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We explore the model building and phenomenology of flavored gauge-mediation models of
supersymmetry breaking in which the electroweak Higgs doublets and the SUð2Þ messenger doublets
are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into
representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the
Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete
example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of
this scenario suffers from a severe μ=Bμ problem that is well known from ordinary gauge mediation,
expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately
tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-
breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV
Higgs boson mass.
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I. INTRODUCTION

The theoretical paradigm of TeV-scale supersymmetry
(SUSY) continues to be one of the best-motivated candidates
for new physics that can be probed extensively at the LHC
(see, f, Refs. [1,2] for reviews). Indeed, supersymmetric
extensions of the Standard Model (SM) such as the minimal
supersymmetric StandardModel (MSSM) have already been
subjected to stringent tests at the LHC, both from direct
constraints such as the nonobservation of superpartners to
date, with limits on colored superpartners that reachwell into
theTeV region, and constraints from the 2012discovery [3,4]
of a new scalar particle that is compatible with the SMHiggs
boson. While the Higgs mass mh ≈ 125 GeV is within the
allowed range of (perturbative) supersymmetric models, its
relatively high value requires either (i) large stop mixing or
very heavy stops in the MSSM (see, e.g., Ref. [5]) or
(ii) extended Higgs sectors. Together, the data have placed
severe limits on theviable regions of thevast (more than 100-
dimensional) parameter space of the MSSM, largely ruling
out many minimal scenarios for the soft supersymmetry-
breaking parameters.
Of the possible directions to explore in SUSY model

building in light of the experimental bounds, the

gauge-mediated supersymmetry-breaking framework [6–9]
is particularly compelling due to its lack of sensitivity to
unknown UV physics as compared to the gravity-mediation
framework. In the context of the MSSM, however, the
minimal implementation of this idea, known as minimal
gauge mediation, is particularly constrained by the LHC
Higgs measurements [10–12]. The reason is that minimal
gauge-mediation models predict family-universal scalar
masses and vanishing soft trilinear scalar parameters (A
terms) at the messenger scale, requiring a significant amount
of renormalization group (RG) evolution to generate the
needed stop mixing. Even when this structure can be
obtained, in this class of models, it is generally the case that
the Higgs mass bound requires a very heavy superpartner
spectrum that is largely inaccessible at the LHC.
Therefore, it is desirable to go beyond minimal gauge

mediation and consider more intricate models in which the
messengers have nontrivial Yukawa couplings to the SM
fields, as first discussed in Refs. [8,9,13] and more recently
considered in Refs. [14–27]. With a standard messenger
sector of some number of vectorlike pairs of ð5; 5̄Þ of SUð5Þ
(as typically assumed so as not to spoil the approximate
gauge coupling unification of the MSSM), there are many
possible renormalizable couplings of the messengers to the
matter fields, as enumerated, e.g., in Refs. [22,28]. The
generic outcome of the presence of one or more of such
couplings is that the soft terms now include two-loop
contributions to the scalarmasses and one-loop contributions
to the A terms that depend on the messenger Yukawa
couplings (and depending on the model, there can also be
one-loop contributions to the scalar masses). Hence, while
the flavor-blind structure of minimal gauge mediation is
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sacrificed, what has been gained is a much greater ease in
accommodating the Higgs mass constraints, and thus in
constructing viable models of the MSSM parameter space.
One class of interesting models of this type is one in

which the SUð2Þ messenger doublets of the ð5; 5̄Þ pairs
couple to the SM fields in a way similar to the
electroweak Higgs fields Hu;d. In such models, which
are known as “flavored gauge-mediation”models (see, e.g.,
Refs. [14,19,23–27]), the underlying mechanism for gen-
erating the SM Yukawa couplings, such as via a horizontal
Uð1Þ symmetry, should also play a dominant role in the
structure of the messenger Yukawa couplings. One imme-
diate situation then is to address the impact of the flavor-
violating contributions to the soft supersymmetry-breaking
parameters (see, e.g., Refs. [29–32]) that are a generic
consequence of this model structure. Models of this type
can be constructed such that new contributions are con-
sistent with minimal flavor violation and thus are safe from
large flavor-violating effects beyond the SM. In cases in
which there is not precise alignment of this type, viable
models can also be constructed in which the messenger
Yukawas can share the same parametric suppression as the
SM Yukawas, which can also result in acceptably small
flavor violation [14,19,23,24]. While phenomenologically
acceptable constructions are not guaranteed, it has been
shown that the potential flavor and CP violation in this
class of models is more strongly suppressed in general than
indicated by naive estimates due to the special structure of
the soft terms as governed by a (softly) broken “messenger
number” symmetry [26,27].
Within the flavored gauge-mediation framework, one

novel model-building direction is to consider scenarios in
which the SUð2Þ messenger doublets and the electroweak
Higgs doublets transform as multiplets under a discrete
non-Abelian symmetry. The idea that this discrete non-
Abelian symmetry is also the horizontal family symmetry
that governs the SM and messenger Yukawa couplings was
first proposed by proposed by Perez et al. [20] (hereafter
referred to as “PRZ”). In the PRZ approach, the field that
breaks the family symmetry also breaks supersymmetry,
resulting in soft supersymmetry-breaking terms with a
nontrivial flavor dependence that originates from both
the details of the family symmetry breaking and the mixing
of the Higgs and messenger fields. After enumerating the
constraints for generating reasonable soft supersymmetry-
breaking terms, PRZ constructed a toy two-generation
model in which the non-Abelian symmetry group is the
S3 symmetry group. This model achieves hierarchical SM
Yukawas and predicts that the messenger Yukawas obey
an inverted hierarchy; the resulting off-diagonal flavor-
violating couplings of the soft supersymmetry-breaking
terms can be reduced by RG effects from the messenger
scale to the electroweak scale. PRZ’s approach is striking in
that it dispels the standard folklore that the unification of
family symmetry breaking and supersymmetry breaking

inevitably leads to excessive flavor violation. Their
approach also suggests new flavor model-building direc-
tions in which the Higgs fields transform nontrivially under
the family symmetry group.
In this paper, we continue the exploration of the idea that

the electroweak and messenger doublets are connected via
a discrete non-Abelian symmetry, which we also take to be
S3 for simplicity, and explore possibilities for constructing
potentially viable models with three generations. Our study
deviates from the PRZ framework in that we consider two
possibilities for the S3 symmetry: (i) it is just a symmetry
relating the Higgs and messenger doublets, and hence the
SM fields are S3 singlets, and (ii) it is (part of) the full
family symmetry that governs the SM Yukawa couplings,
and hence the SM fields are embedded in nontrivial S3

representations. Clearly, the choice made will dramatically
affect the possibilities for the SM and messenger Yukawa
couplings, and thus the structure of the resulting soft terms.
Our focus will not be on constructing fully viable three-
generation models of the SM and messenger Yukawas but
instead on the structure of the soft terms in each case and
the resulting constraints on the superpartner mass spectrum.
Hence, we will focus on third-generation couplings and
defer a more complete study for future work.
We will see immediately that in this approach we will

generally be confronted by a severe μ=Bμ problem that
must be addressed to have any hope of obtaining a realistic
theory. The presence of a μ=Bμ problem is a well-known
problem in gauge mediation [33,34] (see also Ref. [9] for
an overview). Here, it is more severe than usual because of
the necessity of coupling the Higgs fields to the super-
symmetry-breaking field at the renormalizable level, since
the Higgs and doublet messengers are connected by the
discrete non-Abelian symmetry. We will show that, while a
minimal implementation of this framework leads inevitably
to this severe μ=Bμ problem, viable scenarios can be
constructed when the messenger sector is enlarged to
include different representations of the Higgs-messenger
fields with respect to the S3 symmetry, such that the μ and
Bμ parameters can be separately tuned to acceptable values.
This therefore is not a compelling solution to the μ=Bμ

problem of gauge mediation, but it does at least allow for
the possibility of viable (albeit tuned) models of the soft
supersymmetry-breaking mass parameters of the MSSM.
The structure of the paper is as follows. We begin in the

next section with an overview of our theoretical model-
building framework and discuss the ways in which it has
similarities to and differences from the PRZ approach. We
then demonstrate how a minimal implementation of the
Higgs-messenger sector results in the severe μ=Bμ problem
just mentioned and discuss possible resolutions of the issue.
In the following section, we next present an example of an
enlarged Higgs-messenger field content that allows for
separate adjustments of μ and Bμ. We follow this discussion
with examples of different assignments of the SM fields
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into representations of the S3 symmetry and discuss the
resulting impact on the Yukawa couplings of the SM fields
to the electroweak Higgs fields and the messenger fields.
For each example, we investigate the phenomenology of
the resulting soft supersymmetry-breaking terms and inves-
tigate patterns of superpartner mass spectra that are con-
sistent with the 125 GeV Higgs mass. Finally, we
summarize and discuss prospects future model-building
directions along these lines.

II. THEORETICAL FRAMEWORK

A. General considerations

Our framework for exploring flavored gauge mediation
is as follows. We assume the presence of a discrete non-
Abelian symmetry that we denote by G. The key features of
G are as follows. First, G relates the chiral superfields that
will later be identified as the electroweak Higgs fields Hu;d

and the SUð2Þ doublet messengers Mui;di, in which
i ¼ 1; 2;…; N, into a set of representations of G, that we
denote collectively as follows,

Hu ¼

0
BBBBB@

Hu1

Hu2

..

.

HuNþ1

1
CCCCCA ¼ Ru

0
BBBBB@

Hu

Mu1

..

.

MuN

1
CCCCCA;

Hd ¼

0
BBBBB@

Hd1

Hd2

..

.

HdNþ1

1
CCCCCA ¼ Rd

0
BBBBB@

Hd

Md1

..

.

MdN

1
CCCCCA; ð1Þ

in which the Ru=d are rotation matrices that are obtained
upon diagonalizing the mass matrices of the Higgs/doublet
messenger sector of the theory. In the above, we note that
Hu;d can either represent a single set of multiplets of G or
represent a collection of them, as we will later explore in
greater detail. We will take the SUð3Þ triplet messengers
Tui;di, which are needed to generate gluino masses, to be G
singlets for simplicity. Recall that the messenger triplets
Tui;di and messenger doublets Mui;di together form N
vectorlike pairs of 5, 5̄ representations of SUð5Þ.
Second, the spontaneous breaking of G is due at least

partially to a field or fields that break supersymmetry in the
hidden sector. In other words, in the supersymmetry-
breaking sector, which consists of superfields that develop
both scalar and F-component vacuum expectation values
(vevs), there is at least one field that has a nontrivial G
representation. With these assumptions in hand, we will
later specify options for the coupling of Hu;d to the
supersymmetry-breaking sector. In addition, depending
on the model in question, there may be other “flavon”

supermultiplets that are SM singlets charged under G that
acquire scalar vevs but do not participate in supersymmetry
breaking. These fields may be needed to generate nontrivial
Yukawa couplings to the matter fields, as discussed below.
We will also assume that there is a supersymmetry-

breaking field XT that is a singlet with respect to G; we
assume throughout that this field couples only to the
[SUð3Þc triplet and G-singlet] messengers Tui;di as follows,

WT ¼ λTXTTuiTdi; ð2Þ

such that when XT develops vacuum expectation values in
the scalar and F components

hλTXTi ¼ MT þ θ2FT: ð3Þ

Quite generally, in what follows, we will assume that the
triplet messengers and XT do not have renormalizable
couplings to the messenger doublets or the MSSM fields.
This is necessary to avoid, for example, the possibility of
dimension-4 operators that can contribute to rapid proton
decay, such as TuiQjQk and TdiQjLk. In practice, guar-
anteeing the absence of such interactions requires addi-
tional discrete symmetries, which are not difficult to
implement on a case-to-case basis.
We also pause here to comment about this structure in

light of possible embeddings of such scenarios within the
paradigm of grand unification. It is quite clear that the
different embeddings of the doublet and triplet messengers
in G are not straightforward to incorporate within grand
unified theories. In particular, attempting to put the dou-
blets and triplets on the same footing requires the intro-
duction of Higgs triplets that mix nontrivially with the
messengers, requiring a more complicated mechanism to
handle the doublet-triplet splitting problem than is usual in
grand unified models. For the purposes of this exploration,
we just note that these are challenges that must be faced in
any attempt to uplift the scenarios presented here to a fully
grand unified setting, and with that in mind, our goal is to
examine the phenomenological viability of this model-
building direction without these additional constraints.
Returning now to the electroweak sector, note that the

role of G for the observable sector fields other than the
electroweak Higgs doublets has not yet been specified. In
this sector, which we presume for simplicity consists solely
of the MSSM matter and gauge supermultiplets, the
question of whether the matter fields are also charged with
respect to G or not will be a model-building choice that will
have a significant impact on the resulting MSSM and
messenger Yukawa couplings. We will explore different
options in this work.
The diagonalization of the messenger-Higgs sector and

the identification of the electroweak Higgs fields Hu;d and
the (heavier) messenger doublets Mui;di, together with the
mixing matrices Ru;d, will play a critical role in the
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structure of the MSSM and messenger Yukawa couplings.
In a schematic form, the superpotential couplings involving
the MSSM matter superfields (in self-evident notation) and
Hu;d of Eq. (1) take the form (neglecting neutrino masses
for simplicity)

