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1 Introduction

At long last the detection of gravitational waves [1] has made near-horizon black-hole
physics an experimental science, and this is very likely to deepen our understanding of
General Relativity (GR) and/or end its hundred-year reign as the paradigm of choice when
describing gravity. With the advent of measurements — eventually precision measurements
— it behooves theorists to raise their game when quantifying the kinds of physics one might
hope to see in this new regime. And this they are doing; both by pushing the accuracy of
GR gravitational-wave predictions, and by exploring more systematically the predictions
of alternatives theories when gravitational fields are strong (for reviews see [2–5]).

Effective field theories (EFTs) are usually important tools for this kind of work, because
they allow predictions for physics on observable length scales that are robust to changes
in the details of what goes on at smaller scales [6–10]. This is useful both when these
smaller scales are understood and when they are not. Although EFT methods have a long
history, their use is even now still being developed for black hole applications [11–27]; a
development that has been slowed both by the relative novelty of EFT applications to
gravity in general [10, 28–32] and by some of the novel aspects of black hole physics in
particular, since these differ from more garden-variety applications of EFT techniques.

One issue — though not the only one [25–27] — that complicates developing EFT
methods for black-hole behaviour is their open and thermal nature, since the entanglement
and decoherence that such physics can involve is not captured by traditional Wilsonian
EFT tools. Such differences have led some to ask whether an effective description of
extra-horizon physics might involve unusual features (such as nonlocality) or otherwise
evade the arguments that usually preclude these phenomena from arising in a Wilsonian
context [33–43].
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What usually helps when developing EFT tools are concrete systems for which both
UV and IR sectors are well-understood and within which the EFT description can be
assessed by comparing to other methods. These kinds of comparisons are not yet available
for black holes, and the search for effective descriptions of black-hole physics are the poorer
for it. The purpose of this paper is to help fix this situation by providing a simple black-
hole proxy that can help fill this void. On one hand the model should be simple enough to
solve, but on the other hand share enough black hole properties to be informative about
some of their putative EFT descriptions.

The model we propose — inspired by similar models in condensed matter systems [44–
46] — has a large number of degrees of freedom with a thermal character and no gap; to
which an external field couples only in a small region of space; what we call here for brevity
a ‘hotspot’. We model the thermal degrees of freedom as a collection of N massless scalar
fields — χa with a = 1, · · · , N — that are initially prepared in a thermal bath. These fields
are meant to model the black hole’s interior. We take these fields to ‘interact’ with the
external massless scalar field φ, which is a proxy for the black hole’s exterior. The word
interact appears in quotes because φ only couples to the χa through a bilinear mixing term
of the form

Lmix = −ga χa φ , (1.1)

and so the entire theory remains gaussian and can be solved in great detail.
So far this just describes a field mixing with a thermal bath. To make it more black-

hole-like we imagine these two sectors only mix in a small localized region of space, and
not interacting — even gravitationally — otherwise. In order to do this we imagine space
at a given time to come with two spatial sheets, R+ and R−, with φ living only on R+
and χa living on R−. These two branches only intersect on a small spherical ball, Sξ, of
radius ξ, that plays the role of the black hole itself (see figure 1).

In principle gravity can be included in this model, and does not generate couplings
between the two sectors away from their overlap on Sξ (and this is why we take R± to
be disjoint). We do not pursue this gravitational coupling further in this paper, focussing
instead on how the field φ responds to the presence of the localized hotspot built from the
thermal fields χa. As a result our model does not capture the causal nature of the horizon
or the exponential redshifts that arise in its vicinity for real black holes.

Broadly speaking there are two types of black-hole EFTs that are usually pursued,
and both can have counterparts in our hotspot model. The main variant is one that is
appropriate to gravitational wave emission, and applies on length scales λ � rs that are
much larger than the black hole’s size (see figure 2). In this ‘world-line’ or ‘point-particle’
EFT the closest distance to the black hole that can be directly resolved corresponds to a
cutoff that has size ε� rs and so the black hole dynamics is described by its center-of-mass
coordinate; it is regarded as a point mass moving along a trajectory in spacetime. The
response of the black hole to applied ‘bulk’ fields (and the back-reaction of the black hole
back onto these fields) is described by an action defined as a functional of the bulk fields
integrated along the black hole’s one-dimensional world line. This type of EFT is obtained
in the hotspot example by taking the radius ξ of the interaction sphere Sξ to be much

– 2 –
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Figure 1: A cartoon of the two spatial branches, R+ and R−, in which the field φ and
the N fields χa repsectively live. The two types of fields only couple to one another in the
localized throat region, which can be taken to be a small sphere of radius ξ (or effectively
a point in the limit that ξ is much smaller than all other scales of interest).

Figure 2: An EFT regime appropriate for small black holes, for which the UV cutoff scale
is much smaller than the length of any low-energy probe, ε� λ, but much larger than the
horizon scale ε� rs.

smaller than all other scales: ξ � ε� λ.
The puzzle for this EFT is how it should capture the enormous number of degrees of

freedom that are internal to the black hole, its perfect absorber properties and the Hawking
radiation that comes with it. In [12, 47–52] these are modelled by ‘integrating in’ a large
number of degrees of freedom, and in the hotspot model it is the χa fields that play this
role. The drawback of this approach is the model-dependence that enters when choosing
these extra degrees of freedom. Although the fluctuation-dissipation theorem implies that
predictions in linear response do not depend on these details, it remains open the extent
to which other predictions do, and if so whether the same might be true for low-energy
black hole properties. Although the extra degrees of freedom can again be integrated out,
they are not the traditional massive states of the usual Wilsonian treatments, and so can
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Figure 3: A ‘membrane’ EFT regime for which hypothetical UV physics modifies near-
horizon properties, for which the cutoff scale is much smaller than the length of any low-
energy probe, which is in turn much smaller than the horizon scale ε� λ� rs.

lead to actions with unusual properties including some forms of nonlocality. In companion
papers [53, 54] we use the hotspot model to explore some of these properties in an effort
to ascertain the rules for such an EFT, and the extent to which locality and ordinary
Wilsonian reasoning breaks down.

The second class of black hole models to which our hotspot setup can be relevant are
those for which probe scales, λ, and the UV cutoff length, ε, are both much smaller than
the horizon size, but where an effective description — whether of conventional [55–59] or
more exotic [60–70] physics — is envisaged to apply sufficiently near the event horizon
(see figure 3). The beginnings of an EFT treatment of this kind of physics are developed
in [71, 72], and involves an effective 3-dimensional action defined on a membrane that
shrink-wraps the world-tube a distance ε from the black hole event horizon. EFT methods
underline that the microscopic length ε is a regulator scale and so drops out of all physical
predictions (as regulators always do), and this makes the EFT framework particularly useful
for understanding the physical significance1 of the length-scales involved in these types of
models. This type of EFT can be studied within the hotspot framework by allowing the
radius ξ of the interaction sphere Sξ remain larger than the cutoff scale: ε � λ � ξ. We
do not pursue this variant further in this paper.

The remainder of this paper sets up the hotspot framework and derives the equa-
tions that govern how φ responds to the hotspot (topics that dominate the discussion of
section 2). Along the way we also make some preliminary explorations of its physical im-
plications (with more to follow in [53, 54]). We find in particular the following noteworthy
properties.

• The field equations satisfied by the Heisenberg-picture field φ are solved explicitly
under the assumption that the hotspot couplings ga of (1.1) turn on suddenly at time

1In particular, the relevant physical scale involves both couplings and the intrinsic UV length scale, and
so for weak coupling is often smaller than are the physical length scales of any micro-physics that may be
involved [71, 72].
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t = 0 and remain constant thereafter. The result is first computed perturbatively in
the hotspot coupling ga in section 3, and then as an exact expression in section 5.
Using the mode expansion of (2.25) and (2.26) our perturbative solution for the mode
functions appearing in φ is given in (3.1) and (3.2), while the exact result is given
in (5.10) and (5.11). The quantity g̃ appearing in these expressions is defined by
g̃2 := ∑

a g
2
a = Ng2.

Using the Heisenberg picture allows us to work in position space where we can follow
the passage of the initial transient wave (generated by the turn-on of the couplings)
as well as watch how the φ field settles down at later times in the on-going presence
of the hotspot coupling. Computing both exact and perturbative results allows us
to identify precisely which small dimensionless parameter controls the perturbative
expansion.

• The Heisenberg-picture evolution is used to compute the Wightman function
W(t,x; t′,x′) = 〈φ(t,x)φ(t′,x′)〉 for the external field, assuming the φ field starts
in its vacuum at t = 0− and the χa fields are prepared in a thermal state. The
perturbative result is given in (3.10) while the exact expression is in (5.14), (5.17)
and (5.20). These results are computed for arbitrary spacetime separations for the
fields, but we also obtain specific formulae for the regime where t > |x| and t′ > |x′|,
but t− t′ is otherwise arbitrary.

This result has a thermal character (in the sense that its temperature-dependent
part satisfies a detailed-balance relation — the Kubo-Martin-Schwinger (or KMS)
condition [73, 74] — though does so in a way that depends on the distance from the
hotspot.

• Section 4 detours to explore the consequences of supplementing the basic hotspot
interaction of (1.1) with a self-coupling, also localized at the hotspot, having the
form

Lλ = −λ2 φ
2 . (1.2)

Including this coupling is not simply an intellectual exercise because its presence
is often required to renormalize divergences that arise because fields like φ diverge
at the hotspot position once couplings are turned on there. As is well-known from
other contexts [76–87] having fields divergence at the position of a source like this
is fairly generic — the simplest example being the Coulomb potential diverging at
the position of a source charge. From an EFT perspective the presence of couplings
like λ is often compulsory, because the requirement that UV divergences drop out of
physical observables causes the couplings to run and λ = 0 need not be a fixed point
of this renormalization-group (RG) flow.

Section 4 computes the renormalization-group evolution implied for the coupling λ in
the hotspot model, along the way showing how this can be used to resum contributions
to all orders in λ(ε)/4πε (where ε is a near-hotspot regularization scale) along the
lines explored in [80–82]. The λ-dependence of the Wightman function is also given
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in the general expressions quoted above, and comparison with the exact result —
cf. eqs. (5.14), (5.17) and (5.20) — verifies how the RG resummation captures the
λ-dependence of the full expression.

Finally, section 6 briefly summarizes some of our conclusions and discusses some directions
for future work. Many of the calculational details are given in a collection of appendices.

2 Modelling the hotspot

This section sets up the benchmark model whose properties we study. We do so using
the language of open systems, with degrees of freedom divided up into an observable
system and an ‘environment’ — a proxy for the black hole interior — whose properties are
never measured.

2.1 Hotspot definition

For the observable sector we choose a single real scalar field, φ(x), and take it to live in
a spatial region, R+, of infinite extent. The environment is given by N real scalar fields,
χa with a = 1, · · · , N , that reside in a different spatial region R−. While one or both of
R+,R− could in principle be curved, we take them to be flat for simplicity. We also take
all of these fields to be massless.

We suppose that the fields interact with one another locally and only do so on a
relatively small codimension-1 2-sphere, Sξ, of radius ξ which is the only place where R+
and R− actually touch one another (see figure 1). In practice this means that both R+
and R− have a small sphere excised from the origin (for all time) and the surface of this
sphere is identified in the two spaces.

Our interest for much of this paper is in scales much larger than ξ and so consider the
idealization of taking ξ → 0, in which case Sξ reduces to a single point of contact between
R+ and R−, which we take to be the origin x = 0 of both R±. In this limit the couplings
of φ to χa are captured by an effective action localized at x = 0.

2.1.1 Action and Hamiltonian

The action that defines the model is therefore taken to be S = S+ + S− + Sint where the
kinematics of φ and χa are described by

S+ = −1
2

∫
R+

d4x ∂µφ∂
µφ and S− = −1

2

∫
R−

d4x δab ∂µχ
a∂µχb . (2.1)

Our later interest is usually in the case where the χa couplings do not break the O(N)
symmetry of their kinetic terms.

The lowest-dimension interaction (mixing, really) that involves φ on the interaction
surface is given by

Sint = −
∫
St
ξ

d4x

[
Ga χ

aφ+ Gφ
2 φ2

]
, (2.2)

– 6 –
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in which the integration is over the world-tube, Stξ swept out by the surface Sξ over time.
The Einstein summation convention applies, so there is an implied sum over a. The cou-
plings Ga and Gφ here have dimension mass: [Ga] = [Gφ] = +1.

In the limit ξ → 0 the 2-sphere Sξ degenerates to a point and this interaction becomes

Sint ' −
∫

dt
[
ga χ

a(t,0)φ(t,0) + λ

2 φ
2(t,0)

]
, (2.3)

where the integration is over the proper time of the interaction point x = 0 in both R+ and
R−. The couplings appearing here are ga = 4πξ2Ga and λ = 4πξ2Gφ and have dimensions
[ga] = [λ] = −1. Although the coupling λ might seem unnecessary, in later sections we see
how it can be generated by the presence of the couplings ga.

In what follows we allow the couplings ga and λ to depend on time, and in particular
will use this time dependence to turn on suddenly the interaction between the fields at
t = 0. Doing so allows us both to study transient effects associated with the couplings
turning on as well as late-time effects after the transients have passed.

The quantization of this model follows closely the treatment of a field coupled to a
central qubit given in [46]. The canonical momenta for this problem are

p := ∂tφ and Πa := δab ∂tχ
b , (2.4)

and quantization proceeds by demanding these satisfy the equal-time commutation rela-
tions [

φ(t,x), p(t,y)
]

= iδ3(x− y) and
[
χa(t,x),Πb(t,y)

]
= iδab δ

3(x− y) . (2.5)

The free Hamiltonian is H0 := H+ ⊗ I− + I+ ⊗ H−, where H± and I± are the
Hamiltonian and identity operators acting separately within the φ- and χ-sectors of the
Hilbert space. Explicitly

H+ := 1
2

∫
R+

d3x
[
p2+

(
∇φ

)2] and H− := 1
2

∫
R−

d3x
[
δabΠaΠb+δab∇χa ·∇χb

]
. (2.6)

The interaction Hamiltonian (in the limit of a point-like interaction surface) is similarly

Hint = ga φ(t,0)⊗ χa(t,0) + λ

2 φ
2(t,0)⊗ I− . (2.7)

2.1.2 Initial conditions and the sudden approximation

For later calculations we assume the state of the total system at t = 0 to be of the form

ρ(0) = ρ+ ⊗ ρ− , (2.8)

for separate density matrices ρ± in the two sectors. In general, interactions introduce corre-
lations and so do not preserve this factorized form, and it is for this reason that we imagine
the couplings between φ and χa to be initially absent, being turned on suddenly with

ga(t) = Θ(t) ga , (2.9)

– 7 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
6

where Θ(t) is the Heaviside step function. This allows us to prepare initially uncorrelated
states and then observe how the joint system reacts to the onset of coupling.

In practice we choose the φ sector initially to be in its vacuum,

ρ+ = |vac〉 〈vac| (2.10)

where |vac〉 is the standard Minkowski vacuum defined by ap |vac〉 = 0. With eventual
comparison to black holes in mind we take the χa sector to be in a thermal state,

ρ− = %β := e−βH−

Tr ′ [e−βH− ] , (2.11)

with inverse temperature β > 0. The prime on the trace indicates that it is only taken
over the χ sector.

2.2 Time evolution in different pictures

Our goal is to solve for the time-evolution of the φ-sector of the system and because Sint is
bilinear in φ and χa the system’s evolution can be evaluated in quite some generality. An
exact solution is in particular given in section 5, after first detouring in section 3 to describe
an approximate solution that is evaluated perturbatively in the following combination of
hotspot couplings

g̃2 := δabgagb = Ng2 , (2.12)

where the second equality specializes to the case where all couplings are equal.
Although not required when solving the model, a large-N limit can be defined wherein

the coupling g̃ is held fixed (and need not itself be particularly small) as N → ∞. This
limit is briefly discussed in section 3.3, where it is shown that the behaviour of the χa fields
becomes particularly simple since they become oblivious to the presence of the φ field. The
large-N limit is not used elsewhere in this paper, besides in section 3.3.

2.2.1 Interaction picture

For perturbative evaluation we first diagonalize the free Hamiltonian. This is done in the
usual way, by writing (with time-dependence as appropriate for the interaction picture)

φ(x) =
∫ d3p√

(2π)3 2Ep

[
eip·xap+e−ip·xa∗p

]
and χa (x) =

∫ d3p√
(2π)2 2Ep

[
eip·xbap+e−ip·xba∗p

]
(2.13)

where p · x := pµx
µ = −Ept + p · x with Ep = |p|, and the canonical commutation

relations imply the usual creation- and annihilation-operator algebra: [ap, aq] = [bap, bbq] =
0 (together with their adjoints) and [ap, a

∗
q] = δ3(p − q) while [bap, bb∗q ] = δabδ3(p − q).

