters and duality thresholds in the two-point sum rules for the H(∗)

decay constants are taken from [28].
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LCSR result tw 2 LO tw 2 NLO tw 3 LO tw 3 NLO tw 4 total
fD fD∗ gD∗Dπ 0.188 (Model 1)

0.049 0.333 0.115 -0.001
0.684

[GeV2] 0.156 (Model 2) 0.652
fB fB∗ gB∗Bπ 0.416 (Model 1)

0.081 0.395 0.148 -0.004
1.037

[GeV2] 0.367 (Model 2) 0.988

Table 4. Numerical results at the central input.

LCSR result α tw 2 NLO tw 3 NLO

fD fD∗ gD∗Dπ [GeV2]
1/2 0.056 0.128
1 0.049 0.115
2 0.038 0.093

fB fB∗ gB∗Bπ [GeV2]
1/2 0.090 0.158
1 0.081 0.148
2 0.066 0.131

Table 5. Numerical results for different duality regions at central values of parameters.

With the input specified above, we calculate first the product of the strong coupling and
decay constants from the sum rule (4.5). The results are presented in table 4 at the central
input and at default scales, including also the separate twist and NLO contributions. The
twist-2 and twist-3 contributions are at the same level, similar as in the LCSRs for heavy-to-
light form factors. In the twist-2 LO part of LCSR (4.5) the contributions of nonasymptotic
terms are quite noticeable, as can be seen from comparison of the results for the two different
DA models. At the same time, the share of asymptotic DAs constitutes 93% (87%) of the
twist-3 LO contribution for the bottom (charmed) meson case. The convergence of the
OPE is supported by the smallness of the twist-4 contributions. In addition, as already
mentioned, the twist-5 and twist-6 terms in the OPE of the correlation function (2.3)
obtained in the factorizable approximation in [26] have negligible impact, allowing us to
neglect them here. On the other hand, as seen from table 4, the NLO contributions are
appreciable, reaching e.g. for the bottom meson case the level of 20% (35%) for twist 2
(twist 3). The results presented in this table correspond to our default choice of the triangle
duality region in the (s1, s2) plane, described by the parameterization (4.2) at α = 1/2.
In addition, to investigate how the choice of the duality region influences the LCSR, we
calculated the NLO terms at the same default value of s0 for two other choices of the
region corresponding to α = 1 and α = 2. The results are presented in table 5. We see
that deviations with respect to the choice of triangle region are at the level of a few percent
of the total values of both fDfD∗gD∗Dπ and fBfB∗gB∗Bπ. We include this deviation into
the total uncertainty for the predicted strong couplings gD∗Dπ and gB∗Bπ.

To finally obtain these couplings, we divide out the heavy-meson decay constants
applying the two different methods described above: we either use the two-point sum rules
or the lattice QCD results listed in (5.1). For comparison, we quote the values of decay
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Figure 2. Scale dependence of the products fDfD∗gD∗Dπ and fBfB∗gB∗Dπ calculated from LCSR.
Displayed are the total values and separate twist-2 and twist-3 contributions for Model 1 of the
twist-2 pion DA and at central values of all other input parameters.

constants calculated at NLO from the two-point sum rules at central input:

fD = 190.7 MeV, fD∗ = 247.3 MeV, fB = 201.0 MeV, fB∗ = 214.0 MeV .

Our final results are shown in table 6 for both Model 1 and 2 of the twist-2 DA and
for both choices of the decay constants. The interval attributed to each separate entry in
table 6 is evaluated, adding in quadrature the separate uncertainties caused by individual
variations of all input parameters and scales within their adopted intervals in LCSR. When
using the two-point sum rules for the D(∗) and B(∗) decay constants, we vary the scale µ and
Borel parameters (condensate densities) concertedly (independently). The lattice results
for the decay constants have very small errors which play almost no role in the uncertainty
budget. Finally, the total uncertainty quoted in table 6 also includes the variation due to
the change of the duality region in the NLO part as described in section 4. We assume that
the latter uncertainty at least partially assesses the “systematic error” of LCSR caused by
the quark-hadron duality ansatz.

The LCSR prediction for D∗Dπ (B∗Bπ) strong coupling has altogether an estimated
uncertainty of 20-25% (15-20%), if the heavy-meson decay constants are replaced by the
two-point sum rules. The uncertainties become smaller when we use more accurate lattice
QCD values for the heavy-meson decay constants. For the two options for decay constants
the predicted intervals of gD∗Dπ are close to each other, whereas the intervals of gB∗Bπ
only marginally agree. The shift between the central values of the B∗Bπ coupling mainly
originates due to the O (20%) difference between the lattice-QCD value of fB∗ and the
central value of the two-point sum rule prediction.4 We also notice that the choice of the

4As already mentioned, for consistency, here we use the two-point sum rules at NLO. More accurate
sum rules at NNLO yield [28] the ratio fB∗/fB = 1.02+0.02

−0.09, reflecting the heavy-spin symmetry breaking
effect. Within uncertainties, this result is in agreement with (5.1) calculated in the lattice QCD [42].
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ϕπ(1/2) decay constants gD∗Dπ gB∗Bπ ĝ δ [GeV]

