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1 Introduction

The gravitational coupling grows at short distances, giving rise to the fundamental question:
how is gravity UV completed? In the absence of experiments directly probing the Planck
scale, a more relevant question is: what is the space of low-energy effective field theories
(EFTs) that contain gravitons and admit a UV completion? There are compelling reasons
to believe that the rules of the game are more stringent in the presence of dynamical
gravity. A variety of conceptual arguments, reinforced by surveys of the string theory
landscape, have led to intriguing “swampland” conjectures [1-4] (such as the weak-gravity
conjecture [5]), which are proposed criteria for an EFT to be embedabble in a consistent
theory of quantum gravity.

Even without dynamical gravity, it has long been recognized that “not anything goes”
in effective field theory. In a local QFT in flat space, the constraints of unitarity and



causality imply inequalities for the low-energy effective couplings [6, 7]. A series of recent
papers [8-12] initiated a systematic analysis of the inequalities that follow from considera-
tion of 2 — 2 scattering processes. The analysis begins with canonical assumptions about
the S-matrix, such as analyticity, crossing and, crucially, Regge boundedness. For a fixed
momentum transfer u < 0, the amplitude M(s,u) is assumed to grow slower than |s|?
at large |s| in the upper-half complex plane.! This is sufficient to derive twice-subtracted
dispersion relations [15, 16]. These can be in turn used to express the parameters of the
EFT (valid at energies F < M, where M is the UV cut-off) in terms of the UV data that
enter for £ > M. One is agnostic about the UV physics, except that it contributes to the
partial wave expansion of M(s,u) with a definite sign, thanks to unitarity. These positive
sum rules constrain the allowed low-energy couplings. Notably, one can establish two-sided
bounds [10, 11] that put dimensional analysis on a firm footing. A low-energy parameter
of mass dimension —a must scale like ~ 1/M®, possibly further suppressed by a small
coupling but never larger, and with a rigorous estimate of the O(1) numerical factor.

It is very natural to ask whether the same approach may work in EFTs containing
gravitons, i.e. massless spin-two particles. Can one develop a systematic and quantitative
approach to the swampland, relying only on general properties of the S-matrix in asymptot-
ically flat spacetime? In the presence of dynamical gravity, the analyticity and boundedness
properties of the S-matrix are admittedly more speculative, and we will treat them as pos-
tulates. We will in particular assume that the same Regge bound lim, oo M(s,u)/s2 =0
(for fixed u < 0) holds also in this case. Note that this is a little stronger than the O(s?)
bound assumed in the “Classical Regge Growth” conjecture [17-19], which is believed to
hold for any consistent tree-level S-matrix; we need to require that at the nonperturbative
level the Regge growth is strictly smaller than s?. The best heuristic justification for such
a behavior comes from physical arguments that the scattering amplitude in impact param-
eter space should be analytic and bounded, as a consequence of unitarity and causality.
The current best technical justification comes from viewing the S-matrix in asymptotic D-
dimensional Minkowski space as the flat-space limit of a scattering process in asymptotic
AdSp space, according to the prescription of [20-22]. On the AdS side, we can appeal to
the rigorous non-perturbative bound on the Regge behavior of the dual CFT correlator [23],
which when translated to flat-space variables corresponds to an O(s) bound.?

As a proof of principle, we focus on the simplest example: 2 — 2 scattering of iden-
tical massless scalars coupled to gravity. We assume that the low-energy EFT is weakly
coupled, but make no assumptions about the UV physics beyond analyticity and unitarity.
An important example to which our analysis applies is string theory with fixed but small

!This behavior is implied by the stronger Froissart-Martin bound [13, 14], M(s,u) < slog?~2 s, which
(at least in a gapped theory) is a consequence of unitarity if one assumes polynomial boundedness and
analyticity, which in turn can be established from first principles in a local QFT. See appendix A.2 of [§]
for a nice recent discussion.

2At leading order for large N, the bound on the Regge behavior of the CFT correlator is known as the
chaos bound [24]. The chaos bound translates precisely to the O(s?) bound of the Classical Regge Growth
conjecture, as has been carefully argued in the recent paper [19]. It would be very interesting to see whether
the arguments of [19] can be extended to the nonperturbative regime and give a rigorous justification for
our assumption that the Regge growth is strictly better than 0(52).



coupling g; < 1. The cutoff M is the string scale, i.e. the mass of the first exchanged mas-
sive string mode. The theory is weakly coupled at and below the cutoff, but it eventually
becomes strongly coupled as we approach the Planck scale M/ (gs)%.

It is straightforward to derive dispersive sum rules in this setup, following the blueprint
reviewed in [11]. Similar positive sum rules incorporating gravity were written down be-
fore, see e.g. [8, 25-29] (or [30] for the similar case of U(1) gauge theory). There is however
a notorious obstacle in deriving bounds that involve the Newton constant G: the gravi-
ton propagator diverges in the limit of forward scattering (v — 0 in our conventions),
seemingly invalidating the application of the positivity constraints. We circumvent this
problem by measuring couplings at small impact parameter b < 1/M, while keeping the
momentum transfer u ~ —M?. The physical picture of a scattering experiment at small
impact parameter is the same as in [17], but now in the more systematic framework of
the S-matrix bootstrap where we look for numerical bounds (not only parametric). Apart
from curing the graviton divergence, this approach has the virtue of making dimensional
analysis transparent. Finally, while in this paper we treat the EFT at tree level, it is in
principle straightforward to include EFT loop corrections, which will introduce low-energy
cuts extending all the way to u = 0. Our method remains valid even if the amplitude is
non-analytic at v = 0 and it is thus ideally suited to handle loops.

As in previous work, the positivity constraints lead to a linear programming problem
that can be implemented numerically to carve out the space of EFT couplings. See figure 4
and figure 7 for some sample exclusion plots for ratios of the scalar higher derivative EFT
coefficients g over the Newton constant G, in units of the UV cutoff. We restrict our
analysis to spacetime dimension D > 4, because for D = 4 the integral transform to
impact parameter space suffers from an IR divergence arising from the massless graviton
pole. We believe that it should be possible to extend our approach to D = 4, working with
suitable IR-safe observables.

We also consider bounds on graviton scattering in the presence of maximal supersym-
metry. Thanks to supersymmetry, 2 — 2 graviton scattering can be expressed in terms of
an auxiliary fully crossing symmetric scalar amplitude with improved Regge behavior. We
derive a numerical upper bound on the coefficient of the leading R* curvature correction,
and check that it is obeyed by type II string theory.

In an upcoming paper [31], we will study the analogous problem of bounding higher
derivative couplings in a gravitational theory in AdS space. A prominent physical ques-
tion [32] is to show that a large N CFT with a large gap admits a local bulk dual, i.e.
such that higher-derivative corrections are suppressed by inverse powers of the gap. The
formalism of dispersive CFT sum rules [33-37]% allows for an almost direct uplift of our flat
space results to AdS. While the logic is very similar, the details of the AdS story are tech-
nically more involved. The flat space analysis presented here will serve as an indispensable
warmup. One distinct advantage of the AdS setup is that all the requisite analyticity and
boundedness properties are rigorous consequences of the CFT axioms.

The rest of the paper is organized as follows. In section 2, we state our assumptions
and review the approach of [11] to bounding EFT coefficients, which relies on the Taylor

3See also [38-42] for more work concerning dispersive sum rules in CFTs.



expansion of the dispersive sum rules around the forward limit. In section 3, we develop
our new strategy, based on localization at small impact parameter, and apply it to simple
examples of gravitational EFTs. We conclude in section 4. In appendix A, we present
some technical details of the numerical implementation of the linear program. Finally,
in appendix B we consider bounds coming from extending the range of the momentum
transfer beyond |u| = M?2.

2 Dispersive sum rules

In this section we state our assumptions and set the stage for the main argument in sec-
tion 3. We will also review how to bound couplings in non-gravitational theories using
dispersion relations expanded around the forward limit. We will closely follow the presen-
tation of [11].

2.1 Assumptions and first consequences

IR Effective Field Theory. Consider a real scalar coupled to gravity and to un-
known heavy states of mass greater than some energy scale M, in asymptotically flat
D-dimensional spacetime. As our interest lies in the effects of the heavy scale M, we take
the scalar to be massless, though our techniques are general and can be applied equally
well to massive scalars. The 2 — 2 massless scalar scattering amplitude takes the form

t t 1 1 1
Mlow(svu>=8ﬂG[5+w+u}—A§[++]—A4

u t S S t U (2'1)
+ go(s2 + 2 +u?) + g3(stu) + ga(s®> + 2+ 02 + ...,

where

s=—(p1+p2)?, t=—-(p1—ps)?®, u=—(p1—ps)’ (2.2)

are Mandelstam invariants, satisfying s +¢ 4+« = 0. GG is Newton’s constant and the first
term represents the exchange of gravitons in the three channels. Apart from coupling to
gravity, we have also allowed for the possibility of scalar self-interactions. A schematic
representation of the scattering amplitude is shown in figure 1.

We assume that the low-energy physics is weakly coupled. To make this precise, we
can assume that there is a family of S-matrices parametrized by a coupling € > 0 such that
all the interactions, such as G, A3, g2 etc. in (2.1), are O(¢) as € — 0. Eq. (2.1) is then
the low-energy form of the scattering amplitude at the leading order in ¢, i.e. at tree level.
For example, this is the situation in string theory, the role of € being played by the string
coupling. Low-energy loop corrections are O(e?) effects and could be included in principle
but will be beside our main concern. In the rest of this paper, we will work at the leading
order in € and therefore these corrections will be absent.

Under this weak-coupling assumption, the EFT coefficients are symmetrical polyno-
mials in the Mandelstam variables, corresponding to crossing-symmetric contact diagrams.
We have chosen the natural basis of monomials M, ;(s,t) = A®Bb where A = s> 4+ 1% +u?,



Figure 1. A schematic representation of the low-energy amplitude (2.1). The external scalar
particles interact through graviton exchange, scalar exchange and a series of higher-derivative con-
tact interactions.

B = stu. The spin of the monomial M, (s, t) is J = 2a + 2b and the scaling dimension is
4a + 6b.* Thus, there are (J + 2)/2 independent contacts with spin equal to .J, namely

ASBY, As-lpl, ..., AB%, (2.3)

with scaling dimensions
2J, 2J4+2, ..., 3J. (2.4)

Note that there can be multiple contacts with different spins but the same scaling dimen-
sion, the lowest example being A3 and B?. The subscript k in the EFT coefficients g
indicates (half) their scaling dimension, which specifies the contacts diagrams unambigu-
osuly for k& < 5; for higher value of k we introduce additional labels (e.g., g¢ and gg) to
distinguish contacts with degenerate scaling dimension.