This diagonalizes H±:

H+ =
∫

d3p
Ep
2

[
apa
∗
p + a∗pap

]
and H− =

∫
d3p

Ep
2 δab

[
bapb

b∗
p + ba∗p bbp

]
. (2.14)

– 8 –
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The interaction-picture interaction Hamiltonian in the pointlike limit (ξ → 0) similarly
becomes

Hint (t) = gaφ (t,0)⊗ χa (t,0) + λ

2 φ
2 (t,0)⊗ I−

=
∫ d3p d3q

2 (2π)3√EpEq
[
ga
(
ape
−iEpt + a∗pe

+iEpt)⊗ (baqe−iEqt + ba∗q e
+iEqt) (2.15)

+ λ

2
(
ape
−iEpt + a∗pe

+iEpt)(aqe
−iEqt + a∗qe

+iEqt)⊗ I−] .
Matrix elements of this can be used in standard fashion to compute the evolution of the
system’s state.

2.2.2 Heisenberg picture

Later sections solve explicitly for time evolution, and do so by solving how the fields evolve
in Heisenberg picture, including the effects of the couplings in Hint. To this end it is worth
briefly setting up the Heisenberg picture quantities and in particular exposing differences
from the interaction-picture description given above.

Keeping in mind that we later entertain time-dependent couplings, ga(t), the full time-
evolution operator U(t, t′) can be defined as the solution to ∂tU(t, t0) = −iH(t)U(t, t0)
that satisfies U(t = t0) = I. This leads to the usual time-ordered form

U(t, t0) = T exp
(
−i
∫ t

t0
ds H(s)

)
. (2.16)

It is this transformation that is used to construct time-dependent Heisenberg-picture op-
erators, AH(t), from Schrödinger-picture operators, AS, using:

AH(t) = U∗(t, 0)ASU(t, 0) . (2.17)

We assume here that the two pictures agree at t = 0.
A virtue of transforming to the Heisenberg picture that the state does not evolve

at all. In Heisenberg picture it is the field operators that carry the burden of any time
evolution when computing correlation functions or transition amplitudes. This means that
the factorized form (2.8) for ρ can also be used at later times, ensuring that χa-sector
expectation values can always be taken using the thermal state (2.11).

Eq. (2.17) implies in particular that the Heisenberg picture field operators are given by

φH(t,x) := U∗(t, 0)
[
φS(x)⊗ I−

]
U(t, 0) and χaH(t,x) := U∗(t, 0)

[
I+ ⊗ χaS(x)

]
U(t, 0) ,

(2.18)
and similarly for their conjugate momenta. An important conceptual point about this
definition is that the presence of the interaction term in H implies that the Heisenberg
field operators do not only act separately on the two sectors of the Hilbert space. In
particular, expansion of φH(t,x) in terms of creation and annihilation operators involve
both ap and bap, as does the expansion of the χaH(t,x).

– 9 –
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In later sections the time-evolution of the fields φH and χaH is determined by explicitly
integrating their Heisenberg-picture field equations. These express the differential version
of (2.17),

∂tAH(t) = −iU∗(t, 0)[AS, HS(t)]U(t, 0) = −i[AH(t), HH(t)] . (2.19)

To work out the implications of (2.19) for the field operators explicitly we first record the
following Schrödinger-picture commutators with the full Hamiltonian

− i
[
φS(x), HS(t)

]
= pS(x) , −i

[
χaS(x), HS(t)

]
= Πa

S(x) , (2.20)

− i
[
Πa
S(x), HS(t)

]
= ∇2χaS(x)− gaδ3(x) φS(0)

and
− i
[
pS(x), HS(t)

]
= ∇2φS(x)− δ3(x)

(
ga χ

a
S(0) + λφS(0)

)
. (2.21)

Using these in (2.19) yields the equations of motion2

(
−∂2

t +∇2
)
φH(t,x) = δ3(x)

[
λφH(t,0) + gaχ

a
H(t,0)

]
(2.22)

and
δab
(
−∂2

t +∇2
)
χbH (t,x) = δ3 (x) gaφH (t,0) . (2.23)

These equations can be solved because they are linear in all of the fields, a consequence
of Hint describing more of a mixing between φ and χa than an honest-to-God interaction.
It is convenient to do so by first expanding the fields in terms of mode functions and then
using the field equations to set up a coupled series of linear differential equations. That is,
writing

φH(t,x) = φ(t,x) + φ̂(t,x) and χaH(t,x) = χa(t,x) + χ̂a(t,x) , (2.24)

with φ and χa being the interaction-picture fields given by (2.13), then the deviations from
the interaction picture are

φ̂(t,x) =
∫ d3p√

(2π)3 2Ep

{[
Sp (t,x)ap+S∗p (t,x)a∗p

]
⊗I−+ I+⊗ δab

[
sap (t,x) bbp+sa∗p (t,x) bb∗p

]}
(2.25)

and

χ̂a(t,x) =
∫ d3p√

(2π)32Ep

{[
Rap(t,x) ap+Rap(t,x)∗ a∗p

]
⊗I−+I+⊗ δbc

[
rabp (t,x)bcp+rab∗p (t,x)bc∗p

]}
(2.26)

where the to-be-determined mode functions {Sp, s
a
p, R

a
p, r

ab
p } vanish in the absence of Hint.

2Use of (2.19) assumes no further time-dependence arises through a time-dependence of couplings after
they are initially turned on, which amounts to assuming the ‘sudden’ approximation when turning on
couplings at t = 0.
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Inserting (2.25) and (2.26) into the Heisenberg equations of motion (2.22) and (2.23)
leads to the following set of coupled equations for the mode functions {Sp, s

a
p, R

a
p, r

ab
p }:(

−∂2
t +∇2

)
Sp(t,x) =

[
λ
(
e−iEpt + Sp(t,0)

)
+ gbR

b
p(t,0)

]
δ3(x)

(
−∂2

t +∇2
)
sap(t,x) =

[
λ sap(t,0) + δabgb e

−iEpt + gb r
ba
p (t,0)

]
δ3(x) (2.27)

δab
(
−∂2

t +∇2
)
Rbp(t,x) = ga

[
e−iEpt + Sp(t,0)

]
δ3(x)

δac
(
−∂2

t +∇2
)
rcbp (t,x) = gas

b
p(t,0) δ3(x) .

2.3 Integrating out χa

We wish to understand how the φ field responds to the presence of the hotspot, and we
do so under the assumption that no measurements directly involve the fields χa. Because
no χa measurements are made the χa mode functions can be solved as functions of the φ
mode functions to obtain a reduced set of equation to solve.

To see how this works explicitly consider preparing the φ field in its vacuum and then
suddenly turn on hotspot couplings at t = 0. This should generate a flurry of transient
behaviour before the φ field settles down at late times into a new adiabatic vacuum whose
properties we wish to compute. To this end write ga(t) = ga Θ(t) and λ(t) = λΘ(t), and
so the time-dependence of eqs. (2.27) can be made more explicit:(

−∂2
t +∇2

)
Sp (t,x) = Θ (t)

[
λ
[
e−iEpt + Sp (t,0)

]
+ gaR

a
p (t,0)

]
δ3 (x) (2.28)

δab
(
−∂2

t +∇2
)
Rbp (t,x) = Θ (t) ga

[
e−iEpt + Sp (t,0)

]
δ3 (x)

and (
−∂2

t +∇2
)
sap (t,x) = Θ (t)

[
λ sap (t,0) + δabgb e

−iEpt + gb r
ba
p (t,0)

]
δ3 (x) (2.29)(

−∂2
t +∇2

)
rabp (t,x) = Θ (t) δacgcsbp (t,0) δ3 (x) .

These are to be solved subject to the initial conditions

Sp(0,x) = ∂tSp(0,x) = sap(0,x) = ∂ts
a
p(0,x) = 0

and Rap(0,x) = ∂tR
a
p(0,x) = rabp (0,x) = ∂tr

ab
p (0,x) = 0 . (2.30)

2.3.1 Solving the χa equations

The mode functions associated with χa can be eliminated from the coupled equations (2.28)
and (2.29) with initial conditions (2.30) by using the retarded propagator

GR(t,x; t′,y) = Θ(t− t′)
4π|x− y| δ

[
(t− t′)− |x− y|

]
, (2.31)

that satisfies the equation of motion(
−∂2

t +∇2
)
GR(t,x; t′,y) = −δ(t− t′)δ3(x− y) . (2.32)
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In terms of this the formal solutions for Rap and rabp (the mode functions appearing in χa)
are

Rap(t,x) = −δabgb
∫ ∞

0
ds GR(t,x; τ,0)

[
e−iEpτ + Sp(τ,0)

]
= −δabgb

Θ(t− |x|)
4π|x|

[
e−iEp(t−|x|) + Sp(t− |x|,0)

]
(2.33)

and
rabp (t,x) = −δacgc

Θ(t− |x|)
4π|x| sbp(t− |x|,0) . (2.34)

These solutions have support only in the forward lightcone of the event where the couplings
turn on, and there give the mode functions at a distance r = |x| from the hotspot in terms
of their values at the hotspot position, but as a function of the retarded time tr := t − r
and with an amplitude that is suppressed by a power of 1/r.

Using these solutions to eliminate Rap and rabp from (2.28) and (2.29) leaves a coupled
set of equations involving only the mode functions appearing in φ:(
−∂2

t +∇2
)
Sp(t,x) = Θ(t)

(
λ
[
e−iEpt + Sp(t,0)

]
(2.35)

− g̃2Θ(t− |y|)
4π|y|

[
e−iEp(t−|y|) + Sp(t− |y|,0)

]∣∣∣∣
|y|=0

)
δ3(x)

as well as (
−∂2

t +∇2
)
sap(t,x) = Θ(t)

[
λ sap(t,0) + g̃√

N
e−iEpt (2.36)

− g̃2Θ(t− |y|)
4π|y| sap(t− |y|,0)

∣∣∣∣
|y|=0

)
δ3(x)

where we specialize to the case where all of the ga’s have the same size, and use (2.12) to
write ga = g̃/

√
N for all a. The factor of

√
N is extracted here for convenience because it

cancels an explicit factor of N that comes from the summation over the index ‘a’ in (2.35).
Eqs. (2.35) and (2.36) reveal a characteristic ‘Coloumb’ singularity as |y| → 0, which

at face value appears to threaten any program to solve (2.35) and (2.36) iteratively as a
series in g̃2 and λ. In what follows, this divergence at |y| = 0 is regularized by instead
evaluating y at the microscopically small scale |y| = ε. This divergence problem is a general
issue that arises when exploring effective field theories describing compact sources, where
the domain of validity of the low-energy/long-wavelength theory does not allow sufficient
spatial resolution to resolve the source’s structure; it is generic that external fields diverge
at the position of a compact source.

But the example of the Coulomb field for a small charge distribution also suggests
that evaluating the 1/r divergence at r = 0 is really an artefact of trying to extrapolate to
zero an external solution that is not actually appropriate in the microscopic theory within
which the source’s structure can be resolved. A general EFT treatment of these issues is
possible [10, 80–84] (and tested in detail calculating nuclear finite-size effects in atoms [85–
87]), and shows how all such divergences get renormalized by the effective couplings in
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the action — such as the coupling λ of hotspot action (2.3) — that describes the source’s
low-energy properties (as we also see in detail below).

2.3.2 Renormalization of λ and ε-regularization

Regulating the field equations on the microscopic surface |y| = ε allows (2.35) and (2.36)
to be rewritten

(
−∂2

t +∇2
)
Sp(t,x) =

(
Θ(t)λ

[
e−iEpt+Sp(t,0)

]
− g̃

2Θ(t−ε)
4πε

[
e−iEp(t−ε)+Sp(t−ε,0)

])
δ3(x)

(2.37)
and

(
−∂2

t +∇2
)
sap(t,x) =

(
Θ(t)

[
λ sap(t,0) + g̃√

N
e−iEpt

]
− g̃2Θ(t− ε)

4πε sap(t− ε,0)
)
δ3(x)

(2.38)
where we use Θ(t)Θ(t− ε) = Θ(t− ε) since ε > 0.

These equations can also be formally integrated using the retarded propagator (2.31)
to give

Sp(t,x) = −λΘ(t− |x|)
4π|x|

(
e−iEp(t−|x|) + Sp(t− |x|,0)

)
+ g̃2Θ(t− |x| − ε)

16π2|x|ε

[
e−iEp(t−|x|−ε) + Sp(t− |x| − ε,0)

]
' −

(Θ(t− |x|)
4π|x|

[
λ− g̃2

4πε

]
+ g̃2δ(t− |x|)

16π2|x|

)[
e−iEp(t−|x|) + Sp(t− |x|,0)

]
(2.39)

− g̃2Θ(t− |x|)
16π2|x|

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]
and

sap(t,x) =−Θ(t−|x|)
4π|x|

[
λsap(t−|x|,0)+ g̃√

N
e−iEp(t−|x|)]+ g̃2Θ(t−|x|−ε)

16π2|x|ε sap(t−|x|−ε,0)

'−
(Θ(t−|x|)

4π|x|

[
λ− g̃2

4πε

]
− g̃

2δ(t−|x|)
16π2|x|

)
sap(t−|x|,0) (2.40)

− g̃Θ(t−|x|)
4π
√
N |x|

e−iEp(t−|x|)− g̃
2Θ(t−|x|)
16π2|x| ∂ts

a
p(t−|x|,0)

where the approximate equalities exploit the fact that ε is a microscopic quantity to ex-
pand each of the last terms in powers of ε, and dropping terms that are O(ε). Note that
this expansion in ε implicitly assumes that Epε � 1 for all modes when expanding the
exponential function.

Although the 1/ε term diverges, this divergence can be absorbed by redefining

λR := λ− g̃2

4πε , (2.41)
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showing that the divergence renormalizes the φ self-coupling λ. Dropping the subscript ‘R’
for notational simplicity, eqs. (2.39) and (2.40) become3

Sp(t,x) = −λΘ(t− |x|)
4π|x|

(
e−iEp(t−|x|) + Sp(t− |x|,0)

)
− g̃2δ(t− |x|)

16π2|x| (2.42)

− g̃2Θ(t− |x|)
16π2|x|

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]
and

sap(t,x) = − g̃Θ(t− |x|)
4π
√
N |x|

e−iEp(t−|x|)−λΘ(t− |x|)
4π|x| sap(t−|x|,0)− g̃

2Θ(t− |x|)
16π2|x| ∂ts

a
p(t−|x|,0) .

(2.43)
These are the equations that are to be solved in the next sections to determine the mode
functions for φ, and from these also determine its response to the hotspot.

3 Perturbative response

This section provides one of the points of comparison for the exact results of section 5. Here
we solve eqs. (2.42) and (2.43) iteratively in g̃ and λ, and use the lowest order solutions to
determine perturbatively how the fields evolve in time.

3.1 Mode functions

The iterative solution to (2.42) and (2.43) gives the perturbative result

Sp(t,x) ' −
(
λ− ig̃2Ep

4π

)Θ(t− |x|)
4π|x| e−iEp(t−|x|) − g̃2δ(t− |x|)

16π2|x| (perturbative) (3.1)

and
sap(t,x) ' − g̃Θ(t− |x|)

4π
√
N |x|

e−iEp(t−|x|) (perturbative) (3.2)

to leading nontrivial order in λ and g̃. The real part of the perturbative solution (3.2)
is shown in figure 4, which shows how the result is nonzero only after the passage of the
wave-front that radiates out from the turn-on event at t = x = 0.

Using these mode functions in the expansion for φ, the leading-order perturbative limit
of the Heisenberg-picture fields truncated at order g̃2 can be written

φH(t,x)'
(
φ(t,x)−λΘ(t−|x|)

4π|x| φ(t−|x|,0)− g̃
2Θ(t−|x|)
16π2|x| p(t−|x|,0)− g̃

2δ(t−|x|)
16π2|x| φ(0,0)

)
⊗I−

− g̃Θ(t−|x|)
4π
√
N |x|

N∑
a=1
I+⊗χa(t−x,0) (3.3)

where (as above) φ and χ are the interaction-picture fields given in (2.13) and p = ∂tφ is
the canonical momentum defined in (2.4). The Heaviside step functions show how φH(t,x)
does not respond to the turn-on of the hotspot couplings at t = 0 until after the transient
wave reaches the particular point x, after which mode interference occurs. The sum over
a is written explicitly in (3.3) to underline the necessity of keeping this term, even in the
large-N limit despite the factor of 1/

√
N .