Model 1
2-point sum rule 14.5+3.5

−2.4 24.1+4.5
−3.8 0.18+0.02

−0.03 3.28+0.62
−0.17

Lattice QCD 14.1+1.3
−1.2 30.0+2.6

−2.4 0.30+0.02
−0.02 1.17+0.04

−0.04

Model 2
2-point sum rule 13.8+3.1

−2.3 23.0+4.5
−3.8 0.17+0.03

−0.03 3.31+0.30
−0.01

Lattice QCD 13.5+1.4
−1.4 28.6+3.0

−2.8 0.29+0.03
−0.03 1.18+0.00

−0.02

Table 6. LCSR results for the strong couplings of the charmed and bottom mesons for the two
methods of dividing out the decay constants and the two models of the pion twist-2 DA, at the
central values of parameters.

model for the pion twist-2 DA is less important for the charmed-meson strong coupling,
the reason being a dominance of the twist-3 contribution enhanced by the ratio µπ/mc

with respect to µπ/mb for the bottom-meson coupling.
Comparing our numerical results with the original LCSR calculation in [13], we notice

a substantial increase of the products of the strong couplings and decay constants displayed
in table 4 with respect to the results fDfD∗gD∗Dπ = 0.51± 0.05 GeV2 and fBfB∗gB∗Bπ =
0.64 ± 0.06 GeV2 obtained in [13]. This increase is mainly caused by the twist-2 and
twist-3 NLO terms in the LCSR, which were absent in [13]. In addition, the updated
input parameters in our numerical analysis differ from the ones adopted in [13]. Most
importantly, we use the MS heavy-quark masses instead of the pole-mass scheme employed
in [13]. In particular, the updated value of the twist-3 normalization parameter µπ has
become substantially larger. Moreover, the updated inputs affect the numerical LO result
in different directions, largely compensating each other in the case of charmed mesons
and generating an additional increase in the case of bottom mesons. The determined
strong couplings are numerically influenced by the magnitude of the products of heavy-
meson decay constants. In [13] they were taken from the two-point sum rules at LO.
By contrast, the larger values of these products are employed here such that the above-
mentioned increase of the LCSR results is either partially (for the charmed-meson case) or
almost completely (for the bottom-meson case) compensated, as can be seen by comparing
our predictions presented in table 6 with gD∗Dπ = 12.5± 1.0 and gB∗Bπ = 29± 3 from [13].

It is also instructive to investigate the limit of infinitely heavy-quark mass obtained
from the LCSR (4.5) for the strong coupling. This sum rule, where the underlying corre-
lation function is calculated at the finite mass mQ, not only reproduces the leading-power
behaviour of the coupling at mQ → ∞ but also enables a quantitative assessment of the
1/mQ corrections. For the heavy-to-light form factors obtained from the LCSRs, the heavy-
quark mass expansion has been investigated in the early papers [53, 54]. To proceed, we
apply to the sum rule (4.5) the usual scaling relations (valid up to the inverse heavy-quark
mass corrections):

fH = fH∗ = f̂
√
mQ

, mH = mH∗ = mQ + Λ, M2 = 2mQτ, s0 = m2
Q + 2mQω0 , (5.9)
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where f̂ and Λ are, respectively, the static decay constant and the binding energy of heavy
meson in HQET, and the parameters τ and ω0 do not scale with mQ. We obtain at LO

gH∗Hπ = 2mQ

fπ

[
f2
π

f̂2
eΛ/τ

{
τ
(
1− e−ω0/τ

)
ϕπ(1/2)+ µπ

6 φσ3π(1/2)− φ4π(1/2)
16τ

}]
+ . . . , (5.10)

where ellipsis indicates the inverse heavy-mass corrections. Comparing the above formula
with the definition (2.2) and taking the limit mQ → ∞, we notice that the expression in
square brackets is nothing but a sum rule for the static coupling ĝ in HMχPT. Note that
the twist-3 and 4 terms also contribute to this sum rule. Moreover, from the LCSR (4.5)
we are in a position to estimate both the static coupling and the inverse mass corrections
to it. Including the NLO terms in this limiting procedure is however nontrivial, because
one has to resum the logarithms of the heavy-quark mass. A systematic way is to derive
the LCSR for the strong coupling directly in HQET, a task which is beyond our scope here.

Expanding the rescaled sum rule (4.5) in the powers of 1/mQ, we follow [13], and
parameterize the LCSR result for the strong coupling a form (2.2) with an added inverse
heavy-mass correction:5

gH∗Hπ = 2mH ĝ

fπ

(
1 + δ

mH

)
, (H = D,B) . (5.11)

Equating the above formula to the obtained values of gD∗Dπ and gB∗Bπ presented in
table 6, we encounter the two equations yielding the parameters ĝ and δ. Their resulting
values are presented in the last two columns of the same table. We find that the inverse
mass corrections are large, especially in the case of the D∗Dπ strong coupling as it was
already noticed in [13]. Hence, estimating the static coupling ĝ from the known D∗Dπ or
B∗Bπ couplings via the relation (2.2), as it is frequently done in the literature, is actually
not reliable in practice.

The obtained values for the D∗Dπ coupling can be compared to its experimentally
measured value, extracted from the width of the D∗+ → D0π+ decay:

Γ(D∗+ → D0π+) = g2
D∗Dπ

24πm2
D∗
|~p|3 , (5.12)

where |~p| = 39MeV is the decay momentum in the rest frame of D∗. The above formula
for the partial width is obtained from the decay amplitude which is defined by crossing-
transforming the initial definition (2.1)

〈D0(q − p)π+(p)|D∗+(q)〉 = −gD∗Dπ pµε(D
∗)

µ . (5.13)

The PDG average [3] of the two measurements [1, 2] of the D∗±-meson total width is
Γtot(D∗±) = 83.4±1.8 keV6 and using the precisely measured branching fraction BR(D∗ →

5This parametrization is further supported by the heavy quark expansion of the strong couplings H∗Hπ
in the framework of HMχPT [55, 56].