WY ¼ ðyuQūHuÞ þ ðydQd̄HdÞ þ ðyeLēHdÞ; ð4Þ
in which family indices have been suppressed for simplicity
and the parentheses denote contractions of G. yu;d;e re-
present prefactors that may either be Yukawa couplings of
renormalizable superpotential couplings or effective cou-
plings originating from higher-dimensional operators.
Upon supersymmetry breaking and the breakdown of G,
the effective Yukawa couplings of the MSSM fields to the
MSSM Higgs fields Hu;d and to the heavy messenger
doublets Mu;di take the form

WY ¼ YuQūHu þ YdQd̄Hd þ YeLēHd þ Y 0
uiQūMui

þ Y 0
diQd̄Mdi þ Y 0

eiLmēMdi: ð5Þ
While the details of the relations between the MSSM
Yukawa couplings Yu, Yd, and Ye and the messenger
Yukawa couplings Y 0

ui, Y
0
di, and Y 0

ei will depend in detail
on the model, the two sets of couplings are generally related
and depend on various entries of the unitary matrices Ru;d.
As is well known, messenger Yukawa couplings of this
type result in additional contributions to the soft terms
beyond those present in minimal gauge mediation. These
corrections have been computed for example in Ref. [19]
and are given for completeness in full three-family structure
in Appendix.
The messenger Yukawas are not necessarily diagonal in

the same basis as the MSSM Yukawas, such that the
constraints from experimental bounds on flavor-changing
processes must be considered carefully in each case.
Analyses of the constraints from flavor physics on certain
classes of flavored gauge-mediation scenarios have been
presented in Ref. [23]. A complete analysis of the question
of the viability of full three-family models necessarily
involves the complete modeling of the SM Yukawa
couplings, which we do not pursue here. Instead, we
consider toy scenarios, depending on ways in which the
MSSM matter fields are embedded within representations
of the non-Abelian discrete symmetry group G, and focus
on the effects on the MSSM soft terms.
In this paper, we presume that the couplings between the

messengers and the MSSM fields as given in Eq. (5) are the
only direct interactions between the sectors (see Ref. [22]
for a classification of additional terms that can be in
principle be present). This will generically require the
presence of symmetries in addition to G to ensure that such
additional messenger-matter couplings are absent; we leave
the possibility of including them to future work.
Up to this point, we have left G unspecified. We will now

consider the concrete case that G ¼ S3, the permutation

group on three objects. The group theory of S3 can be
found in many references (see, e.g., Ref. [20]); here, we just
mention a few main features for completeness. S3 contains
three irreducible representations, the singlet 1, a one-
dimensional representation 10, and a doublet 2, with tensor
products

1 ⊗ 2 ¼ 2; 10 ⊗ 2 ¼ 2; 2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2:

ð6Þ
We will use the same presentation as PRZ [20]. In this
basis, the singlet representation obtained from the tensor
products of either two doublets or three doublets is as
follows:

ð2 ⊗ 2Þ1 ¼
��

a1
a2

�
⊗

�
b1
b2

��
1

¼ a1b2 þ a2b1: ð7Þ

ð2 ⊗ 2 ⊗ 2Þ1 ¼
��

a1
a2

�
⊗

�
b1
b2

�
⊗

�
c1
c2

��
1

¼ a1b1c1 þ a2b2c2: ð8Þ
Here, we will restrict ourselves for simplicity to the case
in which the fields in our model framework are either the
1 or 2 representations of S3, in which case Eq. (8) provides
us with the relations needed to construct S3 invariants.

B. Minimal Higgs-messenger sector
and the μ=Bμ problem

We now turn to the model building of the Higgs-
messenger sector. We will first consider a minimal imple-
mentation of this sector, in which by “minimal” we mean
the number of degrees of freedom; this scenario was also
considered by PRZ [20]. The first ingredient is the
introduction of a hidden sector field XH, which is taken
to be a 2 of S3. The next ingredients are the assignment of
Higgs-messenger fields Hu and Hd to doublet representa-
tions of S3 as well. These charge assignments are shown in
Table I (here, we neglect to show XH and the triplets Tui;di).
With these S3 charge assignments, the renormalizable

Higgs-messenger interactions in the superpotential then
take the form

WH ¼ mHuHd þ λðXHHuHdÞ; ð9Þ
in which λ is a dimensionless coupling, m is a super-
symmetric mass parameter (i.e., a μ term), and the
parentheses denote S3 contractions. Through some hidden

TABLE I. S3 charge assignments for a minimal Higgs-
messenger sector as studied in Ref. [20].

Hð2Þ
u Hð2Þ

d XH

S3 2 2 2
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sector dynamics, XH acquires a vacuum expectation value
for its scalar and F components, which is parametrized as
follows,

hλXHi ¼ M

�
sinϕ

cosϕ

�
þ θ2F

�
sin ξ

cos ξ

�
; ð10Þ

where ϕ and ξ characterize the vev directions of the scalar
and F components, respectively. Here, we will work in the
limit in which F ≪ M2 for simplicity. After symmetry
breaking, the effective superpotential takes the following
form (in self-evident notation):

WH ¼ HT
u

�
M sinϕ m

m M cosϕ

�
Hd

þ θ2HT
u

�
F sin ξ 0

0 F cos ξ

�
Hd

≡HT
uðMþ θ2FÞHd: ð11Þ

As discussed by PRZ [20], it is preferable to consider the
case that

½M; F � ¼ 0: ð12Þ
Once Eq. (12) is imposed, the same unitary rotation
diagonalizes both M and F . Thus, in the situation of
interest, in which there is a mass hierarchy obtained upon
the diagonalization of these quantities such that the lighter
states can be identified as Hu;d and the heavier state can be
identified as Mu;d (note here N ¼ 1 with this minimal
particle content), the heavier states can be smoothly
integrated out to obtain the effective theory. PRZ showed
that if ½M; F � ≠ 0 the resulting soft mass parameters have
some pathologies, including one-loop contributions to the
soft scalar mass-squared parameters that are not strongly
suppressed in the F ≪ M2 limit [20]. Thus, we will focus
on the case of the vanishing commutator of Eq. (12), which
yields the condition

½M; F � ¼
�

0 mFðcos ξ − sin ξÞ
−mFðcos ξ − sin ξÞ 0

�
¼ 0:

ð13Þ
Neglecting the trivial solutions to Eq. (13) in which m
and/or F is equal to zero, we see that we need ξ ¼ π=4; i.e.,
F must be proportional to the identity, while M is not
constrained.
In this case, we see immediately that this scenario suffers

from a severe μ=Bμ problem. More precisely, as F is
proportional to the identity, an eigenvalue hierarchy is not
possible, and hence b ¼ Bμμ ∼OðFÞ. While it is in
principle possible to obtain a hierarchy of eigenvalues
forM (for example, in the work of PRZ there is an effective
seesaw structure for the μ term that results from taking

ϕ ¼ 0 [20]), generally we have Bμ ≫ μ, and thus if
μ ∼msoft, Bμ ≫ msoft.
The μ=Bμ problem encountered here is not surprising,

given the well-known fact that gauge-mediated models
generically suffer from a μ=Bμ problem (see, e.g., Ref. [9]
for an overview). However, the problem here is particularly
severe. To see this more clearly, recall that it has long been
realized that a direct superpotential coupling of the super-
symmetry-breaking field to the electroweak Higgs doublets
Hu;d is problematic because it results in an undesirable
hierarchy between μ and Bμ. With the usual notation that
the supersymmetry-breaking field is denoted by X, the
superpotential

WH ¼ λXHuHd ð14Þ
generates a tree-level value for both μ and b ¼ Bμμ:

μ ¼ λhXi; b ¼ Bμμ ¼ λhFXi: ð15Þ

Given that msoft ∼ ð1=ð16π2ÞÞFX=X, we have

Bμ ¼ hFXi=hXi ∼ 16π2msoft; ð16Þ
and hence if μ ∼msoft, Bμ is too large by a loop factor,
which indicates that it is desirable to eliminate the coupling
of Eq. (14). In our framework, however,Hu;d are embedded
together with the doublet messengers Mui;di into S3

representations. A nonvanishing superpotential coupling
betweenX and theMui;di then implies that the superpotential
coupling of X to the Higgs fields as in Eq. (14) is auto-
matically also present, resulting in a severe μ=Bμ problem.
To move forward, therefore, it is necessary to avoid this

problematic result. That being said, most known approaches
to resolving the μ=Bμ problem of gauge mediation without
fine-tuning begin by forbidding the coupling of Eq. (14) and
generating μ and Bμ from alternative operators (see, e.g.,
Refs. [33,34]). It is not at all obvious how such approaches
could work in our framework. A (less ambitious) option is to
construct scenarios that alleviate this problem through fine-
tuning. To be more precise, this would entail having a
situation in which it is possible to fine tune both μ and Bμ

separately. This would not be a true solution to the μ=Bμ

problem of gauge mediation in that tuning is required, but it
does allow for the constructionof phenomenologically viable
models of the soft terms. This is the approach wewill take in
this paper.
We see that, even with allowing fine-tuning, our minimal

S3 Higgs-messenger scenario given above is not viable, as
merely setting the F term component of XH that couples to
the eventual electroweak Higgs doublets to zero is not
consistent with the requirement that ½M; F � ¼ 0. Hence, to
construct a working (toy) model, we need to extend this
model to include additional degrees of freedom. There are
several model-building directions that can be taken:
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(i) One option is to add additional singlet superfields
that do not develop F terms and attempt to address
the μ=Bμ problem via a next-to-minimal supersym-
metric Standard Model–like approach in which one
or more singlets are tied with electroweak symmetry
breaking (see, e.g., Refs. [9,35]).

(ii) A second option is to include an additional super-
symmetry-breaking field that couples to Hu;d. This
additional field, which we will call X0, would need to
have different S3 quantum numbers from XH. The
different S3 contractions of X0HuHd and XHHuHd
then will result in a different structure for M and F ,
allowing for new possibilities for generating realistic
mass hierarchies while satisfying ½M; F � ¼ 0.
Indeed, we already have a candidate for this field.

It is XT , the S3 singlet field that couples to the
messenger triplets. In our minimal scenario, we
recall that XH couples only to Hu;d and XT only
couples to the triplets. However, the S3 assignments
certainly allow for XT to couple to Hu;d, and hence
there is nothing in the intrinsic structure of G that
disallows this possibility. That being said, it is
important to note that relaxing the assumption that
XT only couples to the triplet messengers would
need to be done in the context of still guaranteeing
that potentially dangerous renormalizable inter-
actions between the MSSM fields and the messenger
triplets are disallowed.

(iii) A third option is to keep the feature that it is only XH
that couples to theHiggs-messenger fields andenlarge
theHiggs-messenger sector particle content to include
different S3 representations. In this case, the fields
Hu;d as given inEq. (1) then include both doublets and
singlets of S3. Depending on the details of the mass
matrices for these fields, this can result in additional
messenger fields or additional electroweak Higgs
fields in the theory. In either case, the additional
degrees of freedomgained through usingmoreHiggs-
messenger fields provide new possibilities for
obtaining viable scenarios in which μ and Bμ can
be separately tuned while maintaining ½M; F � ¼ 0.

Each of these possibilities leads to intriguing model-
building directions. In the context of the MSSM, the
second and third choices are of particular interest. In this
paper, we will focus on the third option, as it turns out to be
the most straightforward direction for obtaining models of
the MSSM soft terms. We leave the exploration of the
second option to future work.