3In arriving at (2.42) and (2.43) we simplify the terms which come multiplied by δ(t− |x|) by using the
initial conditions to eliminate Sp(0,0) = sap(0,0) = 0 in the final result.
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Figure 4: Re[sap(t,x)] from (3.2) vs t and |x|, showing the wave-front emanating from
t = x = 0, the growth for small |x| and the oscillatory behaviour with wavelength set by
Ep. (Colour online.).

3.2 Two-point φ correlator

The physical implications of the field evolution just calculated gets communicated to ob-
servables through field correlators, and because the model considered here is gaussian the
two-point function carries all of this information. For observers situated in R+ only the
correlators of the field φ can be accessed, and so we therefore next compute the two-point
correlator,

Wβ(t,x; t′,x′) := Tr
[
φH(t,x)φH(t′,x′)ρ0

]
= 1
Zβ

Tr
[
φH(t,x)φH(t′,x′)

(
|vac〉 〈vac|⊗e−βH−

)]
,

(3.4)
where ρ0 denotes the system’s state, for which we use the state given in (2.8), (2.10)
and (2.11). Zβ := Tr ′

[
e−βH−

]
is the partition function for the N thermal χa fields.

Using the perturbative solution for φH given in (3.3) allows the leading-order in g̃2 and
λ contribution to be written in terms of the free correlation functions,

Wβ

(
t,x; t′,x′

)
'〈vac|φ(t,x)φ

(
t′,x′

)
|vac〉

−λΘ(t−|x|)
4π|x| 〈vac|φ(t−|x|,0)φ

(
t′,x′

)
|vac〉−λΘ(t′−|x′|)

4π|x′| 〈vac|φ(t,x)φ
(
t′−|x′|,0

)
|vac〉

+ g̃2Θ(t−|x|)Θ(t′−|x′|)
16π2|x||x′| Tr ′

[
χa (t−|x|,0)χb

(
t′−|x′|,0

)
%β
]

(3.5)

− g̃
2Θ(t−|x|)
16π2|x| 〈vac|p(t−|x|,0)φ

(
t′,x′

)
|vac〉− g̃

2Θ(t′−|x′|)
16π2|x′| 〈vac|φ(t,x)p

(
t′−|x′|,0

)
|vac〉

− g̃
2δ (t−|x|)
16π2|x| 〈vac|φ(0,0)φ

(
t′,x′

)
|vac〉− g̃

2δ (t′−|x′|)
16π2|x′| 〈vac|φ(t,x)φ(0,0) |vac〉 .
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This can be simplified using the following explicit forms for the free correlators

〈vac|φ (t,x)φ
(
t′,x′

)
|vac〉 = 1

4π2[− (t− t′ − iδ)2 + |x− x′|2
] , (3.6)

〈vac|p (t,x)φ
(
t′,x′

)
|vac〉 = t− t′

2π2
[
− (t− t′ − iδ)2 + |x− x′|2

]2 , (3.7)

and

〈vac|φ(t,x)p
(
t′,x′

)
|vac〉=−〈vac|p(t,x)φ(t′,x′)|vac〉= −t+t′

2π2[−(t−t′−iδ)2+|x−x′|2
]2 ,
(3.8)

leading to

Wβ(t,x; t′,x′)

' 1
4π2[−(t−t′−iδ)2+|x−x′|2

]
+ λ

16π3

(Θ(t−|x|)
|x|

1
(t−t′−|x|−iδ)2−|x′|2 + Θ(t′−|x′|)

|x′|
1

(t−t′+|x′|−iδ)2−|x|2
)

− g̃2Θ(t−|x|)Θ(t′−|x′|)
64π2β2|x||x′|sinh2

[
π
β (t−|x|−t′+|x′|−iδ)

] (3.9)

+ g̃2

32π4

(
−Θ(t−|x|)

|x|
t−t′−|x|[

(t−t′−|x|−iδ)2−|x′|2
]2 + Θ(t′−|x′|)

|x′|
t−t′+|x′|[

(t−t′+|x′|−iδ)2−|x|2
]2)

+ g̃2

64π4

(
δ(t−|x|)

|x|
[
−(t′+iδ)2−|x′|2

]+ δ(t′−|x′|)
|x′|
[
−(t−iδ)2−|x|2

]) ,
where the inverse temperature β = 1/T arises from the thermal average in the χ sector.

Of particular interest is the form of this result after the passage of the transients, with
both t and t′ chosen to lie in the future light cone of the switch-on event (i.e. t > |x| and
t′ > |x′|). In this region the above expression becomes

Wβ

(
t,x; t′,x′

)
' 1

4π2
[
− (t− t′ − iδ)2 + |x− x′|2

] + λ

16π3|x||x′|

[
|x|+ |x′|

(t− t′ − iδ)2 − (|x + |x′|)2

]

− g̃2

64π2β2|x||x′| sinh2
[
π
β (t− |x| − t′ + |x′| − iδ)

] (3.10)

+ g̃2

32π4

− 1
|x|

t− t′ − |x|[
(t− t′ − |x| − iδ)2 − |x′|2

]2 + 1
|x′|

t− t′ + |x′|[
(t− t′ + |x′| − iδ)2 − |x|2

]2


As expected, in this limit the O(λ) and O(g̃2) terms break translation invariance, though
time-translation invariance is restored once the transients due to the coupling turn-on have
passed. Rotations about the position of the hotspot remain a symmetry. Apart from a
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(a) λ-dependent term. (b) g̃2-dependent term.

Figure 5: The equal-time t = t′ limits of the λ-dependent term and g̃2-dependent term of
the Wightman function given in eq. (3.11). (Colour online.).

global 1/r fall-off the thermal O(g̃2) term depends only on the retarded times tr = t− |x|
and t′r = t′ − |y|, with correlations that die exponentially once tr − t′r � β. By contrast,
the temperature-independent O(g̃2) term — and the O(λ) contributions — preserve the
power-law fall-off for large t − t′, but modify its amplitude in a way that becomes less
important further from the hotspot.

For some applications it is the equal-time correlator evaluated with t = t′ that is of
interest (at late times t > |x|, |x′|). In this case the above simplifies to4

Wβ(t,x; t,x′) ' 1
4π2|x− x′|2 −

λ

16π3|x||x′|(|x|+ |x′|) (3.11)

− g̃2

64π2β2|x||x′| sinh2
[
π
β (|x| − |x′|)

] + g̃2

16π4(|x|2 − |x′|2)2

Notice (3.11) is real-valued, as should be the case for unitary time-evolution. The λ- and
the g̃2-dependent terms of (3.11) are plotted in figure 5

3.3 Two-point χa correlator in the large-N limit

Although the 〈φφ〉 correlator does not simplify in the large-N limit, the same is not true for
〈χχ〉 correlations. This can be seen by inserting the perturbative formulae (3.1) and (3.2)
for Sp and sap into the implicit solutions (2.33) and (2.34) for the χa-mode functions Rap
and rabp , which gives

Rap(t,x) ' − g̃√
N
· Θ(t− |x|)

4π|x| e−iEp(t−|x|) + . . . (3.12)

and
rabp (t,x) = g̃2

N
· Θ(t− |x| − ε)

16π2|x|ε e−iEp(t−|x|−ε) . . . (3.13)

4Note that this formula has no iδ’s left in it — the reason for this is that any poles located at |x|+|x′| can
safely have δ → 0+ taken. For the remaining poles at |x| − |x′|, we use the identity 1

(z±iδ)2 = 1
z2 ± iπδ′(z)

and notice that a cancellation occurs.
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to leading order in g̃2 and λ. The solution (3.13) contains a 1/ε divergence, which can be
absorbed into the coupling for a self-interaction proportional to I+⊗ δabχaχb (although for
brevity we do not do so here).

Eqs. (3.12) and (3.13) show that the mixing of χa with φ is suppressed by powers of
1/N , and so become negligible in the large-N limit. The same suppression does not occur
in the 〈φφ〉 correlator because the explicit 1/N suppression is compensated by the sum
over a and b in the combination gagb〈χa χb〉. It follows that these correlators satisfy

Tr[χaH(t,x)χbH(t′,x′)ρ0] = Tr ′
[
χa(t,x)χb(t′,x′)%β

]
+O(1/N) (3.14)

and so in the limit N � 1 are simply the thermal correlation functions for free fields, as if
the φ field did not exist.

For completeness we quote here the explicit form for this free thermal correlator, with
details of the calculation given in section A.1. The result evaluated at spacetime points
x = (t,x) and x′ = (t′,x′) is5

〈χa(x)χb(x′)〉β := Tr ′
[
χa(t,x)χb(t′,x′)%β

]
(3.15)

= δab

8πβ|x−x′|

{
coth

[
π

β

(
t−t′+|x−x′|−iδ

)]
−coth

[
π

β

(
t−t′−|x−x′|−iδ

)]}
,

in agreement with standard formulae [92]. In this expression the limit δ → 0+ is to be taken
at the end of the calculation. Notice that eq. (3.15) obeys the required reality property
(for real scalars)

〈χa(y)χb(x)〉β =
[
〈χb(x)χa(y)〉β

]∗
, (3.16)

and at zero temperature (β →∞) goes over to

〈χa(x)χb(x′)〉β →
δab

4π2[−(t− t′ − iδ)2 + |x− x′|2] , (3.17)

as it should.

4 RG Improvement and resumming the λ expansion

This section studies the dependence of hotspot physics on the self-coupling λ, in particular
exploring how limiting it is to treat its implications perturbatively. Although the validity of
expansions in λ might seem to be a tangential issue if one’s focus is on the thermal coupling
g̃, it really is not. As discussed earlier, the response of a field like φ to the hotspot typically
diverges at the hotspot position — cf. for example equations (2.39) and (2.40) — and these
divergences are ultimately handled by being renormalized into couplings like λ, as in (2.41).
As a consequence of this renormalization couplings like λ run in the renormalization-group

5Note the given iδ-prescription is only valid for real time arguments. Given that the N environment
fields are assumed to be prepared in a thermal state, this correlation function must obey the Kubo-Martin-
Schwinger (KMS) condition 〈χa(t−iβ,x)χb(0,0)〉β = 〈χa(t,x)χa(0,0)〉∗β , which assumes a shift in imaginary
time — for the correct iδ-prescription in this case, see (A.19) in appendix A.1 (which agrees with the above
prescription for real time arguements).
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sense, and (as we show here, following [80, 81]) this can make it inconsistent to set them
to zero at all scales.

This section derives precisely how the coupling λ runs, and along the way shows that
the dimensionless expansion parameter that justifies treating λ perturbatively turns out
to be λ/4πε, where ε is the very small regularization length scale used to regulate the
divergences (as in eqs. (2.39) and (2.40)). Physically, both λ and ε might reasonably be
expected to be of order the size ξ of the compact hotspot; a length scale that has been
assumed to be much smaller than the other scales of physical interest. If perturbative
calculations actually require λ� 4πε then they may not be that useful, since λ would have
to be much smaller even than this already very microscopic scale. The renormalization-
group arguments presented here show how perturbative predictions can be extended to the
regime λ >∼ 4πε, providing results that can be compared to the exact calculations to follow
in section 5.

4.1 Effective interactions and boundary condition

To better understand the effects of λ beyond perturbation theory this section temporarily
turns off the coupling g̃ in order to eliminate unnecessary distractions. Non-perturbative
information is then extracted by leaving λ nonzero for all time and exploring more sys-
tematically how it modifies the dynamics of the φ field. A natural framework for this is
the language of point-particle (or world-line) EFTs, since these systematically incorporate
the effects of small objects on their surroundings, organized in powers of ka (where a is
the object’s size and k is the momentum of a typical probe). In practice we therefore work
completely in the R+ sector, following closely the logic of [10, 80, 81], with the bulk field
interacting only with the contact interaction

Hint(t) = λ

2

∫
d3x φ2(t,x) δ3(x) = λ

2 φ2(t,0) , (4.1)

with λ independent of time.
The implications of λ are incorporated by identifying the mode functions that are

appropriate in the presence of this interaction. Since the Heisenberg equation of motion in
this case — cf. equation (2.22) — is(

−∂2
t +∇2

)
φ (t,x) = λφ (t,0) δ3(x) , (4.2)

this is also the equation satisfied by each mode function, uω`m(t,x), in an expansion
(cf. equation (2.13)) like

φ(t,x) =
∞∑
`=0

+∑̀
m=−`

∫
dω

[
uω`m(t,x)aω`m + u∗ω`m(t,x)a∗ω`m

]
. (4.3)

Once the λ-dependence of these mode functions is identified by solving (4.2), the implica-
tions for the Wightman function are obtained from formulae like

〈vac|φ(t,x)φ(s,y) |vac〉 =
∞∑
`=0

+∑̀
m=−`

∫
dω uω`m(t,x)u∗ω`m(s,y) . (4.4)
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Here |vac〉 satisfies aω`m |vac〉 = 0, and aω`m satisfies the standard commutation relations
[aω`m, a∗ω̃ ˜̀m̃] = δ(ω − ω̃)δ`˜̀δmm̃, and the mode functions uω`m are assumed to be properly
normalized.

The main observation is that the dependence of uω`m on λ can be inferred by integrating
its equation of motion (

−∂2
t +∇2

)
uω`m(t,x) = λuω`m(t,x) δ3(x) , (4.5)

over a tiny sphere Bε :=
{

x ∈ R3 ∣∣ |x| ≤ ε } of radius ε > 0 centred around the origin.
Following standard steps [80–82, 84] this integration leads to a λ-dependent boundary
condition near the hotspot, of the form

4πε2
(
∂uω`m(t,x)

∂r

)
r=ε

= λ uω`m(t,x)
∣∣∣
r=ε

. (4.6)

That is, for r > ε mode functions simply satisfy the Klein-Gordon equation(
−∂2

t +∇2
x

)
up(t,x) = 0 , (4.7)

and only learn about the coupling λ through its appearance in the boundary condition (4.6).
Concretely, expanding the solution in terms of spherical harmonics,

uω`m(t,x) = e−iωtRω`(r)Y`m(θ, φ), (4.8)

the radial solutions are spherical Bessel functions

Rω`(r) = C`(ω)j`(ωr) +D`(ω)y`(ωr) , (4.9)

where C`(ω) and D`(ω) are integration constants, whose ratio is determined by the bound-
ary condition (4.6) and so is λ-dependent. Explicitly, the boundary condition (4.6) implies

4πε2 ∂rRω`(ε) = λRω`(ε) (4.10)

Substituting the solution (4.9) into (4.10), and using the Bessel function identity

∂rf`(ωr) = `

r
f`(ωr)− ωf`+1(ωr) (4.11)

(that holds for both f` = j` and f` = y`), shows that the boundary condition (4.10) becomes

λ

4πε =
(
r ∂r lnRω`

)
r=ε

= `j`(ωε)− ωεj`+1(ωε) + (D`/C`)[`y`(ωε)− ωεy`+1(ωε)]
j`(ωε) + (D`/C`) y`(ωε)

, (4.12)

and this, once solved, leads to the following solution for the λ-dependence of D`/C`

D`(ω)
C`(ω) = − [(λ/4πε)− `]j`(ωε) + ωεj`+1(ωε)

[(λ/4πε)− `]y`(ωε) + ωεy`+1(ωε) . (4.13)

These expressions simplify in the limit of practical interest, where ωε � 1. In this
limit we may use the expansions

j` (z) =
√
π z`

2`+1Γ
(
`+ 3

2

) +O
(
z`+2

)
and y` (z) = −

2` Γ
(

1
2 + `

)
√
π z`+1 +O

(
z−`+1

)
, (4.14)

– 20 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
6

to find that (4.13) becomes

D` (ω)
C` (ω) '

π

Γ
(
`+ 3

2

)
Γ
(
`+ 1

2

) [ (λ/4πε)− `
(λ/4πε) + `+ 1

] (
ωε

2

)2`+1
. (4.15)

The coefficient here can be simplified using

π

Γ
(
`+ 1

2

)
Γ
(
`+ 3

2

) = 24`+2 [`!]2

2 (2`+ 1) [(2`)!]2
. (4.16)

The inverse of (4.15) — or equivalently, the small ωε limit of (4.12) — similarly becomes

λ

4πε '
` (ωε/2)2`+1 + (`+ 1)X` (ω)

(ωε/2)2`+1 −X` (ω)
(4.17)

where
X`(ω) := 1

π
Γ
(
`+ 3

2

)
Γ
(
`+ 1

2

) D`(ω)
C`(ω) . (4.18)

Whether the numerator and denominator of thse last expressions can be further expanded
depends on how the quantities (λ/4πε)− ` and D`/C` behave when ωε� 1.