UV unitarity constraints. Assuming there are no new degrees of freedom below the
heavy scale M, we want to know: what are the implications of high-energy unitarity on
the coefficients g7 It is natural to consider ratios of couplings such as

9n 9n

— or =, 2.5

" G (2.5)
which stay finite as € — 0. Naive EFT scaling, or dimensional analysis, suggests that

9k Ck

go  M2(k=2) (2.6)

where cj are dimensionless coefficients of order one. This is certainly the case if the EFT is
obtained by integrating out a single heavy particle of mass M. However, we will be agnostic
about the detailed physics above the heavy scale M, and only assume that the amplitude
is unitarity and causal. In particular, it will not be important to assume that the heavy
physics is weakly coupled at arbitrarily high energy scales. On the other hand, we will
need (2.1) to be valid up to energies of order M, which does require the physics there to
be weakly coupled. For example, in string theory with small but finite g4, the appropriate

4The spin of a contact diagram is defined as the maximal spin appearing in its partial wave decomposition.
We define the scaling dimension as the number of derivatives in the corresponding term in the Lagrangian.
This differs from the standard definition by a constant shift.



cutoff M is the string scale, where the theory is still weakly coupled. (However, the theory
does become strongly-coupled at the Planck scale.)

Unitarity is simplest to state in a decomposition of the amplitude in angular momentum
partial waves. In the s-channel physical region {s > 0,—s < u < 0}, Mandelstam s gives
the squared center-of mass energy, while the scattering angle is

2
cosf =1+ 2. (2.7)
S
The partial wave decomposition reads
2u
= 2.8
M(s,u) =52 ZHJ (s PJ( S>7 (2.8)

J even

where P(x) are proportional to Gegenbauer polynomials (and reduce to Legendre poly-
nomials for D = 4),

-2 1-
Pj(m)ngl( J,J+D—3, T’ 2“”) . (2.9)
The normalization B
(D) _ oD =5~
2

has been chosen (see e.g. [43, 44]) such that unitarity of the S-matrix,

SST=1, S=1+iM, (2.11)
translates into |1 +dcy(s)|?> < 1. Defining the spectral density ps(s) = Imcy(s), we can
also write 9

u
I — - )
mM(s,u) = s an py(s <1+8>, (2.12)
J even

where the unitarity constraint reads
0<ps(s) <2, 5>0, Jeven. (2.13)

The crucial fact is that Im M(s,u) is a positive sum of Gegenbauer polynomials.

We can now give a precise definition of the scale M. It is the energy where M(s,u)
first develops a nonzero imaginary part. In other words, we will assume that p;(s) vanishes
for all 0 < s < M? and all even J.?

Dispersive sum rules. A link between the regimes of high- and low-energy is provided
by a dispersion relation. We assume that for fixed real u < 0,

(i) the amplitude M(s,u) is analytic in s in the upper-half plane Im s > 0,% and

5Note that this definition only makes sense at the leading order at weak coupling since EFT loops give
rise to an imaginary part for any s > 0. However, as explained above, this is a subleading effect under
our assumptions.

6The amplitude is extended to the lower-half complex s plane by M(s*,u*) = M*(s,u), so for fixed
u < 0 it is analytic in s away from the real axis.



(ii) M(s,u) has spin-2 convergence in the Regge limit, meaning that the following limit
vanishes along any line of constant phase,

M(s,u)

lim 5

|s]—o00 S

=0 (u<0). (2.14)

For example, in string theory, (2.14) is ensured by Reggeization of the graviton:
M = O(s*T®*). We have discussed this crucial assumption in the Introduction.

Together these conditions imply the existence of twice-subtracted dispersion relations.
The starting point is

ds' M(s' u
f , (hu) g, (2.15)

oo 2mi(s" — s) s'(s' +u)
where the contour integral is over a large circle. We picked s = 0 and s = —u as
subtraction points — this is a natural choice because it maintains the s <> ¢ crossing

symmetry without introducing an extraneous mass scale into the problem. We now deform
the contour as in figure 2. We take |s| << M2. There are two kinds of contributions: a
low-energy circle at |s'| ~ M? which encloses the residues at s’ = s, s’ = 0 and s’ = —u; and
the contributions from the s-channel and t-channel high-energy cuts, starting respectively
at s’ = M? and s’ = —M? — u. Separating the low- and high-energy contributions,

Miow(s,u) + Res K 1 N 1 ) MlOW(S”u)] _
s'=0 |\ s — s

s(s +u) s'+s+u) s'(s+u) (2.16)
o0 ds' ( 1 1 ) [Mhigh(s’,u)} '

-/ & n [ | Zhighls, @)
M2 T \s—s s+s+u s'(s" + u)

where we have used the s +> ¢ symmetry to combine the contributions of the two low-
energy residues at s’ = 0 and s’ = —u, and the contributions of the two high-energy cuts.
For the terms on the left-hand side we use the low-energy parametrization (2.1), while for
the heavy contribution, about whose details we are agnostic, we insert the partial wave
decomposition (2.12),

(2m2+u) P, (1+%)
m2+u)(m2—s)(m?+s+u

&G
%4—292—g3u—|—4g4(2u2+s(s+u))+. L= <(

)>, (2.17)

where we defined the heavy averages as

<(...)> _1 3 nSD)/OO Lm2m470p](mz) (o). (2.18)

2
2
T J even Mz m

What will be important for us is that this is a positive measure since p;(m?) > 0 by
unitarity. We make no use of the upper bound p;(m?) < 2 in this work. Note that the
s- and t— channel poles have cancelled in (2.17), leaving a regular function that can be
Taylor-expanded in powers of s/M?2.

We will organize these sum rules by expanding around small s. Because our subtraction
preserves s <> t symmetry, it is easy to see that the series proceeds in integer powers of
s(s 4+ u) and that we can expand (2.17) as

> [s(s +u)]" ' Canu =0, (2.19)

n=1



Figure 2. Contour deformation leading to the dispersive sum rule (2.16). We start from an integral
over a large circle (2.15), which vanishes due to the spin-2 boundedness assumption (2.14). After the
contour deformation, we end up with an IR contribution, represented by the small circle on the right,
and a UV contribution, represented by an integral over the cuts starting at s’ = M?, —M? — .
In the presence of EFT loops, the IR contribution would also include cuts stretching between
s’ = —M? —u and s’ = M2, but these are subleading under our assumptions. Since the theory is
assumed weakly coupled at scale M, the heavy cut is well approximated by a discrete set of poles

for s’ not much larger than M?2. However, this will play no role in our reasoning.

For example, the first sum rule, denoted by C»,, is obtained by taking the s — 0 limit
in (2.17),

(2m? + u)Py (1+ 24)

m2(m? + u)?

G
C2,u:_7U+292—g3u+894u2+...—<

) =0, (2.20)
while the next sum rule C4,, corresponds to the coefficient of s(s + u),

(2m? +w)Py (14 24)

mA(m? + u)3

Coow=4gs+ ... — ) =0. (2.21)

We can also obtain the Cj ,, sum rules more directly from the spin-k subtracted version of
the dispersion integral,”

ds' 1 M(s',u)
Cru = — L =, 0, k=2,4,.... 2.22
k, ' 27i 8 [S/(S/ + u)]k/Q u < ( )

By the same contour deformation argument as above, we find the explicit expressions

2 +u Miow(s',u) o2m2 +u  PJ (1 + %)
Chu = I/{:e(s) (s ) k2| < 2 k/2
s s'(s"+u [5’(5’ +u)] m +u [m2(m2 +u)]

). (2.23)

"Compare with the s — 0 limit of (2.15).



The Cj,,, sum rule only receives contributions from the contacts
(s> + % + u?)%(stu)®  with spin J = 2a+2b > kand b < k/2. (2.24)

The condition J > k is seen by closing the contour around infinity, as in (2.22), while
the condition b < k/2 is apparent by closing the contour around the origin, as in (2.23).
Finally, note that only the Ca, sum rule is sensitive to the graviton exchange, through the
term —87G/u.

We now describe two distinct ways to use the Cj, sum rules. First, in section 2.2 we
review bounds obtained by expanding around the forward limit. Then, in section 3 we
introduce a new method: localizing in impact parameter space.

2.2 Review: bounds from the forward limit

We now briefly illustrate the strategy described in [10, 11] to derive inequalities for the EFT
coefficients by expanding the sum rules (2.23) in the forward limit w — 0. This strategy
breaks down in the presence of gravity, because the Co(u) sum rule diverges in the forward
limit, and so in this subsection we switch off gravity by setting G = 0.

Derivatives of Cy,, with respect to u at u = 0 compute the couplings g2, g3, .... Only
couplings of spin two and higher appear in the sum rules. Spin-two couplings g and g3
only appear in Cz, and they are computed respectively by Ca o and C§70,8

! — %
/1 _ - 2.2
92 <m4> ) g3 < mo > ) ( 5)

where J? = J(J + D — 3) is the quadratic Casimir of the massive little group SO(D — 1).
The spin-4 couling g4 appears in Ca, and Cy,, and is computed by C5 and Cy

J?(2J%-5D+4)
o = L+ b9 _ < 1 > (2.26)
2m8 2m8/ ’
The last equality leads to the simplest example of a null constraint on the heavy data
2(2J? —5D +4
<j(j SO . (2.27)
m

Null constraints arise because the low-energy amplitude is symmetric under s <> u.

The first sum rule in (2.25) immediately implies go > 0. The remaining sum rules can
be used to derive two-sided bounds on the ratios g,,/ge. It is convenient to normalize the
measure (2.18) by the go sum rule and define the probablity measure p;(m)

0 dm?2
<(...)>92 _ 3 n{® meppj(mz) ()

792 J even M m?
o (2.28)
= Y [dmpstm) (.
J even

8Here and below, primes denote derivatives with respect to wu.



The above sum rules become

=), 2o <3_f’j> (229)
g2

g2 m?

and

1 J*2J% -5D + 4
%:<%#% 0:< ( . )> (2.30)
2 g2

g2 m

Since the measure is supported in m > M, it immediately follows from the second equation
in (2.29) that
93 o 3
g2 — M?

