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1 Introduction

Higher symmetries refer to symmetries whose charge excitations have support on higher

dimensional manifolds, in contrast to ordinary symmetries whose charge excitations are all

point-like. These generalized symmetries have been a very active topic of research within

the physics community over the past few years. For instance, q-form global symmetries

together with their higher anomalies have been thoroughly investigated in the quantum

field theory context [1–5], where a (higher) q-form global symmetry is a global symmetry

whose symmetry operators are all q-dimensional. A theory displaying a non-anomalous q-

form global symmetry can be gauged by coupling it to a (q+1)-form background connection,

then resulting in a (q+1)-form gauge theory. Moreover, some theories display gauge fields of

different degrees that interact in a non-trivial way. Such theories are typically referred to as

higher gauge theories [6–9] and are characterized by the ability of defining higher holonomies

which encode the parallel transport of higher-dimensional objects. A prototypical example

of this scenario are 2-group gauge theories, which combine 0-form and 1-form symmetries.

Recently, gapped phases of matter described by topological theories that have a higher

gauge theory have been under scrutiny [10–20, 20, 21]. Examples of such theories are

provided by sigma models whose target spaces are given by Postnikov towers [22] built as

fibrations of Eilenberg-MacLane spaces [23, 24], and the construction of lattice Hamiltonian

realizations of such models was considered in [25–27]. In general, we define a Hamiltonian

realization on a d-dimensional hypersurface Σ as a sum of mutually commuting projectors

such that the ground state subspace is equal to the image of the corresponding (d+1)-

dimensional partition function on the manifold Σ × [0, 1], where the partition function

is thought as an Hermitian projector. In this manuscript, we are interested in lattice

Hamiltonian models that correspond to Yetter’s homotopy 2-type topological quantum

field theories [28–32], whose input data are so-called (finite) strict 2-groups.

A strict 2-group can be presented in many equivalent ways. Most succinctly, it can be

defined as a group object in the category of categories, i.e. a strict monoidal category where

every object and every (1-)morphism is invertible. In practice, a more pedestrian definition

in terms of crossed modules is often used. Naturally, there is also a notion of weak 2-groups,

i.e. monoidal categories where every (1-)morphism is invertible and every object is weakly

invertible, but we focus on the strict version in this manuscript and postpone the weak case

to a companion paper [33]. Note furthermore that we could include an equivalence class in

the cohomology of the classifying space of the strict 2-group as input of our model, but we

choose not to in order to focus on the specificity of dealing with a higher gauge model. In the

absence of cohomological twist, the model can be conveniently defined on cubulations in-

stead of triangulations, which has the advantage of making the computations more readable.

The main focus of this manuscript is the study of excitations of strict 2-group gauge

models, and more specifically their classification, where by excitation we mean a connected

submanifold for which the energy is higher than the one of the ground state. Several

equivalent approaches exist to tackle the question of classifying bulk excitations of a given

topological model. The tube algebra approach, which is a generalization of Ocneanu’s

tube algebra [34, 35], is particularly intuitive and has proven very successful [36–44]. More
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specifically, the authors showed in [44] that for lattice Hamiltonian realizations of Dijkgraaf-

Witten theory, it was possible to apply the tube algebra approach in any dimensions in

order to classify the excitations of the corresponding model. For instance, when applied to

the case of bulk point-like excitations in (2+1)d and bulk loop-like excitations in (3+1)d,

we can confirm that elementary excitations are classified by the simple modules of the

twisted quantum double algebra and the twisted quantum triple algebra, respectively. In

this manuscript, we propose a generalization of this approach to the case of strict 2-group

gauge model in (3+1)d.

In general, the tube algebra approach relies on two keys ideas: (i) Properties of an

excitation associated with a given submanifold are encoded into the boundary conditions

of its complementary open submanifold Σo. (ii) There exists an orientation-preserving

diffeomorphism such that (∂Σo × [0, 1]) ∪∂Σo (∂Σo × [0, 1]) ' ∂Σo × [0, 1]. Crucially, it is

always possible to extend this gluing operation to a map on the ground state subspace

of ∂Σo × [0, 1]. This map in turn endows the corresponding Hilbert space with a finite-

dimensional algebraic structure, whose simple modules classify the boundary conditions of

Σo, and thus the corresponding elementary excitations. We focus on the case of loop-like

excitations in (3+1)d, in which case the relevant manifold to consider is the one obtained

by cutting open the three-torus along one direction, i.e. T2 × [0, 1]. Note however that the

strategy presented here is valid for more complicated excitations, associated with higher-

genus boundary manifolds, and in higher dimensions. We comment on these more general

scenarios at the end of the manuscript.

The derivation and study of the tube algebra for higher gauge models rely on similar

techniques to conventional gauge models. However, there is a key distinguishing feature

that can be appreciated via a simple geometrical remark: given a manifold of the form

∂Σo × [0, 1], it is always possible to find a discretisation such that there are no vertices in

the bulk, whereas the bulk must always contain at least one edge. Gauge models display

a 0-form gauge invariance enforced at every vertex in the bulk of the discretised manifold.

This implies that ground states on manifolds of the form ∂Σo× [0, 1] are simply labelled by

flat (1-form) connections. In contrast, a strict 2-group gauge model displays a 0-form and

a 1-form gauge invariance enforced at every vertex and edge in the bulk of the discretised

manifold, respectively. In this case, ground states on manifolds of the form ∂Σo× [0, 1] are

not simply labelled by strict 2-group flat connections but rather by equivalence classes of

such connections. Physically, this translates into a confinement mechanism for the point-

like charge excitations of the 0-form symmetry that are not invariant under the additional

1-form symmetry.

In (2+1)d, it is well-known that the number of elementary point-like excitations is

equal to the ground state degeneracy on the two-torus. Similarly, for gauge models in

(3+1)d, it can be shown that the number of elementary loop-like excitations equals the

ground state degeneracy on the three-torus. This result can be established via a direct

computation, or more elegantly, by demonstrating that the ground state subspace of the

three torus is described by the central subalgebra of the tube algebra for torus boundary.

We show that this statement generalizes to strict 2-group higher gauge models.

– 3 –
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Organisation of the paper. In section 2, we define a lattice Hamiltonian model in

(3+1)d whose input data is a strict 2-group. This model, which has a higher gauge theory

interpretation, displays loop-like excitations. These loop-like excitations can be studied

using the tube algebra approach. After briefly reviewing the general framework, we present

in section 3 the explicit computation of the tube algebra for torus boundaries. The simple

modules of the tube algebra are derived in section 4. We then elucidate the physical

interpretation of these simple modules as a classifying tool for the elementary bulk loop-like

excitations of the higher gauge model. In section 5, we utilise the tube algebra associated

to loop-like excitations, demonstrating that the ground state subspace of the three-torus

can be described by the central subalgebra. We then deduce the ground state degeneracy

corresponds to the number of elementary loop-like excitations. The manuscript contains

several appendices where technical details and proofs are relegated.

2 Higher gauge model

In this section we introduce the model of interest in this manuscript. The input of this

model, which has a higher gauge theory interpretation, is a strict 2-group. We first define

the notion of strict 2-group connections on a cubulation, and then we construct the lattice

Hamiltonian as a sum of mutually commuting projectors.

2.1 Strict 2-group connections

Let Σ be a closed oriented three-manifold endowed with a cubulation Σ�, which is a CW-

complex whose geometric realisation is homeomorphic to Σ. We require Σ� to be equipped

with a complete ordering of the vertices. It follows that the one-skeleton of Σ� has the struc-

ture of a directed graph such that each edge is oriented from the lowest to the highest vertex.

The input for the model is a strict 2-group G. Succinctly, a strict 2-group can be

defined as a strict monoidal category where every object and every morphism is invertible,

or via delooping as a one-object 2-groupoid (see appendix A for details). A more pedestrian

definition is given in terms of crossed modules [45]: a crossed module is a quadruple G ≡
(G,H, ∂, .) which consists of two groups G and H, a group homomorphism ∂ : H → G,

and a group action of G on H by automorphisms . : G ×H → H such that the so-called

Peiffer identities hold

∂(g . h) = g∂(h)g−1 (2.1)

∂(h) . h′ = hh′h−1 , (2.2)

for all g ∈ G and h, h′ ∈ H. Note furthermore that the action . fulfils the usual axioms

1G . h = h , g . (g′ . h) = (gg′) . h , g . (hh′) = (g . h)(g . h′) , (2.3)

for all g, g′ ∈ G and h, h′ ∈ H, where 1G is the identity element in G. At this point it

is worth mentioning that (2.1)–(2.2) imply that if either the action . is trivial or if G is

trivial, then H must be abelian.
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We define a strict 2-group connection on Σ� as follows: to every directed edge e ⊂
Σ� is assigned a G-valued 1-holonomy ge. Every 1-holonomy has a source and a target

vertex denoted by s(e) and t(e), respectively, such that 1-holonomies that have a matching

source or target vertex can be composed. More specifically, given a 1-path of Σ�, the

corresponding 1-holonomy is defined as the oriented product from left to right of the 1-

holonomies associated with the oriented edges along the path. Every plaquette p ⊂ Σ� is

assigned an H-valued 2-holonomy hp. Every 2-holonomy has a source and a target 1-path

denoted by s(p) and t(p), respectively. Crucially, 1- and 2-holonomies interact in a non-

trivial way. Indeed, given a plaquette p ⊂ Σ� decorated with a 2-holonomy hp, we assign

to it the following 1-holonomy

hol1(p) := ∂(hp)gs(p)g
−1
t(p)

!
= 1G , (2.4)

which is required to be trivial, hence resulting in a constraint between 1- and 2-holonomies.