6For the D∗0 total width only an upper limit is measured so far. To relate the total widths of charged
and neutral D∗ mesons, the isospin symmetry is not sufficient, because one needs in addition the radiative
decay widths Γ(D∗ → Dγ). Currently, the latter are only available from the theory estimates. The LCSR
prediction can be found e.g. in [36, 57].
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Figure 3. The dependence of gD∗Dπ and gB∗Bπ on the value of ϕπ(1/2). The lattice QCD results
for the decay constants of heavy mesons are employed.

Dπ) = 0.677± 0.005 from [3] yields

Γ(D∗+ → D0π+) = (56.5± 1.3) keV , (5.14)

where we have added the two errors of independent measurements in quadrature. Then,
from (5.13) we finally obtain the strong coupling:

[gD∗Dπ]exp = 16.8± 0.2 . (5.15)

Our results on the D∗Dπ coupling presented in table 6 are somewhat smaller than the
above value, but the difference is not significant. Even if we take the smallest interval
predicted from LCSR (the combination of Model 2 with the lattice decay constants) its
upper limit is only 10% smaller than the measured strong coupling.

Furthermore, it is instructive to investigate how sensitive are the LCSRs for D∗Dπ
and B∗Bπ couplings to the midpoint value of the pion twist-2 DA. In figure 3 we plot the
dependence of both strong couplings on ϕπ(1/2) considering the latter as a free parameter.
We observe a very mild dependence of gD∗Dπ, so that the overlap of the LCSR prediction
within its uncertainty interval with the experimental value (5.15) yields a broad interval
with ϕπ(1/2) > 1.5. Having in mind that an unaccounted uncertainty of LCSR at the
level of ∼ 10% is not excluded, we conclude that fixing the midpoint value of ϕπ only from
the measured D∗Dπ coupling is not realistic. In this respect, the dependence of gB∗Bπ on
ϕπ(1/2) plotted in figure 3 is steeper. Hence, an accurate lattice QCD prediction for this
coupling obtained at finite b-quark mass, being equated to LCSR, can yield a more tight
constraint on the pion DA.

Returning to the comparison of gD∗Dπ with experiment, a comment is in order. The
interval ϕπ(1/2, µ = 1.5GeV) > 1.5 preferred from this comparison may indicate that the
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Method gD∗Dπ gB∗Bπ ĝ

LQCD, Nf = 2 [8] 15.9± 0.7+0.2
−0.4 — —

LQCD, Nf = 2 + 1 [9] 16.23± 1.71 — —

LQCD, Nf = 2 + 1 [12] —
2mB
fπ

(0.56± 0.03± 0.07)
—

= 45.3± 6.0

LQCD, Nf = 2 [7] — — 0.44± 0.03+0.07
−0.0

LQCD, Nf = 2 + 1 [10] — — 0.449± 0.051

LQCD, Nf = 2 [11] — — 0.492± 0.029

LCSR (this work) 14.1+1.3
−1.2 30.0+2.6

−2.4 0.30+0.02
−0.02

Table 7. Strong couplings of the heavy mesons with pion obtained from lattice QCD (LQCD),
compared with our LCSR prediction (using Model 1 of the pion DA and the lattice-QCD decay
constants).

pion twist-2 DA at low scales has a structure different from both Models 1, 2 we have
used. It is in fact possible to construct a pion DA which has a midpoint value exceeding
the asymptotic limit and, simultaneously, the second Gegenbauer moment equal to the
lattice QCD value in (5.4). The simplest option is to adopt a truncated Gegenbauer
expansion with a relatively large positive a4(1GeV) and small an>4. A pion DA with
such a pattern of Gegenbauer moments at µ = 1GeV: a2 = 0.135 ± 0.032 (the rescaled
value (5.4)) and a4 = 0.218± 0.059, an>4 = 0, was used in [51] (see the second line in the
table IV there) among other models fitting the LCSR for the pion electromagnetic form
factor to the timelike form factor data. According to (5.2), the resulting midpoint value
is ϕπ(1/2, µ = 1GeV) = 1.81 ± 0.18. Note however that the Model 2 chosen above and
adopted from the same analysis provides a better fit to the pion form factor.

In table 7 we compare our results with the strong couplings calculated from the lattice
QCD. We only select the results obtained with the number of flavours Nf > 1. The
determinations of gD∗Dπ in [8, 9] are consistent with our results, whereas the only available
result [12] for gB∗Bπ is significantly larger than our prediction. The same is valid for the
static coupling ĝ in the lattice QCD. The latter comparison is, however, not completely
consistent because our results for ĝ are based on the fit of eq. (5.11) which includes the
higher-order correction in the heavy quark expansion.