One can derive a lower bound on g3/gs with the help of the null constraint. The go,

(2.31)

g3 and null sum rules take the form of a vector equation

0o 1 1
N 2
> /dmpj(m) #( - %) =|93/92| - (2.32)
J even jr \72(2j215D+4) 0

This is now a standard linear programming problem. We are asking for what values of
g3/ge is the vector on the r.h.s. in the positive cone spanned by the vectors on the Lh.s.
This means that the allowed range for g3/gs is the intersection of the convex hull of points

e (3- 5 2
g | €R (2.33)

mi

with the z-axis. It is clear that the region is finite, and easy to check that the lower bound
comes from considering only J = 2 and J = 4 trajectories. In other words, including J > 4
trajectories does not increase the size of the intersection of the convex hull with the z-axis.
The bound thus comes from the intersection of the z-axis and the line connecting the point
J =2, m = M with the point J = 4, m = my4 and optimizing over my. It is clear that
since the bound comes from bounded spin, it needs to have the bulk-point scaling M 2. In
fact, if there is any bound at all, it must have this scaling simply by dimensional analysis.
Therefore one can get an analytic, if cumbersome answer:

K(D)<93< 3

- <o (2.34)
where
/(D 13)(319D% 1 76D% — 202D + 32)  6(5D — 2)
“D”‘¢ 24(D —22(D + 1)(D + 4) 2(D-2) (2:35)

The bound can be improved by considering combinations of more functionals, see [11, 45].
We can play the same game to bound g4 /g2 but in this case including the null constraint

buys us nothing since spin does not enter the sum rule for g4/g2. The result is simply
94 1

0<% <

~10 -



3 Bounds with gravity

3.1 General idea

The preceding strategy, Taylor expanding around the forward limit, suffers from three
drawbacks. First, it does not manifest the expected scaling g3 ~ % until the final stage.
This is because we are evaluating the IR contribution to dispersive sum rules at small
momentum transfer u: 2gs — 3gsu + . ... Second, Taylor series do not generalize naturally
to handle loop corrections, which have branch cuts at w = 0. Third, the strategy fails
already at tree-level in the presence of gravity, since the Sf—G pole in the Ca, sum rule
explodes in the forward limit.

We propose that these three issues admit a common physical resolution: measure EFT
couplings from small impact parameter scattering. By doing measurements at impact
parameter b ~ 1/M and u ~ —M?, the expected scaling will be automatic, branch points
are avoided, and the gravity pole will be suppressed.

Let us explain the mechanism for suppressing the gravity pole in more detail, and
illustrate possible applications. The physical meaning of u in dispersive sum rules Cj ,, is
the magnitude of the momentum transfer. We have u = —(p3 —p1)?, and p' = p3 —p; is the
spatial momentum transfer. For high-energy scattering, fixed impact parameter scattering,
P = p3 — p1 lies in the (D—2)-dimensional plane transverse to the incident momenta. The
impact parameter b is also a vector in RP~2. It is Fourier-conjugate to p. We will write
p = |p] and b = |b|. We will use the following conventions for going between the momentum
transfer and impact parameter space. Consider a spherically symmetric momentum-space
wavefunction f(p). We define the corresponding impact parameter space wavefunction as

the (D—2)-dimensional Fourier transform

s I0) Doy, Top (0
/dD et pP=3vol §D3 F<2>/o dpf(p)W' Y

The factor 1/p”~3 was inserted for future convenience. An integral of f(p) against the

gravity pole =& S“G can be expressed in impact parameter space as
o0 87G © ~  87Gh
d — = dbf(b . 2
| s = [ afe 5 (3:2)

Evaluation in the forward limit corresponds to f(p) = d(p), which in impact parameter
space is f(b) = 1. This leads to a divergence when integrated against the graviton contri-
bution 7€ in (3.2). By contrast, if F(b) is localized near b ~ 1/M, the contribution of
the graviton pole will automatically be suppressed by ~ 1/M?2. An example wavefunction

is shown in figure 5 below. Indeed, we will soon see that in dispersive bounds f(b) is
constrained to be positive, so localization in impact parameter space is the only way to
suppress the graviton pole relative to other contributions. To achieve such localization, the
momentum-space wavefunction must have support all the way up to |u| ~ M?2.

One might worry that there is a limitation on the range of u due to the EFT series (2.20)
breaking down at |u| ~ M2. Specifically, if we evaluate dispersion relations at |u| ~ M?,
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all contact interactions could contribute equally and it would be difficult to disentangle
individual EFT coefficients. This suggests restricting to |u| < M?. But that would not be
good enough to get numerical bounds with the right scaling in M — it would only give
parametric bounds.

The key idea for getting around this difficulty is to use low-energy crossing symmetry
to eliminate all the terms starting from g4u? and higher in the Cy sum rule. Note that the
EFT contributions to the Ca,Cy4,Cs sum rules are

81G
Coulppr = — +2g5 — g3u + 8gau’ — 2g5u> + 24gsut — 4grud . .. | (3.3)
Caulgpr = 494 — 2950 + (2496 + gs)u® — 8grud + ..., (3.4)
C6vu‘EFT =8¢gs —4gru+ ... . (35)

By subtracting a linear combination of C4 ¢ and Cz,L,O = 0uCuu|u=0 from Ca,,, we can cancel
the g4 and g5 terms in (3.3). Next, subtracting a linear combination of Cg o and Cép, we
can cancel the gg and g7 terms, and so on. Repeating this procedure, we find that the
following linear combination of sum rules is independent of all higher EFT coefficients:

o0
C;zproved — Co — Z (n T uzn—lcémo) ' (3.6)

n=2
Specifically, we have

&rG
= —— 4292 — g3u, (3.7)

Cimproved
EFT —U

2,u

with no contamination by higher contact coefficients. Note that the improved sum rule (3.6)
still involves forward limits, but only of the higher-subtracted sum rules C4,Cg, . .., which
do not have a graviton pole. We suspect that it should be possible to find different improve-
ments which eliminate forward limits altogether, but (3.6) will suffice for our purposes.
The contribution of heavy states to the C;Tfroved sum rule is found by inserting the
heavy contribution from (2.23) into (3.6) and performing the sum over n. This sum can

be done in a closed form, yielding the following exact sum rule:

87G u_<(2m2+U)7’J(1+,3$)_zﬂ (4m2+3u)7>J(1)+4u7>g(1) >
92T gsu= m2(m2+u)2 mb (m24-u)2 mi—yu2 (3.8)

— <C;r’r'1uproved [m2’ J]> )

The important feature of (3.8) is that only three EF'T couplings appear on the left, yet we

retain the full power of a one-parameter family of sum rules (labelled by u), which we can

use to localize at small impact parameters. In the absence of gravity, C;If;pmved is equivalent

to a combination of null constraints and evaluation around the forward limit
C;Ij;proved =Co0 +uCyg+ ur Xy, (without gravity), (3.9)

where Xy, is written below in (3.15). However C;%pmved makes sense even with gravity.
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We expect that (3.8), evaluated anywhere in the range u € (—M?2,0), gives a valid
and convergent sum rule. When —u = M?, the t-channel cut merges with the origin in
the s-plane. Depending on the analytic structure of the ¢t-channel cut, this may require
us to modify the sum rule. Thus, we will mostly restrict to u € (—M?,0]. However, for
meromorphic amplitudes, we expect that (3.8) can have a larger range of validity. We
discuss this idea further in appendix B.

We can now derive inequalities on the EFT couplings 87G, g2, g3 by constructing func-
tions f(p) whose integral against Clmproved[m J] is non-negative on all allowed heavy
states:

M .
if / dp f(p)c;“f’;gved[mZ, J>0 Vm>M, J=0,2,4... (3.10)

e
then / dp f(p [p + 292 + g3p®| > 0. (3.11)

We will see that functions f(p) allowed by the condition on the first line carve out an
interesting region in the (G, g2, g3) space. Let us interpret the first positivity condition. We
claim that it implies the statement that f(p) is the Fourier transform of a positive function
of transverse impact parameter. To see this, we take a scaling limit where m — oo with
the “impact parameter” b = % held fixed. In this limit, the Gegenbauer functions become
Bessel functions as follows”

T (2=2
lim_ P (1 - 2pg> = (2D)4JD4(bp). (3.12)
e m) " oy
We then find
or (L2 M Jﬂ(bp)
/ dpf(p lmproved[ 2 J] ~ (42>/ dpf(p) —2——5— as m— oo, (3.13)
m 0 (bp/2)77"

which is indeed proportional to the transverse-plane Fourier transform of f(p)/p”~3,

see (3.1). This is a key finding:

Bounds come from functions that have compact support in momentum space
and are positive in impact parameter space.

Fortunately, such functions are plentiful. Note that in addition to imposing positivity in
impact parameter space, we must impose positivity of (3.10) at finite m > M. This further
restricts the space of possible functions f(p), but we find numerically that suitable f(p)
still exist.

1mproved

To obtain stronger bounds, we can supplement the C, sum rule with additional

null constraints

0= (Xpulm? J]), k=46, .. (3.14)

9This has the following simple interpretation. Gegenbauer functions are the basis for the harmonic
decomposition of functions on the sphere SP~2, while Bessel functions for the Fourier decomposition of
radial functions on RP~2, (3.12) corresponds to the flat-space limit of the sphere with momentum in
RP~? fixed.
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where [11]
om24u  MPy (H-%)
um?(m2?+u) (um2(m?2+u))k/2

e ) (i) (P20 m?Py (1+25)
u'=0 m2(u—u)u/ (m?—u)(m2+u') (m2+u+u') (u/'m?(m2+u’))k/2’

Xk7u[m2,J] =
(3.15)

A, can be derived by starting from Cj, ,, and subtracting all the EFT contributions using
the forward limit of Cr49 4, Cr44,4 etc. Including the A&}, sum rules gives us the following
linear program for bounding go and gs:

M .
it Vm>M, J=024... / dp f (p)CIP 2, 7]+
0 b

M
+ X [ o)t el )20 (3ag)
k=4.6,...

M 81G
then /0 dp f(p) {pz + 292 + 93192} >0,
where the decision variables are the functions f(p) and hx(p). We can choose an objective
function and normalization condition to optimize different quantities. For example, to ob-

tain the best upper bound on g3 as a function of g3 and 87 G, we must solve the otimization
problem

L M 8tG M 9
mlnlmlze/ dp f(p) |—5— + 292 such that / dp f(p)p* = —1, (3.17)
0 D 0
where f(p) and h(p) satisfy the positivity constraints in (3.16).

3.2 Numerical implementation

To solve the linear program (3.16) numerically, we must express f(p) and the hi(p) as
finite sums of basis functions. Importantly, we must be able to find finite linear combina-
tions of basis functions that are positive when Fourier-transformed to impact parameter
space. It is well-known that polynomials restricted to an interval can have positive Fourier
transforms.'? This motivates us to choose powers of p as our basis functions, for example:

fp) = anp™ (3.18)

Here, a,, are constants (decision variables) to be determined by solving the linear program,
and n are powers that we can choose. The powers need not be integers, but they must
obey n > 1 in order for the integral of f(p) against the gravity pole 8;;—2(; to converge. For

technical reasons that we explain in appendix A.1, we choose the basis functions listed in

10 An example is

1 —cosb

1
/0(1*p)608(pb)dp— w20
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D basis functions for f(p)

5 p*—p% pt—p? PP —p% ...
even > 6 | p*/2, p®/2 p7/2 ..

odd >7 | p?, p*, p*, ...

Table 1. Basis functions for f(p) appearing in the linear program (3.16). The technical reasons
for these choices are explained in appendix A.1.

table 1.'! For the functions hy(p), we simply expand them in nonnegative integer powers:
PO, pl, .