Henceforth, this constraint will be enforced at every plaquette and will be referred to as

the fake-flatness constraint.

Both the source s(p) and the target t(p) 1-paths of a given 2-holonomy share the

same source vertex referred to as the basepoint bp(p) of the 2-holonomy. For instance,

let us consider the plaquette p ≡ (0123) ⊂ Σ� with the following assignment of 1- and

2-holonomies:

0 2

1 3

g02

g13

g01 g23h ,

where the double arrow ‘⇒’ is here to keep track of the source and target 1-paths of the

2-holonomy. In this case, we have bp(p) = (0), s(p) = (02)∪ (23) and t(p) = (01)∪ (13) such

that the following fake-flatness constraint

hol1(p) = ∂(h)g02g23(g01g13)−1 !
= 1G (2.5)

is enforced.

Such an assignment of 1- and 2-holonomies to the edges and the plaquettes of Σ� is

referred to as a G-labelling, and it defines a local description of a strict 2-group G-connection.

Given a G-labelling g ≡ (g, h), we notate by gab ≡ g[ab] the restriction of g to the edge

(ab) ⊂ Σ� and by habcd ≡ g[abcd] the restriction of g to the plaquette (abcd) ⊂ Σ�. When

no confusion is possible, the subscripts of the 2-holonomies will often be omitted as in the

diagram above.

Similarly to 1-holonomies, 2-holonomies can be composed. Given an ordered set of

2-holonomies such that the target 1-path of one coincides with the source 1-path of the

following one, it is possible to compose them to define the 2-holonomy associated with the

corresponding 2-path. More generally, given an arbitrary 2-path, there is a well-defined 2-

holonomy associated to it. This follows from the fact that since condition (2.4) is enforced,

it is always possible to simultaneously change the source and target 1-paths of a plaquette

– 5 –
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2-holonomy as well as its basepoint, as long as the corresponding H-labelling is modified

accordingly. For instance, one has the following relations

0 2

1 3

g02

g13

g01 g23h =

0 2

1 3

g02

g13

g01 g23h
−1

=

0 2

1 3

g02

g13

g01 g23

g −
101 .h =

0 2

1 3

g02

g13

g01 g23
g−1
01 .h

,

(2.6)

where the basepoint in the first two diagrams and in the last two diagrams is (0) and (1),

respectively. Relations of this kind are usually referred to as the whiskering rules. We can

check explicitly that these rules are such that (2.4) is always preserved. For instance, the

plaquette 1-holonomy in the third diagram reads

∂(g−1
01 . h)g−1

01 g02(g13g
−1
23 )−1 (2.1)

= g−1
01 ∂(h)g02(g13g

−1
23 )−1 (2.7)

which must be trivial given that the fake-flatness constraint (2.5) is enforced. Applying the

whiskering rules, it is always possible to compose 2-holonomies associated with adjacent

plaquettes, and it was shown in [31] that given a 2-path the corresponding 2-holonomy is

uniquely defined. Let us for instance consider the cube c ≡ (01234567) ⊂ Σ� depicted below

0 2

4 6

1 3

5 7

,

we can show by means of the whiskering rules that the (closed) 2-holonomy associated with

its boundary 2-path reads

hol2(c) = h0145 (g01 . h1357)h0123 (g02 . h
−1
2367)h−1

0246 (g04 . h
−1
4567) , (2.8)

where we made the choice that 2-holonomies multiply from right to left by convention.

By defining strict 2-groups as one-object 2-groupoids, the definition of strict 2-group

connections proposed above can be neatly recast as functors from the path 2-groupoid to

the strict 2-group. We present this alternative approach in appendix A.

2.2 Lattice Hamiltonian

Let us now define the higher gauge model. More details can be found in [31, 32]. The

microscopic Hilbert space HG [Σ�] is spanned by graph-states |g〉 where g is a G-labelling of

Σ� as defined earlier. The lattice Hamiltonian is obtained as a sum of mutually commuting

operators that come in three distinct classes: to every cube c ⊂ Σ�, we assign an operator

Bc whose action on a graph-state |g〉 ∈ HG [Σ�] reads

Bc|g〉 = δ
(
hol2(c),1H

)
|g〉 , (2.9)

– 6 –
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where 1H is the identity element in H and hol2(c) is computed as in (2.8). Such B-operators

penalise G-labellings for which the 2-holonomies associated with every cube are not trivial.

The corresponding constraint is known as the 2-flatness constraint and we refer to a G-

labelling that satisfies the 2-flatness constraint at every cube as a G-colouring. Such a

G-colouring constitutes a local description of a flat strict 2-group connection. The set of

G-colourings on Σ� is denoted by Col(Σ�,G).1

To every vertex v ⊂ Σ�, we assign an operator Av = 1/|G|
∑

k∈G Akv which enforces

invariance under so-called 0-form gauge transformations via2

Akv =

( ⊗
e:t(e)=v

Rke

)
⊗
( ⊗

e:s(e)=v

Lke

)
⊗
( ⊗

p:bp(p)=v

Akp

)
, (2.10)

where Rke : g 7→ gk−1, Lke : g 7→ kg and Akp : h 7→ k . h. The last term is here to

ensure that the fake-flatness constraint (2.4) commutes with the action of Av. Applying

definition (2.10), we have for instance

Ak(0)

∣∣∣∣∣
0 2

1 3

g02

g13

g01 g23h

〉
=

∣∣∣∣∣
0 2

1 3

kg02

g13

kg01 g23k.
h

〉
.

We find that the plaquette 1-holonomy hol1(0123) transforms under the action of Ak(0) as

hol1(0123)
!

= 1G 7→ ∂(k . h)kg02g23(kg01g13)−1

(2.1)
= k∂(h)g02g23(g01g13)k−1 = 1G

so that the fake-flatness constraint (2.5) remains satisfied as expected.

Finally, to every edge e ⊂ Σ�, we assign an operator Ae = 1/|H|
∑

λ∈H Aλe which

enforces invariance under so-called 1-form gauge transformations via

Aλe =

( ⊗
p:s(p)⊃e

Rλp

)
⊗
( ⊗

p:t(p)⊃e
Lλp

)
⊗ L∂(λ)

e , (2.11)

where Rλp : h 7→ h(gbp(p)s(e) .λ
−1) and Lλp : h 7→ (gbp(p)s(e) .λ)h, such that gbp(p)bp(p) = 1G.

For instance, we have

Aλ(02)

∣∣∣∣∣
0 2

1 3

g02

g13

g01 g23h

〉
=

∣∣∣∣∣
0 2

1 3

∂(λ)g02

g13

g01 g23hλ
−1

〉

1A flat strict 2-group connection can also be concisely defined as a homotopy γ : Σ → BG from Σ to

the classifying space of the 2-group as defined in [30, 46]. The classifying space BG is such that only its

first and second homotopy groups are non-vanishing such that non-trivial 1- and 2-holonomies can be found

along non-contractible 1- and 2-cycles only.
2Note that the first two terms are identical to the ones entering the definition of the gauge operator in

Dijkgraaf-Witten models.

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
7

and

Aλ(13)

∣∣∣∣∣
0 2

1 3

g02

g13

g01 g23h

〉
=

∣∣∣∣∣
0 2

1 3

g02

∂(λ)g13

g01 g23
(g

01
.λ
)h

〉
.

As for the 0-form gauge transformations, we can check that the fake-flatness constraints

remain satisfied under the action of Ae. For instance, the plaquette 1-holonomy hol1(0123)

transforms under the action of Aλ(13) as

hol1(0123)
!

= 1G 7→ ∂
(
(g01 . λ)h

)
g02g23(g01∂(λ)g13)−1

(2.1)
= g01∂(λ)g−1

01 ∂(h)g02g23g
−1
13 ∂(λ−1)g−1

01 = 1G

so that condition (2.4) still holds as expected.

It was shown in [31] that all the operators commute and the lattice Hamiltonian reads

HG [Σ�] = −
∑
v⊂Σ�

Av −
∑
e⊂Σ�

Ae −
∑
c⊂Σ�

Bc , (2.12)

where the sums run over all the vertices, edges and cubes in Σ�, respectively.

