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1 Introduction

Radiative corrections to observables at high energy colliders are absolutely essential to
understand the underlying quantum dynamics of the scattering events. There are a large
number of accurate measurements already available from these colliders and they provide
ample opportunity to investigate various theories that attempt to describe the physics. The-
oretical predictions with unprecedented accuracy have already set stringent constraints on
the parameters of the standard model (SM), also for many beyond the SM (BSM) scenarios.
The observables that involve hadrons either in initial or in final state receive large perturba-
tive and non-perturbative quantum corrections from strong interaction which is described
by quantum chromodynamics (QCD). This is simply due to the strong coupling constant
(gs) which is big and due to a large number of scattering channels that contribute. At
high energies, thanks to factorisation properties of certain hadronic observables, which are
infrared (IR) safe, the short distance perturbative part factorises from the non-perturbative
one. This allows one to reliably compute the perturbative quantum corrections in powers
of strong coupling constant as = g2

s/16π2 in QCD. The non-perturbative part of these IR
safe observables are extracted in a process independent way. For example, the inclusive
cross section of DIS of a lepton on a hadron factorises into perturbatively calculable coeffi-
cient functions (CF) and parton distribution functions (PDF) that are non-perturbative in
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nature. The CFs are computed in powers of as using the parton level scattering processes
that contributes to the hadronic reaction. The PDFs are nothing but the probability of
finding a parton inside the hadron during the scattering event, describing the long distance
part of the hadronic events and hence can not be computed using perturbative techniques.
However, being process independent, they can be extracted from an experiment and can
be used for other experiments. Within QCD, they are defined in terms of hadronic matrix
elements of certain gauge invariant quantum field theoretical operators made up of quark,
anti-quark and gluon field operators. These matrix elements satisfy the renormalisation
group (RG) equations which go by the name Altarelli-Parisi (AP) or DGLAP evolution
equations. The corresponding anomalous dimensions are called AP splitting functions.
Another example that is very similar to DIS is the production of a hadron in SIA of e+e−.
One finds that scattering cross section in SIA also demonstrate factorisation of perturba-
tively calculable CFs and non-perturbative quantities called parton fragmentation functions
(PFF). The CFs describe the production of a parton in the collision and the latter describes
the fragmentation of the produced parton into a hadron. PFFs also satisfy AP or DGLAP
equations with the corresponding AP splitting functions. Denoting σI generically for the
inclusive cross section for DIS (I = DIS) and SIA (I = SIA), the factorisation at high
energies implies

σI(Q2, xI) = σ
(0)
I (Q2, µ2

R)
∑

a=q,q,g

∫
dxfa(µ2

F , x)∆I,a(Q2, µ2
R, µ

2
F , zI) +O(1/Q2) . (1.1)

Since, we study these observables in the large Q2 region, we drop the power suppressed
contributions denoted by O(1/Q2) in the above formula and consider only the first term for
rest of our study. σ(0)

I is the born level cross section and µR is the ultraviolet renormalisation
scale, fa denotes PDF for I = DIS and PFF for I = SIA. The PDFs depend on the
partonic momentum fraction x carried away from the hadron in DIS and PFFs depend
on the hadronic momentum fraction that the hadron carries away from the parton. The
scale µF is called the factorisation scale which separates perturbative and non-perturbative
regions. The sum is over all the partons namely the quarks and anti-quarks of all flavours
and the gluons. The scale Q2 is the hard scale in the problem. For DIS, it is defined by
Q2 = −q2, q being the momentum that is transferred from the incoming lepton to the target
hadron. The corresponding scaling variable xDIS = Q2/2P · q where P is the momentum
of the target hadron. Similarly, for SIA, Q2 = q2 with q being the sum of momenta of
incoming leptons and xSIA = 2P · q/Q2, with P being the momentum of hadron that
fragments from the parton. The parton level scaling variables are zDIS = Q2/2p · q and
zSIA = 2p · q/Q2. Here, p is the momentum of the parton in the respective scattering
processes. In the rest of our paper, we drop I in the argument of ∆I,a.

Perturbative QCD provides framework to compute ∆I,a in powers of as:

∆I,a(Q2, µ2
R, µ

2
F , z) =

∞∑
i=0

ais(µ2
R)∆(i)

I,a(Q
2, µ2

R, µ
2
F , z) , (1.2)

where ∆(i)
I,a at every order gets contribution from the parton level scattering processes.

Beyond leading order in perturbation theory, at the intermediate stages they contain ul-
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traviolet (UV), soft and collinear divergences. The UV divergences go away when renor-
malisation of coupling, masses and fields are performed. The soft and collinear divergences
are collectively called infrared (IR) divergences. The soft divergences come from zero mo-
mentum gluons in the loops of virtual contributions and real gluons in the gluon emission
processes. The massless or light partons are responsible for collinear divergences. Thanks
to KLN theorem [1, 2], soft and collinear divergences go away when the degenerate states
that are responsible are summed at the partonic level. However, for DIS, the sum over
degenerate partonic initial states are summed through convoluting them with bare PDFs.
In practice, the initial state collinear divergences are factored out from the partonic sub-
processes and then absorbed into the bare PDFs. This is called mass factorisation. Similar
thing happens for the SIA where the final state collinear singularities are absorbed into
bare PFFs to get IR safe observable. The factorisation scale quantifies the arbitrariness
involved in the mass factorisation. In practice, both UV and IR divergences are regulated
in dimensional regularisation by working in complex space time dimension n = 4 + ε. The
divergences show up as poles in ε. The UV renormalisation and mass factorisation are done
in modified minimal substraction MS scheme consistently. The inclusive cross sections for
DIS are known to third order in QCD, see [3–5].

In CFs, the energy scales Q2, µ2
R and µ2

F appear as logarithms and the partonic scaling
variable shows up through δ(1 − z), plus distributions Dj = (logj(1 − z)/(1 − z))+ and
regular functions of z:

∆I,a(z) = ∆I,a,δδ(1− z) +
∞∑
j=0

∆I,a,Dj

(
logj(1− z)

1− z

)
+

+ ∆I,a,R(z) , (1.3)

where we have suppressed the scalesQ2, µ2
R and µ2

F in the arguments of ∆I,a and ∆I,a,Z , Z =
δ,Dj , R on both sides. Large number of perturbative results provide opportunity to under-
stand the universal structure of IR divergences. For example, the IR structure of multi-leg
amplitudes in QCD is well understood beyond two loop level [6, 6–9] (see [10, 11] for a
QFT with mixed gauge groups). In addition, we have large number of results for the in-
clusive cross sections that can shed light on the structure of ∆I,a,Z , see [12–14] for Higgs
production and for invariant mass distribution of a pair of lepton in hadron colliders up to
third order in QCD see [15–17], for complete list see [12, 16, 18–35] for Higgs production
in gluon fusion and [15–17, 27–29, 33, 36–44] for Drell-Yan production.

The distributions δ(1 − z) and Dj(z) result from the soft and collinear regions of
the virtual and real emission diagrams. In the region where a scattering event involves
infinite number of soft gluons each carrying almost zero momentum, the logarithms of the
form logi(1 − z)/(1 − z) contribute to ∆I,a. This can happen in real emission scattering
processes. These contributions are ill defined in 4 space-time dimensions in the limit
z → 1. The inclusion of these contribution gives the distributions Di(z) and δ(1− z). The
distributions that are present in ∆I,a are called soft plus virtual (SV) contributions. SV
results are available for many observables at colliders up to third order in QCD, see [27–
29, 43–48]. When the distributions are convoluted with PDFs or PFFs to obtain hadronic
cross section, one finds that they not only dominate over other contributions but also
are large at every order. Hence, they can spoil the reliability of the predictions from the
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truncated series. The resolution to this problem was successfully achieved in seminal works
by Sterman [49] and Catani and Trentedue [50] through reorganisation of the perturbative
series. It goes under the name threshold resummation, see also [51–56] for Higgs production
in gluon fusion, [57, 58] for bottom quark annihilation, for DY [44, 52, 59–61] and for
DIS and SIA of e+e− [62]. In Mellin space, the conjugate variable to z is N and the
convolutions become normal products. Hence, the resummation is conveniently done in
Mellin space. In the Mellin space, the threshold limit z → 1 corresponds to large N . The
large logarithms of N at every order combined with the strong coupling constant can give
order one contribution. Hence, the truncation of the series based on series expansion in as
is not allowed. However, thanks to factorisation properties, universality of IR contributions
and renormalisation group invariance, we can systematically resum the order one terms, in
particular, terms of the form as(µ2

R)β0 log(N) to all orders in perturbation theory. Defining
as(µ2

R)β0 log(N) = ω, and treating ω to order 1, following, [49, 50], we can organize

lim
N→∞

log ∆I,a,N = log g̃I0(as(µ2
R)) + log(N)gI1(ω) +

∞∑
i=0

ais(µ2
R)gIi+2(ω) , (1.4)

where g̃I0(as(µ2
R)) is N independent. Inclusion of successive terms in eq. (1.4) predicts

the leading logarithms (LL), next to leading (NLL) etc logarithms to all orders in as.
The functions gIi (ω) depend on universal IR anomalous dimensions and g̃I0 depend on the
hard process. For DIS, invariant mass distribution of lepton pairs in DY, Higgs boson
productions in various channels, results for the resummation of threshold logarithms in
N space up to third order, namely next to next to next to leading logarithmic (N3LL)
accuracy, are available [44, 52, 58, 61].

The resummed predictions played an important role to understand the experimental
data in the threshold regions. However, the sub leading logarithms that are present in the
regular part ∆I,a,R(z) can not be ignored. We expand ∆I,a,R(z) around z = 1 to obtain

∆I,a,R(z) =
∞∑
k=0

∆(k)
I,a,L logk(1− z) +O(1− z) (1.5)

where the logarithms of the form logk(1 − z), k = 0, 1, · · · do contribute significantly at
every order in perturbation theory near the threshold. We call them by next to SV (NSV)
contributions. There have been several studies to understand the structure of NSV terms in
the hadronic observables so that one can find whether the NSV terms can be systematically
resummed to all orders like the way the SV terms are resummed. There have been several
attempts to achieve this task. A remarkable development was made by Moch and Vogt
in [63] (and [31, 35]) using the second order results for DIS, semi-inclusive e+e− annihilation
and Drell-Yan production of a pair of leptons in hadron collisions, and the physical evolution
kernels to find the enhancement of a single-logarithms at large z to all orders in 1− z. The
physical evolution kernel was exploited earlier in the work by [64]. It was found that the
structure of corresponding leading log(1 − z) terms in the kernel can be constrained [63]
allowing them to predict certain next to SV logarithms at higher orders in as. The next
to SV corrections to various inclusive processes were studied in a series of papers [65–73]

– 4 –



J
H
E
P
0
4
(
2
0
2
1
)
1
3
1

and much progress have been made which lead to better understanding of the underlying
physics. Recently some of us have studied inclusive production of pair of leptons in Drell-
Yan process and of a Higgs boson in gluon fusion as well as in bottom quark annihilation in
an attempt to resum these NSV terms to all orders [74]. We used factorisation properties
and renormalisation group invariance along with the certain universal structure of real and
virtual contributions using Sudakov K+G equation to achieve this task. In this paper, we
extend this to DIS and SIA to provide an all order result both in z space and in N space.