III. EXTENDED HIGGS-MESSENGER SECTOR

In this section, we will construct a scenario in which we
can separately tune μ and Bμ while maintaining ½M; F � ¼ 0
and determine the resulting messenger Yukawa couplings
and their subsequent contributions to the MSSM soft terms.

As described in the previous section, this scenario will
include two supersymmetry-breaking fields: XH, which is a
2 of S3 and couples only to the Higgs-messenger fields at
the renormalizable level, and XT , which is a S3 singlet that
couples only to the triplet messengers at the renormalizable
level. To this, we add the following Higgs-messenger sector
field content. As in the minimal case also studied by PRZ,
we include a pair of messenger-Higgs fields that are in the 2

representation of S3. We will label these fields byHð2Þ
u;d. We

also include a pair of Higgs-messenger fields that are S3

singlets, which we will denote by Hð1Þ
u;d. These charge

assignments are shown in Table II. As previously stated, we
assume throughout that XT and the triplet messengers,
which are S3 singlets, do not have renormalizable cou-
plings to the Higgs-messenger sector. In practice, this
requires the addition of additional symmetries to forbid
such couplings, which does not pose a significant challenge
to arrange. The renormalizable superpotential couplings of
XH to the Higgs-messenger fields then take the form

WH¼ λðXHH
ð2Þ
u Hð2Þ

d Þþλ0ðXHH
ð1Þ
u Hð2Þ

d Þþλ00ðXHH
ð2Þ
u Hð1Þ

d Þ

¼MHT
u

0
B@

sinϕ 0 ϵ0cosϕ

0 cosϕ ϵ0 sinϕ

ϵ00cosϕ ϵ00 sinϕ 0

1
CAHd

þθ2FHT
u

0
B@

sinξ 0 ϵ0cosξ

0 cosξ ϵ0 sinξ

ϵ00cosξ ϵ00 sinξ 0

1
CAHd; ð17Þ

in which ϵ0 ¼ λ0=λ, ϵ00 ¼ λ00=λ, and the quantities Hu;d are
now given by

Hu ¼

0
BBB@

ðHð2Þ
u Þ1

ðHð2Þ
u Þ2

Hð1Þ
u

1
CCCA; Hd ¼

0
BBB@

ðHð2Þ
d Þ1

ðHð2Þ
d Þ2

Hð1Þ
d

1
CCCA: ð18Þ

Let us assume for the moment that there are no bare mass
terms. With only the couplings of Eq. (18), the commu-
tation condition ½M; F � ¼ 0 only has solutions when ϵ0 ¼
ϵ00 ¼ 0 or ϕ ¼ ξ. The case with ϵ0 ¼ ϵ00 ¼ 0 results in
uncoupled singlets that do not mix with the S3 doublets,
and in the case that ϕ ¼ ξ, the two matrices have identical
structure, and thus the eigenvalues will be proportional,
resulting again in the μ=Bμ problem that Bμ=μ ¼ F=M.
Hence, bare mass terms are needed, and indeed they are

allowed by the S3 symmetry. Including them results in the
following modification to Eq. (18),

TABLE II. The S3 charges for the extended Higgs-messenger
model described in this section.

Hð2Þ
u Hð1Þ

u Hð2Þ
d Hð1Þ

d XH

S3 2 1 2 1 2
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WH ¼ λðXHH
ð2Þ
u Hð2Þ

d Þ þ λ0ðXHH
ð1Þ
u Hð2Þ

d Þ
þ λ00ðXHH

ð2Þ
u Hð1Þ

d Þ þ κMðHð2Þ
u Hð2Þ

d Þ
þ κ0MðHð1Þ

u Hð1Þ
d Þ; ð19Þ

such that in this case M and F are given by

M ¼ M

0
BB@

sinϕ κ ϵ0 cosϕ

κ cosϕ ϵ0 sinϕ

ϵ00 cosϕ ϵ00 sinϕ κ0

1
CCA;

F ¼ F

0
BB@

sin ξ 0 ϵ0 cos ξ

0 cos ξ ϵ0 sin ξ

ϵ00 cos ξ ϵ00 sin ξ 0

1
CCA:

For simplicity, we will take the case that ϵ00 ¼ ϵ, such that
M and F are symmetric matrices, and further take ϵ0 ¼ 1 for
concreteness. We will also restrict ourselves to real quan-
tities only. In this case, the commutation condition results
in the nontrivial solution

κ0 ¼ κ ¼ sinðϕ − ξÞ
cos ξ − sin ξ

; ð20Þ

which clearly only holds for ξ ≠ π=4, whereas for ξ ¼ π=4,
the only solution is ϕ ¼ π=4, with no constraints on κ. For
reasons that will become clear shortly, we will focus on the
solution that is valid for ξ ≠ π=4. In this case, we have

M ¼ M cosϕ

0
BB@

tanϕ tanϕ−tan ξ
1−tan ξ 1

tanϕ−tan ξ
1−tan ξ 1 tanϕ

1 tanϕ tanϕ−tan ξ
1−tan ξ

1
CCA;

F ¼ F cos ξ

0
BB@

tan ξ 0 1

0 1 tan ξ

1 tan ξ 0

1
CCA: ð21Þ

Since M and F are simultaneously diagonalizable, we see
from the form of F that the mixing only depends on tan ξ.
The eigenvalues of F , which we denote by Fi¼1;2;3, take the
form

F1 ¼ Fðcos ξþ sin ξÞ;
F2;3 ¼∓F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin ξ cos ξ

p
: ð22Þ

Similarly, the eigenvalues of M, denoted by Mi¼1;2;3, are
given by

M1 ¼ M

�
cosðξþ ϕÞ − 2 sinðξ − ϕÞ

cos ξ − sin ξ

�
;

M2;3 ¼∓M

�
cosϕ − sinϕ
cos ξ − sin ξ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin ξ cos ξ

p
: ð23Þ

The eigenvalues F1 and M1 are associated with the
trimaximal vector, ð1= ffiffiffi

3
p Þð1; 1; 1Þ. The minus sign asso-

ciated with F2 andM2 can be removed by a rephasing of its
associated eigenvector in either Ru or Rd. With this in
mind, one specific choice for the rotation matrices Ru;d is
as follows,

Ru ¼

0
BBB@

1ffiffi
3

p ∓ 1ffiffi
2

p
N2

ð1 − tan ξ
1þδÞ − 1ffiffi

2
p

N3

ð1 − tan ξ
1−δÞ

1ffiffi
3

p ∓ 1ffiffi
2

p
N2

tan ξ
1þδ − 1ffiffi

2
p

N3

tan ξ
1−δ

1ffiffi
3

p � 1ffiffi
2

p
N2

− 1ffiffi
2

p
N3

1
CCCA; ð24Þ

in which the upper (lower) sign in the second column denotes
Ru (Rd), δ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−tanξþtanξ2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−sinξcosξ
p

=cosξ, and
the coefficients N2;3 take the form

N2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

tan ξ
1þ δ

þ
�
tan ξ
1þ δ

�
2

s
ð25Þ

N3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

tan ξ
1 − δ

þ
�
tan ξ2

1 − δ

�
2

s
: ð26Þ

Wenow need to build in the eigenvalue hierarchies, i.e.,F1 ≡
b ≪ F2;3 and M1 ≡ μ ≪ M2;3. We start by setting μ ¼ M1

andb ¼ F1, such thatwe obtain one light pair of doublets that
will be identified as Hu;d. Equation (22) shows that b is
naturally OðFÞ, but a light eigenvalue can be obtained for
ξ → −π=4, with b ¼ 0 in the exact limit that ξ ¼ −π=4.
Writing ξ ¼ −π=4þ η, we have

b
F
≡ F1 ¼

ffiffiffi
2

p
ηþOðη2Þ; F2;3

F
¼

ffiffiffi
3

2

r
þOðη2Þ: ð27Þ

Hence, a tuning of b to phenomenologically acceptable
values can be done via the parameter η. Turning to the issue
of tuning the μ parameter, we see that if ϕ ¼ ξ, then
μ=M ¼ b=F, which is the statement of the μ=Bμ problem
in gauge mediation. Therefore, a detuning of ϕ from ξ is
needed, while still obtaining μ ≪ M2;3 ∼OðMÞ. Setting
ϕ ¼ ξþ ρ, we have to leading order that in the ξ → −π=4
limit

μ

M
≃

ffiffiffi
2

p
ηþ 3ffiffiffi

2
p ρ;

M2;3

M
≃

ffiffiffi
3

2

r
; ð28Þ

which demonstrates that in the expression for μ the term
proportional to ρ must be able to counter the

ffiffiffi
2

p
η term

sufficiently, such that the appropriate hierarchy between μ and
Bμ can be achieved. More precisely, what is needed is that in
this limit
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Bμ ¼
b
μ
¼ F

M
2η

3ρ
∼

1

16π2
F
M

∼msoft; ð29Þ

i.e., both η ≪ 1 and ρ ≪ 1, and ρ=η → ∼ð4πÞ2. In the ξ →
−π=4 limit, the matrices Ru;d are

Ru;d ¼

0
BBBBB@

1ffiffi
3

p ∓ 1
2

�
1þ 1ffiffi

3
p
�

1
2

�
1 − 1ffiffi

3
p
�

1ffiffi
3

p �1
2

�
1 − 1ffiffi

3
p
�

− 1
2

�
1þ 1ffiffi

3
p
�

1ffiffi
3

p � 1ffiffi
3

p 1ffiffi
3

p

1
CCCCCAþOðηÞ:

ð30Þ

Though this fine-tuning is not aesthetically very pleasing, it is
worth noting that something has been accomplished in this
section:we are now able to construct viablemodels sinceμ and
b canbe tuned independentlywhile keeping ½M; F � ¼ 0,which
was not possible in the more minimal scenario described
previously. Thus, the μ=Bμ problem has been alleviated,
though not solved dynamically.
This Higgs-messenger sector will be our starting point

for model building. To this, we will add two pairs of SUð3Þ
messenger triplets to preserve anomaly cancellation and
gauge coupling unification and generate a nonzero gluino
mass (note that two pairs of messenger triplets are needed
because there are two heavy pairs of messenger doublets
upon diagonalization of the Higgs-messenger sector). With
this result in hand, we turn to an examination of the
possibilities for generating the Yukawa couplings to the
observable sector and the resulting gauge-mediated MSSM
soft terms.

IV. MODELS

We now turn to the observable sector and discuss options
for embedding the MSSMmatter fields into representations
of G. There are clearly a variety of possibilities. If the
MSSM matter fields have nontrivial G quantum numbers,
then by definition, G is (at least part) of the family
symmetry group as well as the Higgs-messenger symmetry
group. This is the strategy that was employed by PRZ [20];
working with G ¼ S3 (as we do here), they employed the
minimal Higgs-messenger sector of Sec. II and considered
a two-family scenario in which all MSSM matter fields
were assigned to 2’s of S3. Hence, one possibility for us to
explore is to extend this to three families, using the
modified Higgs-messenger sector of the previous section.
At the other end of the spectrum, another possibility is to
make the MSSM matter fields inert with respect to S3.
There are also mixed scenarios in which some of the
MSSM states are S3 singlets and others are not. We will not
attempt to be systematic and classify all scenarios in this
work but rather focus on a few representative yet simple
examples.

An important model-building requirement is that it is
desirable to have the top quark Yukawa coupling to arise
from a renormalizable operator. In general, this means that if
the Higgs-messenger sector consists only of nontrivial
representations of G (i.e., it has no G singlets), at least some
of what would be identified as the top quark degrees of
freedom would also need to be in nontrivial representations
of G; otherwise, G would forbid a renormalizable top quark
coupling. However, if theHiggs-messenger sector includesG
singlets, the top quark degrees of freedom can remain inert.
In the S3 models considered here, the analogous situation

is that if the Higgs-messenger field content only includes
doublets we would need to have either Q3 or ū3 (or both) as
components of S3 doublets. However, as demonstrated
previously, one of the ways to alleviate the μ=Bμ problem
is to include Higgs-messenger fields that are S3 singlets in
addition to the Higgs-messenger S3 doublets. Therefore, our
Higgs-messenger sector allows for several situations in
which we obtain a renormalizable top quark Yukawa
coupling. We can either have this coupling originate from

the coupling to the S3 singlet, Hð1Þ
u , in which case the top

quark degrees of freedom are S3 singlets, or we can have the
top quark Yukawa coupling arise from the coupling to theS3

doublet, Hð2Þ
u , in which case some or all of the top quark

degrees of freedom (together with other quark degrees of
freedom) should be embedded in S3 doublets. Wewill find it
useful in what follows to consider these two different
categories of models separately.