2.3 Ground state subspace

The ground state subspace VG [Σ�] of the lattice Hamiltonian HG [Σ�] defined in (2.12) is

spanned by linear combinations of G-labelled graph-states on Σ� that satisfy the stabiliser

constraints Bc|ψ〉 = |ψ〉, Av|ψ〉 = |ψ〉 and Ae|ψ〉 = |ψ〉 for every c, v, e ⊂ Σ�. In the

following, we will need the corresponding ground state projector, namely

PG [Σ�] =

( ⊗
v⊂Σ�

Av

)
⊗
( ⊗

e⊂Σ�

Ae

)
⊗
( ⊗

c⊂Σ�

Bc

)
(2.13)

such that Im PG [Σ�] = VG [Σ�].

It was demonstrated in [32] that the model in question corresponds to the Hamiltonian

realisation of the Yetter homotopy 2-type topological theory [47]. In particular, this relation

is realised by the observation that the ground state projector for a given discretised three-

manifold Σ� can be identified with the Yetter topological partition function applied to

the space-time manifold Σ� × I. As direct consequence, we can identify the ground state

subspace VG [Σ�] as defined by the model with the Hilbert space the partition function

assigns to Σ�.

The fact that the ground state subspace VG [Σ�] is described by a topological field

theory manifests itself upon performing changes of cubulations. Indeed, given two cubu-

lations Σ� and Σ�′ of Σ, the corresponding ground state subspaces are isomorphic, i.e.

VG [Σ�] ' VG [Σ�′ ]. This signifies that it is possible to perform local changes of the cubu-

lation while remaining in the ground state sector. Such modifications of the underlying

cubulation are performed by local unitary transformations that are discrete implementa-

tions of a gap-preserving adiabatic evolution [48]. This means for instance that a ground

– 8 –
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state defined on a cubulation made of two adjacent plaquettes is isomorphic to another

ground state defined on the ‘merger’ of these two plaquettes, i.e.

∣∣∣∣∣
0 2 4

1 3 5

g02

g13

g01
g23

g24

g35

g45h h
′

〉
' 1

|G||H|
1
2

∣∣∣∣∣
0 4

1 5

g02g24

g13g35

g01 g45
h(
g0

2
.h
′ ) 〉

, (2.14)

where the factor |G||H|
1
2 ensures that the isomorphism preserves the normalisation of

states.3 Since isomorphisms of this form play a crucial role in the following, let us explain it

in more detail: the 1-holonomies associated with the edges (04) and (15) are provided by the

oriented product of the 1-holonomies along the 1-paths (02)∪(24) and (13)∪(35), respectively,

namely g02g24 and g13g35. Similarly, the 2-holonomy that labels the plaquette (0145) is ob-

tained as the composition (from right to left) of the 2-holonomies associated with the initial

plaquettes (0123) and (2345) such that bp(0123) = (0), s(0123) = (02)∪ (23), t(0123) = (01)∪
(13) and bp(2345) = (2), s(2345) = (24) ∪ (45), t(2345) = (23) ∪ (35). The two 2-holonomies

not having the same basepoint, they cannot be composed right away. It is thus necessary

to make use of the whiskering rules (2.6) so that the 2-holonomy on the right has vertex (0)

as basepoint. This requires modifying the corresponding H-labelling by action of g02. It re-

mains to modify simultaneously the source and target 1-paths of the 2-holonomy on the left

to (02)∪(23)∪(35) and (01)∪(13)∪(35), respectively, which does not require a modification of

the corresponding H-labelling. At this point, the two 2-holonomies have matching source

and target 1-paths so that they can be composed. The resulting 2-holonomy is labelled by

h(g02 . h
′) and is such that bp(0145) = (0), s(0145) = (04) ∪ (45) and t(0145) = (01) ∪ (15).

3 Tube algebra for loop-like excitations

In this section, we derive the algebraic structure underlying the loop-like excitations of the

higher gauge model following the tube algebra approach.

3.1 Formal definition

Given a closed oriented three-manifold Σ endowed with a cubulation Σ�, we defined

in (2.12) the lattice Hamiltonian HG [Σ�] whose ground state subspace is denoted by VG [Σ�].

An excitation in such model is defined as a connected subcomplex of Σ� for which some of

the stabiliser constraints are violated so that it has an overall energy density higher than

that of the ground state. There are several equivalent approaches to study such excita-

tions in a systematic way. In this paper, we follow the so-called tube algebra approach.

This approach relies on the following key concept: properties of an excitation associated

with a given subcomplex are encoded into the boundary conditions of its complementary

3Such factors can be induced by the requirement that the normalisation of the states is preserved under

such isomorphisms, or equally by considering the isomorphism as a cobordism operator in the corresponding

Yetter homotopy 2-type topological theory.
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open subcomplex. This signifies that the classification of boundary conditions induces a

classification of the excitation content of the model.

Let us consider an excitation associated with a given subcomplex of Σ�. We denote

by Σo
� the open manifold obtained by removing this subcomplex. We are interested in the

lattice Hamiltonian HG [Σo
�\∂Σo

�] as defined in (2.12) where the sums now run over all the

vertices, edges and cubes in the interior of Σo
�. This lattice Hamiltonian presents so-called

open boundary conditions since graph-states with different G-colourings on ∂Σo
� are not

mixed. In this case, the corresponding ground state subspace admits a decomposition in

terms of boundary G-colourings:

VG [Σo
�] =

⊕
a∈Col(∂Σo

�,G)

VG [Σo
�]a (3.1)

where VG [Σo
�]a is the ground state subspace spanned by graph-states with boundary G-

colouring a. It follows that a state with a given boundary colouring defines a specific

excitation, which is a superposition of so-called elementary excitations. The elementary

excitations can then be found as the irreducible modules of the corresponding tube algebra.

Given an open manifold Σo
�, we define by T[∂Σo

�] a cubulation of ∂Σo
�×I ≡ ∂Σo

�×[0, 1]

such that ∂T[∂Σo
�] = ∂Σo

� t ∂Σo
�. Naturally, we can always glue a copy of T[∂Σo

�] to Σo
�

along ∂Σo
� without affecting its topology, i.e. T[∂Σo

�] ∪ Σo
� ' Σo

�. As shown in [44], this

gluing operation can be extended to a symmetry of the ground state subspace VG [Σo
�].

It follows from the discussion in section 2.3 that it is always possible to perform cubula-

tion changes so as to find a representative VG [Σo
�′ ] isomorphic to VG [Σo

�] whereby a local

neighbourhood of ∂Σo
� is of the form T[∂Σo

�]. This can then be used to localise the action

of this ground state subspace symmetry in such way that it only involves degrees of free-

dom contained within T[∂Σo
�]. Boundary configurations for ∂Σo

� can then be classified by

the irreducible modules of the symmetry map on VG [T[∂Σo
�]] associated with the gluing

operation T[∂Σo
�] ∪ T[∂Σo

�] ' T[∂Σo
�]. Let us now construct this map.

We are interested in classifying loop-like excitations for the higher gauge model (2.12),

where by loop-like excitations we mean an excitation whose topology is given by the circle

S1. Given such a loop embedded in a three-manifold, its regular neighbourhood is provided

by a solid two-torus D2 × S1, so that loop-like excitations can be classified in terms of

boundary conditions of the torus T2 = ∂(D2 × S1). We shall therefore construct the map

on VG [T[T2
�]] associated with the gluing operation T[T2

�] ∪ T[T2
�] ' T[T2

�].

It follows from (3.1) that the ground state subspace on T[T2
�] satisfies

VG [T[T2
�]] =

⊕
a∈Col(T2

�×{0},G)

b∈Col(T2
�×{1},G)

VG [T[T2
�]]a,b .

We want to construct a gluing map for two states of such ground state subspace. Firstly,

we define a map that identifies boundary conditions along the gluing interface:

G : VG [T[T2
�]]⊗VG [T[T2

�]]→
⊕

a,a′∈Col(T2
�×{0},G)

b,b′∈Col(T2
�×{1},G)

VG [T[T2
�]]a,b⊗VG [T[T2

�]]a′,b′ ⊆ HG [T[T2
�]∪T[T2

�]]
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such that

G : VG [T[T2
�]]a,b ⊗ VG [T[T2

�]]a′,b′ → VG [T[T2
�]]a,b ⊗ VG [T[T2

�]]a′,b′

|ψa,b〉 ⊗ |ϕa′,b′〉 7→ δb,a′ |ψa,b〉 ⊗ |ϕb,b′〉 .