2 Next to SV in z space

We begin with the unpolarised inclusive deep-inelastic lepton-nucleon scattering:

l(k) +H(P )→ l(k′) +X(PX) , (2.1)

where the incoming and scattered leptons (l) carry the momenta k and k′ respectively, H
is the target hadron with the momentum P and the X is the set of inclusive final states
with total momentum PX . If we restrict to only photon exchange in the scattering, the
inclusive cross section can be expressed in terms of two structure functions (SF) namely
F1(Q2, x) and F2(Q2, x). The SFs are scalar functions and they parametrise the hadronic
tensor Wµν(Q2, x) which carry the information of hadronic part of the DIS cross section.
The tensor Wµν is given by

Wµν(Q2, x) =
(
qµqν
q2 − gµν

)
F1(Q2, x)− 1

2xq2

(
qµ + 2xPµ

)(
qν + 2xPν

)
F2(Q2, x) , (2.2)

where q = k′ − k, Q2 = −q2 and the scaling variable, also called Björken x is defined
by x = Q2/2P · q. The hadronic tensor is related to Fourier transform of commutator of
two electromagnetic currents sandwiched between the hadronic states. Due to the non-
perturbative nature of the hadronic states, the structure functions are not computable in
perturbation theory. However, in the Björken limit, thanks to operator product expansion,
the hadronic tensor factorises into perturbatively calculable Wilson coefficients and non-
perturbative composite operators sandwiched between hadronic states. Defining the Mellin
moment of Fi(Q2, x) by

FJ,N (Q2) =
∫ 1

0
dxxN−1FJ(Q2, x)

x
, J = 2, L (2.3)

with FL = F2−2xF1 and computing them in the Bjöken limit, namely Q2 →∞, P ·q →∞
keeping x = Q2/2P · q fixed, one finds

FJ,N (Q2) =
∑

a=ns,q,g
CJ,a,N (Q2, µ2

F )Aa,N (µ2
F ) , (2.4)

where ns denotes the non-singlet combination of quark operators, which does not mix with
the gluonic operator under UV renormalisation and the indices q and g correspond to those
operators which mix among themselves. The matrix element of local operators denoted by
Aa,N are not calculable using perturbative methods. However, their evolution in terms of
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the scale µF is controlled by the perturbatively calculable AP splitting functions through
AP evolution equations. The Wilson coefficients CJ,a,N are computed in powers of strong
coupling constant.

In QCD improved parton model, one can relate the local operators Aa,N to Mellin mo-
ments of appropriate combinations of PDFs and the Wilson coefficients CJ,a,N to parton
level coefficient functions (CFs). The Wilson coefficients, equivalently CFs can be com-
puted, within the framework of perturbative QCD, order by order in strong coupling con-
stant using parton level subprocesses. The contributions, beyond the leading order, contain
UV, soft and collinear divergences. If we regulate them in dimensional regularisation, the
UV divergences arise as poles in ε and are removed in modified minimal subtraction (MS)
scheme. As we discussed in the introduction, the soft and collinear divergences resulting
from final state partons cancel independently after summing up the contributions from all
possible degenerate states. However, the collinear divergences arising from the initial state
light partons remain. Those are removed at the hadronic level through a procedure called
mass factorisation.

In the following, we consider the Wilson coefficients equivalent to the CFs that con-
tribute to a generic DIS scattering process. We denote them by ∆c where the index
c = q, q, g. The factorisation allows us to relate the CFs, ∆c and the parton level subpro-
cesses through the mass factorisation given as

1
z
σ̂c(Q2, z, ε) = σ(0)(µ2

R)Γc′c(z, µ2
F , ε)⊗

(1
z
Cc′(Q2, µ2

R, µ
2
F , z, ε)

)
. (2.5)

In eq. (2.5), σ̂c(Q2, z, ε)/z is the appropriate UV finite parton level cross section computed
in space time dimension n = 4 + ε. The scaling variable z is given by z = Q2/2p · q,
where p is the momentum of the incoming parton in the scattering event. The function
Γc′c is the Altarelli-Parisi (AP) [75] kernel which contains the collinear divergences of σ̂c
in MS scheme. As in [74], we limit ourselves to SV+NSV contributions to CFs, which
means that we drop those terms in Cc that vanish when z → 1 and call the resulting ones
by ∆c. For the quark/anti-quark initiated processes in DIS with photon exchange, gluon
initiated one with Higgs boson exchange, the infrared singluar partonic cross sections can
be factorised into squares of UV renormalisation constant, Z2

UV,c, of form factor (FF), |F̂c|2

and a function ScJ that is sensitive to real radiations. This is always possible as Z2
UV,c

and |F̂c|2 are simply proportional to δ(1− z) and can be factored out from these partonic
channels. That is,

z−1σ̂c(Q2, z, ε) = σ(0)(µ2
R)
(
ZUV,c(âs, µ2

R, µ
2, ε)

)2
|F̂c(âs, µ2, Q2, ε)|2

×δ(1− z)⊗ ScJ
(
âs, µ

2, Q2, z, ε
)

(2.6)

As it will be shown in the following, the function ScJ satisfies a differential equation which
admits a solution namely the convoluted exponential of Φc. That is,

ScJ = C exp
(
2Φc

J(âs, µ2, Q2, z, ε)
)
. (2.7)
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Substituting for σ̂c from (2.6) in terms of Φc
J in (2.5), we obtain

∆c(Q2, µ2
R, µ

2
F , z) = C exp

(
Ψc
J

(
Q2, µ2

R, µ
2
F , z, ε

))∣∣∣∣
ε=0

, (2.8)

where the function Ψc
J is given by

Ψc
J

(
Q2, µ2

R, µ
2
F , z, ε

)
=
(

ln
(
ZUV,c

(
âs, µ

2, µ2
R, ε

))2
+ ln

∣∣F̂c(âs, µ2, Q2, ε
)∣∣2)δ(1− z)

+2Φc
J

(
âs, µ

2, Q2, z, ε
)
− C ln Γcc

(
âs, µ

2, µ2
F , z, ε

)
. (2.9)

The symbol ⊗ represents the Mellin convolution. The operation of C on any given function
is defined in eq. (2) of [45]. In this expression, c = q (quark/antiquark) for photon-exchange
DIS, and c = g (gluon) for Higgs-exchange DIS. Though the constituents of Ψc

J contains UV
and IR divergent terms, the sum of all these terms is finite and is regular in the variable
ε. It contains the distributions such as δ(1 − z), Dj(z) and the logarithms of the form
logi(1 − z), i = 0, 1, · · · . In eq. (2.9), the overall renormalisation constant for DIS via the
photon exchange is one to all orders in QCD. For DIS via the Higgs boson exchange, ZUV,c
is equivalent to that of Higgs-gluon effective operator [45].

The AP kernels that remove collinear divergences from the parton level cross sections
are solutions to AP evolution equation (see eq. (2.11) in [74]) which are controlled by
AP splitting functions Pab(µ2

F , z). They contain convolutions of AP spitting functions. In
the above equation, we have kept only diagonal part of AP kernel Γab and dropped the
non-diagonal AP kernels. We explain the reason below. Consider ∆q in photon-exchange
DIS. It gets contributions from three different terms namely σ̂q⊗Γqq, σ̂q⊗Γqq and σ̂g⊗Γgq.
The non-diagonal AP kernels and σ̂g contain only NSV and/or beyond NSV terms. Upon
convolution, the terms σ̂q⊗Γqq and σ̂g⊗Γgq will give only beyond NSV terms. In addition,
only diagonal parts of splitting functions Pab(z, µ2

F ) in Γab(z, µ2
F , ε) need to be kept as the

contributions from convolutions of two or more non-diagonal splitting functions give only
beyond NSV terms. The diagonal Pcc

(
z, µ2

F

)
are expanded around z = 1 and all those terms

that do not contribute to SV+NSV are eliminated. The diagonal AP splitting functions
near z = 1 take the following form:

Pcc
(
z, as(µ2

F )
)

= 2Bc(as(µ2
F ))δ(1− z) + 2P ′cc

(
z, as(µ2

F )
)
, (2.10)

where,

P ′cc
(
z, as(µ2

F )
)

=
[
Ac(as(µ2

F ))D0(z) + Cc(as(µ2
F )) log(1− z) +Dc(as(µ2

F ))
]
. (2.11)

The constants Cc and Dc can be obtained from the splitting functions Pcc which are
known to three loops in QCD [76, 77] (see [4, 76–84] for the lower order ones).

For the DIS with the photon exchange, the interaction of virtual photon from the lep-
ton with the target hadron is through a vector current. Hence, the FF that contributes to
the inclusive cross section is the square of the quark matrix element for the vector current.
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Vector current being conserved does not get any overall UV renormalisation and hence
ZUV,c is identity. If the exchange particle is the scalar Higgs boson and its interaction with
the hadron is through an operator which is not conserved, then ZUV,c will be non-zero. For
example, in order to compute singlet splitting functions, one resorts to scattering of a scalar
Higgs boson on a gluon target and the interaction between them is governed by effective
operator GaµνGµν,aφ. Here Gaµν is the gluon field strength operator and φ is the Higgs boson
field. The coupling of Higgs boson and the gluon through this composite operator requires
addition overall renormalisation and hence ZUV,c [85] is included in eq. (2.9). FFs in gen-
eral are computable in regularised QCD perturbation theory in powers of strong coupling
constant. FFs are known in QCD up to third order in perturbation theory, [86–98]. Both
UV and IR divergences appear as poles in ε and they demonstrate rich IR structure, and
satisfy differential equations such as RG equation, µ2

R

d

dµ2
R

F̂c = 0 and Sudakov differential

equation [45, 99–105]. The latter is called K+G equation. It is used to study their IR struc-
ture of FFs in terms of IR anomalous dimensions such as cusp Ac,collinear Bc and soft f c

anomalous dimensions. The perturbative structure of FFs provides valuable information
of the underlying quantum field theory and it was exploited to understand the structure
of multi-leg on-shell amplitudes in QCD [6, 6–9] (see [10, 11] for a QFT with mixed gauge
groups) and they are found to be helpful to understand the IR structure of real emission
processes [28, 43, 45–47].

In [28, 45], using the K+G structure of FF and the finiteness of inclusive cross sec-
tions, it was shown that the soft distribution functions ScJ equivalently, Φc

J in Drell-Yan
production of lepton pairs and production of Higgs boson in gluon fusion in hadron collid-
ers and soft plus jet function in DIS processes were shown to satisfy K+G type differential
equations. The infrared structure of these functions can be understood in terms of the IR
anomalous dimensions. In particular, the threshold logarithms that contribute in the soft
and collinear regions of the real emission processes are contained in these soft functions.
The universal nature of these contributions are due to the IR anomalous dimensions. The
fact that these contributions exponentiate, owing to the K+G differential equation that
they satisfy, the all order predictions as well as the resummation of threshold effects are
possible. In the present case, our task is to find a suitable K+G equation which can capture
not only SV contributions but also NSV contributions.