A. Top quark Yukawa coupling from Hð1Þ
u models

In this set of models, the top quark degrees of freedom
are inert with respect to S3, such that

Wtop ¼ ytQ3ū3H
ð1Þ
u ; ð31Þ

in which yt is an Oð1Þ number. Using our result for Ru in
the ξ → −π=4 limit as given in Eq. (30),

Hð1Þ
u ¼

2
64Ru

0
B@

Hu

Mu1

Mu2

1
CA
3
75
3

¼ 1ffiffiffi
3

p ðHu þMu1 þMu2Þ; ð32Þ

we obtain equal values for the leading order contributions
to the MSSM top quark Yukawa coupling and the mes-
senger top quark Yukawa couplings,

Wtop ¼ YtQ3ū3Hu þ YtQ3ū3Mu1 þ YtQ3ū3Mu2; ð33Þ
in which Yt ¼ yt=

ffiffiffi
3

p
. Thus, the messenger Yukawa cou-

plingsY 0
t1 andY

0
t2 of the top quark to themessengersMu1 and

Mu2 are both equal to the top quark Yukawa coupling Yt.
Focusing for simplicity on third-family Yukawa cou-

plings only, we can either have the b and τ Yukawas from
similar operators or they can in principle arise from
nonrenormalizable operators (or at least, these are the
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dominant contributions). If the b and τ degrees of freedom
are also S3 singlets, the Yukawa couplings arise from the
following superpotential, which we will label as WA1,

WA1 ¼ ytQ3ū3H
ð1Þ
u þ ybQ3d̄3H

ð1Þ
d þ yτL3ē3H

ð1Þ
d ; ð34Þ

in self-evident notation. Since we have, in analogy with
Eq. (32),

Hð1Þ
d ¼

2
64Rd

0
B@

Hd

Md1

Md2

1
CA
3
75
3

¼ 1ffiffiffi
3

p ðHd−Md1þMd2Þ; ð35Þ

the Yukawa interactions of the third-generation fields with
the Higgs and messengers take the form

WA1 ¼ YtQ3ū3Hu þ YtQ3ū3Mu1 þ YtQ3ū3Mu2

þ YbQ3d̄3Hd − YbQ3d̄3Md1 þ YbQ3d̄3Md2

þ YτL3ē3Hd − YτL3ē3Md1 þ YτL3ē3Md2; ð36Þ

in which Yb ¼ yb=
ffiffiffi
3

p
and Yτ ¼ yτ=

ffiffiffi
3

p
, such that the

magnitudes of the b and τ messenger Yukawa couplings
are thus also identical to their MSSM counterparts. We will
refer to this scenario as model A1. In this scenario, the
corrections to the MSSM soft terms due to the messenger
Yukawas are as follows,

δm2
Q33

¼ Λ2

ð4πÞ4 ½36ðY
4
t þ Y4

bÞ þ 8Y2
bðY2

t þ Y2
τÞ

− 2g̃2uY2
t − 2g̃2dY

2
b�

δm2
ū33 ¼

Λ2

ð4πÞ4 ½72Y
4
t þ 8Y2

t Y2
b − 4g̃2uY2

t �;

δm2
d̄33

¼ Λ2

ð4πÞ4 ½72Y
4
b þ 8Y2

bY
2
t þ 16Y2

bY
2
τ − 4g̃2dY

2
b�

δm2
L33

¼ Λ2

ð4πÞ4 ½20Y
4
τ þ 24Y2

bY
2
τ − 2g̃2eY2

τ �;

δm2
ē33 ¼

Λ2

ð4πÞ4 ½40Y
4
τ þ 48Y2

bY
2
τ − 4g̃2eY2

τ �

δm2
Hu

¼ Λ2

ð4πÞ4 ½−18Y
4
t − 6Y2

bY
2
t �;

δm2
Hd

¼ Λ2

ð4πÞ4 ½−18Y
4
b − 6Y2

bY
2
t − 6Y4

τ �

Ãu33 ¼ −
Λ

ð4πÞ2 ½6Y
3
t þ 2Y2

bYt�;

Ãd33 ¼ −
Λ

ð4πÞ2 ½6Y
3
b þ 2Y2

t Yb�;

Ãe33 ¼ −
Λ

ð4πÞ2 ½6Y
3
τ �; ð37Þ

in which

g̃2u ¼
16

3
g23 þ 3g22 þ

13

15
g21;

g̃2d ¼
16

3
g23 þ 3g22 þ

7

15
g21;

g̃2e ¼ 3g22 þ
9

5
g21; ð38Þ

Yt;b;τ denote the MSSM Yukawa couplings, and Λ ¼
jF2;3=M2;3j. We note that here the Ã terms correspond to
the trilinear scalar couplings in the Lagrangian, i.e.,
−L ∼ Ãijkϕiϕjϕk. The full expressions for the soft terms
also include the standard gauge-mediated contributions (see,
e.g., Refs. [6–9]).
Alternatively, we can envision scenarios in which the b

and τ degrees of freedom are S3 singlets but couple only to

Hð2Þ
d via nonrenormalizable operators. Such operators

require the introduction of additional degrees of freedom
that we will denote collectively by φ (in practice, there
could be a set of fields φi), which are 2’s of S3. We will
refer to this scenario as model A2. In this case, the
following superpotential Yukawa interactions are allowed
by the gauge and S3 symmetries,

WA2 ¼ ytQ3ū3H
ð1Þ
u þ 1

Λ̃
ỸbQ3b̄3ðφHð2Þ

d Þ

þ 1

Λ̃
ỸτL3ē3ðφHð2Þ

d Þ þ � � � ; ð39Þ

in which Λ̃ is a (presumably high) scale, Ỹb;τ are Oð1Þ
factors, and we have neglected subdominant interactions.
The detailed couplings depend on the vacuum expectation
value of φ. More explicitly,

WA2 ¼ ỹtQ3ū3H
ð1Þ
u þ 1

Λ̃
ỸbQ3b̄3ðφ1H

ð2Þ
d2 þ φ2H

ð2Þ
d1 Þ

þ 1

Λ̃
ỸτL3ē3ðφ1H

ð2Þ
d2 þ φ2H

ð2Þ
d1 Þ þ � � � : ð40Þ

Given that in our scenario for ξ ¼ −π=4 the components of

Hð2Þ
d are given by

Hð2Þ
d ¼

�
Hð2Þ

d1

Hð2Þ
d2

�

¼

0
B@

1ffiffi
3

p Hd þ 1
2

�
1þ 1ffiffi

3
p
�
Md1 þ 1

2

�
1 − 1ffiffi

3
p
�
Md2

1ffiffi
3

p Hd þ 1
2

�
−1þ 1ffiffi

3
p
�
Md1 − 1

2

�
1þ 1ffiffi

3
p
�
Md2

1
CA;

ð41Þ
the expression for WA2 takes the form

WA2 ¼ YtQ3ū3Hu þ YtQ3ū3Mu1 þ YtQ3ū3Mu2

þ YbQ3b̄3Hd þ Y 0
b1Q3b̄3Md1 þ Y 0

b2Q3b̄3Md2

þ YτL3ē3Hd þ Y 0
τ1L3ē3Md1 þ Y 0

τ2L3ē3Md2; ð42Þ

FLAVORED GAUGE MEDIATION WITH DISCRETE NON- … PHYS. REV. D 97, 095028 (2018)

095028-9



in which the MSSM and messenger Yukawas are given by

Y 0
t1¼Y 0

t2¼Yt; Yb ¼
Ỹbffiffiffi
3

p
Λ̃
ðφ1þφ2Þ;

Yτ ¼
Ỹτffiffiffi
3

p
Λ̃
ðφ1þφ2Þ;

Y 0
b;τ1¼

Ỹb;τ

2Λ̃
ðð−1þ1=

ffiffiffi
3

p
Þφ1þð1þ1=

ffiffiffi
3

p
Þφ2Þ;

Y 0
b;τ2¼−

Ỹb;τ

2Λ̃
ðð1þ1=

ffiffiffi
3

p
Þφ1− ð1−1=

ffiffiffi
3

p
Þφ2Þ: ð43Þ

Clearly, the b and τ messenger Yukawas depend on the φ
direction and generically are similar in size to their SM
counterparts. However, there are points of interest in which
there are exact or near cancellations, such that these
conclusions no longer hold. For example, we note that if
φ1 ¼ −φ2 the MSSM Yukawas Yb and Yτ are zero, and the

messenger Yukawas are equal (Y 0
b1 ¼ Y 0

b2, Y 0
τ1 ¼ Y 0

τ2).
Another situation of interest occurs in the case that
φ1 ¼ ð2� ffiffiffi

3
p Þϕ2. In this limit, either Y 0

b1 and Y 0
τ1 vanish

(plus sign) or Y 0
b2 and Y

0
τ2 vanish (minus sign), such that the

b and τ couplings are given by

Yb;τ ¼ Ỹb;τ
1þ ffiffiffi

3
p

2

φ2

Λ̃
¼ −Y 0

b;τ2;

Y 0
b;τ1 ¼ 0; ðφ1 → ð2þ

ffiffiffi
3

p
Þφ2Þ

Yb;τ ¼ Ỹb;τ
−1þ ffiffiffi

3
p

2

φ2

Λ̃
¼ Y 0

b;τ1;

Y 0
b;τ2 ¼ 0; ðφ1 → ð2 −

ffiffiffi
3

p
Þϕ2Þ: ð44Þ

For concreteness, we will focus here on the two simpler
cases of Eq. (44), which will yield identical phenomenol-
ogy. In this situation, the corrections to the soft terms are
given by

δm2
Q33

¼ Λ2

ð4πÞ4 ½36Y
4
t þ 12Y4

b þ 4Y2
bY

2
t þ 3Y2

bY
2
τ − 2g̃2uY2

t − g̃2dY
2
b�

δm2
ū33 ¼

Λ2

ð4πÞ4 ½72Y
4
t þ 6Y2

t Y2
b − 4g̃2uY2

t �; δm2
d̄33

¼ Λ2

ð4πÞ4 ½24Y
4
b þ 2Y2

bY
2
t þ 6Y2

bY
2
τ − 2g̃2dY

2
b�

δm2
L33

¼ Λ2

ð4πÞ4 ½6Y
4
τ þ 9Y2

bY
2
τ − g̃2eY2

τ �; δm2
ē33 ¼

Λ2

ð4πÞ4 ½12Y
4
τ þ 18Y2

bY
2
τ − 2g̃2eY2

τ �

δm2
Hu

¼ Λ2

ð4πÞ4 ½−18Y
4
t − 3Y2

bY
2
t �; δm2

Hd
¼ Λ2

ð4πÞ4 ½−9Y
4
b − 6Y2

bY
2
t − 3Y4

τ �

Ãu33 ¼ −
Λ

ð4πÞ2 ½6Y
3
t þ Y2

bYt�; Ãd33 ¼ −
Λ

ð4πÞ2 ½3Y
3
b þ 2Y2

t Yb�; Ãe33 ¼ −
Λ

ð4πÞ2 3Y
3
τ : ð45Þ

We see that the corrections of Eq. (45) are very similar to
the case of model A1 as given in Eq. (37), but with smaller
corrections in the b and τ sectors, as expected.

B. Top quark Yukawa coupling from Hð2Þ
u models

In this set of models, we must embed at least the top
quark degrees of freedom into nontrivial multiplets of S3 to
obtain a renormalizable top quark Yukawa coupling. The
question of the extent to which the remaining MSSM
matter fields are also charged under S3 is a model-building
issue; we will for concreteness focus on a scenario in
which the matter fields are embedded in both singlet and
doublet representations of S3, as shown in Table III. Here,
we note that additional symmetries will in general need
to be introduced to prevent additional messenger-matter

couplings, but this does not provide a significant model-
building challenge. For conciseness, we do not display
these constraints explicitly. With this set of charge assign-
ments, we see that without further restrictions on the theory

we can have couplings of each to both Hð2Þ
u;d and Hð1Þ

u;d. For
example, in the up quark sector, we have

WðuÞ
B ¼ yu½ðQ2ū2H

ð2Þ
u Þ þ β1ðQ2ū1H

ð2Þ
u Þ þ β2ðQ2ū2H

ð1Þ
u Þ

þ β3ðQ1ū2H
ð2Þ
u Þ þ β4ðQ1ū1H

ð1Þ
u Þ�; ð46Þ

in which the βi are arbitrary coefficients in the absence
of further model structure (different UV completions may
of course result in specific relations between some or all of
these coefficients). Using the notation that Q ¼ ðQ2; Q1ÞT

TABLE III. Charges for an S3 model of the Higgs-messenger fields and the MSSM matter fields.