Crucially, the image of G differs from the ground state subspace VG [T[T2
�]∪T[T2

�]] because

some stabiliser constraints may be violated along the gluing interface. However, these con-

straints can be enforced by means of the projection operator PG [T[T2
�] ∪ T[T2

�]] as defined

in (2.13). Once all the constraints are enforced, it is possible to find a cubulation chang-

ing unitary isomorphism between VG [T[T2
�] ∪ T[T2

�]] and VG [T[T2
�]]. Putting everything

together, we define the gluing map

? : VG [T[T2
�]]⊗ VG [T[T2

�]]
G−→ HG [T[T2

�] ∪ T[T2
�]]

PG [T[T2
�]∪T[T2

�]]
−−−−−−−−−−→VG [T[T2

�] ∪ T[T2
�]]

∼−→ VG [T[T2
�]] ,

which endows VG [T2
�] with a finite-dimensional algebra structure denoted by TubeG [T2

�].

This algebra can be shown to be an associative semi-simple ∗-algebra. It follows from

the discussion above that the irreducible modules of TubeG [T2
�] classify the elementary

loop-like excitations of the model.

3.2 Ground states of the tube

We explained above that the elementary loop-like excitations of the model (2.12) can be

classified by the simple modules of the tube algebra TubeG [T2
�]. Crucially, the choice of dis-

cretisation for the manifold T2×I does not matter. More precisely, given a cubulation T2
� of

T2, different choices for T[T2
�] yield isomorphic algebras, while different choices of boundary

cubulations yield Morita equivalent algebras. It follows from the definition of isomorphic

algebras and Morita equivalent algebras that the classification of simple modules is inde-

pendent of the choice of both bulk and boundary cubulations. Therefore, we shall make a

choice that makes carrying-out the computations explicitly as straightforward as possible.

We choose to cubulate T2 as a plaquette with opposite edges identified. A cubulation

T[T2
�] of T2

� × I is then obtained as a cube whose opposite edges and opposite faces are

identified. We then consider the space of G-coloured graph-states on T[T2
�] of the form

SpanC

{∣∣∣∣∣

0 2

4 6

1 3

5 7
gx

gy

gz

hŷ

h
x̂

h ẑ
〉}
∀gx,gy,gz∈G
∀hŷ,hẑ∈H
∀hx̂∈H |gz=g

gy ;hx̂
z

=: SpanC

{∣∣∣ hx̂

gy

gz

gx
hẑ

hŷ

〉}
∀gx,gy,gz∈G
∀hŷ,hẑ∈H
∀hx̂∈H |gz=g

gy ;hx̂
z

,

(3.2)

where we introduced the shorthand notation

ga ; b := a−1∂(b−1)ga .
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In the definition above, we made the following identifications:

g[02] ≡ g[46] ≡ g[13] ≡ g[57] = gx , g[01] ≡ g[45] = gy , g[04] ≡ g[15] = gz ,

g[23] ≡ g[67] = g−1
x ∂(h−1

ẑ )gygx , g[26] ≡ g[37] = g−1
x ∂(h−1

ŷ )gzgx ,

where the last two G-labellings are deduced from the fake-flatness constraints, and

g[0145] = hx̂ , g[0123] ≡ g[4567] = hŷ , g[0246] ≡ g[1357] = hẑ ,

g[4567] = g−1
x . [h−1

ŷ (gz . h
−1
ẑ )hx̂ (gy . hŷ)hẑ] ,

where the last H-labelling is deduced from the 2-flatness constraint. Henceforth, we refer

to (gy, gz, hx̂) ∈ G2×H such that gz = g
gy ;hx̂
z as a boundary G-colouring, and (gx, hŷ, hẑ) ∈

GnH2 as a bulk G-colouring of T[T2
�].

In order to obtain the ground states on T[T2
�], we are left to enforce the 1-form gauge

invariance along (02) ≡ (13) ≡ (57) ≡ (46) via the projector Ae as defined in (2.11). However,

in order for the ground states to be normalised to unity, we need to analyse beforehand

the sets of bulk and boundary G-colourings. Let us first consider the set of boundary

G-colourings, namely

Col(T2
� × {0},G) =

{
(gy, gz, hx̂) ∈ G2 ×H

∣∣ ∂(hx̂)gygz(gzgy)−1 = 1G

}
.

We define an equivalence relation on Col(T2
� × {0},G) given by

(gy, gz, hx̂)
(I)

∼
gy,gz

(g̃y, g̃z, h̃x̂) (3.3)

if there exists (a, b1, b2) ∈ GnH2 such that

(g̃y, g̃z, h̃x̂) = (ga ; b2
y , ga ; b1

z , h
a,gy,gz ; b1,b2
x̂ ) ,

where we introduced the shorthand notation

ha1,a2,a3 ; b1,b2 := a−1
1 . [b−1

1 (a3 . b
−1
2 )h(a2 . b1)b2] .

Equivalence classes with respect to such relation define a partition of Col(T2
� × {0},G)

into disjoint subsets of boundary G-colourings. Let C be such an equivalence class. In the

following, we notate the elements in C by

(cy,i, cz,i, dx̂,i) , i = 1, . . . , |C|

and we call (cy,1, cz,1, dx̂,1) the representative element.

So far we have a partition of the set of boundary G-colourings into equivalence classes

C ⊂ Col(T2
� × {0},G) with respect to (3.3). In light of this statement, let us now analyse

the set of bulk G-colourings. Letting (gy, gz, hx̂) be a boundary G-colouring, the set of bulk

G-colourings is G n H2. But, the 1-form gauge invariance along the edge (02) ≡ (13) ≡
(57) ≡ (46) defines an equivalence relation on GnH2 where

(gx, hŷ, hẑ)
(II)

∼
gy,gz

(g̃x, h̃ŷ, h̃ẑ) (3.4)
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if there exists λ ∈ H such that

(g̃x, h̃ŷ, h̃ẑ) =
(
∂(λ)gx , (gz . λ)hŷλ

−1 , (gy . λ)hẑλ
−1
)
.

Similarly to (3.3), which define a partition of the set of boundary G-colourings, the equiva-

lence relation (3.4) defines a partition of GnH2 into disjoint subsets of bulk G-colourings.

The corresponding set of equivalence classes (or orbits) is denoted by

Bgy,gz := GnH2/
(II)

∼
gy,gz

. (3.5)

Let Egy,gz ⊂ GnH2 be such an equivalence class. We notate the elements in Egy,gz by

(ex,i, fŷ,i, fẑ,i) , i = 1, . . . , |Egy,gz | (3.6)

and we call (ex,1, fŷ,1, fẑ,1) the representative element. We then define the corresponding

stabiliser as

ZEgy,gz :=
{
λ ∈ H

∣∣ (ex,1, fŷ,1, fẑ,1) =
(
∂(λ)ex,1 , (gz . λ)fŷ,1λ

−1 , (gy . λ)fẑ,1λ
−1
)}

. (3.7)

Crucially, the size of this stabiliser only depends on the equivalence class C 3 (gy, gz, hx̂)

of boundary G-colourings. More precisely, given an equivalence class C of boundary G-

colourings, two elements (cy,i, cz,i, dx̂,i), (cy,j , cz,j , dx̂,j) ∈ C, and two equivalence classes

Ecy,i,cz,i , E ′cy,j ,cz,j ⊂ G n H2 of bulk G-colourings whose representative elements are

(ex,1, fŷ,1, fẑ,1) and (e′x,1, f
′
ŷ,1, f

′
ẑ,1), respectively, we have |ZEcy,i,cz,i | = |ZE ′cy,j ,cz,j |.

The statement above can be proven by showing explicitly that the aforementioned

centralisers are isomorphic. By definition of C, we know there exists (a, b1, b2) ∈ G nH2

such that

cy,j = ca ; b2
y,i = a−1∂(b−1

2 )cy,ia and cz,j = ca ; b1
z,i = a−1∂(b−1

1 )cz,ia .

Moreover, if λi ∈ ZEcy,i,cz,i , then λi ∈ H and

∂(λi)ex,1 = ex,1 , (cz,i . λi)fŷ,1λ
−1
i = fŷ,1 , (cy,i . λi)fẑ,1λ

−1
i = fẑ,1 .

From the equations above, we can deduce several constraints on λi: the first equation

informs us that λi ∈ Ker ∂i. But it follows from the second Peiffer identity, that any

element in Ker ∂i commutes with every element in H. Together with the remaining two

conditions above, this implies that cy,i . λi = λi and cz,i . λi = λi. Conversely, it is easy to

check that if λi satisfies these constraints, then it belongs to ZEcy,i,cz,i . Consequently, we

already know that ZEcy,i,cz,i depends only on cy,i, cz,i, and not a specific choice of equivalence

class Ecy,i,cz,i . Furthermore, given λi ∈ ZEcy,i,cz,i , it is possible to construct a group element

in ZE ′cy,j ,cz,j . Defining λ′j := a−1 . λi, we easily check that

∂(λ′j)e
′
x,1 = ∂(a−1 . λi)e

′
x,1 = a−1∂(λi)ae

′
x,1 = e′x,1
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and

(cz,j . λ
′
j)f
′
ŷ,1λ

′−1
j =

(
[a−1∂(b−1

1 )cz,ia] . (a−1 . λi)
)
f ′ŷ,1(a−1 . λ−1

i )

(2.3)
= a−1 . [∂(b−1

1 ) . (cz,i . λi)]f
′
ŷ,1(a−1 . λ−1

i )

(2.2)
= a−1 . (b−1

1 λib1)f ′ŷ,1(a−1 . λ−1
i ) = f ′ŷ,1 ,

where we used the fact that λi ∈ Ker ∂ and cz,i . λi = λi. Similarly we find (cy,j .