Using the fact that the function ScJ given in (2.6) can be factorised from the rest of
the contributions and that the FF satisfies K+G equation, we can easily show that ScJ
also satisfies a K+G type differential equation. Note that ScJ captures both soft and next
to soft contributions. Since the K+G equation corresponding to ScJ admits a solution of
convoluted exponential form, we have expressed ScJ = C exp (Φc

J) as given in (2.7), where
the real emission contributions, normalised by |F̂ c|2 and Z2

UV,c are encapsulated in the
function Φc

J . Here, the exponential form of the real emission contributions holds true for
both SV and NSV cases as the factorisation and the K+G differential equation are valid
for all z. We can use the finiteness of the coefficient function, ∆c to determine ScJ order
by order in perturbation theory. In summary, we find that ScJ , equivalently Φc

J satisfies
K+G type equation with the kernels Kc

J and GcJ which contain right IR divergences and
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the finite terms respectively:

Q2 d

dQ2 ΦJ
c = 1

2
[
K
c
J

(
âs,

µ2
R

µ2 , ε, z
)

+G
c
J

(
âs,

Q2

µ2
R

,
µ2
R

µ2 , ε, z
)]
. (2.12)

Note that both K
c
J and G

c
J that control the evolution of Φc

J are dependent on z. In
addition, following the structure of K+G equation for the FF, we keep all the IR divergent
terms in Kc

J and move the entire Q2 dependence along with IR finite terms to GcJ . This
is possible to all orders thanks to the factorisation property of real emission contributions.
Following [28, 45], we find the solution to eq. (2.12). Expanding both Kc

J and GcJ in powers
of bare coupling constant âs and integrating over Q2, we find

ΦJ
c(âs, Q2, µ2, z, ε) =

∞∑
i=1

âis

(
Q2(1− z)

µ2z

)i ε2
Siε

(
iε

2(1− z)

)
φ̂(i)
c (z, ε) . (2.13)

Few comments on the solution are in order. The solution satisfies RG equation, namely
µ2
R

d

dµ2
R

Φc
J = 0 which organises the perturbative expansion in such a way that after UV

renormalisation, Φc
J is free of UV divergences. In addition, it controls the structure of

logarithms of Q2 through the term Qiε. Hence, Φc
J contains only IR divergences and they

are organised in such a way that they cancel against those from the FF and AP kernel. The
factor ((1− z)/z)ε/2 is inspired from the two body phase of the next to leading order DIS
scattering and the term 1/(1− z) results form the dominant contribution of the square of
the parton level cross section in the limit z → 1. The regular function denoted by φ̂(i)

c (z, ε)
determines the SV as well as NSV terms systematically when it is expanded around z = 1.
We determine the entire IR divergences in Kc

J from the those of Kc
J of FF and of the SV

part of the AP kernel by demanding IR finiteness of the SV part of the ∆c. The remaining
collinear divergences present in the AP kernel, which are sensitive to NSV terms, determine
G
c
J with the condition of IR finiteness of ∆c implied.

For convenience, we decompose Φc
J as Φc

J = Φc
J,A + Φc

J,B in such a way that Φc
J,A

contains only SV terms i.e all the distributions Dj and δ(1 − z) and Φc
J,B contains NSV

terms namely logk(1 − z), k = 0, 1, · · · in the limit z → 1. An all order solution for Φc
J,A

in powers of âs in dimensional regularisation is given in [45] and we reproduce here for
completeness:

Φc
J,A(âs, Q2, µ2, ε, z) =

∞∑
i=1

âis

(
Q2(1− z)

µ2

)i ε2
Siε

(
iε

2(1− z)

)
φ̂
c(i)
SV (ε) , (2.14)

where,

φ̂
c(i)
SV (ε) = 1

iε

[
K
c(i)
J (ε) +G

c(i)
J,SV (ε)

]
. (2.15)

The constants Kc(i)
J (ε) and Gc(i)J,SV (ε) are given in eq. (35) and eq. (37) of [28] respectively

and they are known up to third order in perturbation theory [28, 45, 106–112]. The dis-
tributions in Φc

J are related to Jet functions which are building blocks in Soft-Collinear
effective theory (SCET) [113–118] which captures the physics of soft and collinear dynam-
ics of high energy scattering processes through the soft and jet functions. The jet functions
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describe the propagation of collinear partons inside jets. In SCET, the quark and gluon jet
functions have been computed to higher orders in perturbation theory [106–111]. Alterna-
tively, as was shown in [112], they can be extracted from the coefficient functions of DIS
with photon and Higgs exchanges [3, 4]. Noting that the finite part of Φc

J is nothing but
the logarithm of Jet function, three loop contribution to gluon jet function was obtained
in [112].

The solution Φc
J,B that contains NSV part of the Φc

J takes the following form:

Φc
J,B(âs, µ2, Q2, z, ε) =

∞∑
i=1

âisS
i
ε

(
Q2(1− z)

µ2

)i ε2 1
2ϕ

(i)
c (z, ε) . (2.16)

We obtain this solution by setting Kc
J to zero and replacing GcJ by GcJ−G

c
J,SV in eq. (2.12)

as they were already taken into account to obtain SV part of the solution. The functions
ϕ

(i)
c contain both UV and IR divergences as poles in ε. The former goes away when the

coupling constant renormalisation is performed. As the entire soft divergences of real
emission processes are contained in Φc

J,A, the coefficients ϕ(i)
c (z, ε) will have only collinear

divergences that will exactly cancel with those of AP kernel. The finite part of it can be
determined by comparing against ∆c order by order in perturbation theory. We split ϕ(i)

c

as a sum of collinear divergent and collinear finite coefficients as

ϕ(i)
c (z, ε) = ϕ(i)

s,c(z, ε) + ϕ
(i)
f,c(z, ε) . (2.17)

From the finiteness of ∆c and NSV part of AP kernel, we find that the singular coefficients
ϕ

(i)
s,c is identical to K

(i)
c given in eq. (35) of [28] with the following replacement of Ac by Lc:

ϕ(i)
s,c(z, ε) = K

c(i)
J (ε)

∣∣∣∣
Ac→Lc(z)

, (2.18)

where Lc(as(µ2
R), z) is finite and can be expanded in powers of as(µ2

R) as

Lc(as(µ2
R), z) =

∞∑
i=1

ais(µ2
R)Lci (z) (2.19)

The coefficients ϕ(i)
f,c(z, ε) are determined from NSV terms of ∆c at every order in pertur-

bation theory. Although we can determine soft and collinear divergences present in Φc
J at

every order in perturbation theory using FF, AP kernel but the finite part requires the
explicit computation of real emission subprocesses around z = 1. Note that ∆c are known
to third order for several observables in perturbation theory and they allow us to extract
the finite part of Φc

J up to third order. In order to determine the finite part, we express
the series expansions Φc

J,A and Φc
J,B given in eq. (2.14) and eq. (2.16) respectively as

Φc
J,A(âs, µ2, Q2, z, ε

)
=
( 1

2(1− z)

{∫ Q2(1−z)

µ2
F

dλ2

λ2 A
c(as(λ2)) +G

c
J,SV

(
as(Q2(1− z)), ε

)})
+

+ δ(1− z)
∞∑
i=1

âis

(
Q2

µ2

)i ε2
Siεφ

c(i)
SV (ε)

+ 1
2(1− z)+

∞∑
i=1

âis

(
µ2
F

µ2

)i ε2
SiεK

c(i)
J (ε). (2.20)
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where GcJ,SV
(
as(Q2(1− z)), ε

)
are related to the threshold exponent BI

DIS

(
as(Q2(1− z))

)
via eq. (48) of [28] and

Φc
J,B(âs, µ2, Q2, z, ε

)
= 1

2

∫ Q2(1−z)

µ2
F

dλ2

λ2 L
c(as(λ2), z) + ϕf,c

(
as(Q2(1− z)), z, ε

)
|ε=0

+ϕs,c
(
as(µ2

F ), z, ε
)
, (2.21)

where,

ϕa,c
(
as(λ2), z

)
=
∞∑
i=1

âis

(
λ2

µ2

)i ε2
Siε

1
2ϕ

(i)
a,c

(
z, ε
)
. a = f, s (2.22)

In the expression given in eq. (2.21) the first line is finite when ε→ 0 whereas second line
is divergent in the same limit. The RG invariance of Φc

J,B implies that ϕs,c satisfies the
renormalisation group equation:

µ2
F

d

dµ2
F

ϕs,c(as(µ2
F ), z) = Lc(as(µ2

F ), z). (2.23)

The anomalous dimension Lc can be determined by demanding finiteness of ∆c and it turns
out that it is half of NSV part of the AP splitting functions (see [74]), that is

Lc(as, z) = Cc(as) log(1− z) +Dc(as) . (2.24)

Note that the SV part of the diagonal splitting function in the logarithms of diagonal AP
kernel in eq. (2.9) cancels the one from G

c
J,SV and the remaining divergence coming from

NSV part cancels against ϕs,c making ∆c finite to all orders in as. This is guaranteed by
the factorisation of collinear divergences to all orders.

Having understood the structure of the singular part ϕs,c, we now focus on the finite
part ϕf,c. The finite part ϕf,c is parametrised in terms of logk(1− z) as:

ϕf,c(as(Q2(1− z)), z) =
∞∑
i=1

ais(Q2(1− z))
i∑

k=0

1
2ϕ

(k)
c,i logk(1− z) . (2.25)

The coefficients ϕ(k)
c,i in eq. (2.25) are related to the constants Gc,(j,k)

L,i s through

ϕ
(k)
c,1 = Gc,(1,k)

L,1 , k = 0, 1

ϕ
(k)
c,2 = 1

2G
c,(1,k)
L,2 + β0Gc,(2,k)

L,1 , k = 0, 1, 2

ϕ
(k)
c,3 = 1

3G
c,(1,k)
L,3 + 2

3β1Gc,(2,k)
L,1 + 2

3β0Gc,(2,k)
L,2 + 4

3β
2
0G

c,(3,k)
L,1 , k = 0, 1, 2, 3

ϕ
(k)
c,4 = 1

4G
c,(1,k)
L,4 + 1

2β2Gc,(2,k)
L,1 + 1

2β1Gc,(2,k)
L,2 + 1

2β0Gc,(2,k)
L,3 + 2β0β1Gc,(3,k)

L,1 + β2
0G

c,(3,k)
L,2

+2β3
0G

c,(4,k)
L,1 , k = 0, 1, 2, 3, 4 (2.26)

with Gc,(2,3)
L,1 ,Gc,(2,4)

L,1 ,Gc,(2,4)
L,2 ,Gc,(3,4)

L,1 not contributing to ϕ
(k)
c,i . In the above equations,

Gc,(j,k)
L,i (z) are expansion coefficients of GcL,i(z, ε) defined by GcJ,L = G

c
J −G

c
J,SV :

G
c
J,L

(
âs,

Q2

µ2
R

,
µ2
R

µ2 , z, ε
)

=
∞∑
i=1

ais
(
Q2(1− z)

) ∞∑
j=0

i+j−1∑
k=0
Gc,(j,k)
L,i logk(1− z). (2.27)
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In the dimensionally regularised theory, given the order of perturbation namely the power of
as and the accuracy of ε, the loop integrals in the virtual diagrams and phase space integrals
for the real emission sub-processes demonstrate a systematic logarithmic structure. For
example, the highest power of log(1−z) of the coefficient of aisεj in a perturbative expansion,
is controlled by both i and j. For the inclusive reactions that we considered, we find that
the highest power of log(1 − z) is always less than or equal to i + j − 1. Hence, the
summation over k in the eq. (2.27) runs from 0 to i+ j − 1. This translates to the upper
limit i in the summation over k in eq. (2.25). At every order ais, the coefficients Gc,(j,k)

L,i or
their combination namely ϕ(k)

c,i for various value of i and k can be extracted from explicit
perturbative results of ∆c.

So far, we studied how NSV terms can be systematically included in the threshold
expansion of inclusive cross section of DIS. Same methodology can be applied for the SIA
as well to obtain the corresponding all order result. Noting that the SIA is time like process,
namely the energy scale Q2 is negative of its center of mass energy and that the collinear
factorisation requires time-like splitting functions, we can obtain Ψ̃c

J (see eq. (2.9) for SIA
by replacing Q2 in F̂c by −q2, q2 > 0, Q2 in Φc

J by q2 and the splitting functions in Γcc by
the time like ones:

F̂c(âs, µ2, Q2, ε) → F̂c(âs, µ2,−q2, ε)
Φc
J(âs, µ2, Q2, ε) → Φ̃c

J(âs, µ2, q2, ε)
ln Γcc(âs, µ2, µ2

F , ε) → ln Γ̃cc(âs, µ2, µ2
F , ε) (2.28)

where Γ̃cc is the time like AP kernel. The solution for jet function for the SIA, Φ̃c
J is

obtained exactly the way we obtained Φc
J . The complete result for the SV part can be

found [119] which we will not repeat here. For the NSV part of Φ̃c
J , the function Φ̃c

J,B is
found to be the same as eq. (2.16) with the replacements ϕa,c → ϕ̃a,c and consequently
ϕa,c → ϕ̃a,c with a = s, f and Q2 → q2.