We can now truncate the expansions of f(p) and hg(p) in basis functions to obtain a
linear program with a finite number of decision variables. We deal with the infinite number
of constraints (one constraint for each m > M and J = 0,2,4,...) using a combination
of discretization and polynomial approximation, described in detail in appendix A. Im-
portantly, we must restrict J to a finite range J = 0,2,..., Jmax- To help the bounds
converge without needing to take Jpn.x very large, we explicitly include positivity in the
scaling limit (3.13) as an extra inequality. We solve the resulting optimization problems
numerically using SDPB [46, 47].

3.3 Bounds on g3 and g4 without gravity

In non-gravitational theories, dispersive bounds computed using the above methods repro-
duce the same results obtained by expanding around the forward limit. The physical reason
is that heavy averages in dispersive sum rules are dominated by small impact parameters
b~ 1/M, as observed in [11]. By using functionals that are localized on the scale b ~ 1/M,
we access the same physics. As an example, in figure 3, we show a bound on g3,g4 in
D = 6, computed using our small impact parameter wavepackets. The results agree with
those of [11], which used expansions around the forward limit.

3.4 Bounds on g2 and g3 with gravity

The main advantage of our approach is that we also obtain valid bounds in gravitational
theories. In figure 4, we show the allowed regions for g2 and g3 in UV-completable tree-
level EFTs containing gravity in spacetime dimensions D = 5,...,12. (We discuss the case
D = 4 in section 3.7). The bounds are computed numerically by solving (3.16) using SDPB.
Note that they automatically have the expected EFT scaling in M. In short, dimensional
analysis scaling is a theorem, even in the presence of gravity!

The bounds in figure 4 are computed using a 17-dimensional space of functionals built
from Cy*P""*? and the null constraints Xy and Xg (listed explicitly in table 2). Although
the bounds depend on the cutoffs and approximations described in appendix A, we have
chosen those cutoffs so that the results have converged within a fraction 10~%. The bounds

1YWe have also investigated other choices of pure-power basis functions and found consistent results.
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EFT coefficients without gravity (D=6)

/

0.4} ]
é\; 0.3j ‘/ ]
S i 1 [ forward limit
S .26 ] small impact parameter
I / ]
0.1 [ N 4
0.0 - ]
-8 -6 -4 -2 0 2 4
93 M?/ gy

Figure 3. Allowed region for g3 and g4 in a non-gravitational theory in D = 6 dimensions,
with heavy mass scale M. We show results using two different methods: the blue region uses
derivatives around the forward limit as in [11] (with a 33-dimensional space of functionals), while
the yellow region uses small impact parameter wavepackets (built from the 17-dimensional space
of functionals listed in table 2, together with C4 ,=¢). The two regions are essentially identical and
appear overlapping in the plot. We give more details on our numerical computations in appendix A.

g} M{
8n G
/
150+ — D=5
D=6
— D=7
100+
— D=8
— D=9
50T — D=10
— D=11
1 1 1 J q‘)MQ D:12
~15 ~10 10 1587¢
N

Figure 4. Allowed regions for go and g3 in a theory of a scalar coupled to gravity in flat space
in dimensions D = 5,...,12, with heavy mass scale M. For each curve, the region to the right is
allowed and the region to the left is disallowed. Each bound was computed using a 17-dimensional
space of functionals, listed in table 2. We give more details on the numerical computation in
appendix A. The inequalities plotted here are listed in table 3.

~16 —



e e e SO | L le

15 20 25 30

~

Figure 5. The impact parameter wavefunction f(b) defined by (3.1) for the extremal functional
that minimizes go in D = 6. As discussed in the text, it is localized near b ~ 1/M. The wavefunction

o~

is normalized by f(0) = 1/2 so that the contribution of g in (3.16) is precisely go. The fact that
it has zero slope at b = 0 guarantees that the contribution of g3 vanishes.

can be improved by choosing a larger space of functionals. We expect that the bounds
shown in figure 4 are within a few percent of optimal.'?

In figure 5, we show the impact parameter wavefunction f (b) for the extremal func-
tional that minimizes go in D = 6. Clearly, the numerical optimization procedure constructs
sum rules dominated by b ~ 1/M.

Because our sum rules are linear and homogeneous in the EFT couplings 87 G, g2, g3,
we can always add an admissible amplitude without gravity to an admissible amplitude
with gravity to obtain a new admissible amplitude with gravity. The allowed region in
(92, g3)-space without gravity is a cone C' [11]. The allowed region with gravity must be
a union of translations of C'. Indeed, this is the case: the allowed region is similar to the
non-gravitational one, but shifted so that g has a negative minimum value (achieved at a
particular value of g3). Note that the bounds are stronger in larger D. This is due to the fact
that the dimensional reduction of a unitary theory is unitary (more technically the fact that
higher-dimensional Gegenbauer polynomials can be written as positive linear combinations
of lower-dimensional Gegenbauer polynomials). Physically, it makes sense that the ratio
goM? /G should not admit an upper bound: go and G are a priori independent couplings,
measuring respectively the strength of the scalar self-interaction and the strength of gravity.
We are assuming that the EFT is weakly coupled, which means that both go and G are
taken to be small in units of M, but their ratio is a priori undetermined without further
physical input. On the other hand, for fixed goM?/G, we expect (and will confirm) that
all other dimensionless ratios g, M?#~2/G obey double-sided bounds.

12Here, we mean “optimal” for the specific infinite dimensional linear program (3.16). One could poten-
tially obtain stronger bounds by making new assumptions about the theory in question, or by extending
the range of u as discussed in appendix B.
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spectrum minimizing g» (D=6)

m2/
87
[ .
6k
| . 54 functionals
4+ * e 92 functionals
L . ° N .
¢ ° ° °
2r . o ° .
[ ] ° L ] ° [ )
P ® - e o -8 & 3 o -3 e -
O " P " L L " L L J
5 10 15 20

Figure 6. Extremal spectrum for the problem of minimizing g» in spacetime dimension D = 6.
The black points are zeros of the extremal functional, computed using a 92-dimensional space of
functionals described in table 2. (We only show zeros that are stable under changing the space
of functionals and other parameters.) For comparison, we show the spectrum computed using a
54-dimensional space of functionals in red. The upper trajectory has mostly converged, but the
lower trajectories are still changing as we increase the space of functionals. The extremal value of
go corresponding to this spectrum is goM?/(87G) = —9.57. In string theory, the spectrum would
occupy the upper triangle, but here it is in the lower triangle.

The slope of the upper bound on g3 as a function of go is exactly 3. This comes from
the fact that the scalar contribution to the C;mproved sum rule is

impr 2 3 2
CQ’fpgoved[m2, J = O} = m -+ %, (319)

which has the same form as the low-energy contribution 2go + g3p? in (3.16). By adding
scalars to the heavy spectrum, we can shift (g2, ¢g3) by an arbitrary positive multiple of
(1,3/m?). The minimum value of go is achieved by a spectrum with no heavy scalars.
We can compute this spectrum using the extremal functional method [48, 49]: we find
functions f(p) and hi(p) that give the optimal lower-bound on g2. We then tabulate the
values of m? and J where the inequalities in (3.16) are saturated — i.e. the zeros of the
extremal functional. We show the resulting spectrum for the case D = 6 in figure 6. The
extremal spectrum is remarkable (and very different from string theory) in that there is
only a single state at spins J = 2,4, 6, and a small but increasing number of states at larger
J. Furthermore, the minimal value of m? appears to be nearly flat as a function of J. It
is interesting to ask whether there could be a physical theory of gravity that realizes this
spectrum.
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Allowed (g4,g5,95) in D=6, for any gs, for 2£&(-9 5,0}
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Figure 7. Bounds on the higher-dimension contact coefficients g4,¢s5,95 in D = 6. We com-
pute bounds that are independent of g3 by restricting to the subspace of functionals whose EFT
contribution is independent of g3. We compute the 3-dimensional allowed region in (g4, g5, g6 )-
space for a few example values of g, and then project onto pairs of axes for display. The values
of go shown here are go = 0 (lightest blue), 982% = —5 (medium blue), 95%;2 = —9 (darkest
blue). These bounds were computed using the same parameters and functionals listed in column
1 of table 2, with the additional functionals Cf_p;zovw x {p®,pt,...,p°}. When gy approaches the

“tip of the cone” at its minimum value goM?/(87G) ~ —9.6, the allowed region shrinks towards
MS gsM® geM'M\
(92, 9202, 2 ) ~ (1.4, -34,165).

3.5 Bounds on higher contact coefficients with gravity

The same method straightforwardly extends to higher EFT coefficients. Using the same

strategy as in (3.6), we can define a Cjﬁproved sum rule that isolates the coefficients g4, g5, gg:

4g4—2ugs +ggu? = (CLP " [m?, J])

2m?+u)Pr(1+2%)  u?(6m —4m>*u?+4m*u—3u®)P;(1)

improvedy, 2 _
C4,up ove [m 7J] = m4(m2+u)3 - mlg(m2+u)3 (320)
2wt dm!APY1) 4P
m'2(m2—u)(m2+u)? m!2(u—m?)(m2+u)’

The coefficient gg, which multiplies (s? +¢2 4 u?)?3 in the Lagrangian, was eliminated since

it can be measured by the higher-subtracted sum rule Cg,: we will therefore not discuss
improved Cimproved

2’_p2 ’ 47_p2

and X, _,» sum rules, each integrated against its own function of p.3 By finding linear

it here. We then generalize (3.16) to include linear combinations of the C

combinations that are positive for all m > M and J = 0,2,4,..., we obtain inequalities
on EFT data with the correct scaling in 87G and M. As an example, in figure 7 we show

bounds on g4, g5, g¢ in spacetime dimension D = 6, for some example values of ga.

13 Alternatively, since the forward limits u — 0 of spin-4 sum rules converge, we could simply use deriva-

tives of the un-improved C4, supplemented with null constraints, as opposed to using Cirf;pmvc‘j.
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3.6 Some solutions to the constraints from string theory

It is interesting to compare our bounds to explicit solutions of crossing symmetry with grav-
ity. The exchange of gravitons in the three channels alone violates the Regge bound (2.14)
and needs to be UV completed. A simple UV completion is provided by the amplitude of
four real dilatons in type II string theory [50]

(st + (0w)? + (s T(-5) D (=) U (o)
mS D (Z+1)T(;h+1)T (% +1)

Mtring (s, t) = —81G (3.21)
Here m > M is the mass of the lightest massive state exchanged. It is straightforward to

check that along any ray of constant phase in the s plane away from the real axis, at fixed
u, we have

[Mitring(5,u)| = O(|s|F24/™) | (3.22)

in agreement with (2.14). Furthermore, the amplitude is unitary for 2 < D < 24.'* The
low-energy expansion of (3.21) starts as follows

t t\ 4
Mtring (s, t) = 871G <: + u?s + 'Z) + 7Tanﬁ(?’)(SQ + 2+ u?) 4., (3.23)

i.e. this amplitude has

_ 47rG((3)

=0 3 =0, , 3.24
92 ) 93 94 m6 ( )
meaning that the point
M? M4 M6 3
81G 81G 87G 2

is consistent with all the constraints for any 0 < z <1 aslong as 2 < D < 24.