λ′j)f
′
ẑ,1λ

′−1
j = f ′ẑ,1. All the relations above are invertible and thus ZEcy,i,cz,i ' ZE ′cy,j ,cz,j so

that |ZEcy,i,cz,i | = |ZE ′cy,j ,cz,j |. In summary, given a boundary G-colouring (cy,i, cz,i, dx̂,i) and

an equivalence class Ecy,i,cz,i , the centralizer ZEcy,i,cz,i only depends on the equivalence class

C that contains (cy,i, cz,i, dx̂,i) so that

|ZEcy,i,cz,i | = |ZEcy,1,cz,1 | =: |ZEC | , ∀ i = 1, . . . , |C|

and |ZEC | = |ZE ′C | , ∀ EC , E ′C ∈ Bcy,1,cz,1 .

According to the orbit-stabiliser theorem we know that |H| = |EC | · |ZEC | for every equiv-

alence class EC ∈ BC := Bcy,1,cz,1 , so that every orbit in BC has the same size. Together

with the fact that the set of such orbits forms a partition of G n H2, it implies that the

number of independent bulk G-colourings is

|BC | =
∑
EC∈BC

1 =
∑
EC∈BC

∑
(ex,i,fŷ,i,fẑ,i)∈EC

|EC |−1 = |E0
C |−1

∑
(gx,hŷ,hẑ)∈GnH2

1 =
|G| · |H|2

|E0
C |

,

(3.8)

where E0
C is any preferred equivalence class in BC . It is worth emphasizing that this formula

does not follow straightforwardly from the definition (3.5) of the quotient set, but rather

is a non-trivial consequence of the peculiar structure of the 1-form gauge transformations.

We are now ready to define the normalized ground states on T[T2
�]. The projection

itself is performed via group averaging whereas the normalisation factor follows from the

discussion above: ∣∣∣ hx̂

gy

gz

Egy,gz
〉

:=
1

|H|
1
2 |ZEgy,gz |

1
2

∑
λ∈H

∣∣∣ hx̂

gy

gz

∂(λ)ex,1
(gy.λ)fẑ,1λ

−1

(gz.λ)fŷ,1λ
−1

〉
, (3.9)

where the notation makes explicit the fact that ground states only depend on equivalence

classes of bulk G-colourings, so that the ground state subspace on the tube T[T2
�] explicitly

reads

VG [T[T2
�]] = SpanC

{∣∣∣ hx̂

gy

gz

Egy,gz
〉}
∀ gy,gz∈G
∀hx̂∈H | gz=g

gy ;hx̂
z

∀ Egy,gz∈Bgy,gz

. (3.10)

Equipped with the inner product

〈
hx̂

gy

gz

Egy,gz
∣∣∣ h̃x̂

g̃y

g̃z

Ẽg̃y,g̃z
〉

= δ
(
gy, g̃y

)
δ
(
gz, g̃z

)
δ
(
hx̂, h̃x̂

)
δ
(
Egy,gz , Ẽg̃y,g̃z

)
,

it defines the ground state Hilbert space on T[T2
�].

– 14 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
7

3.3 Computation of the tube algebra

Let us now derive the tube algebra for the ground states (3.9). It suffices to apply suc-

cessively the three operations entering the definition of the ?-product. However, we find

it convenient to first define an auxiliary product � whose definition is identical to the

one of the ?-product but whose domain is the tensor product of two copies of the Hilbert

space associated with (3.2). In other words, we first perform the computation omitting the

group averaging (3.9), which enforces the 1-form gauge invariance, and only in a second

time reinstate it in order to obtain the final result in terms of the ground states.

Firstly, boundary G-colourings are identified via the map G:

G

(∣∣∣∣∣
gx

gy

gz

hŷ

h
x̂

h ẑ
〉
⊗

∣∣∣∣∣
g′x

g′y

g′z

h′ŷ
h ′
x̂

h
′
ẑ 〉)

(3.11)

=δ
(
h′x̂,h

gx,gy,gz ;hŷ,hẑ
x̂

)
δ
(
g′y,g

gx ;hẑ
y

)
δ
(
g′z,g

gx ;hŷ
z

)∣∣∣∣∣
gx g′x

gy

gz

hŷ

h
x̂

h ẑ

h′ŷ

h
′
ẑ 〉

,

where we represented identified vertices with the same coloured dot. Secondly, 0-form and

1-gauge invariance are enforced along the gluing interface via PG [T[T2
�]∪T[T2

�]] so that the

state in HG [T[T2
�] ∪ T[T2

�]] is projected to

1

|G||H|2
∑
k∈G
η,η′∈H

∣∣∣∣∣
gxk−1 kg′x

gy

gz

hŷ(gx
.η
−1 )

h
x̂

h ẑ
(g
x
.η
′−
1 )

k.(ηh
′
ŷ
)

k.
(η
′ h
′
ẑ
) 〉

. (3.12)

Thirdly, the following cubulation changing isomorphism is applied

∣∣∣∣∣
gxk−1 kg′x

gy

gz

hŷ(gx
.η
−1 )

h
x̂

h ẑ
(g
x
.η
′−
1 )

k.(ηh
′
ŷ
)

k.
(η
′ h
′
ẑ
) 〉

' 1

|G|
1
2 |H|

∣∣∣∣∣
gxg′x

gy

gz

hŷ(gx
.h

′
ŷ
)

h
x̂

h ẑ
(g
x
.h
′
ẑ
) 〉

, (3.13)
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where we used axioms (2.3) so that for instance hŷ(gx .η
−1)
(
(gxk

−1). [k. (ηh′ŷ)]
)

= hŷ(gx .

h′ŷ). Note that under this isomorphism, the summation variables appearing in (3.12) cancel

each other, so that the sums become trivial and thus compensate for the corresponding

normalization factors. Putting everything together and using the symbolic notation defined

in (3.2), we obtain

∣∣∣ hx̂

gy

gz

gx
hẑ

hŷ

〉
�
∣∣∣ h′

x̂

g′y

g′z

g′x
h′
ẑ

h′
ŷ

〉

=
δ
(
h′x̂, h

gx,gy,gz ;hŷ,hẑ
x̂

)
δ
(
g′y, g

gx ;hẑ
y

)
δ
(
g′z, g

gx ;hŷ
z

)
|G|

1
2 |H|

∣∣∣ hx̂

gy

gz

gxg′x
hẑ(gx.h

′
ẑ)

hŷ(gx.h
′
ŷ)

〉
.

Using this result, let us now include the group averaging to derive TubeG [T2
�]:

∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉
=

1

|H||ZEgy,gz ||ZE ′g′y,g′z
|
∑

λ,λ′∈H

∣∣∣ hx̂gy
gz

∂(λ)ex,1
(gy.λ)fẑ,1λ

−1

(gz.λ)fŷ,1λ
−1

〉
�
∣∣∣ h′x̂g′y
g′z

∂(λ′)e′x,1
(g′y.λ

′)f ′ẑ,1λ
′−1

(g′z.λ
′)f ′ŷ,1λ

′−1

〉

'δ
(
h′x̂,h

ex,1,gy,gz ;fŷ,1,fẑ,1
x̂

)
δ
(
g′y,g

ex,1 ;fẑ,1
y

)
δ
(
g′z,g

ex,1 ;fŷ,1
z

)
× 1

|G|
1
2 |H|2|ZEgy,gz |

∑
λ,λ′∈H

∣∣∣ hx̂gy
gz

∂(λ)ex,1∂(λ′)e′x,1
(gy.λ)fẑ,1λ

−1([∂(λ)ex,1].[(g′y.λ′)f ′ẑ,1λ
′−1])

(gz.λ)fŷ,1λ
−1([∂(λ)ex,1].[(g′z.λ′)f ′ŷ,1λ

′−1])

〉

=δ
(
h′x̂,h

ex,1,gy,gz ;fŷ,1,fẑ,1
x̂

)
δ
(
g′y,g

ex,1 ;fẑ,1
y

)
δ
(
g′z,g

ex,1 ;fŷ,1
z

)
× 1

|G|
1
2 |H|

1
2 |ZEgy,gz |

1
2

· 1

|H|
1
2 |ZEgy,gz |

1
2

∑
µ∈H

∣∣∣ hx̂gy
gz

∂(µ)ex,1e′x,1
(gy.µ)fẑ,1(ex,1.f

′
ẑ,1)µ

−1

(gz.µ)fŷ,1(ex,1.f
′
ŷ,1)µ

−1

〉
.