Furthermore, let us mention an independent possibility to extract the B∗Bπ coupling.
The procedure, explained in detail in [58] (see also [59]), is based on the hadronic dispersion
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relation for the B → π vector form factor:

f+
Bπ(q2) = gB∗BπfB∗

2mB∗(1− q2/m2
B∗)

+ 1
π

∞∫
(mB+mπ)2

dt
Imf+

Bπ(t)
t− q2 (5.16)

valid without subtractions. The above relation contains the vector-meson B∗ pole, which
lies slightly below the threshold7 q2 = (mB+mπ)2. A small width of this meson determined
by the B∗ → Bγ decay can safely be neglected in (5.16). The residue of the B∗ pole is a
product of the B∗Bπ coupling and the B∗ decay constant. Multiplying both sides of (5.16)
by the denominator of the pole term, we take the limit q2 → m2

B∗ , removing the complicated
integral over hadronic spectral density, so that

gB∗Bπ = 2mB∗

fB∗
lim

q2→m2
B∗

[ (
1− q2/m2

B∗

)
f+
Bπ(q2)

]
. (5.17)

Here we benefit from the fact that the pion mass is much smaller than mB, hence, any
analytic representation of the expression in the square bracket of the above equation, valid
in the low pion recoil region q2 . (mB−mπ)2 of the B → π transition, provides an accurate
limit. The most convenient representation for that purpose is the BCL version [60] of the
z-expansion based on the conformal mapping of the momentum transfer squared:

q2 → z(q2) =
√

(mB +mπ)2 − q2 −
√

(mB +mπ)2 − t0√
(mB +mπ)2 − q2 +

√
(mB +mπ)2 − t0

,

where the optimal choice is t0 = (mB + mπ)(√mB −
√
mπ)2. In this case, the expression

under the square bracket in (5.17) represents a polynomial in z and can be easily continued
to z(m2

B∗).
As an example, we make use of the lattice QCD, Nf = 2 + 1 calculation [61] of the

B → π form factor, where the z-expansion

(
1− q2/m2

B∗

)
f+
Bπ(q2) =

Nz−1∑
n=0

b+n

(
[z(q2)]n − (−1)n−Nz n

Nz
[z(q2)]Nz

)
, (5.18)

was implemented. Choosing the preferred Nz = 4 version with the coefficients b+n from
table XIV of [61], we substitute (5.18) in (5.17). Adopting for fB∗ the lattice QCD value
in (5.1), we obtain:

gB∗Bπ = 34.5± 3.0 , (5.19)

where the uncertainty is obtained taking into account the errors and correlations of the
coefficients b+n quoted in [61] and the error of the decay constant fB∗ .

Before commenting on this result, we note that the truncated z-expansion in (5.18) is
employed here merely as a smooth fit function. It is used to fit the l.h.s. of (5.18) which
consists of the form factor calculated [61] at 17GeV2 < q2 < 26GeV2 and multiplied with
(1−q2/m2

B∗) to remove the B∗ pole . We then extrapolate this function to a slightly larger
7The separation of the D∗ pole located above the Dπ threshold is not a straightforward procedure, hence

here we refrain from considering the same method for the D∗Dπ coupling.
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q2 = m2
B∗ ' 28GeV2 to reach the limit (5.17). Hence, the accuracy of the truncation

in (5.18) plays a minor role in this procedure, being more important for an extrapolation
to the small q2 region.

The estimate (5.19) turns out to be significantly smaller than the result of a “direct”
lattice QCD calculation of gB∗Bπ, involving the finite-mass b-quarks [12] and presented in
table 7. On the other hand, the result in (5.19) is within uncertainty consistent with our
LCSR result. Finally, we also quote the earlier result gB∗Bπ = 30 ± 5 obtained in [58]
using (5.17) together with the z-expansion of the B → π form factor calculated from
LCSR. Since this calculation was done at small and intermediate momentum transfers, the
extrapolation via z-expansion plays a more important role and the estimated uncertainty
is naturally larger than for the lattice QCD results.

6 Conclusions and perspectives

In this paper we revisited the calculation of the strong couplings gD∗Dπ and gB∗Bπ from
the LCSR that was originally derived in [13]. The method is based on the OPE of the
correlation function (2.3) in terms of the pion DAs with growing twist. The use of a finite-
mass heavy quark allows one to easily transform our sum-rule expressions to be applied for
both charmed and bottom mesons.

Our main new result is the NLO twist-3 term in the LCSR, calculated from the gluon
radiative corrections to the underlying correlation function. We also derived compact
analytical expressions for both twist-2 and twist-3 NLO terms in a form of double dispersion
relation. This derivation was done in the MS scheme for the heavy quark mass, and
additional terms for a transition to the pole mass scheme were also obtained for the sake of
generality. Among other new results, the continuum subtraction under the quark-hadron
duality assumption is extended to all twist-3 and twist-4 terms at LO. We also carried
out a detailed investigation of the sensitivity of LCSR to the form of two-dimensional
duality region. For the dominant part of the spectral density which is concentrated near
the diagonal on the plane of the two variables, the triangle region was found to be the most
convenient choice. In addition, all input parameters entering LCSR were updated, with an
emphasis on the key parameter — the midpoint value of the twist-2 pion DA.

As a result, the overall accuracy of the LCSRs for the strong couplings is substantially
improved with respect to the earlier analyses in [13, 23]. Especially important, also nu-
merically, is the inclusion of the new NLO twist-3 term in these sum rules. Due to a more
precise input, the parametrical uncertainty for the default version of LCSRs — with the
heavy-meson decay constants taken from the lattice QCD — is reduced to the level of 10%.
Still, not completely included in this estimate is a “systematic uncertainty” caused by the
quark-hadron duality which is more pronounced for the double dispersion relation, than
for the sum rules based on the single-variable dispersion relation. One step in assessing
this uncertainty was done here by examining the variation due to the shape of the duality
region which was found to be rather small.