This point lies at the origin in figure 4 and does not come close to saturating the
bounds on g2 and g3. One can construct a consistent solution of the constraints lying
closer to the bound by subtracting all the scalar (spin-0) exchanges from Mgting but this
only has the effect of translating the solution to the lower-left of the origin in figure 4. For

example, in D = 6 we find:
2 4
N 075, BT
81G 8rG

bringing us somewhat closer to the numerical bound, but still far from saturation. We can

~ —2.07, (3.26)

also consider scattering of real dilatons in the heterotic string [52], where we find

2 3 4 3
gam_ _ , gsm = -, (3.27)
817G 16 87 4

also safely within our bounds.

MUnitarity for 2 < D < 10 follows from unitarity of type II superstring theory. The residues of (3.21) at
the massive poles experimentally admit a positive expansion into Gegenbauer polynomials in the extended
range 2 < D < 24.148 .... We are not aware of a proof of unitarity of (3.21) in the extended range, see [51].
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String theory is of course by no means the unique way to “unitarize” tree-level two-to-
two graviton exchange, especially at large impact parameters. Perhaps the simplest idea
(pre-dating string theory) is to exponentiate the eikonal phase. To see this let’s transform
the amplitude to impact parameter space as

M(s,b) = ~ /Meipr(s u = —p?) (3.28)
2s ) (2r)D—4 N ’

which allows to write the eikonal amplitude as (see [53] in the context of string theory)

o GT' (&=
Mei(s,b) = =i (X0 — 1) () = (,32_4) (3.29)

(mb?) =z
Here we are thinking of b large compared to the string scale and other scales. Expanding
the exponential to first order reproduces tree-level graviton exchange. It is not hard to
see that this model indeed saturates the Clmproved

endpoint removed: in Fourier space that sum rule reads

x(b) = */0 ;lSImM(S b) —reik — /0 iSZSiHQ (8)22(1))> : (3.30)

sum rule from eq. (3.8), with the lower

The eikonal model does not quite satisfy the assumptions in the paper and so we do
not put the corresponding data in the same plot (one would have to choose a scheme
for subtracting the low-energy loop contribution to the spectral density from s < M?),
however this contribution is negligible at sufficiently large impact parameters, on which we
will focus here. One can interpret the above sum rules as constraining high-energy data at
fixed “impact parameter” b = 2J/m. This may be seen using eqs. (2.18) and (3.12) and
integrating using orthogonality of Bessel functions:

(b) ~ <bm46(b )>(b/(2) )4 (3.31)

This should be understood in the sense of distributions, with sufficient smearing in b to
satisfy the finite-p support condition, and it shows that low-energy gravity predicts high-
energy averages at fixed J/m. These constraints are of course satisfied in tree-level string
theory, but rather differently than in the eikonal approximation. Due to the famous loga-
rithmic spreading with energy,

b2 M2

Im Mstring(sa b) X e 8logs (332)

at large impact parameters bM >> 1 string theory’s spectral density effectively vanishes
below exponentially large s.

The spectral densities (3.30) and (3.32) could hardly differ more from each other. Yet
they are both physically reasonable and are both realized in different regimes of string
theory. In our view, this indicates that high-energy models should be used with great care
when deriving EFT bounds, or perhaps avoided (as we do in this paper).
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3.7 Comments on D = 4 and infrared divergences

Trying to play the above game for gravitational theories in D = 4, we run into a problem.
In order for the integral against gravity to converge, we need lim,_,o f(p)/p to vanish. How-
ever, when D = 4, this limit is proportional to [ d2b f (l;), which must be strictly positive.

In other words, if we restrict to functionals that are positive at all impact parameters,
the action on gravity is logarithmically divergent. This reflects the infrared divergence
of the gravitational potential in the Regge limit, given by the two-dimensional Fourier
transform | f—Qpeip'b.

A simple solution is to require positivity only at distances less than an IR cutoff
b < bmax- In practice, this can be achieved simply by introducing a small cutoff in momen-
tum space, |p| > pmin Where ppin < M. We then consider the linear programming problem
in (3.16) but replacing the action on gravity by fa(p = 0), which gives the coefficient of
the logarithmic divergence ~ log zﬁ‘ In this “leading-log” approximation the shape of the
extremal functional is independent of the cutoff. The cutoff pyi, can then be quantitatively
related to byax, the impact parameter at which the action becomes negative, by plotting
the Fourier transform of the functional. In fact, the relation can be found analytically
by series-expanding at small ppin, from which we find p2. = ¢/(Mb3,,,) where the nu-
merical constant ¢ &~ 1 is found from the extremal functional. In this way we obtain the
lower bound:'?

rG
go > Uz X 2510g(0.3M byax) (D=4). (3.33)

What physical value should we choose for the cutoff? In the context of AdS/CFT,
there will be a clear choice: the AdS scale byax ~ Raqs. But this could be an over-estimate
since the distance by.x need simply be a scale outside which we consider the amplitude to
be computable, for example using the eikonal approximation. Negativity of a functional
is not necessarily a problem if it occurs in a region under analytic control. In Minkowski
space, it should be possible to make this analysis fully rigorous by considering coherent
states of the scalar and its radiation; this would require knowing the properties of such
dressed states under crossing symmetry and discontinuities. We leave this to future work.

3.8 Maximal supergravity: bounding graviton scattering

Can two gravitons produce heavy states with an arbitrary cross-section, or must all pro-
cesses involving gravitons be suppressed by G?7 Here we give partial support for the latter
idea, in the special case of maximal supersymmetry.

The technical simplification is that the graviton lies in the same multiplet as a scalar.
We can factor out the helicity dependence and effectively we have a massless real scalar
with low-energy amplitude

81G
Msusy(sa u) = 87;7 + g0 + 92(82 + t2 + u2) +.. (334)

15 An earlier arXiv version of this paper used an incorrect relation between pmin With bmax, which resulted
in a numerically incorrect bound.
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Maximal supersymmetry effectively improves the s — oo behavior by four powers, so that
we have the high energy bound

§* Mgusy(s,u) = 0 as s —00. (3.35)

The (—2)-subtracted dispersion relation now converges for u < 0. The corresponding C_»
and Cy sum rules read:

8G9 o 2u
Cop: — - = (m?(2m? + u)P, (1 + m2> ), (3.36)
(2m? +u)Py (1+ 24)
. 2 _ m
Co. g0—|—292u —|——< m2+u > (337)

Note how gravity enters its own sum rule, apparently decoupled from the rest. This is a
simplifying feature of supersymmetry. Since the second line involves higher powers of 1/m?
than the first, we can bound gg in terms of gravity and the heavy mass M. Again the trick
is to measure gy using small impact parameters.

Proceeding as in (3.8), we may eliminate the higher contacts 2gou? + ... from the
left-hand side of (3.37) using higher subtracted sum rules. A shortcut is to use s <> u
symmetry of the unsubtracted dispersion relation:

m22m? + )Py (1+24), m?@m? + )Py (1+ 2)
{ (m2 — s)(m? + s + u) )= (m2 —u)(m? + s + u) )

(s,u<0). (3.38)

Note that this equality involves only heavy data: the massless poles contribute % to both
sides and cancel each other. Setting s = 0 we obtain a family of null constraints

(2m? 4 u)Py (1 + %) - 9l

0:< m2+u m4 —u?

) (w<0), (3.39)

where the first term is the average that previously appeared in (3.37). Adding the identity
go = (2) then gives the desired analog of (3.8):

(2m2 + u)P; (1 + %) 202
go = < m2 +u B mt — 2 >heavy ' (340)
— <C(i)ilztproved[m2,J]> .

Compared with (3.37), the left-hand-side is now under complete control. We have an
infinite family of ways to measure g, labelled by —M? < u < 0.

Using the linear programming strategy in (3.16), now integrating the gravity mea-
surement in (3.36) against powers p?,p3, ... p'Y the go measurement in (3.40) against four
powers of p, and X5 against two powers of p (for a total of 14 functionals), we proved the
following bound:

81G

0<go < 3.OOOW (D = 10, maximal supergravity) . (3.41)
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We find it remarkable that such a bound exists at all. It shows that in a theory with 32
real supercharges all interactions must shut down as G — 0. It is an interesting question
whether a similar statement holds for the coupling of gravitons to heavy states in non-
supersymmetric theories.

The bound is compatible with type II string theory, where
goM°®
8rG

It would be interesting to find a model which saturates the bound. Note that the bound
is sharp only for theories weakly coupled below the scale M (i.e. M < My), since we

2¢(3) ~ 2.40 < 3.000. (3.42)

neglected EFT loops.

Recent work [54] also considered bounds on gp with maximal supersymmetry in ten
dimensions. Their set up differs from ours in that they consider bounds on go/87G not in
the units of the UV cutoff M but in Planck units My, without assuming weak coupling
M < M. Therefore, in their case there is no upper bound on goMgl /87 G since this ratio
gets arbitrarily large in weakly coupled string theory. Intriguingly, they provide evidence
that besides the rigorous bound gg > 0, there should be a stronger lower bound of the form
gOMISl /8mG > ¢ > 0, possibly saturated by strongly coupled string theory. In the units of
the UV cutoff, this lower bound approaches zero at weak coupling and thus is compatible
with (3.41).

4 Conclusions

In this paper, we considered higher derivative corrections in UV consistent gravitational
theories in flat space. We explained how to derive bounds on these corrections using
dispersion relations for the S-matrix. We focussed on the weakly coupled regime, meaning
that the gravitational and any other interaction is very small. In this regime, the ratios
gn/8mG of higher derivative couplings to the gravitational coupling are fixed numbers.
On physical grounds, it is expected that in consistent theories, these numbers should be
suppressed by inverse powers of the UV cutoff M. Here we define M to be the mass of
the first state which does not appear in the low-energy effective field theory. It has been
known for some time [17] that theories where higher derivative corrections are large in the
units of M violate causality. Nevertheless, the long-standing challenge has been to turn
such parametric bounds into precise bounds on the order one coefficients. In this paper,
we derived such bounds.