Hu2 Hu1 Hd2 Hd1 Q2 Q1 ū2 ū1 d̄2 d̄1 L2 L1 ē2 ē1 XH

S3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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and ū ¼ ðū2; ū1ÞT , we can write WðuÞ
B in matrix form as

WðuÞ
B ¼ yuQT

0
BB@

Hð2Þ
u1 β1H

ð1Þ
u β2H

ð2Þ
u2

β1H
ð1Þ
u Hð2Þ

u2 β2H
ð2Þ
u1

β3H
ð2Þ
u2 β3H

ð2Þ
u1 β4H

ð1Þ
u

1
CCCAū: ð47Þ

The analogous quantitiesWðdÞ
B andWðeÞ

B for the down quark
and the charged leptons would have similar structure.
Depending on model details, their couplings can be sup-
pressed by a Frogatt-Nielsen mechanism. For the sake of
simplicity, here we neglect such considerations, as well as
the question of the origin of neutrino masses.
To proceed, we need to specify the coefficients in

Eq. (47). In this work, we will focus for simplicity on
the extremely simple (though contrived) situation in which
all the coefficients are equal and set to unity. We will label
this scenario as model B1. In this case, we have

WðuÞ
B1 ¼ yuQT

0
BB@

Hu21 Hu1 Hu22

Hu1 Hu22 Hu21

Hu22 Hu21 Hu1

1
CCAū: ð48Þ

In terms of the Higgs and messenger mass eigenstates, for
ξ ¼ −π=4, we obtain

WðuÞ
B1 ¼ yuffiffiffi

3
p QT

0
B@

1 1 1

1 1 1

1 1 1

1
CAūHu

þ yuQT

0
BBB@

− 1
2
− 1

2
ffiffi
3

p 1ffiffi
3

p 1
2
− 1

2
ffiffi
3

p

1ffiffi
3

p 1
2
− 1

2
ffiffi
3

p − 1
2
− 1

2
ffiffi
3

p

1
2
− 1

2
ffiffi
3

p − 1
2
− 1

2
ffiffi
3

p 1ffiffi
3

p

1
CCCAūMu1

þ yuQT

0
BB@

1
2
− 1

2
ffiffi
3

p 1ffiffi
3

p − 1
2
− 1

2
ffiffi
3

p

1ffiffi
3

p − 1
2
− 1

2
ffiffi
3

p 1
2
− 1

2
ffiffi
3

p

− 1
2
− 1

2
ffiffi
3

p 1
2
− 1

2
ffiffi
3

p 1ffiffi
3

p

1
CCAūMu2:

ð49Þ

The MSSM Yukawa coupling matrix Yu has one nonzero
eigenvalue λt ¼

ffiffiffi
3

p
and two zero eigenvalues. The

nonzero eigenvalue is associated with the eigenvector
ð1= ffiffiffi

3
p Þð1; 1; 1Þ. The degenerate manifold is spanned by

linear combinations of the orthornormal basis set
ð1= ffiffiffi

2
p Þð−1; 1; 0Þ and ð−1= ffiffiffi

6
p

;−1=
ffiffiffi
6

p
;

ffiffiffiffiffiffiffiffi
2=3

p Þ. Defining
the diagonalization matrices UL ¼ UR ¼ U, such that

U†YuU ¼ YðdiagÞ
u ¼ Diagð0; 0;

ffiffiffi
3

p
Þ; ð50Þ

the matrix U ¼ UðαÞ takes the general form

UðαÞ ¼

0
BBB@

− cos αffiffi
2

p − sin αffiffi
6

p − cos αffiffi
6

p þ sin αffiffi
2

p 1ffiffi
3

p

cos αffiffi
2

p − sin αffiffi
6

p − cosαffiffi
6

p − sin αffiffi
2

p 1ffiffi
3

pffiffi
2
3

q
sin α

ffiffi
2
3

q
cos α 1ffiffi

3
p

1
CCCA; ð51Þ

in which α is a continuous parameter that is included for completeness (it will drop out of all physical observables). In the
basis that the quarks are diagonal, we have

WðuÞ
B1 ¼ yuQT

m

0
B@

0 0 0

0 0 0

0 0
ffiffiffi
3

p

1
CAūmHu þ yuQT

m

0
BB@

−
ffiffi
3

p
2
ðcos 2αþ sin 2αÞ

ffiffi
3

p
2
ð− cos 2αþ sin 2αÞ 0ffiffi

3
p
2
ð− cos 2αþ sin 2αÞ

ffiffi
3

p
2
ðcos 2αþ sin 2αÞ 0

0 0 0

1
CCAūmMu1

þ yuQT
m

0
BB@

ffiffi
3

p
2
ð− cos 2αþ sin 2αÞ

ffiffi
3

p
2
ðcos 2αþ sin 2αÞ 0ffiffi

3
p
2
ðcos 2αþ sin 2αÞ

ffiffi
3

p
2
ðcos 2α − sin 2αÞ 0

0 0 0

1
CCAūmMu2: ð52Þ

We see from Eq. (52) that the top quark does not couple to the messengers, i.e., ðY 0
u1Þ33 ¼ ðY 0

u2Þ33 ¼ 0, in stark contrast
from the models of the previous subsection. The fact that the field with a nonvanishing observable sector Yukawa coupling
has a vanishing messenger Yukawa coupling (and vice versa) is a consequence of the S3 family symmetry (and the
enhanced symmetry of taking equal values for the βi); this feature was also found by PRZ [20].
For this scenario, the soft term contributions from the messenger Yukawas are diagonal in family space and have nonzero

(and degenerate) entries only in the first two generations, as follows:
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δm2
Q11

¼ δm2
Q22

¼ Λ2

ð4πÞ4 ½6Y
4
t þ 6Y4

b þ 2Y2
bY

2
t

þ Y2
bY

2
τ − g̃2uY2

t − g̃2dY
2
b�

δm2
ū11 ¼ δm2

ū22 ¼
Λ2

ð4πÞ4 ½12Y
4
t þ 2Y2

t Y2
b − 2g̃2uY2

t �

δm2
d̄11

¼ δm2
d̄22

¼ Λ2

ð4πÞ4 ½12Y
4
b þ 2Y2

t Y2
b þ 2Y2

bY
2
τ − 2g̃2dY

2
b�

δm2
L11

¼ m2
L22

¼ Λ2

ð4πÞ4 ½4Y
4
τ þ 3Y2

bY
2
τ − g̃2eY2

τ �

δm2
ē11 ¼ δm2

ē22 ¼
Λ2

ð4πÞ4 ½8Y
4
τ þ 6Y2

bY
2
τ − 2g̃2eY2

τ �

δm2
Hu

¼ δm2
Hd

¼ 0; Ãu ¼ Ãd ¼ Ãe ¼ 0: ð53Þ

We note that the parameter α of Eq. (52) drops out of the
messenger contributions (as it should).
As expected, we see from Eq. (53) that the corrections

influence only the first two generations, as it is these fields
that couple to the messengers. These corrections are also
very likely to be negative for the squarks, pushing the first
and second generations below the third generation. We note
in particular that the trilinear couplings vanish for all
generations. For the first and second generations, this is
due to the absence of MSSM Yukawa couplings, while for
the third generation, it is due to the absence of messenger
Yukawas.
Clearly, this scenario represents only one possible first

step toward any kind of realistic theory of this type.
Different ways to perturb the all-equal coupling constraint
will result in different predictions for the Yukawa couplings
of the lighter generations, which in turn will have correlated
predictions for the messenger Yukawas and the soft
supersymmetry-breaking terms. We defer a systematic
study of these possibilities to future work.

V. RESULTS

We now turn to a phenomenological analysis of each of
these scenarios. The parameters shared by all three models
include the messenger scale, which is given by the mass of
the two heavy doublets, Mmess ¼ M2;3 ≃

ffiffiffiffiffiffiffiffi
3=2

p
M, and the

scale Λ ¼ F2;3=M2;3 ≃ F=M. The quantities μ and b are
replaced as usual by tan β, signðμÞ, and the Z boson mass,
since we are free to tune them independently. While the
parameters associated with the messenger triplet sector,
MT ¼ hXTi and ΛT ≡ FT=MT , are in principle unrelated to
M2;3 and Λ, we set them equal for simplicity. Hence, in
these scenarios, there are the usual gauge-mediated terms at
the messenger scale M2;3 and the additional contributions
in each case due to the messenger Yukawa couplings. The
parameter N, labeling the number of messengers, is always
given by N ¼ 2, and we will always choose signðμÞ ¼ 1.

The renormalization group equations are run using
SOFTSUSY4.1.0 [36].

A. Models A1 and A2: Top quark Yukawa

coupling from Hð1Þ
u

We begin with an analysis of the expected mass spectra
in models A1 and A2, in which the top quark Yukawa
coupling arises from a renormalizable coupling to the S3

singlet Higgs-messenger field Hð1Þ
u . In both cases, we see

that the corrections to the soft scalar mass-squared param-
eters as given in Eqs. (37) and (45) for models A1 and A2,
respectively, have large contributions from the messenger
couplings, especially the top quark messenger couplings.
As a result, in both cases, the gauge part of the corrections
will be overwhelmed, leading to positive deflections for the
third-generation soft mass-squared parameters, and par-
ticularly for the stops. The other large correction occurs in
the up-type Higgs soft mass-squared parameter, which is
typically large and negative.
These features can easily be seen from direct comparisons

of models A1 and A2. In Fig. 1, we show representative
mass spectra for each model for the case of tan β ¼ 10,
Λ ¼ 2.9 × 105 GeV and a low messenger scale of
Mmess ¼ 106 GeV. We see that the two models are highly
similar, with only slight differences among the splittings of
the squarks and sleptons. In both cases, the next-to-lightest
supersymmetric particle (NLSP) is the lightest neutralino
(which is binolike), and the lightest colored superpartner is
the gluino, with a mass of mg̃ ¼ 3.9 TeV. It is notable
that the lightest squark is the sbottom b̃1, which at mb̃1

¼
4.0 TeV is quite close in mass to the gluino. The sbottoms
are strongly mixed (more so than the stops), with b̃1
significantly lighter than t̃1, which has a mass of
mt̃1 ¼ 5.5 TeV. This behavior arises because of the large
messenger couplings to the top quark superfield in both
constructions. These large and positive contributions boost
the values of the stop mass-squared parameters such that the
mixing is not as prominent as it is in the sbottom sector.
It is illuminating to compare these two nearly identical

scenarios with minimal gauge-mediation models with
N ¼ 2 that can reproduce the observed Higgs mass value
of mh ¼ 125 GeV. As is well known, the absence of one-
loop contributions to the soft trilinear scalar couplings of
the squarks in minimal gauge-mediated supersymmetry
breaking (mGMSB) puts strong constraints on the squark
mass spectra, particularly for low values of the messenger
scale, where there is generically an insufficient amount of
renormalization group evolution to yield appreciable values
of the soft trilinear scalar couplings. This is illustrated in
Fig. 2, for which the left panel shows the model A1 low-
scale point also presented in the left panel of Fig. 1 and the
right panel shows a low messenger-matter mGMSB point
with N ¼ 2, Λ ¼ 8.1 × 105 GeV, Mmess ¼ 106 GeV, and
tan β ¼ 10. Clearly, the spectra are significantly different in
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the two cases, as expected. The mGMSB scenario is
characterized by ultraheavy (∼10 TeV) squarks with the
lighter stop as the lightest colored superpartner and a much
larger splitting between the SUð3Þc-charged sector and
other superpartners than what occurs in models A1 and A2.
These features largely persist for higher values of the

messenger scale. In Fig. 3, we show example spectra for
model A1 (model A2 is roughly identical), with

Mmess ¼ 1012 GeV, Λ ¼ 3.8 × 105 GeV, and tan β ¼ 10,
and minimal GMSB with N ¼ 2, the same messenger scale
ofMmess ¼ 1012 GeV,Λ ¼ 7.0 × 105 GeV, and tan β ¼ 10.
For both cases, the bottom squarks and the gluino are now
heavier, while the lighter stop is lighter, than in the case of
lowmessenger scales. InmodelA1,we have heavier sleptons
and charginos/neutralinos than in the case of the low
messenger scale, while for mGMSB, the charginos/

FIG. 1. A comparison of the mass spectra for models A1 (left) and A2 (right) with a low messenger scale of Mmess ¼ 106 GeV,
Λ ¼ 2.9 × 105 GeV, and tan β ¼ 10.