We compared our result for gD∗Dπ with the experimental measurement of this coupling
inferred from the D∗ → Dπ decay branching fraction and the D∗ total width. Identifying,
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somewhat qualitatively, as a 1σ standard deviation, the estimated uncertainty of O(10%)
(O(20%)) of the LCSR result for gD∗Dπ when the lattice-QCD values (two-point sum rules)
are used for decay constants, we find that our result is smaller by approximately 2σ than
(agrees within 1σ with) the measured value. The agreement is much better than before,
when only the LO [13] or partial NLO [23] results were included in the numerical analysis.
We conclude that there is no need for a radical modification of the quark-hadron duality
ansatz, e.g. adding explicitly the radially excited heavy-meson states to the hadronic part of
the sum rules, as suggested earlier [24, 25]. On the other hand, we found that the observed
insignificant deviation of the LCSR prediction for gD∗Dπ from experiment can be removed
by a moderate modification of the twist-2 pion DA at low scales. This modification, in its
turn, yields quite a noticeable growth of our prediction for gB∗Bπ. Hence, the sum rule for
strong coupling considered here reveals a sensitivity to the pion twist-2 DA, similar to the
other well-known LCSRs for the γ∗γ → π transition form factor, the pion e.m. form factor
and H → π form factors (H = D,B).

Since there are no direct measurements of the gB∗Bπ coupling, we can only compare our
result with the lattice QCD calculations. The most advanced calculation of [12] performed
at a finite b-quark mass, however, neglecting the subleading power terms in the heavy quark
expansion yields a gB∗Bπ coupling which is about 30% larger than the LCSR prediction
(see table 7). On the other hand, as we have demonstrated, the latter is quite compatible
with the value (5.19) extracted from the extrapolation to the B∗ pole of the lattice QCD
results for the B → π form factor [61].

Finally, one of the main conclusions following from our analysis is that the inverse
mass correction to the heavy-quark limit of the strong couplings is quite large. Hence, it
is probably premature to compare our results for that limit with the effective coupling ĝ
inferred from the lattice QCD calculations performed in HQET. To clarify this issue, an
alternative LCSR for the heavy-meson-pion strong coupling has to be derived in HQET
and compared with the heavy-mass expansion of the sum rule considered here.

The method of LCSR considered in this paper is well suited to calculate a whole variety
of strong couplings involving the pion. This can easily be done by varying the spin-parity
or flavor quantum numbers of both interpolating currents in the correlation function. An
early work in this direction can be found e.g. in [62] where the strong couplings of heavy
mesons with other combinations of spin-parities were calculated. Switching to the strange
quark in the interpolating currents allows one to access the strange counterparts of the
strong couplings considered here, such as gH∗sHK and gH∗HsK for both H = D,B.

The limited scope of this paper prevents us from discussing in detail alternative sum
rules for the strong H∗Hπ couplings, e.g. the ones employing the external soft-pion field
in which the correlation function of two heavy-light currents is expanded in terms of local
operators (see [63–65]). A detailed derivation of this method and comparison with LCSR
can be found in [13]. Due to the growing interest in the B-meson DAs, it will be also
interesting to “invert” the correlation function considered in this paper to the one with the
B-meson DAs and the pion-interpolating current.

– 30 –



J
H
E
P
0
3
(
2
0
2
1
)
0
1
6

Acknowledgments

First of all, we would like to thank Nils Offen and Patrick Gelhausen for participating at
the early stages of this work. The work of A.K. is supported by the DFG (German Research
Foundation) under grant 396021762-TRR 257 “Particle Physics Phenomenology after the
Higgs Discovery”. B.M. has been supported by the European Union through the European
Regional Development Fund the Competitiveness and Cohesion Operational Programme
(KK.01.1.1.06) and by the Croatian Science Foundation (HRZZ) project IP-2019-04-7094.
B.M. would also like to express her gratitude to Wolfram Research for providing a free li-
cence to use Mathematica at home during the COVID-19 pandemic lockdown and to Goran
Duplančić for discussions. A.K. and B.M. are also partially supported by the Alexander
von Humboldt Foundation in the framework of the Research Group Linkage Programme
funded by the German Federal Ministry of Education and Research. Y.M.W. acknowl-
edges support from the National Youth Thousand Talents Program, the Youth Hundred
Academic Leaders Program of Nankai University, the National Natural Science Founda-
tion of China with Grant No. 11675082, 11735010 and 12075125, and the Natural Science
Foundation of Tianjin with Grant No. 19JCJQJC61100. Y.B.W. is supported in part by
the Alexander-von-Humboldt Stiftung. We also would like to express a special thanks to
the Mainz Institute for Theoretical Physics (MITP) of the Cluster of Excellence PRISMA+
(Project ID 39083149) for its hospitality and support during the scientific program “Light-
cone distribution amplitudes in QCD” where this work was re-intiated.