In the second step, we used the equality |Egy,gz | = |E ′g′y,g′z |, which is true since, in virtue

of the delta functions, (gy, gz hx̂) and (g′y, g
′
z, h
′
x̂) are in the same equivalence class with

respect to (3.3). Moreover, we reproduced the �-product formula for G-coloured graph

states derived above. In the third step, we made a shift of summation variable by defining

µ := λ(ex,1 . λ
′), which makes one of the sums trivial, hence cancelling one of the 1/|H|

factors. Indeed, using the delta functions in the derivation above, we check for instance that

∂(µ)ex,1e
′
x,1

(2.1)
= ∂(λ)ex,1∂(λ′)e′x,1 ,

and

(gz . µ)fŷ,1(ex,1 . f
′
ŷ,1)µ−1 =

(
gz . [λ(ex,1 . λ

′)]
)
fŷ,1(ex,1 . f

′
ŷ,1)(ex,1 . λ

′−1)λ−1

(2.3)
= (gz . λ)

(
[∂(fŷ,1)ex,1g

′
z] . λ

′)fŷ,1(ex,1 . f
′
ŷ,1)(ex,1 . λ

′−1)λ−1

(2.2)
= (gz . λ)fŷ,1

(
ex,1 . [(g′z . λ

′)f ′ŷ,1λ
′−1]
)
λ−1

(2.2)
= (gz . λ)fŷ,1λ

−1
(
[∂(λ)ex,1] . [(g′z . λ

′)f ′ŷ,1λ
′−1]
)
.
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In order to obtain the final result, we are left to simplify the normalization factors. Firstly,

the factor 1/|H|
1
2 |ZEgy,gz |

1
2 enters the definition of the resulting ground state according

to (3.9). Secondly, the orbit-stabiliser theorem states that |H| = |Egy,gz | · |ZEgy,gz | and thus

1

|G|
1
2 |H|

1
2 |ZEgy,gz |

1
2

=
|Egy,gz |

1
2

|G|
1
2 |H|

(3.8)
=

1

|Bgy,gz |
1
2

.

Putting everything together, the tube algebra TubeG [T2
�] finally reads

∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉

=
δ
(
h′x̂, h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂

)
δ
(
g′y, g

ex,1 ; fẑ,1
y

)
δ
(
g′z, g

ex,1 ; fŷ,1
z

)
|Bgy,gz |

1
2

∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉

(3.14)

where (E · E ′)gy,gz is the equivalence class in Bgy,gz whose representative element reads(
ex,1e

′
x,1 , fŷ,1(ex,1 . f

′
ŷ,1) , fẑ,1(ex,1 . f

′
ẑ,1)
)
.

4 Elementary loop-like excitations

In the previous section, we obtained the tube algebra associated with the gluing operation

T[T2
�] ∪ T[T2

�] ' T[T2
�]. We now derive the simple modules of this tube algebra. In the

next section, we will elucidate the physical interpretation of these simple modules as a

classifying tool for the elementary bulk loop-like excitations of the higher gauge model.

4.1 Simple modules of the tube algebra

Let us derive the representation theory of the tube algebra TubeG [T2
�] whose defining

formula is (3.14). In order to do so, we will first decompose the tube algebra into a

direct sum of subalgebras. Recall that we defined earlier the equivalence relation (3.3) on

the set Col(T2
� × {0},G) of boundary G-colourings. As stated earlier, equivalence classes

with respect to this equivalence relation, which correspond to sets of boundary colourings

invariant under the action of the tube algebra, forms a partition of Col(T2
� × {0},G) into

disjoint sets. Furthermore, given two states in TubeG [T2
�] whose boundary colourings

belong to two disjoint equivalence classes, the algebra product vanishes. This induces that

each equivalence class C ⊂ Col(T2
� × {0},G) defines a subalgebra TubeG [T2

�]C , and since

the set of equivalence classes forms a partition of the boundary colourings, one has

TubeG [T2
�] =

⊕
C

TubeG [T2
�]C .

We can therefore find the simple modules of TubeG [T2
�] in terms of the ones of its subal-

gebras TubeG [T2
�]C for every C ⊂ Col(T2

� × {0},G). As explained in more detail further,

the label C corresponds to a magnetic flux quantum number, while the simple modules of

TubeG [T2
�]C provide the corresponding charge components.
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Given an equivalence class C, let us now construct explicitly the simple modules of

TubeG [T2
�]C . Recall that we notate elements in C by

(cy,i, cz,i, dx̂,i) , i = 1, . . . , |C|

such that (cy,1, cz,1, dx̂,1) is the representative element. Let us introduce the set

QC =
{

(px,i, qŷ,i, qẑ,i)
}
i=1,...,|C|

such that each triplet is defined according to

(cy,1, cz,1, dx̂,1) = (c
px,i ; qẑ,i
y,i , c

px,i ; qŷ,i
z,i , d

px,i,cy,i,cz,i ; qŷ,i,qẑ,i
x̂,i ) (4.1)

with (px,1, qŷ,1, qẑ,1) = (1G,1H ,1H). We then define the stabiliser group

ZC :=
{
EC ∈ BC

∣∣ (cy,1, cz,1, dx̂,1) = (c
ex,1 ; fẑ,1
y,1 , c

ex,1 ; fŷ,1
z,1 , d

ex,1,cy,1,cz,1 ; fŷ,1,fẑ,1
x̂,1 )

}
, (4.2)

where the relevant notations regarding EC were introduced in the previous section. The

group algebra C[ZC ] is then defined as the algebra whose defining vector space is

SpanC

{∣∣ EC−−→ 〉}
EC∈ZC

and whose algebra product reads∣∣ EC−−→ 〉
?
∣∣ E ′C−−→ 〉

=
∣∣ (E·E ′)C−−−−−→

〉
, (4.3)

where (E · E ′)C is the equivalence class in BC whose representative element reads(
ex,1e

′
x,1 , fŷ,1(ex,1 . f

′
ŷ,1) , fẑ,1(ex,1 . f

′
ẑ,1)
)
.

Given an irreducible representation (DR, VR) of the centraliser ZC , where VR is a com-

plex vector space and DR : C[ZC ] → End(VR) an algebra homomorphism, we can now

construct a simple representation of the tube algebra TubeG [T2
�] via a homomorphism

DC,R : TubeG [T2
�]C → End(VC,R) where the vector space VC,R is defined as

VC,R := SpanC

{
|cy,i , cz,i , dx̂,i , vm〉

}
∀ i=1,...,|C|
∀m=1,...,dim(VR)

.

For i, j ∈ {1, . . . , |C|}, m,n ∈ {1, . . . , dim(VR)}, the matrix elements read

DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

:= δ
(
gy, cy,i

)
δ
(
gz, cz,i

)
δ
(
hx̂, dx̂,i

)
× δ

(
g
ex,1 ; fẑ,1
y , cy,j

)
δ
(
g
ex,1 ; fŷ,1
z , cz,j

)
δ
(
h
ex,1,gy,gz ; fŷ,1,fẑ,1
x̂ , dx̂,j

)
× DR

mn

(∣∣ [Estab.C ]i,j−−−−−−→
〉)
, (4.4)

where [Estab.
C ]i,j is the equivalence class in BC whose representative element reads(

p−1
x,i ex,1px,j , p

−1
x,i . [q−1

ẑ,i fẑ,1(ex,1 . qẑ,j)] , p
−1
x,i . [q−1

ŷ,i fŷ,1(ex,1 . qŷ,j)]
)
, (4.5)
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such that

DC,R
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

:=
1

|Bgy,gz|
1
2

|C|∑
i,j=1

dim(VR)∑
m,n=1

DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

× |cy,i, cz,i, dx̂,i, vm〉〈cy,j , cz,j , dx̂,j , vn|.

Crucially, the delta functions in definition (4.4) ensure that

[Estab.
C ]i,j ∈ ZC , ∀ Egy,gz ∈ Bgy,gz , (4.6)

which is checked explicitly in appendix B.1.

It follows directly from the definition that the representation matrices above realise an

algebra homomorphism (see proof in appendix B.2):

|C|∑
k=1

dim(VR)∑
o=1

DC,Rim,ko

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,Rko,jn

(∣∣∣ h′
x̂

g′y

g′z

E ′
gy,gz

〉)

= DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
gy,gz

〉)
. (4.7)

Furthermore, the matrices satisfy the following orthogonality and completeness relations

(see proofs in appendix B.3 and B.4):

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC
′,R′
i′m′,j′n′

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=
|BC |δC,C′δR,R′
|C|dim(VR)

δi,i′δj,j′δm,m′δn,n′ (4.8)

1

|Bgy,gz |
∑
C,R

∑
i,j
m,n

|C|dim(VR)DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,Rim,jn

(∣∣∣ h̃x̂

g̃y

g̃z

Ẽg̃y,g̃z
〉)

=
〈

hx̂

gy

gz

Egy,gz
∣∣∣ h̃x̂

g̃y

g̃z

Ẽg̃y,g̃z
〉

(4.9)

where · stands for complex conjugation. These two conditions can be used to check a

posteriori that the set of simple modules is indeed indexed by pairs (C, R).