FIG. 2. A comparison of the mass spectra for model A1(left, identical to the left panel of Fig. 1) and mGMSB with N ¼ 2,
Λ ¼ 8.1 × 105 GeV, Mmess ¼ 106 GeV, and tan β ¼ 10 (right).

FIG. 3. Model A1(left), with Mmess ¼ 1012 GeV, Λ ¼ 3.8 × 105 GeV, and tan β ¼ 10 and mGMSB (right) with N ¼ 2,
Λ ¼ 7.0 × 105 GeV, Mmess ¼ 1012 GeV, and tan β ¼ 10.
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neutralinos are more strongly split, and the NLSP is now the
lightest (binolike) neutralino, as in the flavored gauge-
mediation cases. At values of the messenger scale near the
grand unified theory scale, these trends persist for the same
value of tan β, eventually resulting in the lightest stop as the
lightest colored superpartner formodelsA1 andA2, as it is in
mGMSB. This behavior is shown in Fig. 4.
In Fig. 5, we show a scan over the parameter space for

model A1 with tan β ¼ 10, with solid and dotted contours
for the Higgs mass and the lightest neutralino, respectively,
and the color denoting the stop mass. Generically, we
would detect a binolike NLSP with nearby right-handed
sleptons and stops in the 4–6 TeV range, and hence only the

left-handed sleptons and the wino would be accessible at
the LHC in the near future. In Fig. 6, we show the effect of
changing tan β andMmess for model A1, with the value of Λ
chosen to keep mh ¼ 125 GeV. The solid lines are con-
tours in Λ, the dotted lines are contours in the mass of the
lightest neutralino, and the color denotes the lightest stop
mass. We see that at low values of tan β stops are typically
heavy because the one-loop correction to the Higgs mass is
driven up by the logarithmic term with interference from
left-right mixing. This effect is ameliorated for larger values
of tan β, allowing for lighter stops. Model A2 displays
nearly identical behavior, with nearly exact overlap at low
tan β, but allowing for slightly smaller values of Λ (and

FIG. 4. Model A1(left), with Mmess ¼ 1016 GeV, Λ ¼ 3.25 × 105 GeV, and tan β ¼ 10 and mGMSB (right) with N ¼ 2,
Λ ¼ 5.7 × 105 GeV, Mmess ¼ 1016 GeV, and tan β ¼ 10.

FIG. 5. A scan over the parameter space for model A1, with tan β ¼ 10. The solid lines are the Higgs mass, the dotted lines are the
binolike neutralino NLSP, and the color is the stop mass.
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hence for the superpartner spectrum) for larger values
of tan β.

B. Model B1: Top quark Yukawa
coupling from Hð2Þ

u

We now turn to the case of model B1, in which the top
quark Yukawa coupling arises from couplings to S3 doublet
fields. In this scenario, the MSSM and messenger Yukawas
are anticorrelated, with large MSSM Yukawas for the third-
family fields and large and diagonal messenger Yukawas
only for the first and second generations, as seen in
Eq. (53).
Two example spectra for model B1 are shown in Fig. 7. In

both cases, the Higgs mass in this model is bolstered by

heavy stops, because the third-generation A terms vanish,
resulting in general in heavier spectra than in models A1 and
A2. In model B1, the lightest SUð3Þc-charged particles are
the first- and second-generation right-handed squarks
because the corrections deflect the soft mass-squared param-
eters down. In either case, we see that theNLSPwill likely be
a long-lived right-handed slepton. The corrections from
messenger-matter mixing generally push the smuon and
selectron below the stau, and because the spectra are split,
there are large corrections from the running at largeM from
the STrðm2Þ term in the β function. These models can be
constrained by searches for charged tracks at LHC13 [37].
The lightest neutralino is always binolike, and its mass is
generally near the masses of the sleptons.

FIG. 6. A scan over the parameter space for model A1 as a function of tan β andMmess, with Λ fixed to maintain the light Higgs mass
prediction. The solid lines are contours in Λ, the dotted lines are the lightest neutralino mass, and the color is the stop mass.

FIG. 7. Two example mass spectra for model B1, with (i) Mmess ¼ 106 GeV, Λ ¼ 6.6 × 105 GeV, and tan β ¼ 10 (left) and
(ii) Mmess ¼ 1012 GeV, Λ ¼ 5.7 × 105 GeV, and tan β ¼ 10 (right).
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In Fig. 8, we show a scan of the parameter space for
model B1, with tan β ¼ 10. The solid lines are the Higgs
mass, the dashed lines are the binolike neutralino mass, the
dotted contours are the lightest slepton mass, and the color
is the stop mass. One interesting feature is the mass of
colored particles at ∼7 TeV, heavier than the case of
models A1 and A2 (as expected). These models are more
strongly constrained as a function of tan β, with the
possibility of tachyonic sleptons for large tan β and low
to intermediate messenger scales once the Higgs mass
requirement is imposed.
Here, we note that the messenger-matter mixing correc-

tions split the first and second generations from the third
generation at the messenger scale, and this difference is
ameliorated by renormalization group running toward an IR
fixed point. This “focusing” behavior was found at low
scales in Ref. [20] because the authors had a larger top
quark messenger coupling than what is used here.

C. Discussion

We have seen that these models allow for viable super-
partner spectra while achieving mh ∼ 125 GeV. For the
scenarios in which it is the third family that has non-
vanishing messenger Yukawa couplings (models A1 and
A2), the spectra for tan β ¼ 10 are characterized by squarks
and gluinos in the 4–6 TeV range and a binolike NLSP
neutralino. In the case in which it is the first and second
generations that have nontrivial messenger Yukawas

(model B1), the squarks and gluinos are heavier
(∼7 TeV), and the lightest squark is one of the first- or
second-generation squarks.
It is instructive to compare these scenarios with other

representative examples of flavored gauge mediation in the
literature, such as the family Uð1Þ benchmark models of
Ref. [27], all of which involve messenger Yukawa cou-
plings in the up quark sector only. These benchmark
models are of course far more developed than the toy
scenarios considered here, as they have a full treatment of
the three-family MSSM Yukawa couplings and the three-
family messenger Yukawa couplings to the up-type quarks,
which allows for reliable estimates of the flavor-mixing
effects in the soft supersymmetry-breaking scalar mass-
squared parameters. Nonetheless, the spectra of some of
these benchmark examples resemble our models to some
extent, for example, with the up squark or charm squark as
the lightest SUð3Þc-charged superpartner for the nonmini-
mal flavor–violating cases with a nonvanishing messenger
Yukawa coupling only to the first- or second-generation up-
type quarks, as in our model B1 in which there is a diagonal
coupling in the first- and second-generation subblocks.
However, one main difference is that the family Uð1Þ

benchmark models allow for the possibility that only one of
themessenger fields couples to the up-type quarks, instead of
twomessenger pairs as in the scenarios considered here. This
feature contributes to the fact that these benchmarks have
viable spectra that reproduce the light Higgs mass with

FIG. 8. The stop mass distribution for model B1 with tan β ¼ 10, with contours of the Higgs mass (solid), the lightest slepton mass
(dotted), and the lightest neutralino mass (dashed).
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significantly lighter SUð3Þc-charged superpartners, resulting
in an improved discovery potential at the LHC. In our
scenarios, the large messenger Yukawa contributions to
the soft scalar mass-squared parameters of the squarks result
quite generally in large stop masses. Furthermore, our
models all include messenger Yukawas in the slepton sector,
which typically results in heavier/more split sleptons.
Another important difference between these models and

our scenarios is that, while they allow for the dominant one-
loop contributions to the soft supersymmetry-breaking
terms that generically arise in flavored gauge mediation,
we explicitly forbid these terms through our requirement
that ½M; F � ¼ 0. This feature was important in our scenarios
for a smooth decoupling of the heavy messengers from the
light electroweak Higgs doublets. However, since the one-
loop contributions are generically negative while the two-
loop corrections are typically positive, their inclusion can
also be an important factor for achieving mass spectra that
are accessible at the LHC.

VI. CONCLUSIONS

In this paper, we have explored flavored gauge-mediation
models in which the electroweak Higgs doublets, and the
SUð2Þmessenger doublets are embedded in representations of
a Higgs-messenger discrete symmetry group, which we take
for concreteness to be the discrete group S3. The idea of
connecting the Higgs and messenger doublets with a non-
Abelian discrete symmetry was first explored in a two-family
context by Perez et al. in Ref. [20], in which they went a step
further and had the same S3 group also serve as a family
symmetry group. In these scenarios, the supersymmetry-
breaking field is a doublet representation of S3; the field
space directions of its scalar and F-component vacuum
expectation values generically must be misaligned in order
to produce working models with a smooth decoupling of the
light Higgs fields from the heavier messenger fields. The
question was whether the intriguing two-family examples of
Ref. [20] could be extended into realistic three-family scenar-
ios. This paper represents a first step in this direction.
We have shown that a model framework of this type, in

which theHiggs and doublet messenger fields are taken to be
components of Higgs-messenger fields with S3 quantum
numbers, generically suffers from a severe μ=Bμ problem.
The reason is that if there is a coupling of the doublet
messengers to the supersymmetry-breaking field, as is
generally needed to mediate supersymmetry breaking, the
S3 symmetry dictates that there will also necessarily be a
dangerous direct coupling of the Higgs fields to the super-
symmetry-breaking field, which results in an incorrect μ=Bμ

hierarchy. This problem can be alleviated by expanding the
field degrees of freedom to allow for the possibility of
independently tuning μ and Bμ; we achieve this here by
allowing for a larger Higgs-messenger sector that includes
both S3 doublets and S3 singlets. While not a satisfactory
solution to the μ=Bμ problem in that it involves two

fine-tunings (that each increase for higher values of the
messenger scale), it does allow for the construction of viable
scenarios inwhich one pair ofHiggs-messenger fields is light
and thus is identified as the electroweak Higgs fields, while
the others are heavy messenger fields that have nontrivial
Yukawa couplings to the MSSM fields. The addition of the
singlet Higgs-messenger fields also allows for new possibil-
ities for obtaining a renormalizable top quark Yukawa
coupling, which is also a crucial model-building ingredient.
To this end, we have constructed three model scenarios that

include only third-family Yukawa couplings of the MSSM
fields to the electroweak Higgs fields. Two of these models
(models A1 and A2) have the top quark Yukawa coupling
arising from the Higgs-messenger singlets and differ only in
their treatment of the bottom and tau Yukawa couplings; both
scenarios predict third-familymessengerYukawacouplings of
size and strength similar to the MSSM Yukawa couplings. In
these scenarios, there is a one-loop contribution to the trilinear
stop coupling, which allows for a viable prediction of the light
Higgs mass without ultraheavy squarks as in minimal gauge
mediation. In the third scenario (model B1), the MSSM fields
are also charged under the S3 symmetry, such that the top
quark Yukawa coupling has a nontrivial contribution from the
Higgs-messenger S3 doublets. In this minimal scenario in
which only the third-family fermions obtain nonzero masses,
the resulting messenger Yukawa couplings are zero for the
third family but nonzero and diagonal in the first- and second-
generation sectors. This results invanishing soft trilinear scalar
couplings, and hence heavier stops are needed to generate
the Higgs mass. The spectra in all cases have squarks in the
4–7 TeV range due to the large messenger corrections that
arise from the effective N ¼ 2 structure of the messenger
sector. Nonetheless, we find it very encouraging that these toy
scenarios,which eachhave avery small number of parameters,
allow for a variety of viable spectra.
As stated, these models represent a first step in this

direction. Obtaining realistic models requires that the
MSSM Yukawa couplings are fully modeled. The question
of whether the resulting correlated messenger Yukawa
couplings can survive stringent flavor constraints is not
clear (though it has been pointed out that the flavor-
dependent couplings that generically arise in flavored
gauge mediation are not as dangerous as it might naively
appear [26,27]). It is worth noting, however, that this
framework provides a new and potentially fruitful play-
ground for flavor model building, depending on whether
the Higgs-messenger symmetry group also plays the role of
a family symmetry group. There are also other fundamental
questions to be addressed, such as possible connections
between the S3 singlet supersymmetry-breaking field XT
that couples to the messenger SUð3Þc triplet fields and the
S3 doublet supersymmetry-breaking field XH (in particular,
the question of a supersymmetric CP problem since these
degrees of freedom are a priori independent), the origin
of the needed misalignment between the scalar and
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F-component vacuum expectation values and its connec-
tion to the μ=Bμ problem, and the question of whether
scenarios of this type can have a natural embedding within
broader theoretical paradigms such as supersymmetric
grand unification. Studies along these lines are underway.
Exploring novel model-building directions is important

to ensure we are able to understand and interpret the
outcome of the current unprecedented exploration of the
TeV scale at the LHC. Flavored gauge-mediation models
quite generally represent a nontrivial extension of minimal
gauge mediation that allows for viable MSSM spectra. In
this version in which the Higgs and messenger doublets are
connected by a discrete non-Abelian symmetry, we believe
that the first model-building steps taken here show promise
that in a more complete implementation this approach may
provide useful input for the comprehensive LHC tests of the
paradigm of TeV-scale supersymmetry.
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APPENDIX: CORRECTIONS FROM
HAVING TWO SETS OF MESSENGERS