The coefficient functions ∆c for DIS via the exchange of a photon as well as a Higgs
boson are available up to third order in [3, 4] respectively. One can find the analytical results
for FFs, overall renormalisation constants, the functions Φc

J,A and Γcc up to third order in
the literature. Following [63, 120], we define the non singlet DIS structure functions as:

F1 = 2F1,ns, F2 = 1
x
F2,ns, F3 = F ν+ν̄

3 (2.29)

Now using the available results up to third order for c = q (photon-exchange DIS) for the
structure functions F1 and F3, we found the functions ϕ(k)

q,i as,

ϕ
(0)
q,1 = 10CF , ϕ

(1)
q,1 = 0 , ϕ

(1)
q,2 = 10CFCA − 22C2

F ,

ϕ
(2)
q,2 = −4C2

F , ϕ
(3)
q,3 = C2

FCA

(
− 176

27

)
+ nfC

2
F

(32
27

)
. (2.30)

and for the structure function F2,

ϕ
(0)
q,1 = 14CF , ϕ

(1)
q,1 = 0 ,

ϕ
(0)
q,2 = CFCA

(5734
27 −64ζ3−

32
3 ζ2

)
−C2

F

(25
2 +44ζ2−72ζ3

)
+nfCF

(
− 1060

27 + 8
3ζ2

)
,
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ϕ
(1)
q,2 = CFCA

(
−6+16ζ2

)
+C2

F

(
26−32ζ2

)
, ϕ

(2)
q,2 =−4C2

F ,

ϕ
(0)
q,3 = CFC

2
A

(3231470
729 +72ζ5−

63128
27 ζ3−

46208
81 ζ2−

64
3 ζ2ζ3+ 2324

15 ζ2
2

)
+C2

FCA

(
− 83255

54 +1320ζ5+ 22180
9 ζ3−

25984
27 ζ2+272ζ2ζ3−

6464
15 ζ2

2

)
+C3

F

(1319
6 −2000ζ5+444ζ3−

50
3 ζ2−224ζ2ζ3+ 9056

15 ζ2
2

)
+nfCFCA

(
− 972940

729

+236ζ3+ 21068
81 ζ2−

304
15 ζ

2
2

)
+nfC2

F

(
− 133

3 −
880
3 ζ3+ 2896

27 ζ2+ 256
5 ζ2

2

)
+n2

fCF

(68312
729 + 32

27ζ3−
592
27 ζ2

)
+
[
dabc2

n

]
fl11

(
−128+1280ζ5−704ζ3−448ζ2

+128ζ2ζ3+ 64
5 ζ

2
2

)
,

ϕ
(1)
q,3 = CFC

2
A

(
− 5680

9 + 376
3 ζ3+ 1792

3 ζ2−
128
5 ζ2

2

)
+C2

FCA

(
+ 95612

81 + 1400
3 ζ3−1004ζ2

−512
5 ζ2

2

)
+C3

F

(134
3 −720ζ3−

160
3 ζ2+ 1536

5 ζ2
2

)
+nfCFCA

(892
9 −

160
3 ζ3−

260
3 ζ2

)
+nfC2

F

(
− 16136

81 + 128
3 ζ3+144ζ2

)
,

ϕ
(2)
q,3 = CFC

2
A

(14
3 −32ζ3+58ζ2

)
−C2

FCA

(
94−128ζ3+ 316

3 ζ2

)
+C3

F

(496
3 −128ζ3

)
+nfCFCA

(
2− 16

3 ζ2

)
+nfC2

F

(4
3 + 32

3 ζ2

)
,

ϕ
(3)
q,3 = C2

FCA

(
− 176

27

)
+nfC2

F

(32
27

)
, (2.31)

Similarly, the non singlet time-like transverse (FT ) and longitudinal (FL) structure func-
tions in SIA (see [63, 119, 120]) are defined as,

FT = FT,ns , FL = FL,ns , (2.32)

and ϕ̃(k)
q,i for FT are found to be

ϕ̃
(0)
q,1 = −8CF , ϕ̃

(1)
q,1 = 0 , ϕ̃

(1)
q,2 = −10CFCA + 22C2

F ,

ϕ̃
(2)
q,2 = 4C2

F , ϕ̃
(3)
q,3 = C2

FCA

(176
27

)
− nfC2

F

(32
27

)
. (2.33)

and for FL, ϕ̃(k)
q,i are found to be

ϕ̃
(0)
q,1 = 2CF , ϕ̃

(1)
q,1 = 4CF ,

ϕ̃
(1)
q,2 = CFCA

(328
9

)
+ C2

F

(
48− 16ζ2

)
− CFnf

(64
9

)
,

ϕ̃
(2)
q,2 = 22

3 CFCA + 8C2
F − CFnf

(4
3

)
,

ϕ̃
(3)
q,3 = CFC

2
A

(484
27

)
+ 88

3 CAC
2
F − CACFnf

(176
27

)
− 16

3 C
2
Fnf + n2

fCF

(16
27

)
. (2.34)
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and for c = g (Higgs-exchange DIS) the CFs to the gluon structure function Fϕ gives the
following ϕ(k)

g,i ,

ϕ
(0)
g,1 = 1

3CA + 2
3nf , ϕ

(1)
g,1 = 0 , ϕ

(1)
g,2 = −14C2

A + 2nfCA ,

ϕ
(2)
g,2 = −4C2

A , ϕ
(3)
g,3 = C3

A

(
− 176

27

)
+ nfC

2
A

(32
27

)
. (2.35)

Here, the constants CA = Nc and CF = (N2
c − 1)/2Nc are Casimirs of SU(Nc) gauge

group and nf is number of active flavours. The result for color factor
[
dabc2

Nc

]
fl11 can be

found in [3]. For F1 and F3, we could not obtain all the constants ϕ(k)
f,i as the results for ∆q

corresponding to them are not available in the literature. Also for fragmentation functions,
we have given only those that are possible to extract from the available CFs of fragmentation
functions. Hence in conclusion, the coefficients ϕf,q given in eqs. (2.30), (2.31) along with
the NSV part of the AP splitting functions determine Φq

J,B up to third order in as. Note that
Φq
J,A is already known [28, 106–112] to the same accuracy. This completes the determination

of Φc
J to third order in perturbation theory.
Having obtained Φc

J to third order, we make few observations. The structure of SV
part of Φc

J , namely Φc
J,A, is well understood in terms of the cusp anomalous dimension

Ac and the function G
c
J,SV . In particular, one finds that the entire SV part of Φc

J is
universal as it is independent of the hard interaction. In the present case, this means that
Φc
J,A is same for all the structure functions. However, it depends only on the parton that

participates in the hard scattering. For photon-DIS, quark and anti-quarks are the ones
that interact directly with the photon and hence the index c = q, q in cusp anomalous
dimension and GcJ,SV . For the Higgs-DIS, both the cusp anomalous dimension as well as
G
c
J,SV will depend on the gluon and hence they will be different from those of photon-

DIS. Unlike the SV part, NSV part does not have universal structure even though part
of NSV contains process independent anomalous dimensions Cc and Dc resulting from
AP splitting functions. From eqs. (2.30), (2.31), we find that the explicit results on ϕf,c
extracted for different structure functions do not coincide, implying that they are sensitive
to hard scattering of quarks/anti-quarks with the photon. In [74], some of us studied the
NSV contributions to production of lepton pairs in Drell-Yan and production of Higgs
boson in bottom quark annihilation and found that the corresponding ϕf,q and ϕf,b differ
at third order hinting towards the breakdown of universality for the NSV part.

3 All order predictions for ∆c

In the earlier section we discussed extensively about each of the building blocks which
constitute the master formula given in eq. (2.9). We have also shown that these building
blocks satisfy certain differential equations which in turn is controlled by universal anoma-
lous dimensions. Now in this section we aim to discuss the predictability of the solutions
to the governing differential equations. For example, differential equation corresponding
to RG can help us to predict logarithms of µ2

R. Similarly AP equations predict logarithms
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of µ2
F and K+G equations of FF and Φc

J predict threshold contributions δ(1− z), Di and
logk(1 − z), k = 0, 1, · · · at higher orders in as. Hence, the knowledge of Φc

J , FFs for the
quark/gluon and the AP kernel Γcc, all known to third order can be used to predict certain
SV as well as NSV terms in ∆c beyond third order. Let us expand the CF ∆c in powers
of as(µ2

R) as

∆c(Q2, µ2
R, µ

2
F , z) =

∞∑
i=0

ais(µ2
R)∆(i)

c (Q2, µ2
R, µ

2
F , z). (3.1)

where the coefficient ∆(i)
c can be determined from eq. (2.8)–(2.9). Note that ∆(0)

c = δ(1−z).
By definition, ∆c contains only SV and NSV terms and hence terms of order O((1 −
z)α), α > 0 are dropped.

Using the definition of C , we first expand the exponential of Ψc
J in eq. (2.8) in powers

of as(µ2
R) and then perform all the convolutions. This gives, at each order in perturbation

theory, a tower of SV terms, such as the distributions Di, i = 0, 1, · · · and δ(1− z) and of
next to SV terms namely the logarithms logi(1− z), i = 0, 1, · · · .

If Ψc
J is known to as, the master formula eq. (2.8) can predict the leading SV terms

(D3,D2), (D5,D4), · · · , (D2i−1,D2i−2) and the leading NSV terms log3(1 − z), log5(1 −
z), · · · , log2i−1(1−z) at a2

s, a
3
s, · · · , ais respectively for all i. Note that Cc1 is identically zero

and hence log2i(1− z) terms do not contribute irrespective of i. Similarly the knowledge of
Ψc
J to order a2

s can predict the tower of distributions (D3,D2), (D5,D4), · · · , (D2i−3,D2i−4)
and of log4(1− z), log6(1− z), · · · , log2i−2(1− z) at a3

s, a
4
s, · · · , ais respectively for all i. DIS

results for the photon exchange are known to a3
s and it allows us to confirm our predictions

at second and third orders based on the knowledge of Φc
J at as and at a2

s respectively. We
also confirmed our predictions for SV and NSV terms at third order against those given
in [3, 4] using the Φc

J known to order as. This explains the all order predictive nature
of eq. (2.8). The complete knowledge of Φc

J up to third order can be used to predict
certain SV and NSV terms at fourth order for ∆q because the former allows us to predict
a tower of (D3,D2), (D5,D4) · · · , (D2i−5,D2i−6) and of log5(1 − z), log7 · · · , log2i−3(1 − z)
at a4

s, a
5
s, · · · , ais respectively for all i.