A Pion light-cone DAs

The definitions of the pion light-cone DAs in terms of the vacuum-to-pion matrix element
of the quark-antiquark and quark-antiquark-gluon nonlocal operators can be found in [21].
Here the expressions for pion DAs used in the numerical analysis are collected:

• the twist-2 DA:

ϕπ(u, µ) = 6uū

1 +
∑

n=2,4,...
an(µ)C3/2

n (u− ū)

 , (A.1)

where Cαn (z) are Gegenbauer polynomials and the scale dependence of the moments
reads

an(µ) =
[
αs(µ)
αs(µ′)

] γn0
β0
an(µ′), (A.2)

with β0 = 11− 2
3nf and the anomalous dimension

γn0 = CF

[
− 3− 2

(n+ 1)(n+ 2) + 4
n+1∑
k=1

(1
k

)]
; (A.3)
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• the twist-3 two-particle DAs:

φp3π(u) = 1 + 30 f3π
µπfπ

C
1/2
2 (u− ū)− 3f3πω3π

µπfπ
C

1/2
4 (u− ū) , (A.4)

φσ3π(u) = 6uū
[
1 + 5 f3π

µπfπ

(
1− ω3π

10

)
C

3/2
2 (u− ū)

]
; (A.5)

• the twist-3 three-particle DA:

Φ3π(αi) = 360α1α2α
2
3

[
1 + ω3π

2 (7α3 − 3)
]
. (A.6)

Transforming the integration variables, the initial expression for the contribution of
this DA,

F tw3,q̄Gq(q2, (p+ q)2) = 4mQf3π

∫ 1

0
dv

∫
Dα v(q · p)Φ3π(αi)

(m2
Q − (q + (α1 + α3v)p)2)2 , (A.7)

where Dα ≡ dα1dα2dα3 δ(1 − α1 − α2 − α3), is reduced to (3.8) and we use the
following notation:

Φ3π(u) ≡ 1
2u

u∫
0

dα1(u− α1)
1−α1∫
u−α1

dα3
α2

3
Φ3π(α1, 1− α1 − α3, α3)

= 5u2ū2
[
3 + ω3π

(
− 1 + 7

4u
)]

; (A.8)

• the twist-4 two-particle DAs:

ψ4π(u) = 20
3 δ

2
πC

1/2
2 (2u− 1) , (A.9)

with a shorthand notation for the integral in (3.9)

ψ̄4π(u) ≡ u
∫ u

0
dv ψ4π(v) = 20

3 δ
2
πu

2ū(1− 2u) , (A.10)

and

φ4π(u) = 200
3 δ2

πu
2ū2 + 8δ2

πεπ
[
uū(2 + 13uū) + 2u3(10− 15u+ 6u2) ln(u)

+ 2ū3(10− 15ū+ 6ū2) ln(ū)
]
. (A.11)

• the twist-4 three-particle DAs:

Φ4π(αi) = 120δ2
πεπ(α1 − α2)α1α2α3,

Ψ4π(αi) = 30δ2
π(α1 − α2)α2

3

(1
3 + 2επ(1− 2α3)

)
,

Φ̃4π(αi) = −120δ2
πα1α2α3

(1
3 + επ(1− 3α3)

)
,

Ψ̃4π(αi) = 30δ2
πα

2
3(1− α3)

(1
3 + 2επ(1− 2α3)

)
. (A.12)
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Using these expressions, we transformed the sum of the contributions of the above
DAs,

F tw4,q̄Gq(q2, (p+ q)2) = m2
Qfπ

∫ 1

0
dv

∫ Dα
(m2

Q − (q + (α1 + α3v)p)2)2 (A.13)

×
[
2Ψ4π(αi)− Φ4π(αi) + 2Ψ̃4π(αi)− Φ̃4π(αi)

]∣∣∣
α2=1−α1−α3

,

to the compact form (3.11), denoting

Φ4π(u) =
u∫

0

dα1(u−α1)
1−α1∫
u−α1

dα3
α3

[
2Ψ4π(αi)−Φ4π(αi)+2Ψ̃4π(αi)−Φ̃4π(αi)

]∣∣∣
α2=1−α1−α3

= δ2
π

3 u
3ū

{
10−5u

[
1+3επ

(
1− 3

5u
)]}

. (A.14)

B Double spectral density at NLO

The expression for the twist-2 part of the NLO double spectral density in the sum rule (4.5)
calculated in the MS scheme reads:

ρ(tw2,NLO)(r1, r2)

= fπ θ(r2 − 1)
{

6
[
(r1 − 1) (r2 − 1)

(
3 ln

m2
Q

µ2 + ln2 r1 − 1
r2 − 1 − ln r1 − 1

r2 − 1

(
ln r1
r2
− 1
r2

+ 1
)

+ ln(r2 − 1)
[
4− ln(r1r2)− 1

r2

]
− Li2(1− r1)− 3 Li2(1− r2) + r1

r2
− 9

2 −
4
3π

2
)

+ (2− r1 − r2)
(

3 ln
m2
Q

µ2 − 4
)
− r2 (r1 − 1) ln r2 −

3
2 (r2 − 1)2

]
d2

dr12 δ(r1 − r2)

+ 6 θ(r1 − 1) (r1 − 1) (r2 − 1)
[
2 ln r1 − 1

r2 − 1 − ln r1
r2

+ 1
r2
− 1

]
d3

dr13 ln |r1 − r2|
}
, (B.1)

where we use the rescaled variables

r1 = s1
m2
Q

, and r2 = s2
m2
Q

. (B.2)

To convert this result to the pole-mass scheme for the heavy quark, we are required to
include the following term in the above expression

∆ρ(tw2,NLO)
pole (r1, r2) = −6 fπ

(
3 ln

m2
Q

µ2 − 4
)
θ(r2 − 1)