We solved the problem in the context of theories containing a light (massless) scalar
coupled to gravity. In such theories, we can consider higher derivative contact self-
interaction of the scalar particle. The leading interaction, which we denoted g5, has four
derivatives, followed by g3 with six derivatives, g4 with eight etc. In non-gravitational
theories, causality and unitarity have long been known to imply that go must be posi-
tive [7]. More recently, g3/g2, ga/ge etc. have been argued to satisfy two-sided bound in
the units of M in the absence of gravity [10, 11], starting from dispersion relations expanded
around the forward limit. However, the incorporation of gravity poses an obstruction to
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such program since the exchange of massless gravitons gives rise to a pole at vanishing
momentum transfer.

In this paper, we overcame this difficulty by localizing the dispersion relations at small
impact parameters rather than at small momentum transfer. This automatically leads to
the correct EFT scaling and gives rise to a robust bootstrap program for bounding the
order one coefficients. We showed that gs is bounded from below and that g3, g4 and
higher couplings are confined to compact regions at a fixed go, see figures 4 and 7. The
theory minimizing the g» coupling exhibits a peculiar spectrum shown in figure 6. It would
be interesting to understand if it can come from a consistent theory of gravity.

We also considered theories with maximal supersymmetry. In this case, we were able
to give both upper and lower bound on the leading correction, corresponding to R*. This
shows that all interactions must shut down in a theory of gravity with maximal supersym-
metry if we take G — 0.

Our results opens up several obvious avenues for future research. The type of question
addressed here in flat space has a natural analogue in AdS, and will be the subject of an
upcoming work [31]. It would also be extremely interesting to derive similar bounds in the
presence of a positive cosmological constant. To do that, one would first need to clarify
the consequences of causality and unitarity in de Sitter space.

We have focussed on the simplest example of identical massless scalars. It will be
natural to consider in our framework the scattering of more general external states — most
fundamentally, graviton scattering. We have already mentioned the need for a refinement of
our method in D = 4 to handle the IR divergence in the impact parameter representation.
The incorporation of EFT loops is another natural direction. Our results can be regarded
as a step in the classification program of weakly coupled theories of gravity, in the spirit
of [17]. The tools are now mature to pursue this program systematically.
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A Details on numerics

In this appendix, we give details on our numerical implementation of the linear pro-
gram (3.16), which we reproduce here for convenience.

if: /dpf lmpmved[ L+ ) /dphk P) Xy _p2[m?, J] >

k=4,6,.
Ym>1, J=0,2,4... (A.1)

1 1
then: /0 dp f(p) [pQ + 2g9 + gspﬂ >0, (A.2)

We have set M = 1 and 87G = 1; the dependence on these quantities can be restored using
dimensional analysis and homogeneity.

We are free to choose any objective function and normalization condition on the func-
tions f(p) and hi(p). The solution of the resulting optimization problem then provides
a valid inequality on EFT data of the form (A.2). The full allowed region in the (g2, g3)
plane is the intersection of the allowed regions for all such inequalities. For example, to
obtain the plots in figure 4, we maximized the distance from a chosen point (g2, 93,0)
along rays of constant angle 6 in the (g2, g3) plane. We chose (g2, 93,0) near the tip of

the expected allowed region (known from earlier experimentation) and scanned over angles

39
0e€{0,3,..., 50 -

We expand f(p) and hi(p) in pure powers of p,

=Y awp",  hg(p) = by’ (A.3)
n i=0

For each J, the integrals (A.1) against pure powers of p can be computed analytically in
terms of o F] hypergeometric functions, for example

/ dp pn Clmproved [ ]

CAD - 1)ak (1 ) L 2BD-4)  3(BD-2 (a4)
N (D — 2)m4(n + 1) (D —2)mi(n+1) (D —2)mS(n+3) '
Parametrizing m? = ﬁ, we would ideally like to impose (A.1) for all J = 0,2,... and
x € [0,1). In practice, we must restrict J € {0,2,..., Jynax} and discretize .16 Our initial

discretization is

€ {0,59,;,259,;,..., [;—1151,} (A.5)

for some a small parameter §,, listed below in table 2. Discretizing x weakens the inequal-
ities, potentially resulting in incorrect bounds. However, we can effectively remove this
problem by adaptively refining the discretization as described in section A.2.

16 Alternatively, it would be interesting to find an approximation for functions like (A.4) in terms of
a positive function of x times a polynomial. This would allow us to rewrite positivity constraints in
terms of positive semidefinite matrices and apply semidefinite programming, as done for CFT four-point
functions [55, 56].
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A.1 Impact parameter space inequalities

Restricting J < Jpax weakens the inequalities as well. To reduce the dependence of the
resulting bounds on Jyax, it is useful to explicitly include inequality constraints from the

scaling limit m — oo with fixed impact parameter b = %:
D—2\ [ Jp_a(bp)
D(750) [ ot 0wz (A.6)
2 0 (bp/2)" 7"
(The null constraints Xy, X, ... are subleading in this limit, so the functions hy(p) don’t

enter this condition.) Again, the integral against a pure power of p can be done analytically:

n+l. D=2 n+3. b2

r D -2 1d . J%(bp) B 1F2(—2 R 4) (A7)
72 1Y% p—4 — +1 . .
o T w2 z

The resulting functions have an oscillatory and non-oscillatory part at large b:'”
() (BT ) 2T () e (- 00)
n+1 r (D—;—?») pntl VT pot

+...

(A.8)

In order for linear combinations of such functions to be positive at large b, we must either
include at least one n such that n < %, or take linear combinations of functions that
cancel the leading oscillatory term at large b. We return to this statement below.

To efficiently impose positivity at large b, we use the following trick. After writing
f(p) as a sum of pure powers, we have

r<D2—2> /Oldpf(p) WZA@)JFB(&))COS (b_W(D—l)) +C(b)sin (b_ﬂ(D_1)>,

where the functions A(b), B(b), C(b) have well-behaved asymptotic expansions in inverse
powers of b. Let us now write

A+B C cos &
ino = 20 gin @ 2
A+ Bcos¢p+ Csing = (CO&,2 51112) ( c B > (singj)' (A.10)

We can thus replace positivity of (A.9) with the stronger condition

Ab)+BO) O
( ) A(b) —B(b)) =0, (A-11)

where “M = 0” means M is positive semidefinite. Because (A.11) implies (A.9), this

replacement is rigorous, but may result in sub-optimal bounds. However, at large b, the

W(D*l)) w(D-1)
4

cos(b — and sin(b — ==—) terms in (A.9) are rapidly oscillating so that (A.11) is

'"The full expansion of ; F» hypergeometric functions around infinity can be found in [57].
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a good approximation to the original positivity condition. In (A.11), we can now expand
A(b), B(b),C(b) in inverse powers of b, and truncate the expansions. If n = £2-2 mod 1,
after pulling out a positive factor, we obtain a matrix polynomial inequality of b, which
can be used in SDPB.!®

These considerations suggest that we should expand f(p) in the functions p?,p3, ...
in odd D and the functions p*2,p%2,... in even D. This works well except in D = 5,
since 2 > %, so generic linear combinations of (A.8) cannot be positive at large b. One
solution in D = 5 is to cancel the leading oscillatory term at large b, which can be done by
using differences p? — p?, p* — p?,.... This leads to the basis functions shown in table 1.

We encode positivity using the 2 x 2 matrix (A.11) for b > B, where B is some cutoff.
We keep mmax subleading terms in the expansion of B(b) and C'(b) at large b, where mmax
is listed below. For smaller b < B, we impose positivity at discretized impact parameters:

B —

b€{6b,€b+(5b,...,6b+" 6€b—1-‘5b}, (A.12)
b

where ¢, 0, are small parameters listed below in table 2. Like in the fixed-J case, we

adaptively refine our discretization of b, as described in section A.2.

A.2 Outer approximation/adaptive refinement

Our problem has several constraints that depend on a continuous parameter. For example,
we would like to impose positivity of (A.1) for all z € [0,1) and J = 0,2,4,..., where
m = ﬁ By only imposing positivity at a discrete set of x as in (A.5), we run the risk
that the solver could return a solution that is negative between two discretized values. In
fact, this almost always happens, since the solution to any optimization problem involves
some set of saturated inequalities. If the left-hand side of (A.1) is zero at some value of z, it
will generically be negative on one side of that zero. Typically, the solver returns a solution
that vanishes at pairs of neighboring discrete values of x, and is negative between them.
We mitigate this problem by adaptively refining the discretization. We begin with
an initial discretization of x and b and run the solver. The resulting functional will be
negative between pairs of points in the initial discretization. We identify these negative
regions and add new positivity constraints in a finer-spaced grid covering the negative
regions. Specifically, suppose that the functional dips negative between a pair (x1,x2) of
discretized . Let the minimum of the functional between 7 and xs (which we estimate

from a quadratic approximation) be x,. We add new positivity constraints at the locations
{zs = Ns,z, — (N —=1)s, ..., Ty, ..., T« + (N — 1)s, zx + Ns}, (A.13)

where s = |zg —x1|/N with e.g. N = 10. Running the solver again with the new constraints
included, the new solution will typically have a saturated inequality near x, with a negative
region reduced in size by a factor of N. We repeat this procedure until the negative regions

18 Alternatively, if n = %

matrix polynomial of b'. However, this step multiplies the degree of the resulting polynomial by g, which

+ g mod 1, we can perform a change of variables b — b'? to again obtain a

can result in a performance hit in SDPB.
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Functional before and after refinement

0.015}

0.010}

0.005
L L L L L L r L L L L L L L L b
10.725 10.730 10.735 10.740

-0.005}

Figure 8. A functional returned by SDPB before refinement (blue) and after 3 steps of refining
the discretization and re-running SDPB (orange). We plot the action of the functional in impact
parameter space, zoomed in near a negative region after the initial run of SDPB. Our initial dis-
cretization used step size 6, = 1/32. The functional indeed has a negative region of roughly size
0p, with minimum value —0.0077 in this region. After the refinement steps, the negative region is
b € (10.7298112,10.7298134), and the minimum value of the functional is —1.83 x 10710,

are extremely small (e.g. of size 107%), and it is clear that the solution is converging to a
nonnegative functional. The solution after refinement is usually quite close to the original
solution. We give an example of a negative region in an initial solution and the result after
refining the discretization in figure 8.

An important benefit of this method is that the bounds become essentially indepen-
dent of the parameters €., d,, €, 0y describing the initial discretization, provided they are
sufficiently small.

Abstractly, the space of allowed functions f(p), hi(p) is a convex region carved out by
an infinite number of inequalities. By discretizing x, we obtain an “outer approximation”
of this region in terms of a finite number of inequalities. (“Outer” because our approximate
region is bigger than the true region.) By refining our discretization, we obtain a more
accurate outer approximation. An efficient implementation of this method should include a
way of hot-starting from the previous solution after each refinement step. We have not im-
plemented this — instead we simply run SDPB from scratch after each refinement. Typically
only a few refinement steps are needed, so this does not give a huge performance hit.