In the following, we present our predictions for the NSV terms Lz till seventh order in
as. For the DIS structure function F1, we find

∆NSV
q,1 = as∆NSV (1)

q,1 + a2
s∆

NSV (2)
q,1 + a3

s∆
NSV (3)
q,1 + a4

sa
4
sa
4
s

[{
− 16

3 C
4
F

}
L7
z +

{308
9 C3

FCA

+ 232
3 C4

F −
56
9 nfC

3
F

}
L6
z −

{1936
27 C2

FC
2
A +

(16384
27 − 48ζ2

)
C3
FCA

+
(
188− 128ζ2

)
C4
F −

704
27 nfC

2
FCA −

2920
27 nfC

3
F + 64

27n
2
fC

2
F

}
L5
z +O

(
L4
z

)]
+ a5

sa
5
sa
5
s

[{
− 8

3C
5
F

}
L9
z +

{
− 16

3 C
4
Fnf + 88

3 C
4
FCA + 148

3 C5
F

}
L8
z +

{
− 320

81 C
3
Fn

2
f

+ 3520
81 C3

FCAnf −
9680
81 C3

FC
2
A + 3056

27 C4
Fnf +

(
− 17216

27 + 128
3 ζ2

)
C4
FCA

+
(
− 532

3 + 320
3 ζ2

)
C5
F

}
L7
z +O

(
L6
z

)]
+ a6

sa
6
sa
6
s

[{
− 16

15C
6
F

}
L11
z +

{
− 88

27C
5
Fnf

+ 484
27 C

5
FCA + 24C6

F

}
L10
z +

{
− 320

81 C
4
Fn

2
f + 3520

81 C4
FCAnf −

9680
81 C4

FC
2
A
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GIVEN PREDICTIONS
Ψ(1)

c Ψ(2)
c Ψ(3)

c Ψ(n)
c ∆(2)

c ∆(3)
c ∆(i)

c

D0,D1, δ D3,D2 D5,D4 D(2i−1),D(2i−2)

L1
z, L

0
z L3

z L5
z L

(2i−1)
z

D0,D1, δ D3,D2 D(2i−3),D(2i−4)

L2
z, L

1
z, L

0
z L4

z L
(2i−2)
z

D0,D1, δ D(2i−5),D(2i−6)

L3
z, · · · , L0

z L
(2i−3)
z

D0,D1, δ D(2i−(2n−1)),D(2i−2n)

Ln
z , · · · , L0

z L
(2i−n)
z

Table 1. Towers of Distributions (Di) and NSV logarithms (logi(1− z)) that can be predicted for
∆c using eq. (2.8). Here Ψ(i)

c and ∆(i)
c denotes Ψc and ∆c at order ai

s respectively. Also the symbol
Li

z denotes logi(1− z).

+ 6632
81 C5

Fnf +
(
− 37376

81 + 80
3 ζ2

)
C5
FCA +

(
− 344

3 + 64ζ2

)
C6
F

}
L9
z +O

(
L8
z

)]
+ a7

sa
7
sa
7
s

[{
− 16

45C
7
F

}
L13
z +

{
− 208

135C
6
Fnf + 1144

135 C
6
FCA + 424

45 C
7
F

}
L12
z

+
{
− 224

81 C
5
Fn

2
f + 2464

81 C5
FCAnf −

6776
81 C5

FC
2
A + 18128

405 C6
Fnf +

(
− 20416

81

+ 64
5 ζ2

)
C6
FCA +

(
− 844

15 + 448
15 ζ2

)
C7
F

}
L11
z +O

(
L10
z

)]
, (3.2)

for the DIS structure function F2,

∆NSV
q,2 = as∆NSV (1)

q,2 +a2
s∆

NSV (2)
q,2 +a3

s∆
NSV (3)
q,2 +a4

sa
4
sa
4
s

[
∆NSV (4)
q,1 +

{16
3 C

4
F

}
L6
z−
{728

9 C3
FCA

− 80
9 nfC

3
F−32ζ2C

3
FCA+

(
−72+64ζ2

)
C4
F

}
L5
z+O

(
L4
z

)]
+a5

sa
5
sa
5
s

[
∆NSV (5)
q,1 +

{8
3C

5
F

}
L8
z

+
{(
− 544

9 + 64
3 ζ2

)
C4
FCA+ 64

9 C
4
Fnf+

(
48− 128

3 ζ2

)
C5
F

}
L7
z+O

(
L6
z

)]
+

a6
sa
6
sa
6
s

[
∆NSV (6)
q,1 +

{16
15C

6
F

}
L10
z +

{(
− 904

27 C
5
FCA+ 32

3 ζ2

)
C5
FCA+ 112

27 C
5
Fnf+

(
24

− 64
3 ζ2

)
C6
F

}
L9
z+O

(
L8
z

)]
+a7

sa
7
sa
7
s

[
∆NSV (7)
q,1 +

{16
45C

7
F

}
L12
z +

{(
− 1984

135 + 64
15ζ2

)
C6
FCA

+ 256
135C

6
Fnf+

(48
5 C

7
F−

128
15 ζ2

)
C7
F

}
L11
z +O

(
L10
z

)]
, (3.3)

for the SIA transverse structure function FT ,

∆̃NSV
q,T = as∆̃NSV (1)

q,T + a2
s∆̃

NSV (2)
q,T + a3

s∆̃
NSV (3)
q,T + a4

sa
4
sa
4
s

[
∆NSV (4)
q,1 − 72C4

FL
6
z

+
{10316

27 C3
FCA +

(
292− 96ζ2

)
C4
F −

2072
27 nfC

3
F

}
L5
z +O

(
L4
z

)]
+ a5

sa
5
sa
5
s

[
∆NSV (5)
q,1

− 44C5
FL

8
z +

{11072
27 C4

FCA −
2144
27 C4

Fnf +
(

728
3 − 64ζ2

)
C5
F

}
L7
z +O

(
L6
z

)]
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+ a6
sa
6
sa
6
s

[
∆NSV (6)
q,1 −

{104
5 C6

F

}
L10
z +

{24484
81 C5

FCA −
4648
81 C5

Fnf +
(436

3

− 32ζ2

)
C6
F

}
L9
z +O

(
L8
z

)]
+ a7

sa
7
sa
7
s

[
∆NSV (7)
q,1 − 8C7

FL
12
z +

{67888
405 C6

FCA

− 12736
405 C6

Fnf +
(1016

15 − 64
5 ζ2

)
C7
F

}
L11
z +O

(
L10
z

)]
, (3.4)

and for the SIA longitudinal structure function FL,

∆̃NSV
q,L = as∆̃NSV (1)

q,L + a2
s∆̃

NSV (2)
q,L + a3

s∆̃
NSV (3)
q,L + a4

sa
4
sa
4
s

[(8
3C

4
F

)
L6
z −

{(364
9 − 16ζ2

)
C3
FCA

+
(
32ζ2 − 36

)
C4
F −

40
9 nfC

3
F

}
L5
z +O

(
L4
z

)]
+ a5

sa
5
sa
5
s

[{4
3C

5
F

}
L8
z +

{32
9 C

4
Fnf

+
(

24− 64
3 ζ2

)
C5
F +

(
− 272

9 + 32
3 ζ2

)
CAC

4
F

}
L7
z +O

(
L6
z

)]
+ a6

sa
6
sa
6
s

[{ 8
15C

6
F

}
L10
z

+
{56

27C
5
Fnf +

(
12− 32

3 ζ2

)
C6
F +

(
− 452

27 + 16
3 ζ2

)
CAC

5
F

}
L9
z +O

(
L8
z

)]
+ a7

sa
7
sa
7
s

[{ 8
45C

7
F

}
L12
z +

{128
135C

6
Fnf +

(24
5 −

64
15ζ2

)
C7
F −

(992
135

− 32
15ζ2

)
CAC

6
F

}
L11
z +O

(
L10
z

)]
. (3.5)

In addition, for the gluon initiated process, we predict

∆NSV
g = as∆NSV (1)

g + a2
s∆NSV (2)

g + a3
s∆NSV (3)

g + a4
sa
4
sa
4
s

[{
− 16

3 C
4
A

}
L7
z −

{32
3 C

3
Anf

− 104C4
A

}
L6
z +

{5132
27 C3

Anf −
176
27 C

2
An

2
f +

(
− 8072

9 + 176ζ2

)
C4
A

}
L5
z

+O
(
L4
z

)]
+ a5

sa
5
sa
5
s

[{
− 8

3C
5
A

}
L9
z +

{
− 76

9 C
4
Anf + 682

9 C5
A

}
L8
z −

{800
81 C

3
An

2
f

− 18088
81 C4

Anf −
(78488

81 − 448
3 ζ2

)
C5
A

}
L7
z +O

(
L6
z

)]
+ a6

sa
6
sa
6
s

[
−
{16

15C
6
A

}
L11
z

−
{656

135C
5
Anf −

5552
135 C

6
A

}
L10
z +

{
− 80

9 C
4
An

2
f + 14252

81 C5
Anf −

(58496
81

− 272
3 ζ2

)
C6
A

}
L9
z +O

(
L8
z

)]
+ a7

sa
7
sa
7
s

[
−
{16

45C
7
A

}
L13
z −

{296
135C

6
Anf

− 2396
135 C

7
A

}
L12
z +

{
− 256

45 C
5
An

2
f + 41864

405 C6
Anf −

(164912
405 − 128

3 ζ2

)
C7
A

}
L11
z

+O
(
L10
z

)]
. (3.6)

Our predictions for log7(1 − z), log6(1 − z) and log5(1 − z) terms at fourth order for ∆qs
agree with that of [3, 4].

In summary, if we know Ψc
J up to nth order, we can predict (D2i−2n+1,D2i−2n) and

log2i−n(1− z) at every order in ais for all i, see table 1. We present the general structure of
the NSV partonic CFs ∆NSV

c to fourth order in as in appendix A and in the supplementary
material file attached to this paper.
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The fact that the master formula has the predictive nature to all orders in as in terms
of distributions and log(1 − z) terms in ∆c can be exploited to resum them to all orders.
This will be discussed in the next section.

4 Resummation in N space

In the last section, we developed a formalism in z space to study SV and NSV contributions
to DIS and SIA processes. Our all order result for Ψc

J can predict tower of SV logarithms
for ∆c through the SV distributions Dj and NSV logarithms logj(1 − z), j = 0, 1, · · · at
every order in as. This is possible because the knowledge of SV and NSV terms for ∆c up
to a given order m in as, say ais, i = 0, · · · ,m, contains valuable information through Ψc

J ,
for LL, NLL etc at every order in ajs with j > m, i.e., for terms at ajs, j = m, · · · ,∞. The
reason for this is due to the fact that the constituents of Ψc

J , namely the FF, ZUV,c, Φc
J and

AP kernels, satisfy differential equations and their perturbative solutions have all order
predictions for certain logarithms, such as logarithms of Q2, µ2

R, µ2
F and also logarithms of

the form logj(1−z)/(1−z)k, j = 0, 1, · · · ,∞, k = 0, 1. The structure of these logarithms is
controlled by UV and IR anomalous dimensions. Presence of such logarithms is a unique
feature of any perturbative expansions and is considered advantageous to evaluate whether
the perturbative series is reliable or not. They can also become large at every order posing
problem for the perturbative series. For example, the distributions Dj and the NSV terms
logj(1− z) in threshold region can become large at every order in as. In practice, there are
situations when the order of perturbation increases, the contributions from distributions
Dj also increase such that the product ajsDj−1 is of order one at every order j = 1, · · · ,∞.
This means that we need to take into account order one terms to all orders in perturbation
theory to make any sensible prediction.

Since we are dealing with distributions in Ψc
J and convolutions in ∆c, it is convenient

to work in Mellin space N . The distributions in N space are well defined. Also the
convolutions in z space become normal products in N space. Hence, it is easy to study the
order one terms in N space. The threshold limit namely z → 1 where the SV distributions
and NSV logarithms logj(1 − z) dominate, corresponds to N → ∞ in Mellin space. We
do not strictly take N → ∞ as we are interested in NSV terms. In N space, in the large
N limit, the Mellin moment of z space SV gives logi(N) terms as well as 1/N j logi(N)
terms. However, the z space NSV terms will always give 1/N j logi(N) terms. While
performing Mellin moments, we drop 1/N j logi(N) terms with j > 1 for all i at every
order in as. This way, we have in N space, SV contributions which contain only logi(N)
terms whereas NSV contains only 1/N logi(N) term. The order one terms that we found
in z space in the threshold limit will show up in the Mellin space through (asβ0 log(N))k

with k > 0. Reorganisation of the perturbative series taking into account these order one
terms consistently can be achieved through the procedure called resummation. In the rest
of the section, we show how these order one terms in Ψc

J can be summed to all orders in
perturbation theory. The resummed results in Mellin space taking into account only SV
terms are available in the literature for variety of processes, see [44, 51–62]. In the following,
we derive the N space resummed result for the NSV logarithms. Unlike the resummed SV

– 18 –



J
H
E
P
0
4
(
2
0
2
1
)
1
3
1

contributions, the NSV terms organise themselves in double series expansion in both as as
well as in log(N). In addition, we find that the resummed expression for NSV part is 1/N
suppressed compared to SV.