×
[
(r1 − 1) (r2 − 1) + 2− r1 − r2

] d2

dr12 δ(r1 − r2) , (B.3)

with the replacement of mQ → mQ, pole.
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The desired twist-3 spectral density at NLO in αs is calculated here for the first time:

ρ(tw3,NLO)(r1, r2)

= fπ
µπ
mQ

{
θ(r2 − 1)

[
− 2 (r1 + r2)

(
3 ln

m2
Q

µ2 − 4
)

+ 4 r2 (r1 − 1) ln r2 − 1
r1 − 1

+ 2 r1
r2

(r2 − 1)2 ln(r2 − 1)−
[
1 + r2 + r1 (r1 + 2) (r2 − 1)

]
ln r2 + (r1 − 1) (r2 − 3)

+ 2 (r1 + r2 − 2r1r2)
(
− ln2 r2 − 1

r1 − 1 − ln(r1 − 1) ln r2
r1

+ 2 ln(r2 − 1) ln r2

+ 1
r2

ln r2 − 1
r1 − 1 + 3 Li2(1− r2) + Li2(1− r1) + 4

3 π
2
)]

d2

dr12 δ(r1 − r2)

− 2 θ(r1 − 1) θ(r2 − 1)
[
(r1 + r2 − 2 r1 r2)

(
ln r2
r1
− 2 ln r2 − 1

r1 − 1 + 1
r2

)

+ 2 r2 (r1 − 1)
]
d3

dr13 ln |r1 − r2|+ 4
[
d

dr1
δ(r1 − 1)

]
δ(r2 − 1)

(
3 ln

m2
Q

µ2 − 4
)}

. (B.4)

The additional term needed to convert the above expression to the pole-mass scheme is

∆ρ(tw3,NLO)
pole (r1, r2) = fπ µπ

mQ

(
3 ln

m2
Q

µ2 − 4
){

θ(r2 − 1) (3 r1 + 3 r2 − 2 r1 r2) d2

dr12 δ(r1 − r2)

− 4
[
d

dr1
δ(r1 − 1)

]
δ(r2 − 1)

}
. (B.5)

To facilitate the comparison of our results with those already derived in [23], we intro-
duce the two dimensionless variables

r =
s1 −m2

Q

s2 −m2
Q

, σ = s1
m2
Q

+ s2
m2
Q

− 2 . (B.6)

Taking into account the fact that the double spectral densities will be integrated over the
variables r and σ (replacing s1 and s2) in the LCSR for the strong coupling H∗Hπ, the
method of integration by parts (IBP) can be further applied to the r-variable integral in
order to simplify the obtained lengthy expressions of (B.1) and (B.4) for the triangular
duality region, which will result in the vanishing surface terms. Under this circumstance,
the twist-2 NLO spectral density (B.1) can be cast into a more compact form

ρ(tw2,NLO)(r, σ)

= fπ
(r + 1)2

σ

{
3 δ(r − 1)

[
δ(σ)− 1

2 θ(σ)
](

3 ln
m2
Q

µ2 − 4
)

+ θ(σ)
[
δ(r − 1)

(
2π2

+ 6Li2
(
− σ

2

)
+ ln σ2

[
3 ln σ + 2

2 − 3σ (σ + 4) (3σ + 10) + 72
2 (σ + 2)3

]
+ 3

4
σ (σ + 12) + 12

(σ + 2)2

)

+ θ(r) 6 r
(r + 1)

(
2 ln r + ln 1 + r + σ

1 + r + r σ
− σ

1 + r + σ

)
d3

dr3 ln |r − 1|
]}

. (B.7)
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Switching to the pole-mass scheme of the heavy quark, one needs to add the following
expression

∆ρ(tw2,NLO)
pole (r, σ) = fπ

(r + 1)2

σ

(
3 ln

m2
Q

µ2 − 4
){

3 δ(r − 1)
[ 1

2 θ(σ) − δ(σ)
]}

. (B.8)

It is straightforward to verify that the sum of (B.7) and (B.8) is equivalent to the expression
obtained in [23] in the pole-mass scheme. Along the same vein, we express the twist-3
double spectral density at O(αs) (B.4) for the default duality region as follows

ρ(tw3,NLO)(r,σ)

= fπ
µπ
mQ

(r+1)2

σ

{(
δ(r−1)

[
δ(σ)−2δ′(σ)

]
+4(r+1)δ(r)δ′(σ)

)(
3 ln

m2
Q

µ2 −4
)

+
(4

3 π
2 +1

)
δ(r−1)δ(σ)+θ(σ)

[
δ(r−1)

(
4
3 π

2 +4Li2
(
− σ2

)
+ 1

2

(
σ

4 −
4
σ

)
ln σ+2

2

+ln σ2

(
σ2 +4

2(σ+2)2 +2 ln σ+2
2

)
+ 1

2(σ+2)2

[3σ
[
σ (σ+12)+80

]
8 + 32

σ
+62

])

+θ(r) 2
σ (r+1)

([
(1+r)2 +2rσ

](
2 lnr+ln 1+r+σ

1+r+rσ

)
− (1+r)2 (r−1)

1+r+σ
−2rσ

)

× d3

dr3 ln |r−1|
]}

, (B.9)

and

∆ρ(tw3,NLO)
pole (r, σ) = fπ

µπ
mQ

(r + 1)2

σ

(
3 ln

m2
Q

µ2 − 4
)

×
{1

2 δ(r − 1)
[
θ(σ) + 2 δ′(σ)− δ(σ)