4.2 Physical interpretation

We found above the simple modules of the tube algebra TubeG [T2
�], and we showed that

they are indexed by pairs (C, R) such that equivalence classes C represent sets of boundary

G-colourings that are in the same orbit with respect to the action of the tube algebra,

while the representations labelled by R decompose the symmetries of a given boundary

G-colouring under the action of the tube algebra. We now would like to interpret these
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simple modules in terms of elementary loop-like excitations of the higher gauge model.

However, due to the tube algebra itself involving many degrees of freedom, deriving a

consistent interpretation turns out to be a rather subtle task. In order to make progress

in this direction, it is useful to consider limiting cases of TubeG [T2
�] so as to isolate the

different flux and charge components.

Let us assume for now that the group H is trivial, i.e. G = (G, {1G}, ∂ : 1G → 1G, id).

Under this assumption, the model (2.12) reduces to a gauge model, namely the Hamiltonian

realization of Dijkgraaf-Witten theory with trivial cohomology class in H4(BG,U(1)) [49,

50]. The authors showed in [42, 44] that in this case the tube algebra for loop-like excitations

is isomorphic to the (untwisted) quantum triple algebra, which we reproduce below for

convenience:

∣∣∣ 1G

gy

gz

gx
1G

1G

〉
?
∣∣∣ 1G

g′y

g′z

g′x
1G

1G

〉
=
δ
(
g′y, g

−1
x gygx

)
δ
(
g′z, g

−1
x gzgx

)
|G|

1
2

∣∣∣ 1G

gy

gz

gxg′x
1G

1G

〉
.

The simple modules of this algebra are labelled by equivalence classes that correspond

to sets of G-colourings of T2 × {0} related via simultaneous conjugation, and irreducible

representations of the corresponding stabiliser groups. The physical interpretation of these

simple modules goes as follows [44]: given the three-disk D3, removing a solid torus D2×S1

from it creates a loop-like defect. After this operation, we can find a non-contractible 1-

cycle, starting and ending at a given basepoint, that winds once around the hole left by the

torus. The G-colouring assigns a non-trivial group variable to this non-contractible 1-cycle

that is interpreted as a magnetic flux. This situation corresponds to the case where we con-

sider equivalence classes whose representatives are of the form (cy,1, 1G, 1G) or (1G, cz,1, 1G),

in which case the tube algebra is isomorphic to the quantum double algebra [51, 52] and the

loop-like excitations are in one-to-one correspondence with the point-like anyonic particles

of the (2+1)d Dijkgraaf-Witten model with trivial input 3-cocycle. Subsequently removing

a solid cylinder that threads the hole previously created and whose bounding circles are

incident with the boundary of D3, we can find a second non-contractible 1-cycle, starting

and ending at the same basepoint, that winds once around the hole left by the cylinder.

The G-colouring assigns another non-trivial group variable to this non-contractible 1-cycle,

which is interpreted as a magnetic flux threading the loop-like excitation. Composition of

the 1-cycles is commutative and therefore the corresponding group variables must commute

as well. Such sets of commuting group variables provide representatives (cy,1, cz,1, 1G) for

the equivalences classes appearing in the description of the simple modules of the quantum
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triple algebra. We can depict this situation as follows:

cy,1

cz,1

. (4.10)

The requirement that the two fluxes commute imply that the magnetic flux and electric

charge quantum numbers labelling the loop-like excitation are constrained by the presence

of the non-trivial threading flux.

In specifying H = {1G} as in the analysis above, we isolate the 1-form component

of a strict 2-group flat connection. But it is well-known that flat G-connections on T2

are equivalent to group homomorphisms in Hom(π1(T2), G), where π1(T2) denotes the

fundamental group group of T2, so that non-trivial (1-)holonomies can be assigned to

non-contractible 1-cycles only. Furthermore, since π1(T2) = Z × Z, the corresponding

group variables must commute, as explained above. Similarly, we can isolate the 2-form

component of a strict 2-group flat connection by choosing a crossed module of the form

G = ({1H}, H, ∂ : H → 1H , id), in which case the second Peiffer identity (2.2) imposes that

H must be abelian. Flat (2-form) H-connections on 2d surfaces Σ correspond to group

homomorphisms in Hom(π2(Σ), H), where π2(Σ) denotes the second homotopy group of

Σ, so that non-trivial 2-holonomies can be assigned to non-contractible 2-cycles only.4

Similarly to the previous scenario, the corresponding group variables are interpreted as

magnetic fluxes, but now with respect to the 2-flatness constraint. Under this assumption,

the model (2.12) reduces to a so-called 2-form gauge model, namely the Hamiltonian real-

ization of Crane-Yetter theory for the braided fusion category of H-graded vector spaces

with trivial cohomology class in H4(B2H,U(1)) [27, 32, 53].5 Since H is abelian, the tube

algebra simplifies considerably, i.e.

∣∣∣ hx̂

1H

1H

1H

hẑ

hŷ

〉
?
∣∣∣ h′

x̂

1H

1H

1H

h′
ẑ

h′
ŷ

〉
=
δ
(
h′x̂, hx̂

)
|H|

∣∣∣ hx̂

1H

1H

1H

hẑ+h′
ẑ

hŷ+h′
ŷ

〉
,

and deriving its representation theory is immediate: equivalence classes are in one-to-one

correspondence with the group elements in H and label point-like flux excitations with

respect to the 2-flatness constraint, while we distinguish two independent representation

labels which amount to string-like charge excitations with respect to the 1-form gauge

invariance along the two 1-cycles of the torus.

4Given a d-dimensional manifold, the number of non-contractible i-cycles is provided by the so-called

i-th Betti number denoted by bi. For the two-torus, we have b0(T2) = 1, b1(T2) = 2, and b2(T2) = 1.
5It was shown in [32] and [27] that this model is equivalent to the Walker-Wang model in the untwisted

and twisted cases, respectively.
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So we have a good understanding of the simple modules of the tube algebra TubeG [T2
�]

in the limiting cases where one of the groups entering the definition of the strict 2-group

is trivial. Before tackling the interpretation of the elementary loop-like excitations in the

general case, we are going to consider another limiting case, namely the tube algebra

TubeG [S2
�] for spherical boundaries. In any dimensions and for any kind of models, the

tube algebra associated with the d-sphere always yields the algebraic structure underlying

the point-like excitations of the model. Indeed, the regular neighbourhood of a point

embedded in a d-dimensional manifold is a d-disk Dd which upon removal leaves an Sd-
boundary. The two-sphere contains one non-contractible 2-cycle. As explained above, the

2-form component of the strict 2-group connection can assign a non-trivial group element

h ∈ H to it. More precisely, this group variable amounts to the 2-holonomy associated

with parallel-transporting a string with fixed endpoints around S2, i.e.

h

.

This 2-holonomy is well-defined only when the fake-flatness constraint is satisfied, which

in this case amounts to imposing that ∂(h) = 1G, i.e. h ∈ Ker ∂. We can then compute

TubeG [S2] by discretising S2 as the two-disk D2 such that all the points in its boundary

are identified to a unique vertex. A discretisation of the interior of T[S2] is then obtained

as a single edge coloured by a group variable in G that accounts for the violation of the

0-form gauge invariance at the boundary vertex. We thus consider G-coloured graph-states

on T[S2] of the form

SpanC

{∣∣ h g
〉}
∀ g∈G
∀h∈Ker ∂

.

It remains to impose the 1-form gauge invariance along the single edge in the interior of

T[S2] in order to obtain the corresponding ground states:∣∣ h E 〉 :=
1

|H|
1
2 |Ker ∂|

1
2

∑
λ∈H

∣∣ h ∂(λ)ex,1
〉
,

where the notation descends from the one used in section 3.2. In this case, it turns out

that the set of equivalence classes of bulk G-colourings is particularly simple. Indeed, it is

equal to the co-kernel of ∂, i.e. coKer ∂ := G/Im ∂, which is well-defined since the Peiffer

identities ensure that Im ∂ is a normal subgroup of G. The ground state subspace on T[S2]

therefore reads

VG [T[S2]] = SpanC

{∣∣ h E 〉}
∀h∈Ker ∂
∀ E∈coKer ∂

,

and the tube algebra TubeG [S2] is simply given by6

∣∣ h E 〉 ? ∣∣ h′ E ′ 〉
=
δ
(
h′, e−1

x,1 . h
)

|coKer ∂|
1
2

∣∣ h E·E ′ 〉 .
6We remark that the spherical boundary tube-algebra is Morita equivalent to the subalgebra of the torus
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The simple modules of this tube algebra descend from the ones derived earlier so that flux

point-like excitations are labelled by equivalence classes of Ker ∂ where for h, h̃ ∈ Ker ∂ we

have h ∼ h̃ if there exists a ∈ G such that h̃ = a−1 . h, and charge point-like excitations

are labelled by irreducible representations of the centralizer{
E ∈ coKer ∂

∣∣ h = e−1
x,1 . h

}
.