4.2 Renormalization group and the interpretation of ε

There are two ways to read the above boundary conditions. The naive way is as given
in (4.13) or (4.15): they give D`(ω)/C`(ω) as an explicit function of ` and the two dimen-
sionless variables λ/4πε and ωε. What is bothersome about this interpretation is that it
makes D`/C` depend not only on the coupling λ, but also on the arbitrary regularization
scale ε.

But if D`/C` depends on ε then so also will the physical observables that are built from
it. Normally regularization dependence in a calculation drops out of physical quantities
because it gets renormalized into a redefinition of the couplings. Or, equivalently, it is
cancelled by an implicit regularization dependence that is hidden within couplings like λ.

4.2.1 Running of λ

This observation suggests a different way to interpret the above boundary condition [80, 81].
This alternative reading insists physical quantities cannot depend on arbitrary regulariza-
tion scales, and because of this neither can D`/C`. In this case expressions like (4.12)
or (4.17) should be reinterpreted as making explicit how λ = λ(ε) must depend on ε in or-
der to ensure thatD`/C` remains ε-independent. That is to say, in this interpretation (4.17)
is an RG equation for the coupling λ(ε).

To see what the evolution implied by (4.17) means more explicitly, it is worth expressing
it in differential form. As explored in detail in appendix B, this can be put into a universal
form by defining the new variable v(ε) using

λ

2πε = (2`+ 1) v − 1 , (4.19)
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Figure 6: The two categories of RG flow described by the evolution equation (4.20). This
figure plots the universal variable v(ε) against ln(ε/ε?). An example is shown with both
|v| > 1 and v < 1, and the plot shows the sign of |v| − 1 is invariant because v = ±1 are
fixed points. (figure taken from [87].).

for which differentiation of (4.17) becomes

ε
dv
dε =

(
`+ 1

2

)
(1− v2) . (4.20)

As is easily verified, the solution of (4.20) subject to the initial condition v(ε0) = v0 is
given by

v(ε) = (v0 + 1)(ε/ε0)2`+1 + (v0 − 1)
(v0 + 1)(ε/ε0)2`+1 − (v0 − 1) (4.21)

and this agrees with (4.17) once (4.19) is used, with integration constant v0 determining
the combination D`/C`. These generically describe evolution from v = −1 to v = +1 as ε
ranges from 0 to ∞. A plot of two representative solutions to (4.21) is given in figure 6.

Of course there is nothing wrong with simply regarding the boundary condition as
specifying D`/C` once a coupling λ0 is specified using a specific choice of regularization
scale ε0. What the RG interpretation tells us is that once this choice is made, we are
completely free to use any other regularization scale, ε1 instead, provided that we also
change the value of the coupling to λ1 where both pairs (ε0, λ0) and (ε1, λ1) lie on the
same RG trajectory λ(ε) defined by (4.17) (or, equivalently by (4.19) and (4.21)). It is
only when the coupling and regulator are changed in this correlated way that physical
quantities remain unchanged.

4.2.2 RG-invariant characterization of coupling strength

Because physical observables depend only on the coupling trajectories it is more informative
to specify the strength of the coupling by labelling the coupling trajectories using a more
convenient RG-invariant parameterization, rather than simply by specifying its value λ0 =
λ(ε0) for a specific (but arbitrary) regularizations scale ε0. This section follows [80, 81] and
identifies a particular choice of RG-invariant parameterization that is convenient because
(unlike the value λ0, say) the parameters are simply related to physical quantities.
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To this end the first observation is that the evolution equation (4.20) has two fixed
points, v = ±1, along which v is ε-independent. Trajectories that do evolve therefore
cannot cross v = ±1 and so fall into two distinct categories, distinguished by

η? := sign
(
v2 − 1

)
. (4.22)

η? is an RG-invariant quantity inasmuch as the sign of v2− 1 does not depend on ε for any
v(ε) satisfying (4.20).

Any specific curve can be uniquely characterized in an RG-invariant way by specifying
both η? and the new variable ε?, defined as the place where the curve passes through zero (if
η? = −1) or where it diverges (if η? = +1). Using this definition the general solution (4.21)
simplifies to

v(ε) = (ε/ε?)2`+1 + η?
(ε/ε?)2`+1 − η?

(4.23)

and this shows that the pair (η?, ε?) are related to any specific choice of initial condition
(ε0, v0) by η? = sign(v2

0 − 1) and(
ε?
ε0

)2`+1
= η?

(
v0 − 1
v0 + 1

)
=
∣∣∣∣v0 − 1
v0 + 1

∣∣∣∣ . (4.24)

What makes these variables convenient is that ε? provides an invariant length scale
that is shared by all representatives (ε, v) or (ε, λ) along a particular RG trajectory. It is
consequently this length scale — and not ε0 or λ0, say — that is physical and so whose size
characterizes the values of physical observables. This is shown in detail in [80–84, 86, 87],
where cross sections and energy shifts in many examples are evaluated and found to be
simply related to ε?.

To see explicitly why this is so, we write λ(ε) in terms of ε? by combining (4.19)
and (4.23) to get

λ

2πε + 1 = (2`+ 1)v(ε) = (2`+ 1) (ε/ε?)2`+1 + η?

(ε/ε?)2`+1 − η?
, (4.25)

and for later purposes also record its inverse (cf. eqs. (4.19) and (4.24))(
ε?
ε

)2`+1
=
∣∣∣∣v − 1
v + 1

∣∣∣∣ =
∣∣∣∣ [λ/(4πε)]− `
[λ/(4πε)] + `+ 1

∣∣∣∣ . (4.26)

eq. (4.25) can be used in (4.15) to determine the integration constant ratio D`/C` from
which physical quantities are ultimately determined. This exercise gives

D`(ω)
C`(ω) = πη?

Γ(`+ 3
2) Γ(`+ 1

2)

(
ωε?
2

)2`+1
, (4.27)

verifying that the explicit dependence on ε and λ combines into the invariant combinations
η? and ε?. In particular, it is the dimensionless quantity ωε? that controls the size of
any physical response, and (4.27) shows quantitatively in this language how small angular
momenta ` are preferred when ωε? � 1.
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In practical examples ε? is set by the size of the underlying object (in this case the
hotspot) times the appropriate coupling that controls the interactions through which it is
probed. For example, when a similar analysis is applied to describing the effects of finite
nuclear size on the energy levels in pionic atoms, one finds ε? ∼ RN is of order the nuclear
radius [82]. But the same analysis when describing nuclear-size effects on Hydrogen energy
levels finds ε? ∼ αRN , with α the fine-structure constant [80, 81].

By comparison, if boundary conditions must be imposed for an effective theory outside
the nucleus then ε > RN . Concrete examples like these show that a small source probed
by a weakly coupled field tends to produce ε? � ε, if ε is regarded to be typical linear size
of the compact object.

4.2.3 Resumming all orders in λ/4πε

It is instructive to explore the connection between λ(ε) and ε? explicitly in the weak-
coupling limit, by expanding (4.25) in powers of ε?/ε. In this limit (4.23) simplifies to
v(ε) ' 1 + 2η? (ε?/ε)2`+1 + · · · , and so

λ

2πε ' 2`+ 2η?(2`+ 1)
(
ε?
ε

)2`+1
. (4.28)

For the ` = 0 mode in particular λ becomes ε-independent in the perturbative limit, with

λ ' 4πη?ε? (for ` = 0 and ε? � ε) . (4.29)

This shows that for s-wave processes, expressions for physical quantities as functions of
ωε? (for mode frequency ω) can be turned into corresponding expressions as functions of
λω, by using (4.29). Provided powers of ε?/ε are negligible these expressions need have
no dependence on regulators like ε, making any discussion of RG evolution completely
unnecessary.

But what happens if ε is now decreased and λ(ε) adjusted along a particular RG flow
to a point where ε?/ε is no longer negligible and λ/4πε is no longer small? The answer
for the physical observable as a function of ωε? does not change at all, because physics
depends only on which RG trajectory one lives, and not on the particular point one sits
along this trajectory. All that changes as ε and λ are varied is that expression (4.29) can
no longer be used to trade ε? for λ; instead one must go back to the full result (4.25) when
doing so.

This observation provides a way to resum all orders in λ/4πε while holding quantities
like ωε? fixed. Suppose one computes an observable as a function of two dimensionless
quantities O = O[ωε, λ/4πε], and does so perturbatively in λ/4πε. The result can be
turned into an expression O = O[ωε, ε?/ε] by trading λ for ε? using (4.29). But we know
that ε is just a calculational artefact that is not actually in the physical result, which must
therefore really only be a function of the one variable ωε?.

The result for the same observable elsewhere on the RG trajectory, where λ/4πε and
ε?/ε are not small, is given by the same expression O = O[ωε?] since it does not depend
at all on ε. Expressing this result in terms of O = O[ωε, λ/4πε] using (4.25) then gives an
explicit resummation of the observable to all orders in λ(ε)/4πε.
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4.3 Resummation of the two-point function

The above reasoning can be applied to the perturbative calculation of φ-field response given
above, allowing results that are derived to lowest nontrivial order in λ/4πε to be promoted
into expressions that work to all orders in this variable.

4.3.1 s-wave resummation

We derive the resummed results here, and then check (in this section) that they capture
a full mode sum using the boundary condition (4.6). In later sections we also verify that
the results found for large λ/4πε in this way also agree with the exact expressions derived
in section 5.

The starting point is the perturbative expression (3.10), that is given again here in the
special case g̃ = 0:

Wβ(t,x; t′,x′)' 1
4π2[−(t−t′−iδ)2+|x−x′|2

]+ λ

16π3|x||x′|

[ |x|+|x′|
(t−t′−iδ)2−(|x+|x′|)2

]
.

(4.30)
Anticipating the dominance of the ` = 0 mode (as is appropriate in applications for which
ε? � |x|, |x′| say, see next section), we may trade λ in this expression for ε? using (4.29)
to find

Wβ(t,x; t′,x′)' 1
4π2[−(t−t′−iδ)2+|x−x′|2

]+ η?ε?
4π2|x||x′|

[ |x|+|x′|
(t−t′−iδ)2−(|x+|x′|)2

]
.

(4.31)
But an expression with broader validity than (4.30) can be obtained from (4.31) by using
in this result the more general ` = 0 relation giving ε? in terms of λ given in (4.26), leading
to

〈φ(t,x)φ(t′,x′)〉 ' 1
4π2

[ 1
−(t− t′ − iη)2 + |x− x′|2

]
(4.32)

+ 1
16π3|x||x′|

∣∣∣∣ λ

(λ/4πε) + 1

∣∣∣∣ [ |x|+ |x′|
(t− t′ − iδ)2 − (|x|+ |x′|)2

]
.

This clearly agrees with (4.30) for small λ/4πε, but its validity is now extended to include
the regime λ >∼ 4πε provided only that ` = 0 modes dominate when computing the hotspot
influence. The conditions under which this is true are explored more fully in the next
section, which verifies (4.32) starting directly from a mode-sum using modes that satisfy
the boundary condition (4.6).

4.3.2 Mode-sum calculation

We next recompute (4.32) by evaluating the φ-field correlator as an exact function of λ,
by calculating the sum over mode-functions whose λ-dependence is acquired through the
boundary condition (4.6). As described above, this boundary condition fixes the ratio
of integration constants D`/C` to be given in terms of ε? as in (4.27), repeated here for
conenience:

D`(ω)
C`(ω) = πη?

Γ(`+ 3
2) Γ(`+ 1

2)

(
ωε?
2

)2`+1
. (4.33)
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Mode normalization. The integration constants C` and D` are determined separately
by combining (4.33) with mode-function normalization, which requires

〈uω`m, uω̃ ˜̀m̃〉 = δ(ω − ω̃)δ`˜̀δmm̃ , 〈uω`m, u∗ω̃ ˜̀m̃〉 = 0 , 〈u∗ω`m, u∗ω̃ ˜̀m̃〉 = −δ(ω − ω̃)δ`˜̀δmm̃
(4.34)

where the angle brackets denote the Klein-Gordon inner product

〈F,G〉 := i

∫
d3x

(
F (t,x)∂tG∗(t,x)− ∂tF (t,x)G∗(t,x)

)
. (4.35)

As is easily verified, this inner product is time-independent when evaluated for any solu-
tions F,G to the Klein-Gordon equation, and this remains true even in the presence of
the modified boundary condition (4.6), whenever the effective coupling λ is real. To see
why notice that this boundary condition implies the radial flux density of Klein-Gordon
probability at r = ε is

Jr(ε) ∝
[
F (t,x)∂rG∗(t,x)− ∂rF (t,x)G∗(t,x)

]
r=ε

= (λ∗ − λ)
[
F (t,x)G∗(t,x)

]
r=ε

(4.36)

and so vanishes for real λ.
The normalization integrals are computed in appendix C.1, leading to the following

ε?-dependent results for C` and D` separately

C`m(ω) =
√
ω

π

1 +
[

π

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1]2

−1/2

, (4.37)

and

D`m(ω) = πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1√ω

π

1 +
[

π

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1]2

−1/2

.

(4.38)

With these choices the mode functions and field operators satisfy the required boundary
condition at r = ε, and this completely determines their dependence on ε?.

The main approximation made in deriving (4.37) and (4.38) is to assume that ωε is
small enough to allow the replacement of j`(ωε) and y`(ωε) with their leading asymptotic
forms; that is by using (4.15) instead of (4.13). Since the Bessel functions are explicitly
known this approximation can be improved to any desired order in ωε, by upgrading
condition (4.33) using a more accurate representation of the Bessel functions.

Mode sum. We are now in a position to compute the Wightman function in terms of a
mode sum, using the above ε?-dependent form for the modes,

uω`m(t,x) = C`m(ω)e−iωt
[
j`(ωr) + πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ωr)

]
Y`m(θ, φ) ,

(4.39)
that properly matching at the boundary condition at r = ε (dropping subdominant terms
in ωε). As argued above, all explicit dependence on ε drops out of this exression once
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evaluated at |x| = ε, cancelling between any explicit dependence and the ε-dependence
implicit without the coupling λ, leaving a dependence only on the RG-invariant quantity
ε?. In particular, eqs. (4.37) and (4.39) do not assume validity of the weak-coupling limit
ε? � ε (or equivalently λ/4πε need not be much smaller than unity).

The Wightman function is given in terms of these modes by

〈φ(t,x)φ(t′,x′)〉

=
∞∑
`=0

+∑̀
m=−`

∫ ∞
0

dω uω`m(t,x)u∗ω`m(t′,x′) (4.40)

=
∞∑
`=0

+∑̀
m=−`

∫ ∞
0

dω e−iω(t−t′)|C`m(ω)|2
[
j`(ω|x|)+ πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x|)

]

×
[
j`(ω|x′|)+ πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x′|)

]
Y`m(θ,φ)Y ∗`m(θ′,φ′) .

Performing the sum over m (see appendix C.2 for details) leads to the intermediate expres-
sion

〈φ(t,x)φ(t′,x′)〉

=
∞∑
`=0

2`+1
4π

∫ ∞
0

dω e−iω(t−t′)|C`0(ω)|2
[
j`(ω|x|)+ πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x|)

]

×
[
j`(ω|x′|)+ πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x′|)

]
P`(cosθ) . (4.41)

The terms in this sum involving two factors of j` reproduce the standard vacuumMinkowski
Wightman function in the absence of the hotspot source.

Leading order in ωε?. To make further progress we assume ωε? � 1, which is a natural
limit for modes with energies much smaller than the UV scale 1/ε?. In this case because
ωε? appears raised to the power 2`+1 it follows that the leading regime comes purely from
the s-wave partial wave with ` = 0. Using

j0(ω|x|) = sin(x)
x

and y0(x) = −cos(x)
x

, (4.42)

the contribution up to leading (linear) nontrivial order in ωε? can be simplified to

〈φ(t,x)φ(t′,x′)〉

' 1
4π2

∫ ∞
0

dω e−iω(t−t′)
{
ω
∞∑
`=0

(2`+1)j`(ω|x|)j`(ω|x′|)P`(cosθ)

− (4πη?ε?)
16π3|x||x′|

[
sin(ω|x|)cos(ω|x′|)+cos(ω|x|)sin(ω|x′|)

]
+O(ω2ε2?)

}
.

' 1
4π2|x−x′|

∫ ∞
0

dωe−iω(t−t′)
{

sin
(
ω|x−x′|

)
− (4πη?ε?)

16π3|x||x′| sin
[
ω
(
|x|+|x′|

)]
+O(ω2ε2?)

}
.