It is convenient to use the integral representations of Φc
J,A and Φc

J,B given in eq. (2.20)
and eq. (2.21) respectively to perform the Mellin moment in the large N limit to obtain SV
logi(N) terms as well as NSV 1/N logi(N) terms. Substituting eq. (2.20) and eq. (2.21) in
∆c, the Mellin moment of eq. (2.8) takes the following form,

∆c,N (Q2, µ2
R, µ

2
F ) = Cc0(Q2, µ2

R, µ
2
F ) exp

(
Ψc
J,N (Q2, µ2

F )
)
, (4.1)

Ψc
J,N in the above equation is twice the Mellin moment of Ψc

J,D,

Ψc
J,N (Q2, µ2

F ) = 2
∫ 1

0
dzzN−1Ψc

J,D(Q2, µ2
F , z) . (4.2)

where

Ψc
J,D(Q2, µ2

F , z) = 1
2

∫ Q2(1−z)

µ2
F

dλ2

λ2 P
′
cc(as(λ2), z) +Qc(as(Q2(1− z)), z) , (4.3)

and

Qc(as(Q2(1− z)), z) =
( 1

2(1− z)G
c
J,SV (as(Q2(1− z)))

)
+

+ ϕf,c(as(Q2(1− z)), z) . (4.4)

The N independent coefficient Cc0 results from the finite parts of FF, Γcc and the coefficient
of δ(1− z) of Φc

J . We expand Cc0 in powers of as as:

Cc0(Q2, µ2
R, µ

2
F ) =

∞∑
i=0

ais(µ2
R)Cc0i(Q2, µ2

R, µ
2
F ) , (4.5)

where the coefficients Cc0i are presented in the supplementary material file attached to this
paper. Also,the results of Cc0 for the photon-exchange DIS can be found in [52]. Both Cc0 and
Ψc
J,N in eq. (4.1) depend on process dependent quantities as well as the universal anomalous

dimensions, Ac, Bc, Cc, Dc, f c and set of SV coefficients GcJ,SV and NSV coefficients ϕf,c.
Before we proceed to the details of computation, we make few remarks on the N space

result that we obtained. There have been several studies on the all order structure of NSV
terms, see [65–72, 121, 122] in order to better understand the underlying IR physics. We
find that our result given in eq. (4.1) is similar to the one which was conjectured in [65].
However, we differ from eq. (37) in [65], in the upper limit of the integral, the presence
of extra term ϕf,c and the explicit dependence on the variable z. While these differences
do not disturb the SV predictions, they will give NSV terms different from those obtained
using eq. (37) of [65].

Our next task is to perform the Mellin moment of SV and NSV terms, where we keep
all terms till O(1/N) and drop the rest which have higher power in 1/N. We encounter two
types of integrals, namely integrals over distributions Di, i = 0, 1, · · · and those over regular
terms logi(1−z), i = 0, 1, · · · . Care is needed to deal with the integrals of distributions. The
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section 2.2 of [65] contain results that are suitable to obtain Mellin moments of distributions
as well as regular terms in the large N limit. Following, [65], we replace

∫
dz(zN−1 − 1)/(1−

z) and
∫
dzzN−1 by

∫
θ(1−z−1/N)/(1−z) and apply the operators ΓA(N d

dN ) and ΓB(N d
dN )

on them respectively. The ΓA
(
N d

dN

)
and ΓB

(
N d

dN

)
are given by

ΓA
(
x
)

=
∑
k=0
−γAk xk, ΓB

(
x
)

=
∑
k=1

γBk x
k, (4.6)

γAk = Γk(N)
k! (−1)k−1 , γBk+1 = Γ(k)(1)

k! (−1)k. (4.7)

and they are listed in the appendix [C] of [74]. Applying these operators, we find

Ψc
J,N =

∫ Q2

Q2/N

dλ2

λ2

{(
ln λ

2N

Q2 + γA1

)
Ac(as(λ2))−GcJ,SV

(
as(λ2)

)
− 1
N
ξc(as(λ2), N)

−λ2 d

dλ2F
c(as(λ2), N)

}
+ Fc(as(Q2), N)

+
∫ Q2

µ2
F

dλ2

λ2

{(
− γA1 − log(N)

)
Ac(as(λ2)) + 1

N
ξc(as(λ2), N)

}
, (4.8)

where
Fc(as, N) = FcA(as) + 1

N
FcB(as, N). (4.9)

with FcA(as) and FcB(as, N) are found to be

FcA(as) = −γA1 G
c
J,SV

(
as
)

+
∞∑
i=0

γAi+2

(
−β(as)

∂

∂as

)i{
Ac(as) +β(as)

∂

∂as
G
c
J,SV

(
as
)}
, (4.10)

and

FcB
(
as, N

)
= 2γB1 ϕf,c(as, N)− 2γB2

(
λ2 d

dλ2ϕf,c(as, N) + 1
2 ξ̃

c(as, N)
)

+2
(
γB3 + γ̃B

)(
λ2 d

dλ2

{
λ2 d

dλ2ϕf,c(as, N) + 1
2 ξ̃

c(as, N)
}

+ 1
2C

c(as)
)
.

(4.11)

In the above equation, γ̃B =
∞∑
i=4

γBi (N d
dN )i−3. For brevity we denote as(λ2) as as in all the

above equations. Also,

ξ̃c(as, N) = Dc(as)− Cc(as) log(N) , ξc(as, N) = γB1 ξ̃
c(as, N)− γB2 Cc(as). (4.12)

What remains to be done now is the integration over λ2 in eq. (4.8) or equivalently over
as. Care is needed to keep the order one term, namely terms of the form ωj , j = 1, · · · ,∞,
with ω = as(µ2

R)β0 log(N), at every order in as(µ2
R). If we use RG equation for as and

replace integration over λ2 by as, we obtain the result that is expected to be a function
of as(Q2/N) as well as as(Q2). Both these ass can be expanded around as(µ2

R) using RG
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of the strong coupling constant keeping order one ωs intact. Alternatively, we can achieve
this by performing the integrations over λ by using as(λ2) given by

as(λ2) =
(
as(µ2

R)
l

)[
1− as(µ2

R)
l

β1
β0

log(l) +
(
as(µ2

R)
l

)2(β2
1
β2

0
(log2(l)− log(l)

+l − 1)− β2
β0

(l − 1)
)

+
(
as(µ2

R)
l

)3(β3
1
β3

0

(
2(1− l) log(l) + 5

2 log2(l)

− log3(l)− 1
2 + l − 1

2 l
2
)

+ β3
2β0

(1− l2) + β1β2
β2

0

(
2l log(l)

−3 log(l)− l(1− l)
))]

. (4.13)

where l = 1−β0as(µ2
R)log(µ2

R/λ
2) and βi are the coefficients of QCD beta function β(as) =

−
∑∞
i=0 a

i+2
s βi known to five loops, see [123–126]. The latter approach is easier to retain

order one ωs at every order in as(µ2
R) and we followed this in our paper. Since ϕf,c depends

both on as and log(N), we make a double series expansion as follows:

ϕf,c(as, N) =
∞∑
i=1

i∑
k=0

ais
1
2ϕ

(k)
c,i (− log(N))k . (4.14)

using the expansion for ϕf,c and expanding other quantities in the exponent in powers of
as, and using eq. (4.13) for as(λ2) in eq. (4.8). We obtain

Ψc
J,N = log(gc0(as(µ2

R))) + g̃c1(ω) log(N) +
∞∑
i=0

ais(µ2
R)g̃ci+2(ω)

+ 1
N

∞∑
i=0

ais(µ2
R)hci (ω,N) , (4.15)

where g̃ci and hci (ω,N) are defined as,

g̃ci (ω) = gci (ω) + 1
N
gci (ω) ,

hc0(ω,N) = hc00(ω) + hc01(ω) log(N), hci (ω,N) =
i∑

k=0
hcik(ω) logk(N). (4.16)

Here we have dropped terms order O(1/N i), i > 1. Also, the function log(gc0(as)) is ex-
panded in powers of as as,

log(gc0(as(µ2
R))) =

∞∑
i=1

ais(µ2
R)gc0,i . (4.17)

In eq. (4.15), the coefficients gc0 and gci ,i = 1, 2, · · · correspond to SV part, whereas gci and
hci ,i = 1, 2, · · · correspond to NSV part. The coefficients gci (ω) are identical to those in [52]
obtained from the resummed formula for SV terms. Note that gci (ω) becomes zero in the
limit ω → 1. The coefficient gc0(as) (see [52]) is given in the supplementary material file
attached to this paper. The N independent coefficients Cc0 and gc0 can be combined as

g̃c0(Q2, µ2
R, µ

2
F ) = Cc0(Q2, µ2

R, µ
2
F )gc0(as(µ2

R)), (4.18)
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and is expanded in terms of as(µ2
R) as,

g̃c0(as(µ2
R)) =

∞∑
i=0

ais(µ2
R)g̃c0,i . (4.19)

Here, g̃c0,i are found to be identical to gDIS0k given in [52]. While both z space as well as N
space results contain same information, the summation of order one ω terms to all orders
in perturbation theory can be conveniently performed only in N space. We find that the
functions gci , ḡci and hci sum up ω to all orders in perturbation theory.

In eq. (4.15), ḡc1 is found to be identically zero and the remaining terms ḡci , i = 2, 3, · · ·
are functions of the cusp anomalous dimension Ac and the function G

c
J,SV of eq. (4.4).

ḡci (ω) contain no explicit log(N) terms. The functions hci in eq. (4.15) result from the
Mellin moment of Φc

J,B and hence depend on the anomalous dimensions Cc, Dc and the
function ϕf,c. We find that the coefficient hc01 is proportional to Cc1 which is identically
zero, and hence at order a0

s, there is no (1/N) log(N) term.
We also observe from the explicit calculations, that there exist certain transformation

rule which relates to the resummation coefficients g̃ci and hci of DIS with the corresponding
coefficients of DY/Higgs production presented in [74]. These rules are found to be,

g̃DY1 (ω) = 2g̃DIS1 (2ω), g̃DYi+1(ω) = g̃DISi+1 (2ω)
∣∣∣{
Bi→0,γAi →2iγAi

}, i > 0 ,

hDYik (ω,N) = 2khDISik (2ω,N)
∣∣∣{
Di→2Di,γBi →2(i−1)γBi ,ϕ

(k)
i →2(1−k)ϕ

(k)
i

}. (4.20)

The reason behind the existence of such transformation rule follows from the fact that ω
is related to logN in DIS whereas for DY/Higgs it is related to logN2. This dependency
resurfaces at every stages of the calculation. The scaling of γAi (γBi ) reflects the same depen-
dency as they are coefficients of the derivative of logN in the expansion of ΓA (ΓB) defined
in eq. (4.6). Also ϕ(k)

i , being coefficients of logN (see eq. (4.14)), gets scaled accordingly.
Hence the above relations between DIS and DY/Higgs manifest the aforementioned depen-
dency. The results of the coefficients gci (ω) are given in [127] and ḡci (ω) and hik(ω,N) for
DIS up to four loops are given in appendix C, D. For completeness we also provide them
in the supplementary material file attached to this paper.