]
− 4 (r + 1) δ(r) δ′(σ)

}
. (B.10)

Finally, for completeness we present the pole-mass scheme additions to the final NLO
expressions in (4.13), separately for the twist-2 and twist-3 parts:

∆f (tw2)
pole (σ) =

(
3 ln

m2
Q

µ2 − 4
)

3
[ 1

2 − δ(σ − 0+)
]
,

∆f (tw3)
pole (σ) =

(
3 ln

m2
Q

µ2 − 4
) 1

2
[
1− δ(σ − 0+)− 4 δ′(σ − 0+)

]
. (B.11)

C Two-point sum rules for heavy meson decay constants at NLO

Here the two-point QCD sum rules for the decay constants of the heavy-light mesons H and
H∗ (H = D,B) are presented. Their expressions — with the NLO, O(αs) accuracy in the
perturbative and quark-condensate terms and including the dimension d ≤ 6 condensates
— are taken from [28]. In these sum rules, we denote the Borel parameter squared and
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duality thresholds by the barred quantities M̄2 and s̄0, s̄
∗
0, to distinguish them from the

analogous parameters in the LCSR for the strong coupling.
For the decay constant of the pseudoscalar meson we have:

f2
H = em

2
H/M̄

2

m4
H

{ s̄0∫
m2
Q

ds e−s/M̄
2
ρ

(pert)
5 (s) + Π〈q̄q〉5 (M̄2) + Π(d456)

5 (M̄2)
}
, (C.1)

where the perturbative spectral density (for a massless light quark) is:

ρ
(pert)
5 (s) =

3m2
Q

8π2 s (1− z)2 + 3αsCF
16π3 m2

Qs(1− z)
[

9
2(1− z)

+ 2(1− z)
[
2 Li2(z) + ln z ln(1− z)

]
+ (3− z)(1− 2z) ln z

− (1− z)(5− 2z) ln(1− z) + (1− 3z)
(

3 ln µ2

m2
Q

+ 4
)]

, (C.2)

denoting z = m2
Q/s. The quark condensate contribution is

Π〈q̄q〉5 (M̄2) = −m3
Q〈q̄q〉e

−
m2
Q

M̄2 (C.3)

×
{

1− αsCF
2π

[(
3 ln µ2

m2
Q

+ 4
)
m2
Q

M̄2 − 7− 3 ln µ2

m2
Q

+ 3 Γ
(

0,
m2
Q

M̄2

)
e
m2
Q

M̄2

]}
,

containing the incomplete gamma function Γ(a, z) =
∫∞
z ta−1e−tdt.

The sum of contributions of the d = 4, 5, 6 (gluon, quark-gluon and four-quark) con-
densates is

Π(d456)
5 (M̄2) =

[
〈GG〉m2

Q

12 −
m2

0〈q̄q〉m3
Q

2M̄2

(
1−

m2
Q

2M̄2

)

−
16πrvacαs〈q̄q〉2m2

Q

27M̄2

(
1−

m2
Q

4M̄2 −
m4
Q

12M̄4

)]
e−

m2
Q

M̄2 . (C.4)

In the above equations, the following shorthand notations and parameterizations are used
for the QCD vacuum condensate densities:

〈0|q̄q|0〉 ≡ 〈q̄q〉 , (αs/π)〈0|GaµνGaµν |0〉 ≡ 〈GG〉 , 〈0|gsq̄Gaµνtaσµνq|0〉 = m2
0〈q̄q〉 ,

and the four-quark condensate density, factorized [33] via vacuum insertion, is approxi-
mated by the square of quark condensates rvac〈q̄q〉2, where the numerical factor rvac pa-
rameterizes deviation from the factorization. Note that m2

0 and the four-quark density
multiplied by αs are to a good precision scale-independent. The numerical values of all
condensate parameters are presented in table 1.

The sum rule for the decay constant of the vector heavy-light meson is:

f2
H∗ = em

2
H∗/M̄

2

m2
H∗

[ s̄∗0∫
m2
Q

ds e−s/M̄
2
ρ

(pert)
T (s) + Π〈q̄q〉T (M2) + Π(d456)

T (M2)
]
, (C.5)
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with the perturbative spectral density

ρ
(pert)
T (s) = 1

8π2 s (1− z)2 (2 + z) + 3αsCF
16π3 s

[
1− 5

2z + 2
3z

2 + 5
6z

3

+ 2
3(1− z)2(2 + z)

[
2 Li2(z) + ln z ln(1− z)

]
+ 1

3z(−5− 4z + 5z2) ln z

− 1
3(1− z)2(4 + 5z) ln(1− z)− z(1− z2)

(
3 ln µ2

m2
Q

+ 4
)]

, (C.6)

and the condensate contributions:

Π〈q̄q〉T (M̄2) =−mQ〈q̄q〉e−
m2
Q

M̄2

{
1+ αsCF

2π

[
1−3

m2
Q

M̄2 ln µ2

m2
Q

−4
m2
Q

M̄2 (C.7)

+
m2
Q

M̄2 e
m2
Q

M̄2 Γ
(
−1,

m2
Q

M2

)]}
,

Π(d456)
T (M̄2) =

[
− 〈GG〉12 +

m2
0〈q̄q〉m3

Q

4M̄4 − 32παsrvac〈q̄q〉2

81M̄2

(
1+

m2
Q

M̄2 −
m4
Q

8M̄4

)]
e−

m2
Q

M̄2 . (C.8)
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