(4.43)
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Evaluating the remaining integrals then gives

〈φ (t,x)φ
(
t′,x′

)
〉 ' 1

4π2

[
1

− (t− t′ − iδ)2 + |x− x′|2

]
(4.44)

+ (4πη?ε?)
16π3|x||x′|

[
|x|+ |x′|

(t− t′ − iδ)2 − (|x|+ |x′|)2

]
,

where δ = 0+ is the usual positive infinitesimal that is taken to zero at the end of the
calculation.

Notice that (4.44) precisely agrees with the result found in (4.31), and so guarantees
that the result (4.32) is found once the combination η?ε? is traded for λ(ε) using (4.26).
Higher orders in ωε? can be included systematically by including higher partial waves and
by working to higher order in the small ωε expansion of the mode-functions.

5 Exact two-point correlator

In this section we evaluate the φ mode functions without perturbing in λ and g̃, and sum
these modes to obtain the exact 〈φφ〉 Wightman function.

5.1 Mode functions

The first step is to find the mode functions in a way that does not rely on couplings being
small. To this end we must solve equations (2.42) and (2.43), which are repeated here for
ease of reference, for the mode functions Sp and sap:

Sp(t,x) = −λΘ(t− |x|)
4π|x|

(
e−iEp(t−|x|) + Sp(t− |x|,0)

)
− δabgagb

16π2|x| δ(t− |x|) (5.1)

− δabgagb
16π2|x| Θ(t− |x|)

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]
and

sap(t,x) = − δ
abgb

4π|x| Θ(t− |x|) e−iEp(t−|x|) − λΘ(t− |x|)
4π|x| sap(t− |x|,0)

− δbcgbgc
16π2|x|

Θ(t− |x|) ∂tsap(t− |x|,0) (5.2)

subject to the initial conditions (2.30).
Clearly, whenever t < |x| the right-hand sides of these equations vanish and so they

imply that Sp(t,x) = sap(t,x) = 0, as required by causality. In the opposite case t > |x|
they instead become

Sp(t,x) = − λ

4π|x|
[
e−iEp(t−|x|) + Sp(t− |x|,0)

]
(5.3)

− δabgagb
16π2|x|

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]
when t > |x|
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and

sap(t,x) = − δ
abgb

4π|x| e
−iEp(t−|x|)− λ

4π|x|s
a
p(t−|x|,0)− δbcgbgc

16π2|x| ∂ts
a
p(t−|x|,0) when t > |x| .

(5.4)
As suggested by the perturbative case, solutions to these equations unsurprisingly diver-
gence at the location of the compact source x = 0, which we regulate as before by re-
placing x = 0 with |x| = ε: Sp(t − |x|,0) = Sp(t − |x|,y)

∣∣
|y|=ε and ∂tS

(0)
p (t − |x|,0) =

∂tS
(0)
p (t− |x|,y)

∣∣
|y|=ε and so on.

To solve (5.3) and (5.4) (in the special case where ga = g̃/
√
N for all a) we make the

ansätze
Sp(t,x) = F (|x|)e−iEp(t−|x|) when t > |x| (5.5)

and
sap(t,x) = G(|x|)e−iEp(t−|x|) (for all a) when t > |x| , (5.6)

and so S(0)
p (t−|x|,0) := F (ε) e−iEp(t−|x|−ε) and ∂tS(0)

p (t−|x|,0) := F (ε) (−iEp)e−iEp(t−|x|−ε)

and similarly for sap. These ansätze solve (5.3) and (5.4) provided F and G satisfy

F (|x|) =
(
− λ

4π|x| + ig̃2Ep
16π2|x|

)[
1 + F (ε) e+iEpε] (5.7)

and

G(|x|) = − g̃

4π
√
N |x|

+
(
− λ

4π|x| + ig̃2Ep
16π2|x|

)
G(ε) e+iEpε (5.8)

whose solutions are

F (|x|) =
− λ

4π|x|+
ig̃2Ep

16π2|x|

1−
(
− λ

4πε+ ig̃2Ep
16π2ε

)
e+iEpε

and G(|x|) =
− g̃

4π
√
N |x|

e−iEp(t−|x|)

1−
(
− λ

4πε+ ig̃2Ep
16π2ε

)
e+iEpε

.

(5.9)
Recalling that the derivation of equations (2.42) and (2.43) assume εEp � 1 — see the
discussion below equations (2.39) and (2.40) — we can take eiEpε ' 1 without loss, giving
the mode functions

Sp(t,x) '
− λ

4π|x| + ig̃2Ep
16π2|x|

1 + λ

4πε −
ig̃2Ep
16π2ε

e−iEp(t−|x|) when t > |x| (5.10)

and

sap(t,x) '
− g̃

4π
√
N |x|

e−iEp(t−|x|)

1 + λ

4πε −
ig̃2Ep
16π2ε

e−iEp(t−|x|) when t > |x| . (5.11)

– 29 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
6

Comparing (5.10) and (5.11) to the perturbative solutions (3.1) and (3.2) in the regime
t > |x|, it is clear that the perturbative expression are valid only when∣∣∣∣∣ λ4πε − ig̃2Ep

16π2ε

∣∣∣∣∣� 1 . (5.12)

For this to be small for all p requires each term to separately be small. If Λ is a bulk cutoff,
so that Ep < Λ for all p (which in principle is logically distinct from the UV cutoff 1/ε
associated with proximity to the hotspot) then at face value the perturbative limit requires

λ

4πε � 1 and Λg̃2

16π2ε
� 1 . (5.13)

5.2 Performing the mode sum

Given the mode functions in (5.10) and (5.11) the Wightman function of (3.4) can be
evaluated as a mode sum. For two points (t,x) and (t′,x′) satisfying t > |x| and t′ > |x′|,
the result becomes

Wβ

(
t,x; t′,x′

)
= 1
Zβ

Tr
[
φH (t,x)φH

(
t′,x′

) (
|vac〉 〈vac| ⊗ e−βH−

)]
=: S

(
t,x; t,x′

)
+ Eβ

(
t,x; t,x′

)
(5.14)

where the functions S and Eβ are defined by

S (t,x; t′,x′) =
∫ d3p

(2π)32Ep

(
e−iEpt+ip·x + Sp(t,x)

)(
e+iEpt′−ip·x′ + S∗p(t′,x′)

)
(5.15)

and

Eβ(t,x; t′,x′) = 1
Zβ

N∑
a,b=1

∫ d3p√
(2π)32Ep

∫ d3k√
(2π)32Ek

(
sap(t,x)sb∗k (t′,x′)Tr ′

[
bapb

b∗
k e
−βH−

]

+sa∗p (t,x)sbk(t′,x′)Tr ′
[
ba∗p bbke

−βH−
])
.

(5.16)
These mode sums are performed explicitly in appendix D, giving the following result for
S

S (t,x; t′,x′) = 1
4π2 [−(t− t′ − iδ)2 + |x− x′|2] (5.17)

+ 2ε2
g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c)

− I+(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x| − |x′|, c)
]

+ ε

8π2|x||x′|

[
− 1
t− t′ + |x|+ |x′| − iδ + 1

t− t′ − |x| − |x′| − iδ

]

−
32π2ε4(1 + λ

2πε)
g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]
− ε2

4π2|x||x′|(t− t′ − |x|+ |x′| − iδ)2
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where the parameter c is the following combination of couplings and ε,

c := 16π2ε

g̃2

(
1 + λ

4πε

)
. (5.18)

The functions I∓(τ) are defined by

I∓(τ) = e±cτE1
(
± c[τ − iδ]

)
where E1(z) :=

∫ ∞
z

du e
−u

u
, (5.19)

is the En-function with n = 1 (closely related to the exponential integral function) and the
limit δ → 0+ is (as usual) understood.

The temperature-dependent contribution similarly evaluates to

Eβ(t,x; t,x′) = 2ε2
g̃2|x||x′|

[
Φ
(
e
−2π(t−t′−|x|+|x′|−iδ)

β ,1, cβ2π

)
+Φ

(
e

+ 2π(t−t′−|x|+|x′|−iδ)
β ,1, cβ2π

)]
− 2π
cβ

]
(5.20)

where Φ(z, s, a) is the Lerch transcendent, defined by the series Φ(z, s, a) = ∑∞
n=0

zn

(a+n)s
for complex numbers in the unit disc (with |z| < 1), and by analytic contribution else-
where in the complex plane. Asymptotic forms for the functions I± and Φ are given in
appendix D.1.1.

These expressions pass all of the smell tests. In particular, the full correlation function
Wβ = S + Eβ reduces to the perturbative correlation function quoted in (3.10) in the
appropriate perturbative limit. The perturbative expression in powers of g̃ is obtained
from the asymptotic form when both cτ � 1 in S (as shown explicitly in section D.1.1)
and cβ � 1 in Eβ (see section D.2.1). The expression found in this limit agrees with (4.32),
obtained earlier by resumming the perturbative result to all orders in λ/(4πε). Further
taking λ/(4πε)� 1 in this expression then reproduces exactly the perturbative correlation
function (3.10) found previously.

Finally, this result has a thermal character in the sense that Eβ satisfies the Kubo-
Martin-Schwinger (KMS) condition [73, 74], as we show explicitly in appendix D.2.3.

6 Conclusions

Black hole physics is a puzzle wrapped in an enigma hidden by a horizon, and ongoing
studies of information loss show that Hawking radiation is the discovery that keeps on
giving. Although Hawking radiation in principle occurs in the weak-field regime where cal-
culation control should be good, reliable and explicit calculations of corrections to Hawking
radiation are relatively rare (partly due to the extremely late times involved). Yet resolv-
ing issues such as the existence (or not) of firewalls, possible loss of locality and the like
are crucial towards gaining an understanding of what a theory of quantum gravity should
ultimately look like.

In this paper we construct a Caldeira-Leggett type [45] toy model of a hot compact
relativistic object that captures some of the features of black holes, and so can be used as a
benchmark against which real calculations can be compared. The model is simple enough
to be solved explicitly, but complicated enough to capture some of the open-system effects
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believed to be important for black holes. Although the toy model cannot in itself resolve
the thorniest puzzles associated with horizons, it can show which features are shared with
more mundane systems that are hot and relatively small.

There are several directions in which this model might fruitfully be explored. In a
companion work [53], we apply to it several approximate Open-EFT techniques designed
to probe late-time evolution, to better identify their domains of validity and whether they
can illuminate the extent to which the open nature of the hotspot causes a breakdown
of local descriptions of the physics of the field φ living in R+. A second companion [54]
explores the behaviour of an Unruh detector (or qubit) that couples to the field φ in the
vicinity of the hotspot, to determine the extent to which it thermalizes as a function of its
couplings and its distance from the hotspot.

Other useful directions might explore the regime where the radius ξ of the interaction
sphere Sξ is not small, and so parallels the EFT discussion of [71]. By tuning the physics
at the interface between the spaces R± one might hope to mock up the entanglement
between modes inside and outside the horizon, and provide a simple analog of the matching
calculations often used to extract black hole phenomenology from scattering amplitudes.
The model can be further developed to include redshifting and the geometrical effects of
gravitational fields in regions R±. We offer up the hotspot model in the hopes that such
comparisons and extensions will prove instructive.
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A Thermal correlation functions

This appendix computes the thermal correlation functions used in the main text. This is
partly done as a confidence-building exercise to verify the techniques used elsewhere.

A.1 Free thermal correlation function

The first correlation to compute is the standard two-point function for a free thermal field.
Although the main text works with N fields for this correlation function it suffices to work
with only one of the N copies and evaluate

〈χ(t,x)χ(0,0)〉β = 1
Z

Tr
[
χ(t,x)χ(0,0) e−βH

]
, (A.1)
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where translation invariance in R− is used to set one of the fields to (t′,x′) = (0,0), the
relevant free-particle part of the Hamiltonian H− is denoted H and Z denotes the partition
function

Z := Tr[e−βH] =
∞∑
N=0

∑
{np}N

〈{np}N | e−βH |{np}N〉

=
∏
p

∞∑
np=0

e−βEpnp =
∏
p

1
1− e−βEp =:

∏
p
Zp . (A.2)

This last expression temporarily switches for convenience to discretely normalized mo-
menta, as would be appropriate when the spatial volume V is finite, and takes the eigen-
values of H to be ∑p npEp. The field expansion for this normalization of states is

χ(t,x) =
∑

p

1√
2EpV

[
bp e

−iEpt+ip·x + b∗p e
iEpt−ip·x

]
(A.3)

where bp is the discretely normalized destruction operator, and the conversion between
discrete and continuum normalization is given by

bp =
[

(2π)3

V

]1/2

bp and
∑

p
= V

(2π)3

∫
d3p , (A.4)

and so on.
Inserting (A.3) into (A.1) allows it to be evaluated in the occupation-number basis,

leading to

〈χ(t,x)χ(0,0)〉β = 1
2VZ

∑
kq

Tr
[(
e−iEkt+ik·xbk + e+iEkt−ik·xb∗k

) (
bq + b∗q

)
e−βH

]
√
EkEq

= 1
2VZ

∑
k

Tr
[(
e−iEkt+ik·xbk + e+iEkt−ik·xb∗k

)
(bk + b∗k) e−βH

]
Ek

(A.5)

= 1
2VZ

∑
k

e−iEkt+ik·xTr
[
bkb
∗
ke
−βH

]
+ e+iEkt−ik·xTr

[
b∗kbke

−βH
]

Ek
,

and so, using bkb
∗
k = b∗kbk + 1, this becomes

〈χ(t,x)χ(0,0)〉β = 1
2V

∑
k

e−iEkt+ik·x

Ek
+ 1
VZ

∑
k

cos (Ekt− k · x)
Ek

Tr
[
b∗kbk e

−βH
]

=
∫ d3k

(2π)3
e−iEkt+ik·x

2Ek
+ 1
VZ

∑
k

cos (Ekt− k · x)
Ek

Tr
[
b∗kbk e

−βH
]

(A.6)

The required trace is a standard manipulation

1
Z

Tr
[
b∗kbke

−βH
]

= 1
Z

∞∑
N=0

∑
{np}N

〈{np}N | b∗kbk e
−β
∑

p Epnp |{np}N〉

=
∏
p

1
Zp

∞∑
np=0

np e
−βEpnp =

∏
p

1
eβEp − 1 , (A.7)
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and so

〈χ(t,x)χ(0,0)〉β =
∫ d3k

(2π)3
e−iEkt+ik·x

2Ek
+
∫ d3k

(2π)3
cos (Ekt− k · x)
Ek (eβEk − 1) . (A.8)

It remains to perform the integrals. The first evaluates to the vacuum Wightman
function while the second is the thermal correction. That is∫ d3k

(2π)3
e−iEkt+ik·x

2Ek
= 1

4π2 [−(t− iδ)2 + |x|2] , (A.9)

where the limit δ → 0+ is understood, and the geometric series

1
eβk − 1 =

∞∑
n=1

e−nβk , (A.10)

allows the remaining term to be written

∫ d3k

(2π)3
cos(Ekt−k·x)
Ek (eβEk−1) = 1

4π2|x|

∫ ∞
0

dk e
−ikt+e+ikt

(eβk−1) sin(k|x|)

= 1
4π2|x|

∞∑
n=1

∫ ∞
0

dk
(
e−ikt+e+ikt

)
e−nβk sin(k|x|)

= 1
4π2|x|

∞∑
n=1

∫ ∞
0

dk
{
e−nβk sin

[
k(t+|x|)

]
−e−nβk sin

[
k(t−|x|)

]}
= 1

8πβ|x| ·
2
π

∞∑
n=1

[ (t+|x|)/β
n2+[(t+|x|)/β]2−

(t−|x|)/β
n2+[(t−|x|)/β]2

]
. (A.11)

This final sum can be performed using identity (1.421.4) from [116], which for z ∈ R states

coth (πz) = 1
πz

+ 2
π

∞∑
n=1

z

n2 + z2 , (A.12)

and so

〈χ(t,x)χ(0,0)〉β = 1
8π2|x|

( 1
t+ |x| − iδ −

1
t− |x| − iδ −

1
t+ |x| + 1

t− |x|

)
(A.13)

+ coth [π(t+ |x|)/β]− coth [π(t− |x|)/β]
8πβ|x| .