THAT COUPLE TO MATTER

Reported below are the corrections to the soft
mass parameters when there are multiple Higgs-messenger
pairs, following the general analysis of Evans and Shih
[22]. In the limit in which there is only one pair of
messengers, there is a suppressed one-loop contribution
as well as the two-loop contributions from messenger-
matter mixing for each soft mass-squared parameter, as
reported in Ref. [19]. For completeness, we reproduce
the dominant two-loop corrections to the soft mass-
squared parameters and the one-loop contributions
to the soft trilinear scalar couplings in the case of one
messenger pair (here labeled by i, no sum over repeated
indices):

δim2
Q ¼ Λ2
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diY

0†
di þ 3Y 0

diY
0
di
†Y 0

diY
0†
di

þ Y 0
uiY

0†
uiY

0
diY

0†
di þ Y 0

diY
0†
diY

0
uiY

0†
ui þ 2Y 0

uiY
†
uiYuiY

0†
ui þ 2Y 0

diY
†
diYdiY

0†
ui

− 2YuiY
0†
uiY

0
uiY

†
ui þ 3Y 0

uiY
†
uiTrðY†

uiY
0
uiÞ þ 3YuiY

0†
uiTrðY 0†

uiYuiÞ

− 2YdiY
0†
diY

0
diY

†
di þ Y 0

diY
†
diTrð3Y†

diY
0
di þ Y†

eiY
0
eiÞ þ YdiY

0†
diTrð3Y 0†

diYdi þ Y 0†
eiYeiÞ

�
; ðA1Þ

δim2
ū ¼

Λ2

ð4πÞ4
�
2

�
3TrðY 0†

uiY
0
uiÞ −

16

3
g23 − 3g22 −

13

15
g21

�
Y 0†
uiY

0
ui þ 6Y 0†

uiY
0
uiY

0†
uiY

0
ui

þ 2Y 0†
uiYuiY

†
uiY

0
ui þ 2Y 0†

uiYdiY
†
diY

0
ui þ 2Y 0†

uiY
0
diY

0†
diY

0
ui − 2Y†

uiY
0
uiY

0†
uiYui

− 2Y†
uiY

0
diY

0†
diYui þ 6Y 0†

uiYuiTrðY†
uiY

0
uiÞ þ 6Y†

uiY
0
uiTrðY 0†

uiYuiÞ
�
; ðA2Þ

δim2
d̄
¼ Λ2

ð4πÞ4
�
2

�
Trð3Y 0†

diY
0
di þ Y 0†

eiY
0
eiÞ −

16

3
g23 − 3g22 −

7

15
g21

�
Y 0†
diY

0
di þ 6Y 0†

diY
0
diY

0†
diY

0
di

þ 2Y 0†
diYdiY

†
diY

0
di þ 2Y 0†

diYuiY
†
uiY

0
di þ 2Y 0†

diY
0
uiY

0†
uiY

0
di − 2Y†

diY
0
diY

0†
diYdi − 2Y†

dIY
0
uiY

0†
uiYdi

þ 2Y 0†
diYdiTrð3Y†

diY
0
di þ Y†

eiY
0
eiÞ þ 2Y†

diY
0
diTrð3Y 0†

diYdi þ Y 0†
eiYeiÞ

�
; ðA3Þ
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δim2
L ¼ Λ2

ð4πÞ4
��

Trð3Y 0†
diY

0
di þ Y 0†

eiY
0
eiÞ − 3g22 −

9

5
g21

�
Y 0
eiY

0†
ei

þ 3Y 0
eiY

0†
eiY

0
eiY

0†
ei þ 2Y 0

eiY
†
eiYeiY

0†
ei − 2YeiY

0†
eiY

0
eiY

†
ei

þ Y 0
eiY

†
eiTrð3Y†

diY
0
di þ Y†

eiY
0
eiÞ þ YeiY

0†
eiTrð3Y 0†

diYdi þ Y 0†
eiYeiÞ

�
; ðA4Þ

δim2
ē ¼

Λ2

ð4πÞ4
�
2

�
Trð3Y 0†

diY
0
di þ Y 0†

eiY
0
eiÞ − 3g22 −

9

5
g21

�
Y 0†
eiY

0
ei

þ 6Y 0†
eiY

0
eiY

0†
eiY

0
ei þ 2Y 0†

eiYeiY
†
eiY

0
ei − 2Y†

eiY
0
eiY

0†
eiYei

þ 2Y 0†
eiYeiTrð3Y†

diY
0
di þ Y†

eiY
0
eiÞ þ 2Y†

eiY
0
eiTrð3Y 0†

diYdi þ Y 0†
eiYeiÞ

�
; ðA5Þ

δim2
Hu

¼ Λ2

ð4πÞ4 ½−3TrðY
†
uiY

0
uiY

0†
uiYui þ Y†

uiY
0
diY

0†
diYui þ 2Y†

uiYuiY
0†
uiY

0
uiÞ�; ðA6Þ

δim2
Hd

¼ Λ2

ð4πÞ4 ½−3TrðY
†
diY

0
uiY

0†
uiYdi þ Y†

diY
0
diY

0†
diYdi þ 2Y†

diYdiY
0†
diY

0
diÞ

− 3TrðY†
eiY

0
eiY

0†
eiYei þ 2Y†

eiYeiY
0†
eiY

0
eiÞ�; ðA7Þ

Ã�
ui ¼ −

Λ
ð4πÞ2 ððY

0
uiY

0†
ui þ Y 0

diY
0†
diÞYui þ 2YuiY

0†
uiY

0
uiÞ;

Ã�
di ¼ −

Λ
ð4πÞ2 ððY

0
uiY

0†
ui þ Y 0

diY
0†
diÞYdi þ 2YdiY

0†
diY

0
diÞ;

Ã�
ei ¼ −

Λ
ð4πÞ2 ðY

0
eiY

0†
eiYei þ 2YeiY

0†
eiY

0
eiÞ: ðA8Þ

In the situation with more than one pair of messengers (in our case Higgs-messenger pairs), in addition to summing over the
index i to include all pairs, there are corrections to the soft mass-squared parameters of the MSSM matter fields from
couplings between the pairs of messengers. Hence, for each sfermion field f, we have

δm2
f ¼

X
i

δim2
f þ

X
i>j

X
j

δijm2
f; ðA9Þ

in self-evident notation. For the case of interest here, in which there are effectively two messenger pairs upon diagonalizing
the Higgs-messenger sector, the corrections δ12m2

f are given by

δ12m2
Q ¼ Λ2

ð4πÞ4 ½3Y
0
u1Y

0†
u2TrðY 0

u2Y
0†
u1Þ þ 3Y 0

u2Y
0†
u1TrðY 0

u1Y
0†
u2Þ þ 2ðY 0

u1Y
0†
u1Y

0
u2Y

0†
u2 þ Y 0

u2Y
0†
u2Y

0
u1Y

0†
u1Þ

ðY 0
u1Y

0†
u2Y

0
u2Y

0†
u1 þ Y 0

u2Y
0†
u1Y

0
u1Y

0†
u2Þ þ ðY 0

u1Y
0†
d2Y

0
d2Y

0†
u1 þ Y 0

u2Y
0†
d1Y

0
d1Y

0†
u2Þ

þ Y 0
d1Y

0†
d2Trð3Y 0

d2Y
0†
d1 þ Y 0

e2Y
0†
e1Þ þ Y 0

d2Y
0†
d1Trð3Y 0

d1Y
0†
d2 þ Y 0

e1Y
0†
e2Þ

þ 2ðY 0
d1Y

0†
d1Y

0
d2Y

0†
d2 þ Y 0

d2Y
0†
d2Y

0
d1Y

0†
d1Þ þ ðY 0

d1Y
0†
d2Y

0
d2Y

0†
d1 þ Y 0

d2Y
0†
d1Y

0
d1Y

0†
d2Þ

þ ðY 0
d1Y

0†
u2Y

0
u2Y

0†
d1 þ Y 0

d2Y
0†
u1Y

0
u1Y

0†
d2Þ�; ðA10Þ

δ12m2
ū ¼

Λ2

ð4πÞ4 ½6Y
0†
u1Y

0
u2TrðY 0

u2Y
0†
u1Þ þ 6Y 0†

u2Y
0
u1TrðY 0

u1Y
0†
u2Þ þ 4ðY 0†

u1Y
0
u1Y

0†
u2Y

0
u2 þ Y 0†

u2Y
0
u2Y

0†
u1Y

0
u1Þ

× 2ðY 0†
u1Y

0
u2Y

0†
u2Y

0
u1 þ Y 0†

u2Y
0
u1Y

0†
u1Y

0
u2Þ þ 2ðY 0†

u1Y
0
d2Y

0†
d2Y

0
u1 þ Y 0†

u2Y
0
d1Y

0†
d1Y

0
u2Þ�; ðA11Þ

δ12m2
d̄
¼ Λ2

ð4πÞ4 ½2Y
0†
d1Y

0
d2Trð3Y 0†

d2Y
0
d1 þ Y 0†

e2Y
0
e1Þ þ 2Y 0†

d2Y
0
d1Trð3Y 0†

d1Y
0
d2 þ Y 0†

e1Y
0
e2Þ

þ 4ðY 0†
d1Y

0
d1Y

0†
d2Y

0
d2 þ Y 0†

d2Y
0
d2Y

0†
d1Y

0
d1Þ þ 2ðY 0†

d1Y
0
d2Y

0†
d2Y

0
d1 þ Y 0†

d2Y
0
d1Y

0†
d1Y

0
d2Þ

þ 2ðY 0†
d1Y

0
u2Y

0†
u2Y

0
d1 þ Y 0†

d2Y
0
u1Y

0†
u1Y

0
d2Þ�; ðA12Þ
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δ12m2
L ¼ Λ2

ð4πÞ4 ½Y
0
e1Y

0†
e2Trð3Y 0

d2Y
0†
d1 þ Y 0

e2Y
0†
e1Þ þ Y 0

e2Y
0†
e1Trð3Y 0

d1Y
0†
d2 þ Y 0

e1Y
0†
e2Þ

þ 2ðY 0
e1Y

0†
e1Y

0
e2Y

0†
e2 þ Y 0

e2Y
0†
e2Y

0
e1Y

0†
e1Þ þ ðY 0

e1Y
0†
e2Y

0
e2Y

0†
e1 þ Y 0

e2Y
0†
e1Y

0
e1Y

0†
e2Þ�; ðA13Þ

δ12m2
ē ¼

Λ2

ð4πÞ4 ½2Y
0†
e1Y

0
e2Trð3Y 0†

d2Y
0
d1 þ Y 0†

e2Y
0
e1Þ þ 2Y 0†

e2Y
0
e1Trð3Y 0†

d1Y
0
d2 þ Y 0†

e1Y
0
e2Þ

þ 4ðY 0†
e1Y

0
e1Y

0†
e2Y

0
e2 þ Y 0†

e2Y
0
e2Y

0†
e1Y

0
e1Þ þ 2ðY 0†

e1Y
0
e2Y

0†
e2Y

0
e1 þ Y 0†

e2Y
0
e1Y

0†
e1Y

0
e2Þ�: ðA14Þ

The MSSM-like Higgs will not get a correction from having multiple messengers outside of copies of the single
messenger result. The Ã terms are also unmodified.
In the limit in which the Yukawas are all diagonal and real, and have only nonzero third-family entries, these corrections

take the form

δ12m2
Q ¼ Λ2

128π4
ð6Y 02

t Y 002
t þ 6Y 02

b Y
002
b þ Y 00

bY
0
bY

0
eY 00

e þ Y 02
b Y

002
t þ Y 02

t Y 002
b Þ;