A.3 Choices of parameters and numerical results

Our implementation of the linear program (3.16) involves several parameters. In table 2,
we list the parameters used for the computations in this work. The inequalities plotted in
figure 4 (in units where 87G = 1 and M = 1) are given in table 3.
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Figure 4 Figure 6
{prcimeroved |y — 15,25, ...,27.5}
{prcimeroved |y < 7.5} U{p'X,|i=0,1,...,15}
functionals U{p‘Xy|i=0,1,2,3,4,5} | U{p'Xs|i=0,1,...,13}
U{p‘Xs|i=0,1,2,3} u...
U{p'X4|i=0,1,...,5}
Jmax 42 150
O 1/400 1/800
€p 1/250 1/250
0 1/32 1/100
B 40 80
Mmax 2 6
—--precision=840
non-default o --dualityGapThreshold=1e-80
--precision=768
SDPB parameters --primalErrorThreshold=1e-80
--dualErrorThreshold=1e-80

Table 2. Choices of parameters for the computations in this work. These parameters were chosen
experimentally — we have not attempted to optimize them. For the computation in figure 4, we
verified that further increasing J,.x changes the bounds by less than the fraction 1074, Because
of the refinement procedure described in section A.2, the bounds are essentially independent of
3z, €b, 0y in all cases. For figure 4, the precise linear combinations of C;mpmved are D-dependent, and
listed in table 1. For the computation in figure 6, we supplemented the initial discretization of x
with additional constraints at € {1—-4/J,1—-4/J+1/(50J),...,1—1/(50J)} for J = 36, ..., 150.
Finally, for the extremal functional computation in figure 6, we project onto the subspace of func-
tionals with vanishing contribution of g3. This reduces the space of functionals from 93 dimensions
to 92 dimensions. Tables of functionals were produced using Mathematica with 300 decimal digits

of precision.

B Bounds using an extended range of u

When u = —M?, the t-channel cut merges with the origin in the s-plane. As noted in
section 3, this may invalidate the C;?Lproved sum rule in general for v < —M?2. However, for

meromorphic amplitudes, i.e. amplitudes where the t-channel “cut” is simply a collection
of simple poles, there is no obvious problem with taking v < —M?. Indeed, the low-energy
contribution to the improved sum rules C,i;zpmved and A}, stays finite for general u < 0.
This is unlike the situation for the unimproved sum rule Cj ,,, the left-hand side of which
is an infinite sum of contact contributions with a finite radius of convergence. Similarly,
the terms on the right-hand side of Cj ,, have a pole at u = —m?, but this pole is removed
in the improved sum rules. We have checked in examples coming from string theory, such

as (3.21), that the improved sum rules continue to hold in the complete range u € (—o00,0).
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g2

— £ +60.3086 > 0

A gs +0.0647867g3 +9.64034 > 0 A go + 0.0750150g5 + 8.40592 > 0
A go +0.0779037g3 + 8.09643 > 0 A go + 0.0802745g5 + 7.86165 > 0
A ga +0.0823523¢3 + 7.66918 > 0 A go + 0.0842715g5 + 7.50180 > 0
D=5 | A gy+0.0861338g5 + 7.34848 >0 A g + 0.0879254g5 + 7.20921 > 0
A gs +0.0898265g; + 7.07029 > 0 A go + 0.0919903g5 -+ 6.92264 > 0
A g +0.0946037g3 + 6.75833 > 0 A go + 0.0980028¢5 -+ 6.56596 > 0
A go+0.112285g5 + 5.90160 > 0 A go + 0.112297g5 + 5.90112 > 0
A gs +0.112318¢5 + 5.90066 > 0 A go + 0.112362g5 + 5.90107 > 0
go — 92 4 28.0546 > 0
A go +0.0940931g3 + 4.55838 > 0 A go + 0.101479g5 + 4.22726 > 0
D_g | A 92+0.107010g; +4.00645 >0 A g>+0.1105385 + 3.87630 > 0
A go+0.113142g5 +3.78572>0 A go + 0.115195g5 + 3.71765 > 0
A go +0.116954g5 + 3.66176 >0 A go + 0.118572g5 + 3.61228 > 0
A g2 +0.120160g5 + 3.56553 >0 A go + 0.121815g5 + 3.51866 > 0
g2 — £ +18.0717 > 0
b_o | A 9201077549 +3.30601 >0 A go+ 01147455 + 311426 > 0
A go+0.119761gs +2.98759 >0 A go + 0.124098g5 + 2.88546 > 0
A go+0.127812g3 +2.80238 >0 A go + 0.129850g5 + 2.75853 > 0
go — L +13.7186 > 0
A go+0.110239g5 +2.92120 >0 A go + 0.113486g5 + 2.84526 > 0
A gs+0.116510g3 +2.77802 >0 A go + 0.119462g5 + 2.71525 > 0
D=8 | A gy+0.122467gs +2.65393>0 A g + 0.125690g3 + 2.59077 > 0
A go+0.129207g5 + 2.52462 > 0 A g + 0.133224g5 + 2.45244 > 0
A go+0.134841g5 +2.42430 >0 A go + 0.134849¢5 + 2.42422 > 0
A go+0.134858¢5 +2.42416 > 0 A go + 0.134874gs + 2.42429 > 0
g2 — % +11.1250 > 0
D=9 | A go+0.134185g5 +2.24546 >0 A go + 0.138540g3 + 2.17837 > 0
A go+0.138548¢5 +2.17837 >0 A go + 0.138567g5 + 2.17856 > 0
b_1o| 92— % +95208>0
A go+0.138871gs +2.05513 >0 A go + 0.14150g5 + 2.0196 > 0
g2 — L 4 8.4687 > 0
Dy | N 921014372095 + 191178 >0 A gy +0.1437295 + 1.91169 > 0
A go+0.143733g5 + 1.91166 > 0 A go + 0.143738g5 + 1.91165 > 0
A go+0.143746g5 + 1.91166 > 0 A go + 0.143772g5 + 1.91187 > 0
Dy | % FTI01620
A go+0.144433g5 + 1.86671 >0 A go + 0.145825g5 + 1.85029 > 0

Table 3. The inequalities plotted in figure 4 (in units where 87G =1 and M = 1).
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Figure 9. Bounds on gs, g3 in D = 6, computed using wavepackets with support in v € [tumin, 0]
for umin/MQ =—1,-5/4,—-5/3,—5/2. As umin gets more negative, the kink slides along the lower
bound on g3. These bounds were computed using a 54-dimensional space of functionals spanned
by {p"Cy"e" 0 = 1.5,...,19.5} U {p" X | (n,k) € {(0,4),...,(11,4)} U {(0,6),...,(9,6)} U
{(0,8),...,(7,8) } U{(0,10),...,(5,10)}}.

In general, we expect the improved sum rules to hold in the complete range if the exchanged
spectrum contains only finitely many states below any given mass, as is the case in string
theory. This is because any finite number of states can not affect the convergence of the
improved sum rules and by removing all states with m? < —u, we effectively find ourselves
in the situation u € (—M?,0) where convergence is guaranteed.

Thus, it is interesting to consider how the bounds change when we use wavefunctions
with larger support in u. We leave a more complete exploration of this idea to future
work. In this appendix, we explore some example bounds obtained with a larger (but still
compact) range of u. In figure 9, we show bounds on gs, g3 obtained using wavefunctions
with support on u € [—yM?, 0] for various y. As y increases, the minimal gy “kink” slides to
the right. Interestingly, the corresponding extremal spectra appear to simplify, see figure 10.
For larger y, the spectrum may be converging toward a single linear Regge trajectory
m? = M?(J — 2)/2, with possibly another trajectory at m? = M2. It is interesting to ask
whether a solution to crossing symmetry with this structure can exist.
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Figure 10. Extremal spectra for the bound that minimizes go in D = 6, computed using different
wavefunctions with different ranges u € [umin, 0]. AS umin gets more negative, the spectrum appears
to simplify, with approximately linear Regge trajectories at m? ~ M?2(J — 2)/2 and m? = M?2.

— 33 —



Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl.
Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

[2] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing
Corner, PoS TASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].

[3] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037
[arXiv:1903.06239] [INSPIRE].

[4] M. van Beest, J. Calderén-Infante, D. Mirfendereski and I. Valenzuela, Lectures on the
Swampland Program in String Compactifications, arXiv:2102.01111 [INSPIRE].

[6] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and
gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

[6] T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson
Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D 31 (1985) 3027
[INSPIRE].

[7] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity
and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

[8] N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, The EFT-Hedron, JHEP 05 (2021) 259
[arXiv:2012.15849] [INSPIRE].

[9] B. Bellazzini, J. Elias Mir6, R. Rattazzi, M. Riembau and F. Riva, Positive Moments for
Scattering Amplitudes, arXiv:2011.00037 [INSPIRE].

[10] A.J. Tolley, Z.-Y. Wang and S.-Y. Zhou, New positivity bounds from full crossing symmetry,
JHEP 05 (2021) 255 [arXiv:2011.02400] [NSPIRE].

[11] S. Caron-Huot and V. Van Duong, Extremal Effective Field Theories, JHEP 05 (2021) 280
[arXiv:2011.02957] INSPIRE].

[12] A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field
Theories, Phys. Rev. Lett. 126 (2021) 181601 [arXiv:2012.04877] [INSPIRE].

[13] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys.
Rev. 123 (1961) 1053 [INSPIRE].

[14] A. Martin, Unitarity and high-energy behavior of scattering amplitudes, Phys. Rev. 129
(1963) 1432 [INSPIRE].

[15] M. Gell-Mann, M.L. Goldberger and W.E. Thirring, Use of causality conditions in quantum
theory, Phys. Rev. 95 (1954) 1612 [INSPIRE].

[16] M.L. Goldberger, Causality Conditions and Dispersion Relations. 1. Boson Fields, Phys.
Rev. 99 (1955) 979 [INSPIRE].

[17] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on
Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597]
[INSPIRE].

— 34 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://arxiv.org/abs/hep-th/0605264
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605264
https://doi.org/10.22323/1.305.0015
https://arxiv.org/abs/1711.00864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.00864
https://doi.org/10.1002/prop.201900037
https://arxiv.org/abs/1903.06239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06239
https://arxiv.org/abs/2102.01111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.01111
https://doi.org/10.1088/1126-6708/2007/06/060
https://arxiv.org/abs/hep-th/0601001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0601001
https://doi.org/10.1103/PhysRevD.31.3027
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD31%2C3027%22
https://doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0602178
https://doi.org/10.1007/JHEP05(2021)259
https://arxiv.org/abs/2012.15849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15849
https://arxiv.org/abs/2011.00037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.00037
https://doi.org/10.1007/JHEP05(2021)255
https://arxiv.org/abs/2011.02400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02400
https://doi.org/10.1007/JHEP05(2021)280
https://arxiv.org/abs/2011.02957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02957
https://doi.org/10.1103/PhysRevLett.126.181601
https://arxiv.org/abs/2012.04877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.04877
https://doi.org/10.1103/PhysRev.123.1053
https://doi.org/10.1103/PhysRev.123.1053
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C123%2C1053%22
https://doi.org/10.1103/PhysRev.129.1432
https://doi.org/10.1103/PhysRev.129.1432
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C129%2C1432%22
https://doi.org/10.1103/PhysRev.95.1612
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C95%2C1612%22
https://doi.org/10.1103/PhysRev.99.979
https://doi.org/10.1103/PhysRev.99.979
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C99%2C979%22
https://doi.org/10.1007/JHEP02(2016)020
https://arxiv.org/abs/1407.5597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.5597

[18] S.D. Chowdhury, A. Gadde, T. Gopalka, I. Halder, L. Janagal and S. Minwalla, Classifying
and constraining local four photon and four graviton S-matrices, JHEP 02 (2020) 114
[arXiv:1910.14392] [INSPIRE].