In the limit δ → 0+ (for real t and x) the real parts of the second line cancel leaving

〈χ(t,x)χ(0,0)〉β =
coth

[
π(t+ |x| − iδ)/β

]
− coth

[
π(t− |x| − iδ)/β

]
8πβ|x| (A.14)

which is the result quoted in (3.15) of the main text (after restoring the arguments t′ and
x′ of the second field using translational invariance).
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A.1.1 The KMS condition

A subtlety with the iδ-prescription in the above formula (A.14) is that it is only correct for
real t and |x|. This matters because the thermal correlation function is supposed to obey
the Kubo-Martin-Schwinger (KMS) condition given by

〈χ(t− iβ,x)χ(t′,x′)〉β = 〈χ(t′,x′)χ(t,x)〉β = 〈χ(t,x)χ(t′,x′)〉∗β , (A.15)

which (A.14) apparently does not satisfy because of the iδ-prescription used there.
Later in appendix D.2.3 we prove that the function Eβ obeys a KMS-type condition,

and so for later use we here flesh out the argument for why the KMS is explicitly obeyed
for the free thermal correlator 〈χ(t,x)χ(t′,x′)〉β . To see how this works, go back to (A.8)
(with arguments t′ and x′ reinstated) which says

〈χ(t,x)χ(t′,x)〉β =
∫ d3k

(2π)3
e−iEk(t−t′)+ik·(x−x′)

2Ek (1− e−βEk) +
∫ d3k

(2π)3
e+iEk(t−t′)−ik·(x−x′)

2Ek (eβEk − 1) (A.16)

after use of the identity 1 + (eβEk − 1)−1 = (1− e−βEk)−1. Evaluating this with t→ t− iβ
gives6

〈χ(t−iβ,x)χ(t′,x′)〉β =
∫ d3k

(2π)3
e−βEke−iEk(t−t′)+ik·(x−x′)

2Ek (1−e−βEk) +
∫ d3k

(2π)3
e+βEke+iEk(t−t′)−ik·(x−x′)

2Ek (eβEk−1)

=
∫ d3k

(2π)3
e−iEk(t−t′)+ik·(x−x′)

2Ek (eβEk−1) +
∫ d3k

(2π)3
e+iEk(t−t′)−ik·(x−x′)

2Ek (1−e−βEk) (A.17)

= 〈χ(t′,x′)χ(t,x)〉β ,

as required by the KMS condition (A.15).
The validity of the KMS condition can be made manifest in position space if we re-

write (3.15) with an iδ-prescription that is both consistent with the KMS condition and
reduces to (3.15) in the limit of real t. To do this notice the identity

coth(a+ b)− coth(a− b) = − sinh(2b)
sinh(a+ b) sinh(a− b) for any a, b ∈ C , (A.18)

which allows the correlation function to be written in the KMS-consistent form (cf. for-
mula (A.13))

〈χ(t,x)χ(t′,x′)〉β =−
sinh

(2π|x−x′|
β

)
8πβ|x−x′|

[
sinh

(
π(t−t′+|x−x′|

β

)
− iπδ

β

][
sinh

(
π(t−t′−|x−x′|)

β

)
− iπδ

β

] .
(A.19)

6Notice that replacing t → t + ib for some imaginary part b in the above makes the integral converge
for all −β < b < 0, since (eβEk − 1)−1 ' e−βEk and (1 − e−βEk )−1 ' 1 + e−βEk for large momenta
βEk � 1. This means that the correlator is a complex-analytic function of time t ∈ C in this strip [117]
(with −β < Im[t] < 0).
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B RG evolution

This appendix summarizes some parts of the renormalization evolution not made explicit
in the main text, closely following the discussion in appendix F of [87].

B.1 Universal evolution

The boundary conditions of the main text provide examples where the effective couplings
are found to satisfy equations of the form

g(ε) = Aρ2ζ
ε +B

Cρ2ζ
ε +D

, (B.1)

where g is a representative coupling and ε appears on the right-hand side through the
variable ρε. In the example of (4.17), for instance, we have g = λ/4πε while ρε = 1

2 ωε, the
power is ζ = `+ 1

2 and the parameters A,B,C and D are given explicitly by

A = ` , B = (`+ 1)X`(ω) , C = 1 and D = −X`(ω) , (B.2)

where
X` (ω) := 1

π
Γ
(
`+ 3

2

)
Γ
(
`+ 1

2

) D` (ω)
C`(ω) . (B.3)

For later use, eq. (B.1) also inverts to give

ρ2ζ
ε = B −Dg

Cg −A
. (B.4)

The goal is to derive a universal differential version of this evolution (see, for exam-
ple [80–84] for more details). To start this off directly differentiate (B.1) holding A,B,C,D
fixed, leading to

ε
dg
dε = 2ζ

[
AD −BC

(Cρ2ζ
ε +D)2

]
ρ2ζ
ε = 2ζ

[(Cg −A)(B −Dg)
AD −BC

]
, (B.5)

where the second equality uses (B.4) to trade ρ2ζ
ε for g. This evolution equation has fixed

points at g = g∗, where
g∗ = A

C
or g∗ = B

D
, (B.6)

which can also be seen as the ρε → 0 and ρε →∞ limits of (B.1).
Equation (B.5) can be put into a standard form by redefining g to ensure that g∗ = ±1.

To this end write
g(ε) = u(ε) + 1

2

(
A

C
+ B

D

)
, (B.7)

in terms of which the fixed points are

u∗ = ±1
2

(
A

C
− B

D

)
= ±

(
AD −BC

2CD

)
, (B.8)

and (B.5) becomes

ε
du
dε = − 2ζCD

AD −BC

[
u−

(
AD −BC

2CD

)] [
u+

(
AD −BC

2CD

)]
. (B.9)
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Finally rescale
u =

[
AD −BC

2CD

]
v (B.10)

to see that
ε
dv
dε = ζ(1− v2) (B.11)

is an automatic consequence of (B.1) once one defines

g = u+ AD +BC

2CD = 1
2

(
A

C
− B

D

)
v + 1

2

(
A

C
+ B

D

)
. (B.12)

These expressions emphasize that although the positions of the fixed points for g
depend on the ratios A/C and B/D, the speed of evolution along the RG flow depends
only on ζ. Indeed the general solution to (B.11) is

v(ε) = (v0 + 1)(ε/ε0)2ζ + (v0 − 1)
(v0 + 1)(ε/ε0)2ζ − (v0 − 1) (B.13)

where the integration constant is chosen to ensure v(ε0) = v0. For ζ > 0 this describes a
universal flow that runs from v = −1 to v = +1 as ε flows from 0 to ∞.

Since the trajectories given in (B.13) cannot cross the lines v = ±1 for any finite
nonzero ε there are two categories of flow, distinguished by the flow-invariant sign of |v|−1
(see figure 6). That is, if |v0|−1 is negative (positive) for any 0 < ε0 <∞, then |v(ε)|−1 is
negative (positive) for all 0 < ε <∞. Every trajectory is therefore uniquely characterized
by a pair of numbers. These can equally well be chosen to be the pair (ε0, v0) that specifies
an initial condition v0 = v(ε0), or it can be taken to be the pair (ε?, y?) where y? =
sign(|v| − 1) = ±1 distinguishes the two classes of trajectories, and ε? is defined as the
value of ε for which v(ε?) = 0 (if y? = −1) or the value for which v(ε?) =∞ (if y? = +1).
The parameterization using (ε?, y?) is useful because physical observables turn out to have
particularly transparent expressions in terms of these variables.

For the specific cases given in (B.2) the fixed points are

A

C
= ` and B

D
= −`− 1 (B.14)

and λ is related to the universal scaling variable v by (B.12), which becomes

λ

4πε = 1
2
[
(2`+ 1) v − 1

]
and so v = 1

2`+ 1

(
λ

2πε + 1
)
, (B.15)

as used in the main text.

C Mode properties

This appendix evaluates several properties associated with the modes in the presence of
a 1

2 λφ
2(0) interaction localized at the hotspot. The first subsection computes their nor-

malization constants and the second evaluates the mode sums required for the Wightman
function (in an approximate limit).
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C.1 Mode normalization

This appendix computes the ε?-dependence of the integration constants C` and D`, by
requiring the mode functions to be properly normalized. As discussed in the main text, we
do so using the standard Klein-Gordon inner product (4.35), since the reality of λ ensures
this remains time-independent even with the λ-dependent boundary conditions of section 4.

Our mode functions have the form

uω`m(t,x) = e−iωt
[
C`(ω)j`(ωr) +D`(ω)y`(ωr)

]
Y`m(θ, φ), (C.1)

where we have already seen that the boundary condition implies the ratio D`/C` is given
by (4.15) or (4.33). Inserting this into the Klein-Gordon inner product (4.35) yields

〈uω`m, uω̃ ˜̀m̃〉 = i

∫
d3x

(
u∗ω`m(t,x)u̇ω̃ ˜̀m̃(t,x)− u̇∗ω`m(t,x)uω̃ ˜̀m̃(t,x)

)
= C∗` (ω)C˜̀(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫
d3x j`(ωr)Y`m(θ, φ)j˜̀(ω̃r)Y`m(θ, φ) (C.2)

+ C∗` (ω)D˜̀(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫

d3x j`(ωr)Y`m(θ, φ)y˜̀(ω̃r)Y`m(θ, φ)

+D∗` (ω)C˜̀(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫

d3x y`(ωr)Y`m(θ, φ)j˜̀(ω̃r)Y`m(θ, φ)

+D∗` (ω)D˜̀(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫

d3x y`(ωr)Y`m(θ, φ)y˜̀(ω̃r)Y`m(θ, φ)

Using orthonormality of the spherical harmonics Y`m(θ, φ)∫
d2Ω Y`m(θ, φ)Y˜̀m̃(θ, φ) = δ`˜̀δmm̃ , (C.3)

allows the above to be written as

〈uω`m, uω̃ ˜̀m̃〉 = δ`˜̀δmm̃

[
C∗` (ω)C`(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫ ∞
0

dr r2j`(ωr)j`(ω̃r) (C.4)

+ C∗` (ω)D`(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫ ∞

0
dr r2j`(ωr)y`(ω̃r)

+D∗` (ω)C`(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫ ∞

0
dr r2y`(ωr)j`(ω̃r)

+D∗` (ω)D`(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫ ∞

0
dr r2y`(ωr)y`(ω̃r)

]
.

The j-j and the y-y terms can be evaluated using the orthonormality relation for spherical
Bessel functions,∫ ∞

0
dr r2j`(ωr)j`(ω̃r) =

∫ ∞
0

dr r2y`(ωr)y`(ω̃r) = π

2ω2 δ(ω − ω̃) , (C.5)

while the cross-terms are evaluated in appendix C.1.1, giving∫ ∞
0

dr r2j`(ωr)y`(ω̃r) = (ω/ω̃)`

ω̃(ω̃2 − ω2) . (C.6)
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The above manipulations lead to the expression

〈uω`m, uω̃ ˜̀m̃〉 = δ`˜̀δmm̃

[
C∗` (ω)C`(ω̃)(ω + ω̃)e+i(ω−ω̃)t π

2ω2 δ(ω − ω̃) (C.7)

+ C∗` (ω)D`(ω̃)(ω + ω̃)e+i(ω−ω̃)t (ω/ω̃)`

ω̃(ω̃2 − ω2)

+D∗` (ω)C`(ω̃)(ω + ω̃)e+i(ω−ω̃)t (ω̃/ω)`

ω(ω2 − ω̃2)

+D∗` (ω)D`(ω̃)(ω + ω̃)e+i(ω−ω̃)t π

2ω2 δ(ω − ω̃)
]
.

Of these, the terms with δ-functions are simplified if we take ω̃ → ω, and after some
simplification on the cross-terms the above becomes

〈uω`m, uω̃ ˜̀m̃〉 = δ`˜̀ δmm̃

(
π

ω

(
|C`(ω)|2 + |D`(ω)|2

)
δ(ω − ω̃) (C.8)

+ e+i(ω−ω̃)t

ω − ω̃

[
− C∗` (ω)D`(ω̃) ω`

ω̃`+1 +D∗` (ω)C`(ω̃) ω̃`

ω`+1

])
.

The second line of this last equation seems suspicious because it is time-dependent and
the Klein-Gordon inner product should not be when evaluated on a solution to the Klein-
Gordon equation. However, this has not yet accounted for the relation between C` and D`

that follows from the boundary condition, which states

D`m(ω)
C`m(ω) '

πη?

Γ(`+ 1
2)Γ(`+ 3

2)
·
(
ωε?
2

)2`+1
. (C.9)

Using this, the square bracket in (C.8) becomes[
−C∗` (ω)D` (ω̃) ω`

ω̃`+1 +D∗` (ω)C` (ω̃) ω̃`

ω`+1

]

=C∗` (ω)C` (ω̃)
[
−D` (ω̃)
C` (ω̃)

ω`

ω̃`+1 +D∗` (ω)
C∗` (ω)

ω̃`

ω`+1

]

= πη?C
∗
`m (ω)C`m (ω̃)

Γ
(
`+ 1

2

)
Γ
(
`+ 3

2

) [
−
(
ω̃ε?
2

)2`+1 ω`

ω̃`+1 +
(
ωε?
2

)2`+1 ω̃`

ω`+1

]

= 0 , (C.10)

so, as expected, the boundary conditions ensure the time-independence of the inner prod-
uct.

The final result then is

〈uω`m, uω̃ ˜̀m̃〉 = δ`˜̀ δmm̃
π

ω

(
|C`m(ω)|2 + |D`m(ω)|2

)
δ(ω − ω̃) (C.11)

= δ`˜̀ δmm̃
π

ω

1 +
[

π

Γ(`+ 1
2)Γ(`+ 3

2)

]2 (
ωε?
2

)4`+2
 |C`m(ω)|2δ(ω − ω̃) ,
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which uses η2
? = 1. Proper normalization then implies

C`m(ω) =
√
ω

π

{
1 +

[
π

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1]2 }−1/2
, (C.12)

and

D`m(ω) = πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1√ω

π

{
1 +

[
π

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1]2 }−1/2

(C.13)
as claimed in the main text. It is straightforward to similarly check the other relations
〈uω`m, uω̃ ˜̀m̃〉 = δ`˜̀ δmm̃ δ(ω − ω̃) and 〈uω`m, u∗ω̃ ˜̀m̃〉 = 0.

C.1.1 Evaluating the j` · y` product integral

We next compute the integral that appears in (C.6) above, when calculating the cross
terms when normalizing the mode functions. First we use j`(z) =

√
π
2zJ`+ 1

2
(z) to write∫ ∞

0
dr r2j`(ar)y`(br) = (−1)`+1

∫ ∞
0

dr r2j`(ar)j−`−1(br)

= (−1)`+1π

2
√
ab

∫ ∞
0

dr rJ`+ 1
2
(ar)J−`− 1

2
(br) (C.14)

= (−1)`+1π

2
√
ab

lim
ε→0+

∫ ∞
0

dr r1−εJ`+ 1
2
(ar)J−`− 1

2
(br) .

From here we must use the formula (10.22.56) from [118] where∫ ∞
0

dr r−λJµ(ar)Jν(br) =
aµΓ

(
ν+µ−λ+1

2

)
2F1

(
µ+ν−λ+1

2 , µ−ν−λ+1
2 , µ+ 1; a2

b2

)
2λbµ−λ+1Γ

(
ν−µ+λ+1

2

)
Γ(µ+ 1)

(C.15)

which assumes that 0 < a < b and Re[µ+ ν + 1] > Re[λ] > −1. In the case that 0 < a < b

and picking some tiny ε > 0 so that λ = ε− 1 as well as µ = `+ 1
2 and ν = −`− 1

2 we get∫ ∞
0

dr r2j`(ar)y`(br) = (−1)`+1π

2
√
ab

lim
ε→0+

{2 cos(π`)
π

· a
1
2 +`b−

1
2−`

a2 − b2 +O(ε)
}

(C.16)

Noting that cos(π`) = (−1)` and taking the limit ε→ 0+ gives∫ ∞
0

dr r2j`(ar)y`(br) = (a/b)`

b(b2 − a2) when 0 < a < b (C.17)

which is only true for the case a < b. For the other case a > b we switch the positions of
the Bessel functions in the formula giving us (we need to simultaneously swap a and b, as
well as `+ 1

2 and −`− 1
2)∫ ∞

0
dr r2j`(ar)y`(br) = (−1)`+1

∫ ∞
0

dr r2j−`−1(br)j`(ar)

= (−1)`+1π

2
√
ab

lim
ε→0+

∫ ∞
0

dr r1−εJ−`− 1
2
(br)J`+ 1

2
(ar) (C.18)

= (a/b)`

b(b2 − a2) when 0 < b < a .
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Combining gives the result for any a > 0 and b > 0

∫ ∞
0

dr r2j`(ar)y`(br) = (a/b)`

b(b2 − a2) (C.19)

as quoted in (C.6).