δ12m2
ū ¼

Λ2

128π4
ð12Y 02

t Y 002
t þ Y 02

b Y
002
t þ Y 02

t Y 002
b Þ;

δ12m2
d̄
¼ Λ2

128π4
ð12Y 02

b Y
002
b þ 2Y 00

bY
0
bY

0
eY 00

e þ Y 02
b Y

002
t þ Y 02

t Y 002
b Þ;

δ12m2
L ¼ Λ2

128π4
ð4Y2

τ0Y
2
τ00 þ 3Y 00

τY 0
τY 00

bY
0
bÞ;

δ12m2
ē ¼

Λ2

64π4
ð4Y2

τ0Y
2
τ00 þ 3Y 00

τY 0
τY 00

bY
0
bÞ; ðA15Þ

in which we have used Y 0
t;b;τ to denote the nonzero entries of Yu1;d1;e1 and similarly Y 00

t;b;τ for the nonvanishing entries
of Yu2;d2;e2.
As a trivial example of the consistency of these results, let us consider a simplified scenario with only leptons and

messengers coupling in the superpotential, with messenger Yukawas that are degenerate and diagonal. The effective
superpotential is

W ¼ YeLēHd þ Y 0
eLēMd1 þ Y 0

eLēMd2 þ ðM þ θ2FÞMuiMdi: ðA16Þ
We introduce two new linear combinations of messengers,

Φu=d ¼
1ffiffiffi
2

p ðMu=d1 þMu=d2Þ; Θu=d ¼
1ffiffiffi
2

p ð−Mu=d1 þMu=d2Þ; ðA17Þ

such that

W ¼ YeLēHd þ
ffiffiffi
2

p
Y 0
eLēΦd þ ðM þ θ2FÞðΦuΦd þ ΘuΘdÞ: ðA18Þ

The rotation has decoupled theΘ fields, leaving uswithmessenger-matter mixing throughΦ, resulting in the singlemessenger
case with an additional factor of

ffiffiffi
2

p
. We can look at the structure of the single messenger corrections δm2

L̃
for instance and

notice that the terms that are quadratic in the messenger Yukawas will not contribute to the correction from two sets of
messengers, but terms quartic in messenger couplings will have nontrivial contributions. These quartic contributions are

δm2
L̃
ð

ffiffiffi
2

p
Y 0Þ ⊃ Λ2

ð4πÞ4 ½3ð
ffiffiffi
2

p
Y 0
eÞ4 þ Trð3ð

ffiffiffi
2

p
Y 0
dÞ2 þ ð

ffiffiffi
2

p
Y 0
eÞ2Þð

ffiffiffi
2

p
Y 0
eÞ2�;

→
Λ2

ð4πÞ4 ½6Y
04
e þ 2Trð3Y 02

d þ Y 02
e ÞY 02

e � þ
Λ2

ð4πÞ4 ½6Y
04
e þ 2Trð3Y 02

d þ Y 02
e ÞY 02

e �: ðA19Þ

The second term agrees with (A13) taken in the same limit.

LISA L. EVERETT and TODD S. GARON PHYS. REV. D 97, 095028 (2018)

095028-20



[1] S. P. Martin, Adv. Ser. Direct High Energy Phys. 18, 1
(1998).

[2] D. J. H. Chung, L. L. Everett, G. L. Kane, S. F. King, J. D.
Lykken, and L.-T. Wang, Phys. Rep. 407, 1 (2005).

[3] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[4] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[5] M. S. Carena and H. E. Haber, Prog. Part. Nucl. Phys. 50, 63
(2003).

[6] M. Dine, W. Fischler, and M. Srednicki, Nucl. Phys. B189,
575 (1981); S. Dimopoulos and S. Raby, Nucl. Phys. B192,
353 (1981); M. Dine and W. Fischler, Phys. Lett. B 110, 227
(1982); C. R. Nappi and B. A. Ovrut, Phys. Lett. B 113, 175
(1982); L. Alvarez-Gaume, M. Claudson, and M. B. Wise,
Nucl. Phys. B207, 96 (1982); S. Dimopoulos and S. Raby,
Nucl. Phys. B219, 479 (1983).

[7] M. Dine and A. E. Nelson, Phys. Rev. D 48, 1277 (1993);
M. Dine, A. E. Nelson, and Y. Shirman, Phys. Rev. D 51,
1362 (1995); M. Dine, A. E. Nelson, Y. Nir, and Y. Shirman,
Phys. Rev. D 53, 2658 (1996).

[8] M. Dine, Y. Nir, and Y. Shirman, Phys. Rev. D 55, 1501
(1997).

[9] G. F. Giudice and R. Rattazzi, Phys. Rep. 322, 419 (1999).
[10] P. Draper, P. Meade, M. Reece, and D. Shih, Phys. Rev. D

85, 095007 (2012).
[11] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, and J.

Quevillon, Phys. Lett. B 708, 162 (2012).
[12] M. A. Ajaib, I. Gogoladze, F. Nasir, and Q. Shafi, Phys.

Lett. B 713, 462 (2012).
[13] Z. Chacko and E. Ponton, Phys. Rev. D 66, 095004 (2002).
[14] Y. Shadmi and P. Z. Szabo, J. High Energy Phys. 06 (2012)

124.
[15] J. L. Evans, M. Ibe, and T. T. Yanagida, Phys. Lett. B 705,

342 (2011).
[16] Z. Kang, T. Li, T. Liu, C. Tong, and J. M. Yang, Phys. Rev.

D 86, 095020 (2012).

[17] N. Craig, S. Knapen, D. Shih, and Y. Zhao, J. High Energy
Phys. 03 (2013) 154.

[18] A. Albaid and K. S. Babu, Phys. Rev. D 88, 055007
(2013).

[19] M. Abdullah, I. Galon, Y. Shadmi, and Y. Shirman, J. High
Energy Phys. 06 (2013) 057.

[20] M. J. Perez, P. Ramond, and J. Zhang, Phys. Rev. D 87,
035021 (2013).

[21] P. Byakti and T. S. Ray, J. High Energy Phys. 05 (2013) 055.
[22] J. A. Evans and D. Shih, J. High Energy Phys. 08 (2013)

093.
[23] L. Calibbi, P. Paradisi, and R. Ziegler, J. High Energy Phys.

06 (2013) 052.
[24] I. Galon, G. Perez, and Y. Shadmi, J. High Energy Phys. 09

(2013) 117.
[25] W. Fischler and W. Tangarife, J. High Energy Phys. 05

(2014) 151.
[26] L. Calibbi, P. Paradisi, and R. Ziegler, Eur. Phys. J. C 74,

3211 (2014).
[27] N. Ierushalmi, S. Iwamoto, G. Lee, V. Nepomnyashy, and Y.

Shadmi, J. High Energy Phys. 07 (2016) 058.
[28] T. Jelinski and J. Gluza, Phys. Lett. B 751, 541 (2015).
[29] F. Gabbiani and A. Masiero, Nucl. Phys. B322, 235 (1989).
[30] J. S. Hagelin, S. Kelley, and T. Tanaka, Nucl. Phys. B415,

293 (1994),
[31] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini,

Nucl. Phys. B477, 321 (1996).
[32] G. Raz, Phys. Rev. D 66, 037701 (2002).
[33] G. R. Dvali, G. F. Giudice, and A. Pomarol, Nucl. Phys.

B478, 31 (1996).
[34] G. Giudice, H. D. Kim, and R. Rattazzi, Phys. Lett. B 660,

545 (2008).
[35] K. Agashe and M. Graesser, Nucl. Phys. B507, 3

(1997).
[36] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002).
[37] J. Feng, S. Iwamoto, Y. Shadmi, and S. Tarem, J. High

Energy Phys. 12 (2015) 166.

FLAVORED GAUGE MEDIATION WITH DISCRETE NON- … PHYS. REV. D 97, 095028 (2018)

095028-21

https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1016/j.physrep.2004.08.032
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/S0146-6410(02)00177-1
https://doi.org/10.1016/S0146-6410(02)00177-1
https://doi.org/10.1016/0550-3213(81)90582-4
https://doi.org/10.1016/0550-3213(81)90582-4
https://doi.org/10.1016/0550-3213(81)90430-2
https://doi.org/10.1016/0550-3213(81)90430-2
https://doi.org/10.1016/0370-2693(82)91241-2
https://doi.org/10.1016/0370-2693(82)91241-2
https://doi.org/10.1016/0370-2693(82)90418-X
https://doi.org/10.1016/0370-2693(82)90418-X
https://doi.org/10.1016/0550-3213(82)90138-9
https://doi.org/10.1016/0550-3213(83)90652-1
https://doi.org/10.1103/PhysRevD.48.1277
https://doi.org/10.1103/PhysRevD.51.1362
https://doi.org/10.1103/PhysRevD.51.1362
https://doi.org/10.1103/PhysRevD.53.2658
https://doi.org/10.1103/PhysRevD.55.1501
https://doi.org/10.1103/PhysRevD.55.1501
https://doi.org/10.1016/S0370-1573(99)00042-3
https://doi.org/10.1103/PhysRevD.85.095007
https://doi.org/10.1103/PhysRevD.85.095007
https://doi.org/10.1016/j.physletb.2012.01.053
https://doi.org/10.1016/j.physletb.2012.06.036
https://doi.org/10.1016/j.physletb.2012.06.036
https://doi.org/10.1103/PhysRevD.66.095004
https://doi.org/10.1007/JHEP06(2012)124
https://doi.org/10.1007/JHEP06(2012)124
https://doi.org/10.1016/j.physletb.2011.10.031
https://doi.org/10.1016/j.physletb.2011.10.031
https://doi.org/10.1103/PhysRevD.86.095020
https://doi.org/10.1103/PhysRevD.86.095020
https://doi.org/10.1007/JHEP03(2013)154
https://doi.org/10.1007/JHEP03(2013)154
https://doi.org/10.1103/PhysRevD.88.055007
https://doi.org/10.1103/PhysRevD.88.055007
https://doi.org/10.1007/JHEP06(2013)057
https://doi.org/10.1007/JHEP06(2013)057
https://doi.org/10.1103/PhysRevD.87.035021
https://doi.org/10.1103/PhysRevD.87.035021
https://doi.org/10.1007/JHEP05(2013)055
https://doi.org/10.1007/JHEP08(2013)093
https://doi.org/10.1007/JHEP08(2013)093
https://doi.org/10.1007/JHEP06(2013)052
https://doi.org/10.1007/JHEP06(2013)052
https://doi.org/10.1007/JHEP09(2013)117
https://doi.org/10.1007/JHEP09(2013)117
https://doi.org/10.1007/JHEP05(2014)151
https://doi.org/10.1007/JHEP05(2014)151
https://doi.org/10.1140/epjc/s10052-014-3211-x
https://doi.org/10.1140/epjc/s10052-014-3211-x
https://doi.org/10.1007/JHEP07(2016)058
https://doi.org/10.1016/j.physletb.2015.11.003
https://doi.org/10.1016/0550-3213(89)90492-6
https://doi.org/10.1016/0550-3213(94)90113-9
https://doi.org/10.1016/0550-3213(94)90113-9
https://doi.org/10.1016/0550-3213(96)00390-2
https://doi.org/10.1103/PhysRevD.66.037701
https://doi.org/10.1016/0550-3213(96)00404-X
https://doi.org/10.1016/0550-3213(96)00404-X
https://doi.org/10.1016/j.physletb.2008.01.030
https://doi.org/10.1016/j.physletb.2008.01.030
https://doi.org/10.1016/S0550-3213(97)00569-5
https://doi.org/10.1016/S0550-3213(97)00569-5
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1007/JHEP12(2015)166
https://doi.org/10.1007/JHEP12(2015)166