[19] D. Chandorkar, S.D. Chowdhury, S. Kundu and S. Minwalla, Bounds on Regge growth of flat
space scattering from bounds on chaos, JHEP 05 (2021) 143 [arXiv:2102.03122] [INSPIRE].

[20] L. Susskind, Holography in the flat space limit, AIP Conf. Proc. 493 (1999) 98
[hep-th/9901079] [INSPIRE].

[21] J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].

[22] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03
(2011) 025 [arXiv:1011.1485] [INSPIRE].

[23] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078
[arXiv:1703.00278] [INSPIRE].

[24] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106
[arXiv:1503.01409] [iNSPIRE].

[25] B. Bellazzini, M. Lewandowski and J. Serra, Positivity of Amplitudes, Weak Gravity
Congjecture, and Modified Gravity, Phys. Rev. Lett. 123 (2019) 251103 [arXiv:1902.03250]
[INSPIRE].

[26] J. Tokuda, K. Aoki and S. Hirano, Gravitational positivity bounds, JHEP 11 (2020) 054
[arXiv:2007.15009] [INSPIRE].

[27] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless Spin-2
Pole, Phys. Rev. D 102 (2020) 125023 [arXiv:2007.12667| INSPIRE].

[28] E. Pajer, D. Stefanyszyn and J. Supel, The Boostless Bootstrap: Amplitudes without Lorentz
boosts, JHEP 12 (2020) 198 [arXiv:2007.00027] INSPIRE].

[29] T. Grall and S. Melville, Positivity Bounds without Boosts, arXiv:2102.05683 [INSPIRE].

[30] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D 103
(2021) 125020 [arXiv:2012.05798] [INSPIRE].

[31] S. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, AdS Bulk Locality from Sharp
CFT Bounds, arXiv:2106.10274 [INSPIRE].

[32] 1. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field
Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [iNSPIRE].

[33] D. Carmi and S. Caron-Huot, A Conformal Dispersion Relation: Correlations from
Absorption, JHEP 09 (2020) 009 [arXiv:1910.12123] [INSPIRE].

[34] D. Mazé¢, L. Rastelli and X. Zhou, A Basis of Analytic Functionals for CFTs in General
Dimension, arXiv:1910.12855 [INSPIRE].

[35] J. Penedones, J.A. Silva and A. Zhiboedov, Nonperturbative Mellin Amplitudes: Existence,
Properties, Applications, JHEP 08 (2020) 031 [arXiv:1912.11100] [INSPIRE].

[36] S. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, Dispersive CFT Sum Rules,
JHEP 05 (2021) 243 [arXiv:2008.04931] [INSPIRE].

[37] R. Gopakumar, A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations for Mellin
Amplitudes, Phys. Rev. Lett. 126 (2021) 211602 [arXiv:2101.09017] [INSPIRE].

— 35 —


https://doi.org/10.1007/JHEP02(2020)114
https://arxiv.org/abs/1910.14392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.14392
https://doi.org/10.1007/JHEP05(2021)143
https://arxiv.org/abs/2102.03122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.03122
https://doi.org/10.1063/1.1301570
https://arxiv.org/abs/hep-th/9901079
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901079
https://arxiv.org/abs/hep-th/9901076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901076
https://doi.org/10.1007/JHEP03(2011)025
https://doi.org/10.1007/JHEP03(2011)025
https://arxiv.org/abs/1011.1485
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1485
https://doi.org/10.1007/JHEP09(2017)078
https://arxiv.org/abs/1703.00278
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00278
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.01409
https://doi.org/10.1103/PhysRevLett.123.251103
https://arxiv.org/abs/1902.03250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.03250
https://doi.org/10.1007/JHEP11(2020)054
https://arxiv.org/abs/2007.15009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15009
https://doi.org/10.1103/PhysRevD.102.125023
https://arxiv.org/abs/2007.12667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.12667
https://doi.org/10.1007/JHEP12(2020)198
https://arxiv.org/abs/2007.00027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.00027
https://arxiv.org/abs/2102.05683
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.05683
https://doi.org/10.1103/PhysRevD.103.125020
https://doi.org/10.1103/PhysRevD.103.125020
https://arxiv.org/abs/2012.05798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.05798
https://arxiv.org/abs/2106.10274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.10274
https://doi.org/10.1088/1126-6708/2009/10/079
https://arxiv.org/abs/0907.0151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.0151
https://doi.org/10.1007/JHEP09(2020)009
https://arxiv.org/abs/1910.12123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.12123
https://arxiv.org/abs/1910.12855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.12855
https://doi.org/10.1007/JHEP08(2020)031
https://arxiv.org/abs/1912.11100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.11100
https://doi.org/10.1007/JHEP05(2021)243
https://arxiv.org/abs/2008.04931
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.04931
https://doi.org/10.1103/PhysRevLett.126.211602
https://arxiv.org/abs/2101.09017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.09017

[38] D. Mazac, Analytic bounds and emergence of AdSs physics from the conformal bootstrap,
JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].

[39] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D
S-matrices, JHEP 02 (2019) 162 [arXiv:1803.10233] [INSPIRE].

[40] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the
crossing equation, JHEP 02 (2019) 163 [arXiv:1811.10646] [INSPIRE].

[41] M.F. Paulos, Analytic functional bootstrap for CFTs in d > 1, JHEP 04 (2020) 093
[arXiv:1910.08563] INSPIRE].

[42] D. Carmi, J. Penedones, J.A. Silva and A. Zhiboedov, Applications of dispersive sum rules:
e-expansion and holography, SciPost Phys. 10 (2021) 145 [arXiv:2009.13506] [INSPIRE].

[43] S.B. Giddings and M. Srednicki, High-energy gravitational scattering and black hole
resonances, Phys. Rev. D 77 (2008) 085025 [arXiv:0711.5012] INSPIRE].

[44] M. Correia, A. Sever and A. Zhiboedov, An Analytical Toolkit for the S-matriz Bootstrap,
arXiv:2006.08221 [INSPIRE].

[45] X. Li, C. Yang, H. Xu, C. Zhang and S.-Y. Zhou, Positivity in Multi-Field EFTs,
arXiv:2101.01191 [INSPIRE}.

[46] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP 06
(2015) 174 [arXiv:1502.02033] [INSPIRE].

[47] W. Landry and D. Simmons-Duffin, Scaling the semidefinite program solver SDPB,
arXiv:1909.09745 INSPIRE].

[48] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field
Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] INSPIRE].

[49] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal
Functional Method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].

[50] J.H. Schwarz, Superstring Theory, Phys. Rept. 89 (1982) 223 [INSPIRE].

[61] N. Arkani-Hamed, Towards deriving string theory as the weakly coupled UV completion of
gravity, Talk at Strings 2016, Tsinghua University, Beijing, China (2016).

[52] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and
Open Strings, Nucl. Phys. B 269 (1986) 1 nSPIRE].

[63] D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies,
Phys. Lett. B 197 (1987) 81 [INSPIRE].

[54] A. Guerrieri, J. Penedones and P. Vieira, Where is String Theory?, arXiv:2102.02847
[INSPIRE].

[65] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of /D CFTs, JHEP 05
(2012) 110 [arXiv:1109.5176] [INSPIRE].

[56] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mized Correlators in the 3D Ising
Model, JHEP 11 (2014) 109 [arXiv:1406.4858] [NSPIRE].

[57] F.W.J. Olver et al. eds., NIST Digital Library of Mathematical Functions, release 1.1.0 of
2020-12-15, http://dlmf.nist.gov/.

— 36 —


https://doi.org/10.1007/JHEP04(2017)146
https://arxiv.org/abs/1611.10060
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.10060
https://doi.org/10.1007/JHEP02(2019)162
https://arxiv.org/abs/1803.10233
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10233
https://doi.org/10.1007/JHEP02(2019)163
https://arxiv.org/abs/1811.10646
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10646
https://doi.org/10.1007/JHEP04(2020)093
https://arxiv.org/abs/1910.08563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.08563
https://doi.org/10.21468/SciPostPhys.10.6.145
https://arxiv.org/abs/2009.13506
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.13506
https://doi.org/10.1103/PhysRevD.77.085025
https://arxiv.org/abs/0711.5012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.5012
https://arxiv.org/abs/2006.08221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08221
https://arxiv.org/abs/2101.01191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.01191
https://doi.org/10.1007/JHEP06(2015)174
https://doi.org/10.1007/JHEP06(2015)174
https://arxiv.org/abs/1502.02033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.02033
https://arxiv.org/abs/1909.09745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09745
https://doi.org/10.1007/JHEP05(2011)017
https://arxiv.org/abs/1009.2087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.2087
https://doi.org/10.1103/PhysRevLett.111.241601
https://arxiv.org/abs/1211.2810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.2810
https://doi.org/10.1016/0370-1573(82)90087-4
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C89%2C223%22
https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB269%2C1%22
https://doi.org/10.1016/0370-2693(87)90346-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB197%2C81%22
https://arxiv.org/abs/2102.02847
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02847
https://doi.org/10.1007/JHEP05(2012)110
https://doi.org/10.1007/JHEP05(2012)110
https://arxiv.org/abs/1109.5176
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.5176
https://doi.org/10.1007/JHEP11(2014)109
https://arxiv.org/abs/1406.4858
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4858
http://dlmf.nist.gov/

	Introduction
	Dispersive sum rules
	Assumptions and first consequences
	Review: bounds from the forward limit

	Bounds with gravity
	General idea
	Numerical implementation
	Bounds on g(3) and g(4) without gravity
	Bounds on g(2) and g(3) with gravity
	Bounds on higher contact coefficients with gravity
	Some solutions to the constraints from string theory
	Comments on D = 4 and infrared divergences
	Maximal supergravity: bounding graviton scattering

	Conclusions
	Details on numerics
	Impact parameter space inequalities
	Outer approximation/adaptive refinement
	Choices of parameters and numerical results

	Bounds using an extended range of u