C.2 Mode sum

This appendix evaluates the mode sum encountered in the main text when computing the
Wightman function for φ in the presence of the localized λφ2(t,0) hotspot interaction. As
argued in the main text, the Wightman function is given by the mode sum

〈φ(t,x)φ(t′,x′)〉

=
∞∑
`=0

+∑̀
m=−`

∫ ∞
0

dω uω`m(t,x)u∗ω`m(t′,x′) (C.20)

=
∞∑
`=0

+∑̀
m=−`

∫ ∞
0

dω e−iω(t−t′)|C`m(ω)|2
[
j`(ω|x|) + πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x|)

]

×
[
j`(ω|x′|) + πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x′|)

]
Y`m(θ, φ)Y ∗`m(θ′, φ′) .

C.2.1 Evaluating the sums

Next exploit spherical symmetry about the origin to rotate our coordinate axes so that
the x′ direction is the 3-axis of polar coordinates, in which case we can set θ′ = 0 (not
specifying φ′). Noting the identity (14.4.30) from [118] we can write

Y`m(0, φ′) = δm0

√
2`+ 1

4π , (C.21)

along with Y`0(θ, φ) =
√

2`+1
4π P`(cos θ) where P` is the Legendre polynomial of degree `.

This gives

〈φ(t,x)φ(t′,x′)〉

=
∞∑
`=0

2`+ 1
4π

∫ ∞
0

dω e−iω(t−t′)|C`0(ω)|2
[
j`(ω|x|) + πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x|)

]
×
[
j`(ω|x′|) + πη?

Γ(`+ 1
2)Γ(`+ 3

2)

(
ωε?
2

)2`+1
y`(ω|x′|)

]
P`(cos θ) . (C.22)

Notice also in passing that the Gamma-matrix identities Γ(n+1) = nΓ(n) and Γ(n) =
(n− 1)! and Γ(n+ 1

2) = 21−2n√πΓ(2n)/Γ(n) imply

π

Γ(`+ 1
2)Γ(`+ 3

2)
= 2π

(2`+ 1)Γ(`+ 1
2)2 = 24`+2Γ(`)2

8(2`+ 1)Γ(2`)2 = 24`+2[`!]2
2(2`+ 1)[(2`)!]2 . (C.23)
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Perturbative limit. For further progress assume ωε? � 1 and seek only the leading
ε?-dependent contribution. Because of the factor (ωε?)2`+1 this allows restricting to ` = 0
in the ε?-dependent term. In this regime we can approximate the mode sum

〈φ(t,x)φ
(
t′,x′

)
〉'

∞∑
`=0

2`+1
4π

∫ ∞
0

dω e−iω(t−t′)
(
ω

π

)
j` (ω|x|)j`

(
ω|x′|

)
P` (cosθ) (C.24)

+ 1
4π

∫ ∞
0

dω e−iω(t−t′)
(
ω

π

)
j0 (ω|x|) πη?

Γ
(

1
2

)
Γ
(

3
2

) (ωε?
2

)
y0
(
ω|x′|

)
P0 (cosθ)

+ 1
4π

∫ ∞
0

dω e−iω(t−t′)
(
ω

π

)
πη?

Γ
(

1
2

)
Γ
(

3
2

) (ωε?
2

)
y0 (ω|x|)j0

(
ω|x′|

)
P0 (cosθ)

+O
(
ω2ε2?

)
.

where the s-wave normalization simplifies to |C`m(ω)|2 ' ω
π [1 + O(ω2ε2?)]. Next use the

explicit form for the low-order spherical Bessel functions,

j0(x) = sin(x)
x

and y0(x) = −cos(x)
x

, (C.25)

and along with Γ(1
2)Γ(3

2) = π
2 and P0(x) = 1 to get

〈φ(t,x)φ(t′,x′)〉 ' 1
4π2

∫ ∞
0

dω e−iω(t−t′)
{
ω
∞∑
`=0

(2`+ 1)j`(ω|x|)j`(ω|x′|)P`(cos θ) (C.26)

− (4πη?ε?)
16π3|x||x′|

∫ ∞
0

dω e−iω(t−t′)
[

sin(ω|x|) cos(ω|x′|) + cos(ω|x|) sin(ω|x′|)
]}

which drops (ωε?)2 terms. The ` sum is performed using (10.60.2) from [118] which says
∞∑
`=0

(2`+ 1)j`(u)j`(v)P`(cosα) = sin
√
u2 + v2 − 2uv cos(α)√

u2 + v2 − 2uv cos(α)
(C.27)

and so

〈φ(t,x)φ(t′,x′)〉

' 1
4π2

∫ ∞
0

dω e−iω(t−t′)ω ·
sin
(
ω
√
|x|2 + |x′|2 − 2|x||x′| cos(θ)

)
ω
√
|x|2 + |x′|2 − 2|x||x′| cos(θ)

− (4πη?ε?)
16π3|x||x′|

∫ ∞
0

dω e−iω(t−t′)
[

sin(ω|x|) cos(ω|x′|) + cos(ω|x|) sin(ω|x′|)
]

= 1
4π2|x− x′|

∫ ∞
0

dω e−iω(t−t′) sin
(
ω|x− x′|

)
(C.28)

− (4πη?ε?)
16π3|x||x′|

∫ ∞
0

dω e−iω(t−t′) sin
[
ω
(
|x|+ |x′|

)]
.

The above result uses the alignment of the coordinates so that x′ points along the 3-axis
to write

|x|2 + |x′|2 − 2|x||x′| cos(θ) = |x− x′|2 . (C.29)

– 42 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
6

The frequency integral finally is∫ ∞
0

dω e−iTω sin(Xω) = i

2

∫ ∞
−∞

dω Θ(ω)
[
e−i(T+X)ω + e−i(T−X)ω

]
(C.30)

= 1
2

( 1
T +X − iδ

− 1
T −X − iδ

)
where δ is, as usual, the positive infinitesimal that arises in the Fourier transform of the
Heaviside step function. In this way the mode sum evaluates to the result quoted in the
main text:

〈φ (t,x)φ
(
t′,x′

)
〉 ' 1

4π2 ·
1

− (t− t′ − iδ)2 + |x− x′|2
(C.31)

− (4πη?ε?)
32π3|x||x′|

[ 1
t− t′ + |x|+ |x′| − iδ −

1
t− t′ − |x| − |x′| − iδ

]
.

D Mode sum for the exact two-point correlator

In this appendix we explicitly evaluate the mode sums for the functions S (t,x; t′,x′) and
Eβ(t,x; t′,x′) defined in (5.15) and (5.16), giving us a non-perturbative expression for the
Wightman function Wβ(t,x; t′,x′) = S (t,x; t′,x′) + Eβ(t,x; t′,x′).

D.1 The temperature-independent contribution, S (t, x; t′, x′)

Using the explicit form for the mode function Sp(t,x) given in (5.10), the function
S (t,x; t,x′) defined in (5.15) simplifies to

S (t,x; t′,x′) = 1
4π2 ·

1
−(t− t′ − iδ)2 + |x− x′|2 + S1(t,x; t,x′) + S2(t,x; t,x′) + S3(t,x; t,x′)

(D.1)
with the definitions

S1(t,x; t′,x′) := 1
|x′|

∫ d3p
(2π)32Ep

e−iEp(t−t′+|x′|)+ip·x −
λ
4π −

ig̃2Ep
16π2

1 + λ
4πε + ig̃2Ep

16π2ε

(D.2)

and

S2(t,x; t′,x′) := 1
|x|

∫ d3p
(2π)32Ep

e−iEp(t−t′−|x|)−ip·x′ −
λ
4π + ig̃2Ep

16π2

1 + λ
4πε −

ig̃2Ep
16π2ε

(D.3)

as well as

S3(t,x; t′,x′) := 1
|x||x′|

∫ d3p
(2π)32Ep

e−iEp(t−t′−|x|+|x′|)

(
λ
4π

)2
+
(
g̃2Ep
16π2

)2

(
1 + λ

4πε

)2
+
(
g̃2Ep
16π2ε

)2 . (D.4)

Integrating the momentum angles away in spherical coordinates and simplifying turns the
above into

S1(t,x; t′,x′) = ε

4π2|x||x′|

∫ ∞
0

dp e−ip(t−t′+|x′|) sin(|x|p)−4πλ/g̃2 − ip
c+ ip

(D.5)
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and

S2(t,x; t′,x′) = ε

4π2|x||x′|

∫ ∞
0

dp e−ip(t−t′−|x|) sin(|x′|p)−4πλ/g̃2 + ip

c− ip
(D.6)

as well as

S3(t,x; t′,x′) = ε2

4π2|x||x′|

∫ ∞
0

dp pe−ip(t−t′−|x|+|x′|) (4πλ/g̃2)2 + p2

c2 + p2 (D.7)

where we define the constant
c := 16π2ε

g̃2 + 4πλ
g̃2 . (D.8)

It is more convenient to arrange the integrals as

S1(t,x; t′,x′) = iε

8π2|x||x′|

∫ ∞
0

dp
(
e−ip(t−t′+|x|+|x′|)−e−ip(t−t′−|x|+|x′|)

)[
i(4πλ/g̃2−c)

p−ic
−1
]

= 2ε2
g̃2|x||x′|

∫ ∞
0

dp
(
e−ip(t−t′+|x|+|x′|)−e−ip(t−t′−|x|+|x′|)

) 1
p−ic

− iε

8π2|x||x′|

∫ ∞
0

dp
(
e−ip(t−t′+|x|+|x′|)−e−ip(t−t′−|x|+|x′|)

)
(D.9)

and

S2(t,x; t′,x′) = − 2ε2
g̃2|x||x′|

∫ ∞
0

dp
(
e−ip(t−t′−|x|+|x′|) − e−ip(t−t′−|x|−|x′|)

) 1
p+ ic

− iε

8π2|x||x′|

∫ ∞
0

dp
(
e−ip(t−t′−|x|+|x′|) − e−ip(t−t′−|x|−|x′|)

)
(D.10)

as well as

S3(t,x; t′,x′) = ε2

4π2|x||x′|

∫ ∞
0

dp e−ip(t−t′−|x|+|x′|)
[
p−

[
c2 − (4πλ/g̃2)2]p

c2 + p2

]
= ε2

4π2|x||x′|

∫ ∞
0

dp pe−ip(t−t′−|x|+|x′|)

−
ε2
[
c2 − (4πλ/g̃2)2]

8π2|x||x′|

∫ ∞
0

dp e−ip(t−t′−|x|+|x′|)
[ 1
p− ic

+ 1
p+ ic

]
. (D.11)

From here we note the elementary integrals (where the limit δ → 0+ is understood)∫ ∞
−∞

dp Θ(p)e−iτp = −i
τ − iδ

and
∫ ∞
−∞

dp Θ(p)pe−iτp = −1
(τ − iδ)2 ,

(D.12)
as well as the integrals

I∓(τ, c) =
∫ ∞

0
dp e−ipτ

p∓ ic
. (D.13)

We defer the calculation of the integrals to section D.1.2, where the result (D.30) is given
by

I∓(τ, c) = e±cτE1
(
± c(τ − iδ)

)
, (D.14)
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where E1(z) :=
∫∞
z du e−u

u is the so-called exponential En-function with n = 1, and where
the limit δ → 0+ is understood (note that we have E∗1(z) = E1(z∗) is satisfied, and so
I−(τ) = I+(−τ) remains true).

With the above we find

S1(t,x; t′,x′) = 2ε2
g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c)

]
(D.15)

− ε

8π2|x||x′|

[ 1
t− t′ + |x|+ |x′| − iδ −

1
t− t′ − |x|+ |x′| − iδ

]
and

S2(t,x; t′,x′) = − 2ε2
g̃2|x||x′|

[
I+(t− t′ − |x|+ |x′|, c)− I+(t− t′ − |x| − |x′|, c)

]
(D.16)

− ε

8π2|x||x′|

[ 1
t− t′ − |x|+ |x′| − iδ −

1
t− t′ − |x| − |x′| − iδ

]
as well as

S3(t,x; t′,x′) = − ε2

4π2|x||x′| ·
1

(t− t′ − |x|+ |x′| − iδ)2 (D.17)

−
32π2ε4(1 + λ

2πε)
g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]
.

Finally, putting the above all together into the sum (D.1) gives

S (t,x; t′,x′) = 1
4π2 [−(t− t′ − iδ)2 + |x− x′|2] (D.18)

+ 2ε2
g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c)

− I+(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x| − |x′|, c)
]

+ ε

8π2|x||x′|

[
− 1
t− t′ + |x|+ |x′| − iδ + 1

t− t′ − |x| − |x′| − iδ

]

−
32π2ε4(1 + λ

2πε)
g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]
− ε2

4π2|x||x′|(t− t′ − |x|+ |x′| − iδ)2

which is the result quoted in (5.17).

D.1.1 Perturbative limit of S

From here we wish to consider the perturbative limit of the above, which is taken by
assuming that

cτ =
(

16π2ε

g̃2 + 4πλ
g̃2

)
τ � 1 . (D.19)
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Note that the function E1(z) has the following asymptotic series

E1(z) ' e−z
[1
z
− 1
z2 +O(z−3)

]
for |z| � 1 (D.20)

which implies that the functions I∓(τ, c) have the following asymptotic series for |cτ | � 1

I∓(τ, c) ' ± 1
c(τ − iδ) −

1
c2(τ − iδ)2 +O(|cτ |−3) for |cτ | � 1 . (D.21)

We also note in passing that for any z ∈ C (with |Arg(z)| < π so not directly on the branch
cut) has the series expansion

E1(z) ' −γ − log(z)−
∞∑
k=1

(−z)k
k · k! (D.22)

which is a convergent sum for any z ∈ C but is particularly useful when |z| � 1. This
means that for |cτ | � 1 we have

I∓(τ, c) ' −γ − log
(
c(τ − iδ)

)
+O(cτ) |cτ | � 1 , (D.23)

where this limit will clearly suffer from secular growth problems once cτ is no longer small.
Taking the |cτ | � 1 limit of the expression S here (dropping O(|cτ |−3) contributions),

and simplifying after using c = (16π2ε+ 4πλ)/g̃2 yields

S
(
t,x; t′,x′

)
' 1

4π2
[
−(t−t′−iδ)2+|x−x′|2

] (D.24)

+ 1
16π3|x||x′|

· λ

1+ λ
4πε
· |x|+|x′|
(t−t′−iδ)2−(|x|+|x′|)2

+ g̃2

32π4
(
1+ λ

4πε

)2

− 1
|x|

t−t′−|x|[
(t−t′−|x|−iδ)2−|x′|2

]2 + 1
|x′|

t−t′+|x′|[
(t−t′+|x′|−iδ)2−|x|2

]2


− 1
64π4|x||x′| ·

λ2(
1+ λ

4πε

)2 ·
1

(t−t′−|x|+|x′|−iδ)2 .

For perturbatively small λ (meaning λ/(4πε)� 1) the above turns into

S
(
t,x; t′,x′

)
' 1

4π2
[
−(t−t′−iδ)2+|x−x′|2

] (D.25)

+ λ

16π3|x||x′|
· |x|+|x′|
(t−t′−iδ)2−(|x|+|x′|)2

+ g̃2

32π4

− 1
|x|

t−t′−|x|[
(t−t′−|x|−iδ)2−|x′|2

]2 + 1
|x′|

t−t′+|x′|[
(t−t′+|x′|−iδ)2−|x|2

]2


where we neglect O(λ2) contributions. Notice that this exactly matches the temperature-
independent contribution to the correlator in the perturbative limit (see (3.10)).
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D.1.2 Evaluating the integrals I∓(τ, c)

Here we evaluate the integrals I∓(τ, c) defined in (D.13). Since I−(τ, c) = I∗+(−τ, c), it
suffices to compute I−(τ, c) here. Splitting apart I−(τ, c) into real and imaginary parts
gives

I−(τ) =
∫ ∞

0
dp p cos(pτ) + c sin(pτ)

p2 + c2 + i

∫ ∞
0

dp c cos(pτ) + p sin(pτ)
p2 + c2 . (D.26)

Assuming that c > 0 and τ ∈ R and using formulas (3.723.1)-(3.723.4) from [116] the above
can be easily evaluated to give

I−(τ, c) = −ecτEi(−cτ) + iπecτΘ(−τ) (D.27)

where Ei(x) := −
∫∞
−x du e−u

u is the exponential integral function. Since I−(τ, c) = I∗+(−τ, c)
this immediately implies that

I+(τ, c) = −e−cτEi(cτ)− iπe−cτΘ(τ) (D.28)

The above formulae can be simplified into a more useful form by relating it to the function
E1(z) :=

∫∞
z du e−u

u (the so-called exponential En-function with n = 1, related to the
exponential integral function for x > 0 by E1(x) = −Ei(−x)). Obviously E1 closely
related to Ei — however for complex arguments, the definition of Ei becomes somewhat
ambiguous due to branch points at 0 and ∞, and so E1 is better defined for this reason.