Let us now study the all order structure of the exponent in the N space. First of all,
it is clear that working in N space in the large N limit (keeping order O(1/N) terms)
allows us to cast the entire exponent in a compact form through the functions gci , ḡci and
hci , each of which is a function of ω. These functions carry all order information of SV and
NSV logarithms. This is not surprising because Φc

J does contain the same information in z
space, however, with no compact looking form. Note that in z space we have the inherent
scale Q2(1− z) of the process appearing at every order with âs through âis(Q2(1− z))iε/2

term. This results in as(Q2(1−z)) through UV renormalisation which demonstrates the all
order prediction of logarithm through distributions and log(1− z) when expanded around
as(µ2

R). In N space, these logarithms can be systematically summed up at every order
as(µ2

R) through the functions gci , ḡci and hci given in the exponent. We find that unlike SV
part, NSV part is a double series expansion in as(µ2

R) and log(N). The explicit log(N)s
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in the NSV functions hci comes from explicit log(1− z) terms in the expansion of ϕf,c and
these logarithms do not demonstrate any all order structure and hence can not be summed
like the ones appear in the argument of as. Note that the index i in the functions gci etc
that appears in the exponent determine the accuracy of SV and NSV logarithms that are
summed up to all orders. Hence, expanding the Φc

J,A or its Mellin moment around as(µ2
R)

allows us to make definite predictions for SV and NSV logarithms with given accuracy to
all orders in as(µ2

R). For example if we have Φc
J,A up to order as, we can predict terms of the

form aisD2i−1(z) in Φc
J,A for all i > 1. The functions g̃0,0 and g1 in the exponent can predict

leading ais log2i(N) terms for all i > 1. If we include g̃0,1 and g2 terms, then we can predict
next to leading ais log2i−1(N) terms for all i > 2. In general, the resummed result with
terms g̃c0,0, · · ·g̃c0,n−1 and gn1 , · · ·, gcn can predict ais log2i−n+1(N). The inclusion of sub leading
terms through ḡci and hci we get additional (1/N) logj(N) terms in N space or logj(1− z)
terms in z space. In perturbative QCD, Cc1 = 0, where c = q, q, g. Like the SV part of
the resummed exponent, the 1/N suppressed terms also organises themselves by keeping
ω = as(µ2

R)β0 log(N) terms as order one at every order in as(µ2
R). In addition, we find

that at a given order ais(µ2
R), the 1/N coefficient is a polynomial in log(N) with the order

i. Again, we find that using g̃c0,0, gc1, gc2 and ḡc1, ḡc2, hc0, hc1, one can predict (ais/N) log2i−1(N)
terms for all i > 1. Similarly, along with the previous ones, g̃c0,1,gc3 and ḡc3, h

c
2 , one can

predict (ais/N) log2i−2(N) for all i > 2. This way, the resummed result with ḡc2, · · · , ḡcn+1
and hc1, · · ·, hcn along with g̃0,0, · · ·, g̃0,n−1 and g1, · · ·, gn+1 can predict (ais/N) log2i−n(N)
for all i > n in Mellin space N . To illustrate the above discussion, we compare the three
loop predictions obtained from g̃0,i−1,gci+1, ḡci+1 and hci for i < 3 against the exact three
loop results in table 2. It can be seen that, given the previous order results, all the higher
logarithmic coefficients can be exactly predicted. However, lower order 1/N logk(N), k < 4
can not be predicted from our all order result as they require ϕ(k)

c,3 for k < 4 which can
only be determined from the third order result for CFs. Interestingly, even without the
knowledge of these terms, our predictions for 1/N log3(N) terms agree with the exact result
for several color factors, see table 2. Note that the limitations in the predictions for higher
orders from the previous order for NSV terms are in close resemblance with those of higher
order predictions for SV terms in CF, given lower order SV exponents. In summary, our
all order result, both in z space and N space demonstrates all order structure as well as
predictions that have identical features for both SV and NSV terms. The only difference
between SV and NSV terms in the exponent is the way they depend on the process. That
is, we find that NSV exponents are process dependent unlike SV ones. Table [2] of [74]
summarizes these observations at any given order.

5 Physical evolution kernel

So far, we studied the structure of CFs in the threshold limit taking into account both
the dominant SV and sub dominant NSV terms. Recall that we work in a dimensionally
regularised quantum field theory where all the divergences are regularised in 4 + ε dimen-
sions and use modified minimal subtraction scheme to perform both UV renormalisation
as well as mass factorisation. Hence, the CFs and PDF or PFF depend on this scheme,
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log5(N)
N

log4(N)
N

log3(N)
N

C3
F

256
27

256
27

6499
40

6499
40

167031
500 +3584

27 ζ2
167031

500 + 3584
27 ζ2

C2
Fnf 0 0 −1600

81 −1600
81 −431451

1000 −105229
250 + χ1

CAC
2
F 0 0 1760

27
1760
27

38617
25 − 256ζ2

150991
100 − 256ζ2 +

χ2

CFn
2
f 0 0 0 0 800

81
800
81

CACFnf 0 0 0 0 −1760
27 −1760

27

C2
ACF 0 0 0 0 968

9
968
9

Table 2. Comparison of 3-loop resummed predictions against exact results for the DIS structure
function F2. For each color structure, the left column stands for the exact results and the right
column stands for the resummed predictions. The constant χ1 and χ2 depends on ϕ(3)

q,3.

hence they are unphysical. However, the physical observables comprising of them are blind
to this. This means that if we make scheme transformations on CFs and on PDFs or PFF
simultaneously, the physical observables are invariant. For example, following [128], we
consider an observable O(Q2) = CO(Q2, µ2

F )F(µ2
F ), where O represent any of the structure

functions that appear in the DIS or in the cross section for SIA. The functions CO and F
are the corresponding CFs and PDFs or PFFs respectively. They are independently scheme
dependent quantities. That is, if we make scheme transformations, namely CO → ZCO and
F → F/Z, then O remains invariant. This fact allows us to construct perturbative quanti-
ties out of CFs and PDF/PFF such that they are invariant under scheme transformation.
One such quantity is KO, called physical evolution kernel (PEK) [79, 129] and is defined
through

Q2 d

dQ2O(Q2) = KO(Q2)O(Q2) , (5.1)

where, KO is obtained using the RG equation for CO and is given by

KO(Q2) = γO(Q2) +Q2dCO(Q2)
dQ2 C−1

O (Q2) . (5.2)

The anomalous dimension γO satisfies µ2
Fd/dµ

2
F (log(FO(µ2

F )) = γO(µ2
F ). Being scheme

independent, the kernel can be used to understand the perturbative structure of physical
quantities. In [128], the crossing relation namely the Drell-Levy-Yan relation [130] between
CFs of DIS and of SIA were studied in a scheme invariant way using PEK. In [64, 131],
next to NSV to DIS was studied using PEK.

A striking observation was made by Moch and Vogt in [63] (and [31, 35]), by studying
PEKs of observables in DIS, semi-inclusive e+e− annihilation and DY. They showed that
the PEKs demonstrate the enhancement of a single-logarithms at large z to all order in
1 − z. Making use of this observation and extending it to all orders in as, the structure
of corresponding leading log(1− z) terms in the kernel can be constrained, which allowed
them to predict certain next to SV logarithms at higher orders in as.
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Now that we have an all order results for SV+NSV both in z and N spaces, we can
easily predict the structure of leading logarithms in the physical evolution kernel. It is
convenient to use the result in N space for this purpose. The PEK for DIS is given by

Kc(as(µ2
R), N) = Q2 d

dQ2 log ∆c,N (Q2). (5.3)

which is invariant under scheme transformation. The kernel Kc(as(µ2
R), N) can be com-

puted order by order in perturbation theory

Kc(as(µ2
R), N) =

∞∑
i=1

ais(µ2
R)Kci−1(N). (5.4)

As in [63], the leading (1/N) logi(N) terms at every order defined by Kc:

Kci = Kci
∣∣∣∣
(1/N) logi(N)

(5.5)

can be obtained. Using eq. (4.1), we find that these terms can be obtained directly from
the NSV part of Ψc

J,N alone and are given by

Kci = 1
2A

c
1β

i
0 +Dc

1β
i
0 − iβ

(i−1)
0 Cc2 + i

i∑
j=1

(−1)j+1
(
i− 1
j − 1

)
β

(i−j+1)
0 ϕ

(j)
c,j . (5.6)

The corresponding PEKs for SIA can be obtained from the above DIS PEKs by replac-
ing Dc

1, C
c
2 and ϕ(i)

c,i by the respective time-like counter parts. Interestingly at every order
in ais the leading (1/N) logi(N) terms are controlled by Dc

1 and Cc2 from Lc and by ϕ(i)
c,i .

This is our prediction for the leading 1/N behavior of the physical evolution kernel, Kc,
at every order in perturbation theory and is consistent with the observation made by [63]
using the known perturbative results.

For photon-exchange DIS and fragmentation functions in SIA we find a complete nu-
merical agreement with [63] up to three loops for all the structure functions upon substi-
tuting the known values of Cc, Dc of space and time-like splitting functions and DIS NSV
constants ϕ(i)

c,i and SIA ones ϕ̃(i)
c,i from eqs. (2.30), (2.31), (2.33), (2.34) respectively. In the

following we present the PEKs for the fragmentation functions in SIA, photon-exchange
DIS and Higgs-exchange DIS:

Kc0 =− 2Ci ,
Kc1 =− 2β0Ci ± 16C2

i ,

Kc2 =− 2β2
0Ci ± 24β0C

2
i ,

Kc3 =− 2β3
0Ci ±

88
3 β

2
0C

2
i ,

Kc4 =− 2β4
0Ci ±

112
3 β3

0C
2
i − 4β0 ϕ

(4)
c,4 ,

Kc5 =− 2β5
0Ci ±

160
3 β4

0C
2
i − 20β2

0 ϕ
(4)
c,4 + 5β0 ϕ

(5)
c,5 ,

Kc6 =− 2β6
0Ci ±

248
3 β5

0C
2
i − 60β3

0 ϕ
(4)
c,4 + 30β2

0 ϕ
(5)
c,5 − 6β0 ϕ

(6)
c,6 . (5.7)
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Here Ci is {CA, CF } for c = {g, q} respectively. And the plus sign corresponds to SIA
and the minus sign is for photon and Higgs-exchange DIS. This owe to the fact that the
anomalous dimension C2 is equal and opposite in sign for space-like and time-like splitting
kernels. Moreover from eq. (2.31), (2.33), (2.35) we can also see that ϕ(k)

q,k from two loop
onwards are equal and opposite in sign giving rise to the above differences in sign between
SIA and DIS.

The agreement of our predictions for the leading term in the kernel with those obtained
using explicit results for CFs is not surprising because the K+G equation that the Φc

J

satisfies and the functions GcJ,Ls are similar to physical evolution equation and the PEK
respectively. The highest power of log(N) in the 1/N coefficient of Kc is due to the
upper limit on the summation in eq. (4.14). We make another interesting comparison
between eq. (5.6) and eq. (5.7). The general structure for PEKs in terms of the anomalous
dimensions and ϕ(k)

c,k given in eq. (5.6) shows that Kcj at any given order is proportional to
βi0, i = j, · · · , 1. On the other hand for eq. (5.7) we have coefficients only proportional to
βi0 and βi−1

0 for Kci . Hence the substitution of the explicit values of A1, C2, D1 and ϕ(k)
c,k in

eq. (5.6) conspires in such a way so as to keep only βi0 and βi−1
0 at every order, which calls

for an explanation. However, this exercise provides a consistency check on our framework.
Detailed study on the structure of sub leading contributions to the PEKs, namely, the
coefficients of 1/N logi−1(N), 1/N logi−2(N) etc at every order ais can unravel the log(N)
structure of ϕf,c. It is to be noted that the results for Kc4, K

c
5 and Kc6 are incomplete due

to the unavailability of the full explicit NSV results for the CFs at a4
s, a5

s and a6
s orders.