Noting the behaviour of the function E1(z) nearby its branch cut (along the negative
real axis) where

lim
η→0+

E1(−x± iδ) = −Ei(x)∓ iπ for x > 0 , (D.29)

the functions I∓(τ, c) can be written in the more useful form

I−(τ, c) = ecτE1
(
c(τ − iδ)

)
(D.30)

I+(τ, c) = e−cτE1
(
− c(τ − iδ)

)
where the limit δ → 0+ is understood as usual (note that we have E∗1(z) = E1(z∗) is
satisfied, and so I−(τ) = I+(−τ) remains true).

D.2 The temperature-dependent contribution, Eβ(t, x; t′, x′)

In order to evaluate the trace, we put the system in a box (as done in appendix A.1 for
the free thermal correlation function). Performing the trace, and then reverting back to
the continuum limit, yields the mode sum

Eβ
(
t,x; t′,x′

)
=

N∑
a=1

∫ d3p
(2π)3 2Ep

sap (t,x) sa∗p
(
t′,x′

)
+

2Re
[
sap (t,x) sa∗p (t′,x′)

]
eβEp − 1

 .

(D.31)
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Using the explicit form of the mode function sap given in (5.11) the function Eβ(t,x; t′,x′)
turns into the integral

Eβ
(
t,x; t′,x′

)
= g̃2

16π2|x||x′|

∫ d3p
(2π)3 2Ep

 e−iEp(t−|x|−t′+|x′|)(
g̃2Ep
16π2ε

)2
+
(
1+ λ

4πε

)2 + 2cos[Ep (t−|x|−t′+|x′|)][(
g̃2Ep
16π2ε

)2
+
(
1+ λ

4πε

)2
][
eβEp−1

]
.

(D.32)
Integrating the angles away and simplifying the above yields

Eβ
(
t,x; t′,x′

)
= 4ε2
g̃2|x||x′|

∫ ∞
0

dp p

p2 + c2

[
e−ip(t−|x|−t′+|x′|) + 2 cos [p (t− |x| − t′ + |x′|)]

eβp − 1

]
(D.33)

= 4ε2
g̃2|x||x′|

I
(
t− |x| − t′ + |x′|, c, β

)
where c is the constant (5.18) consisting of the couplings and ε defined by

c :=
1 + λ

4πε
g̃2

16π2ε

= 16π2ε

g̃2 + 4πλ
g̃2 , (D.34)

and we define the integral

I(τ, c, β) =
∫ ∞

0
dp p

p2 + c2

[
e−iτp + 2 cos(τp)

eβp − 1

]
, (D.35)

which we evaluate here for c, β > 0 and τ ∈ R. To compute I, use
∫∞

0 dq e−cq sin(pq) =
p

p2+c2 giving

I(τ, c, β) =
∫ ∞

0
dq
∫ ∞

0
dp e−cq sin(pq)

[
e−iτp + 2 cos(τp)

eβp − 1

]
. (D.36)

Next we rearrange the above into the form

I(τ, c, β) =
∫ ∞

0
dq e−cq

[ ∫ ∞
0

dp i
(
e−i(τ+q)p − e−i(τ−q)p

)
2 +

∫ ∞
0

dp sin
(
(τ + q)p

)
− sin

(
(τ − q)p

)
eβp − 1

]
.

(D.37)
We note the elementary result (with the limit δ → 0+ understood)∫ ∞

−∞
Θ(x)e−iyx =

∫ ∞
0

dx e−iyx = −i
y − iδ

(D.38)

as well as formula (3.911.2) from [116] (valid for a 6= 0 and Re[β] > 0)∫ ∞
0

dx sin(ax)
eβx − 1 = π

2β coth
(
πa

β

)
− 1

2a . (D.39)

With these formulae the integral (D.37) becomes

I(τ, c, β) = 1
2

∫ ∞
0

dq e−cq
[ 1
τ + q − iδ

− 1
τ − q − iδ

(D.40)

+ π

β
coth

(
π(τ + q)

β

)
− 1
τ + q

− π

β
coth

(
π(τ − q)

β

)
+ 1
τ − q

]
.
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Using the result of the Sochocki-Plemelj theorem

1
x± iδ

= 1
x
∓ iπδ(x) , (D.41)

the integral (D.40) simplifies to

I(τ, c, β) = 1
2

∫ ∞
0

dq e−cq
[
iπδ(τ+q)−iπδ(τ−q)+ π

β
coth

(
π(τ + q)

β

)
− π
β

coth
(
π(τ − q)

β

)]
.

(D.42)
Applying the Sochocki-Plemelj theorem yet again to the above yields

I(τ, c, β) = π

2β

∫ ∞
0

dq e−cq
[

coth
(
π(q + [τ − iδ])

β

)
+ coth

(
π(q − [τ − iδ])

β

)]
(D.43)

where the behaviour coth(z) ' 1/z near z ' 0 allows use of formula (D.41) (and so
justifying the iδ-prescription in the arguments of the coth(·) functions). From here we note
the identity

coth
(
z

2

)
= 2

1− e−z − 1 , (D.44)

and make the change of integration variable to Q = 2πq/β giving

I(τ, c, β) = 1
4

∫ ∞
0

dQ e−
cβ
2πQ

[
coth

(
Q+ 2π[τ − iδ]/β)

2

)
+ coth

(
Q− 2π[τ − iδ]/β)

2

)]
= 1

2

∫ ∞
0

dQ e−
cβ
2πQ

[ 1
1− e−2π(τ−iδ)/βe−Q

+ 1
1− e+2π(τ−iδ)/βe−Q

− 1
]

= 1
2Φ
(
e
−2π(τ−iδ)

β , 1, cβ2π

)
+ 1

2Φ
(
e

+ 2π(τ−iδ)
β , 1, cβ2π

)
− π

cβ
, (D.45)

where we use the integral representation (see formula (25.14.5) in [118])

Φ(z, s, a) = 1
Γ(s)

∫ ∞
0

dx x
s−1e−ax

1− ze−x valid for Re[s] > 0, Re[a] > 0 & z ∈ C \ [1,∞)

(D.46)
where Φ(z, s, a) is the Lerch Transcendent, usually defined by the series (see formula
(25.14.1) in [118])

Φ(z,s,a) =
∞∑
n=0

zn

(a+n)s valid for |z|< 1 . (D.47)

For other values of z ∈C (ie. not inside the unit disc) the function Φ is defined via analytic
continuation in the complex plane. At the end of the day, using the above formula (D.45)
in (D.33) yields

Eβ(t,x; t′,x′) = 2ε2
g̃2|x||x′|

[
Φ
(
e
−2π(t−t′−|x|+|x′|−iδ)

β ,1, cβ2π

)
+Φ

(
e

+ 2π(t−t′−|x|+|x′|−iδ)
β ,1, cβ2π

)
− 2π
cβ

]
(D.48)

which is the result quoted in (5.20) in the main text.
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D.2.1 Perturbative limit of Eβ

Here we take the perturbative limit of Eβ which turns out to be the limit in which

cβ

2π � 1 . (D.49)

We first note the asymptotic series of the Lerch transcendent for any large a

Φ(z, s, a) ' 1
1− z

1
as

+
N−1∑
n=1

(−1)nΓ(s+ n)
n! Γ(s) · Li−n(z)

as+n
+O(a−s−N ) for a� 1 (D.50)

for fixed s ∈ C and fixed z ∈ C \ [1,∞), where Li−n(z) = (z∂z)n z
1−z are polylogarithm

functions of negative integer order. Using Li−1(z) = z
(1−z)2 and Li−2(z) = z+z2

(1−z)3 as well as
Li−3(z) = z+4z2+z3

(1−z)4 we find that for cβ/(2π)� 1 we have

Φ
(
z, 1, cβ2π

)
' 1

1− z
2π
cβ
− z

(1− z)2

(
2π
cβ

)2
+ z + z2

(1− z)3

(
2π
cβ

)3
+O

(
(cβ)−4) (D.51)

Φ
(

1
z
, 1, cβ2π

)
'
[
1− 1

1− z

] 2π
cβ
− z

(1− z)2

(
2π
cβ

)2
− z + z2

(1− z)3

(
2π
cβ

)3
+O

(
(cβ)−4)

Which means that (half of) the sum of these two functions has the asymptotics

1
2Φ

(
z, 1, cβ2π

)
+ 1

2Φ
(

1
z
, 1, cβ2π

)
' π

cβ
− z

(1− z)2

(2π
cβ

)2
+O

(
(cβ)−4) , (D.52)

which when used for the function I(τ, c, β) given in (D.45) yields

I(τ, c, β) ' − e
−2π(τ−iδ)

β[
1− e−

2π(τ−iδ)
β

]2

(2π
cβ

)2
+O

(
(cβ)−4) = − π2

c2β2 csch2
(
π[τ − iδ]

β

)
+O

(
(cβ)−4)
(D.53)

Using this and c = 16π2ε
g̃2

(
1 + λ

4πε

)
, at the end of the day we find that Eβ in the perturbative

limit is

Eβ(t,x; t′,x′) ' − g̃2

64π2β2|x||x′|
(
1 + λ

4πε

)2 csch2
(
π[t− t′ − |x|+ |x′| − iδ]

β

)
+ . . .

which (at leading-order) is exactly the expected temperature-dependent contribution to
the perturbative result when λ/(4πε) � 1 (see formula (3.10), which neglects O(λ2) con-
tributions).

D.2.2 I(τ, c, β) in the limit δ → 0+

Because Φ(z, s, a) has a branch cut along z ∈ [1,∞), the limit δ → 0+ of the expres-
sion (D.45) is somewhat tricky to take. For completeness we take this limit here: to this
end, revert back to the integral form (D.42) and integrate the δ-functions explicitly to get

I(τ, c, β) = π

2β

∫ ∞
0

dq e−cq
[

coth
(
π(q + τ)

β

)
+ coth

(
π(q − τ)

β

)]
+ iπ

2

[
e+cτΘ(−τ)− e−cτΘ(τ)

]
(D.54)
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The remaining integrals over q are now ill-defined for general τ (the reason for this being
that for any τ ∈ R one of the two coth(·) functions gets integrated over a singularity at
q = τ). Since the remaining integral is clearly symmetric under τ → −τ , we assume for
now that τ > 0. For τ > 0 the first integral is easier to compute, where we change the
integration variable to u = exp

(
− 2π(q + τ)/β

)
where

π

2β

∫ ∞
0

dq e−cq coth
(
π(q + τ)

β

)
= 1

4e
cτ
∫ exp(−2πτ/β)

0
du u

cβ
2π−1

[ 2
1− u − 1

]
(D.55)

= 1
2e

cτB
(
e
−2πτ

β ; cβ2π , 0
)
− π

2cβ

where B(z; a, b) =
∫ z

0 du ua−1(1 − u)b−1 is the incomplete Beta function. For the second
integral, the procedure is similar with the added complication that the integrand gets
integrated over the root at q = −τ (since we assume here that τ > 0). We find in much
the same way that

π

2β

∫ ∞
0

dq e−cq coth
(
π(q − τ)

β

)
= e−cτ

2

∫ exp(+2πτ/β)

0
du u

cβ
2π−1(1− u)−1 − π

2cβ , (D.56)

however since the upper limit on the integral is greater than 1 (since τ > 0 is assumed),
the above integrand gets integrated over a singularity at u = 1. Interpreting the above
integral as a Cauchy Principal value turns the above into

π

2β

∫ ∞
0

dq e−cq coth
(
π(q − τ)

β

)
= e−cτ

2 lim
η→0+

[ ∫ 1−η

0
+
∫ exp(+2πτ/β)

1+η

]
du u

cβ
2π−1(1− u)−1 − π

2cβ .

(D.57)
The first integral is easily seen to evaluate to B

(
1 − δ; cβ2π , 0

)
, while the second integral

requires a variable change u = 1/v giving∫ exp(+2πτ/β)

1+η
du u

cβ
2π−1(1− u)−1 =

∫ exp(−2πτ/β)

1/(1+η)
dv v−

cβ
2π (1− v)−1 (D.58)

=
[ ∫ exp(−2πτ/β)

0
−
∫ 1/(1+η)

0

]
dv v−

cβ
2π (1− v)−1

= B
(
e
−2πτ

β ; 1− cβ

2π , 0
)
− B

(
1

1 + η
; 1− cβ

2π , 0
)

which then implies that

π

2β

∫ ∞
0

dq e−cq coth
(
π(q−τ)

β

)
= e−cτ

2

[
B
(
e
−2πτ

β ;1− cβ

2π ,0
)

(D.59)

+ lim
η→0+

{
B
(

1−η; cβ2π ,0
)
−B

(
1

1+η ;1− cβ

2π ,0
)}]
− π

2cβ .

The limit can be taken noting B(z; a, 0) ' − log(1 − z) − ψ(0)(a) − γ + O(z) for z → 1−
(with ψ(0)(z) := Γ′(z)/Γ(z) the digamma function) giving

π

2β

∫ ∞
0

dq e−cq coth
(
π(q − τ)

β

)
= e−cτ

2

[
B
(
e
−2πτ

β ; 1− cβ

2π , 0
)

+ π cot
(
βc

2

)]
− π

2cβ .
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where the identity ψ(0)(1− a)− ψ(0)(a) = π cot(πa) has been used. Putting the above all
together (extending the domain to τ > 0 for the above integrals) leaves

I(τ,c,β) = ec|τ |

2 B
(
e
−2π|τ |

β ; cβ2π ,0
)

+ e−c|τ |

2

[
B
(
e
−2π|τ |

β ;1− cβ

2π ,0
)

+π cot
(
cβ

2

)]
− π

cβ
− iπ2 sign(τ)e−c|τ | .

(D.60)
To write the above formula in a slightly more convenient manner, we note formula (8.17.20)
from [118] which implies that

B(z; 1− a, 0) = B(z;−a, 0) + z−a

a
, (D.61)

and so allows us to write the above formula as

I(τ,c,β) = ec|τ |

2 B
(
e
−2π|τ |

β ; cβ2π ,0
)

+ e−c|τ |

2

[
B
(
e
−2π|τ |

β ;− cβ2π ,0
)

+π cot
(
cβ

2

)]
− iπ2 sign(τ)e−c|τ | .

(D.62)
The beta function can only be related to the Lerch transcendent for arguments |z| < 1,
which explains why the limit δ → 0+ is not straightforward from the representation (D.45).

D.2.3 KMS-like condition for Eβ

Here we show that the function Eβ is thermal, in the sense that it obeys a KMS-like
condition (as does the free thermal correlator of appendix A.1.1) where

Eβ(t− iβ,x; t′,x′) = Eβ(t′,x′; t,x) (D.63)

cf. equation (A.15). The proof for this follows almost identically as the proof given in
appendix A.1.1, save for the fact that Eβ enjoys a time-translation invariance only when
t > |x| and t′ > |x′| — in this limit, we have the representation (D.33)

Eβ(t,x; t′,x′) = 4ε2
g̃2|x||x′|

∫ ∞
0

dp p

p2 + c2

[
e−ip(t−|x|−t′+|x′|)

1− e−βp + e+ip(t−|x|−t′+|x′|)

eβp − 1

]
, (D.64)

after using the identity 1 + (eβp − 1)−1 = (1 − e−βp)−1. The above function is a complex
analytic function of time for in the strip where −β < Im[t] < 0 — we then clearly have

Eβ(t−iβ,x; t′,x′) = 4ε2
g̃2|x||x′|

∫ ∞
0

dp p

p2+c2

[
e−βpe−ip(t−|x|−t′+|x′|)

1−e−βp + e+βpe+ip(t−|x|−t′+|x′|)

eβp−1

]
(D.65)

= 4ε2
g̃2|x||x′|

∫ ∞
0

dp p

p2+c2

[
e−ip(t−|x|−t′+|x′|)

eβp−1 + e+ip(t−|x|−t′+|x′|)

1−e−βp
]

(D.66)

= Eβ(t′,x′; t,x) (D.67)

which shows that (D.63) holds true. Note however that the full correlation function
Wβ = S + Eβ is not explicitly thermal since the temperature-independent contribution S

obviously fails to satisfy a KMS-like condition analogous to (D.63). However, in a limit
where Eβ dominates over S (provided t > |x| and t′ > |x′|) one should expect to see
thermality manifest itself more directly (this is explored using an Unruh-Dewitt detector
model in [53], where it is shown that a stationary qubit outside the hotspot thermalizes
whilst only interacting with φ).
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