While the fixed order predictions for CFs of DIS and SIA from our formalism agree
with those [63], our formalism provides a result in z that sums up both SV and NSV
logarithms to all orders in as in terms of certain universal anomalous dimensions and
process dependent constants. This is possible because we could get an all order solution
for the K+G equation that results from factorisation and renormalisation group invariance.
In addition, our z space result allows to perform resummation of order one terms in the
exponent to improve the precision of theoretical predictions from the NSV terms.

6 Conclusions

Perturbative structure of the observables in QFT is very rich and the higher order pre-
dictions for them provide enormous opportunities to unravel the details of the underlying
dynamics. In particular, inclusive observables such as structure functions in DIS and frag-
mentation functions in SIA can be used to understand factorisation properties in QCD
perturbation theory. This requires the knowledge of infrared structure of on-shell am-
plitudes at higher orders. IR structure of perturbative results show universality through
process independent anomalous dimensions, splitting functions, soft distributions and jet
functions etc. The universality of these quantities allows us to use the results from one
process to make predictions for the other ones. For example, quantities like IR anomalous
dimensions, soft functions parametrise resummation exponents in a process independent
way allowing us to use them for a class of processes to perform threshold resummation. Of-
ten, threshold corrections are important in certain kinematical regions and they contribute
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significantly at every order spoiling the reliability of perturbation theory. Resummation
of such contributions to all orders provides a possible solution. The most dominant one,
namely SV contributions are resummed, conveniently in Mellin space. They show up as
order one contributions through ω = asβ0 log(N) at every order in perturbation theory.
Next to SV terms are often not small at every order demanding careful investigation of
their structure. Such an investigation would help us to systematically include them to all
orders.

In this paper, we begin by studying the structure of logk(1 − z), k = 0, · · · ,∞ NSV
terms at every order ais. We used collinear factorisation of inclusive cross sections, their RG
invariance and K+G equations for the form factors and for the real emission contributions
that contribute. We obtain an all order result in z space that describes the IR structure of
NSV terms in terms of IR anomalous dimensions Cc and Dc and the functions ϕf,c. Given
the result for CF to specific order in as, our z space result can predict SV and NSV terms
of CF with certain accuracy to all orders in as. This feature is the result of universal IR
structure that these contributions demonstrate.

In addition, we find that the finite part of soft distribution and next to soft distribution
functions have integral representations that can be used to study them in Mellin N space.
In Mellin N space taking into account large log(N) and 1/N log(N) contributions, one
can easily resum order one terms namely ω to all orders in as. We also find that ϕf,cs
depend on the hard scattering process breaking the universality that the SV part of the
inclusive cross sections enjoy. Like in z space, if we know CFs to certain order in as,
our results can predict certain 1/N suppressed log(N) contributions to all orders in as.
While this paper addresses only quark initiated reactions (gluons in Higgs-DIS) both in
DIS and SIA, the NSV terms resulting from other scattering reactions can not be ignored
and the perturbative structure and possible resummation of them to all orders are need of
the hour to obtain any consistent analysis. The resummed result taking into account 1/N
corrections will be useful to study the phenomenological importance of NSV contributions
to inclusive observables.
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A NSV Partonic coefficient functions ∆NSV
c

The partonic coefficient function given in eq. (3.1) can be written as,

∆(i)
c (Q2,µ2

R,µ
2
F ,z) = ∆SV,(i)

c (Q2,µ2
R,µ

2
F ,z)+∆NSV,(i)

c (Q2,µ2
R,µ

2
F ,z) (A.1)

where ∆SV,(i)
c (Q2,µ2

R,µ
2
F ,z) can be found in [28, 29, 33, 43, 45]. The ∆NSV,(i)

c to fourth
order for DIS and SIA after setting µ2

R =µ2
F =Q2 has the following expansion:

∆NSV,(i)
c (z) =

(2i−1)∑
k=0

∆ik
c logk(1−z) (A.2)
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Below, we present the ∆ik
c for DIS(c= q for photon exchange and c= g for Higgs exchange).

∆10
c =ϕ

(0)
c,1 ,

∆11
c =ϕ

(1)
c,1 +Dc

1 ,

∆12
c =Cc1 ,

∆20
c =ϕ

(0)
c,2 +ϕ(1)

c,1ζ2

(
f c1 +Bc

1

)
+2ϕ(0)

c,1

(
GcSV,1+gc,11

)
+Dc

1ζ2

(
f c1 +Bc

1

)
−2Cc1ζ3

(
f c1 +Bc

1

)
+Ac1ϕ

(1)
c,1ζ3+Ac1Dc

1ζ3−
1
5A

c
1C

c
1ζ

2
2−

1
2(Ac1)2ζ2+ 1

2(f c1)2+Bc
1f

c
1 + 1

2(Bc
1)2 ,

∆21
c =ϕ

(1)
c,2 +2ϕ(1)

c,1

(
GcSV,1+gc,11

)
−ϕ(0)

c,1

(
β0+f c1 +Bc

1

)
+Dc

2+2Dc
1

(
GcSV,1+gc,11

)
+2Cc1ζ2

(
f c1 +Bc

1

)
−Ac1

(
f c1 +Bc

1

)
−Ac1ϕ

(1)
c,1ζ2−Ac1Dc

1ζ2+4Ac1Cc1ζ3 ,

∆22
c =ϕ

(2)
c,2−ϕ

(1)
c,1

(
β0+f c1 +Bc

1

)
− 1

2D
c
1

(
β0+2f c1 +2Bc

1

)
+Cc2+2Cc1

(
GcSV,1+gc,11

)
+ 1

2A
c
1ϕ

(0)
c,1

−2Ac1Cc1ζ2+ 1
2(Ac1)2 ,

∆23
c =− 1

2C
c
1

(
β0+2f c1 +2Bc

1

)
+ 1

2A
c
1ϕ

(1)
c,1 + 1

2A
c
1D

c
1 ,

∆24
c = 1

2A
c
1C

c
1 ,

∆33
c =ϕ

(3)
c,3−ϕ

(2)
c,2

(
2β0+f c1 +Bc

1

)
+ 1

2ϕ
(1)
c,1

(
2β2

0 +3f c1β0+(f c1)2+3Bc
1β0+2Bc

1f
c
1 +(Bc

1)2
)

+ 1
6D

c
1

(
2β2

0 +6f c1β0+3(f c1)2+6Bc
1β0+6Bc

1f
c
1 +3(Bc

1)2
)
−Cc2

(
β0+f c1 +Bc

1

)
− 1

2C
c
1

(
β1+6GcSV,1β0+2gc,11 β0+2f c2 +4f c1G

c
SV,1+4f c1g

c,1
1 +2Bc

2+4Bc
1G

c
SV,1+4Bc

1g
c,1
1

)
+ 1

2A
c
2ϕ

(1)
c,1 + 1

2A
c
2D

c
1+ 1

2A
c
1ϕ

(1)
c,2 +Ac1ϕ

(1)
c,1

(
GcSV,1+gc,11

)
− 1

6A
c
1ϕ

(0)
c,1

(
4β0+3f c1 +3Bc

1

)
+ 1

2A
c
1D

c
2+Ac1Dc

1

(
GcSV,1+gc,11

)
+ 1

2A
c
1C

c
1ζ2

(
5β0+8f c1 +8Bc

1

)
− 1

2(Ac1)2
(
β0+2f c1 +2Bc

1

)
−(Ac1)2ϕ

(1)
c,1ζ2−(Ac1)2Dc

1ζ2+5(Ac1)2Cc1ζ3 ,

∆34
c = 1

6C
c
1

(
2β2

0 +6f c1β0+3(f c1)2+6Bc
1β0+6Bc

1f
c
1 +3(Bc

1)2
)

+ 1
2A

c
2C

c
1+ 1

2A
c
1ϕ

(2)
c,2

− 1
6A

c
1ϕ

(1)
c,1

(
4β0+3f c1 +3Bc

1

)
− 1

12A
c
1D

c
1

(
5β0+6f c1 +6Bc

1

)
+ 1

2A
c
1C

c
2

+Ac1Cc1
(
GcSV,1+gc,11

)
+ 1

8(Ac1)2ϕ
(0)
c,1−

3
2(Ac1)2Cc1ζ2+ 1

4(Ac1)3 ,

∆35
c =− 1

12A
c
1C

c
1

(
5β0+6f c1 +6Bc

1

)
+ 1

8(Ac1)2ϕ
(1)
c,1 + 1

8(Ac1)2Dc
1 ,

∆36
c = 1

8(Ac1)2Cc1 ,
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∆45
c =− 1

12C
c
1

(
3β3

0 +11f c1β2
0 +9(f c1)2β0+2(f c1)3+11Bc

1β
2
0 +18Bc
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We have put ∆30
c , · · · ,∆32

c and ∆40
c , · · · ,∆44

c along with the above results in the supplemen-
tary material file as they are lengthy. Next, we present the ∆̃ik

c for SIA in terms of ∆ik
c for

DIS. The expansion coefficients ϕ(k)
c,i should be replaced with ϕ̃(k)

c,i given in eq. (2.33) and
eq. (2.34), in the relations provided below.

∆̃20
c = ∆20

c +3Ac1ζ2ϕ
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,
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,
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∆̃34
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c
1 ,

∆̃45
c = ∆45
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(
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(1)
c,1

)
,

∆̃46
c = ∆46

c + 3
8(Ac1)3ζ2C

c
1 . (A.4)

The expressions for ∆̃10
c , ∆̃11

c , ∆̃12
c , ∆̃23

c , ∆̃24
c , ∆̃35

c , ∆̃36
c , ∆̃47

c and ∆̃48
c are exactly same

as the corresponding expressions for the case of DIS. The above results with the explicit
dependence on µ2

R and µ2
F are provided in the supplementary material file attached to this

paper.

B SV coefficients Gc

SV,i in ∆c

We present here the expressions for GcSV,i used in the ∆ik
c for DIS.

GcSV,1 =Gc,(1)
1 ,

GcSV,2 =
(
Gc,(1)

2 +2β0G
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1

)
, (B.1)

The explicit results for GcSV,1, G
c
SV,2 and GcSV,3 in terms of colour factors CA, CF and nf

are given in the supplementary material file attached to this paper.

C NSV resummation constants hc
i,j(ω)

The resummation constants hcij(ω) given in eq. (4.16) are found to be as following. Here
L̄ω = log(1−ω), Lqr = log(Q

2

µ2
R

), Lfr = log(µ
2
F

µ2
R

) and ω=β0as(µ2
R) logN .
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. (C.1)

The above results along with the bigger ones (hc20(ω),hc30(ω),hc31(ω)) and
(hc40(ω),hc41(ω)) are all provided in the supplementary material file attached to this paper.

D NSV resummation constants gc
i(ω)

The resummation constants ḡci (ω) given in eq. (4.16) are presented below. Here L̄ω =
log(1−ω), Lqr = log(Q

2

µ2
R

), Lfr = log(µ
2
F

µ2
R

) and ω=β0as(µ2
R) log(N). Also, Bc

DIS,i are the
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threshold exponent given in [45].
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. (D.1)

As before here also we provide the above results along with ḡc6(ω) in the supplementary
material file attached to this paper.
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