So the spherical boundary case teaches us that for higher gauge models, elementary point-

like excitations are labelled by both a flux quantum number with respect to the 2-flatness

constraint and a charge quantum number with respect to the usual 0-form gauge invariance,

whereby the charge label is constrained by the presence of the point-like flux. Let us

emphasize that in the limiting case of the connected component of the spherical tube algebra

with boundary colouring h = 1H , 0-form charge excitations are indexed by representations

of coKer ∂, and not representations of G as it is the case for the untwisted Dijkgraaf-

Witten model. Indeed, we know that for the untwisted Dijkgraaf-Witten model pure

charge excitations are indexed by representations (DR, VR) of G. This can be appreciated

from a string operator point of view: define a path γ of edges on the lattice connecting

two vertices v
γ−→ v′; charges are then created in the states |vm〉, |vn〉 ∈ VR at the vertices

v and v′, respectively, by multiplying each G-colouring by DR
mn(gγ), where gγ ∈ G is the

holonomy assigned to such a path. This operator commutes with all vertex gauge operators

on the lattice except at the end-points v, v′ by the observation that such gauge operators do

not change the resulting holonomy. Such excitations are call deconfined as the energy cost

of producing such a pair of charges is independent of their separation in the metric of the

lattice. Applying this construction to the higher gauge model, we realise that the previous

string operator would fail to commute with the edge gauge operators along the length of the

path. More precisely, the edge gauge operators perform a transformation of the holonomy

via gγ 7→ ∂(λ)gγ for some λ ∈ H. This observation demonstrates that the energy cost of

such a charge excitation would be proportional to the length of the string, and we call such

a pair of charge excitations confined as the energetics of the model favour small separations

of the charges. In order for such excitations to be deconfined, having energy cost at only the

end-points, we must require that DR(∂(λ)gγ) = DR(gγ) for all λ ∈ H, which is equivalent

to requiring that DR defines a representation of coKer ∂, as expected.

Putting all the remarks above together, let us now propose a physical interpretation

of the simple modules of the tube algebra TubeG [T2
�] for the strict 2-group higher gauge

model. Firstly, we distinguish three types of flux excitations, which in terms of (4.10)

can be interpreted as follows: the loop-like flux that corresponds to the 1-holonomy going

around the hole left by the torus; the threading flux that corresponds to the second 1-

holonomy going around the hole left by the cylinder; the point-like flux that corresponds

to the 2-holonomy associated with the parallel-transport of the first loop along the second

boundary tube algebra defined by equivalence classes Ch ⊂ Col(T2
� × {0},G) whose representatives are of

the form (1G, 1G, h), for all h ∈ Ker ∂, i.e.

TubeG [S2] Morita
∼

⊕
h∈Ker ∂

TubeG [T2
�]Ch .

– 23 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
7

one. But this parallel-transport is well-defined only when the fake-flatness condition is

imposed. Together, this implies that the magnetic flux quantum number labelling the

loop-like excitation is constrained by the presence of both the threading flux and the 2-

holonomy. Similarly, the charge quantum number accounts for the composite of three types

of charge excitations: two string-like charges with respect to the 1-form gauge invariance

along the non-contractible 1-cycles described above, one point-like charge with respect to

the 0-form gauge invariance at the basepoint of the 1-cycles. Crucially, there is a non-trivial

interplay between these charge excitations as they are constrained by the flux components

via the flatness conditions but also because of the confinment mechanism put forward above

in the spherical boundary case.

5 Ground states of the three-torus

We derived in the previous section the simple modules of the tube algebra TubeG [T2
�]

classifying the elementary loop-like excitations of the higher gauge model. We now build

upon this construction to derive a complete orthonormal ground state basis for the three-

torus T3, demonstrating that such states are spanned by the central elements of TubeG [T2
�].

As a consequence, we find the ground state degeneracy of T3 to be given by the number of

elementary loop-like excitations.

5.1 Canonical basis for TubeG[T2
�]

We begin by introducing an alternative basis for the tube algebra TubeG [T2
�] that we will

refer to as the canonical basis. The primary purpose of the canonical basis is to simplify

the tube algebra product, rendering many calculations simpler than in the conventional

basis. Henceforth, given a simple module (C, R), we use the shorthand notation M,N for

the basis indices im, jn ∈ {1, . . . , dim(VC,R)} introduced in section 4 and define dC,R :=

dim(VC,R) = |C| · dim(VR).

The canonical basis for TubeG [T2
�] is defined by the set of elements |C, R ;MN〉 ∈

TubeG [T2
�] for each simple module (C, R) and M,N ∈ {1, . . . , dC,R} such that

|C, R ;MN〉 :=
d

1
2
C,R

|BC |
1
2

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉) ∣∣∣ hx̂

gy

gz

Egy,gz
〉
. (5.1)

– 24 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
7

The transformation above defines an isomorphism between the two bases with inverse given

by ∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
1

|Bgy,gz |
1
2

∑
C,R

d
1
2
C,R

∑
M,N

DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
|C, R ;MN〉 . (5.2)

An immediate consequence of this definition is that the canonical basis is orthonormal, i.e.

〈C′, R′;M ′N ′ | C, R ;MN〉 = δC,C′ δR,R′ δM,M ′ δN,N ′ , (5.3)

where the inner product is induced from the inner product in TubeG [T2
�], and complete,

i.e. ∑
C,R

∑
M,N

〈C, R ;MN | C, R ;MN〉 =
∣∣TubeG [T2

�]
∣∣ . (5.4)

These two statements are proven in appendix C.1 and C.2, respectively. As desired, the

?-product in the canonical basis takes a particularly convenient form, namely

|C, R ;MN〉 ? |C′, R′;M ′N ′〉 =
δN,M ′ δC,C′ δR,R′

d
1
2
C,R

|C, R ;MN ′〉 , (5.5)

which is proven in appendix C.3. A useful corollary is the relations

∣∣∣ hx̂

gy

gz

Egy,gz
〉
? |C, R ;MN〉 =

1

|BC |
1
2

∑
M ′

DC,RMM ′

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
|C, R ;M ′N〉

|C, R ;MN〉 ?
∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
1

|BC |
1
2

∑
N ′

DC,RN ′N

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
|C, R ;MN ′〉 ,

which follows from the definition of the ?-product and eq. (5.2).

5.2 Centre of TubeG[T2
�]

We now utilise the canonical basis defined in the previous part to define a natural basis for

the central subalgebra Z(TubeG [T2
�]) ⊂ TubeG [T2

�], where Z(TubeG [T2
�]) is defined as the

subalgebra of TubeG [T2
�] consisting of the set of all elements |ψ〉 ∈ TubeG [T2

�] such that

|ψ〉 ?
∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
∣∣∣ hx̂

gy

gz

Egy,gz
〉
? |ψ〉 , ∀

∣∣∣ hx̂

gy

gz

Egy,gz
〉
∈ TubeG [T2

�] .

Building upon the canonical basis defined above, we can describe a complete and orthonor-

mal basis for Z(TubeG [T2
�]) as follows:

Z(TubeG [T2
�]) = SpanC

{
|C, R〉

}
∀ C,R

where

|C, R〉 :=
1

d
1
2
C,R

∑
M

|C, R ;MM〉 . (5.6)
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Orthonormality of these states follows directly from eq. (5.3), while it is straightforward

to verify such basis elements are indeed central, i.e.

|C,R〉?
∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
1

d
1
2
C,R

∑
M

|C,R ;MM〉?
∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
1

d
1
2
C,R|BC |

1
2

∑
M,N

|C,R ;MN〉DC,RNM
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=
1

d
1
2
C,R|BC |

1
2

∑
M,N

|C,R ;NM〉DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=
∣∣∣ hx̂

gy

gz

Egy,gz
〉
? |C,R〉 .

Completeness of the basis follows from the observation that any other element of TubeG [T2
�]

is either a sum of such elements or not central.

5.3 Three-torus ground state basis

Building upon the previous discussion, let us now show that the ground state subspace of

the higher gauge model for the three-torus T3 is described by the centre Z(TubeG [T2
�]) of

the tube algebra TubeG [T2
�]. We utilise a cubulation T3

� of T3 induced from the tube T[T2
�]

defined in (3.2) by further requiring the identifications (0145) ≡ (2367), (01) ≡ (45) ≡ (23) ≡
(67) and (04) ≡ (15) ≡ (26) ≡ (37). Applying such constraints, we can identify the space of

G-coloured graph-states of T3
� with a subspace of the space of G-coloured graph-states of

T[T2
�]. Specifically, a G-colouring of T[T2

�] as defined in (3.2) induces a G-colouring of T3
�

if and only if

(gy, gz, hx̂) = (ggx ;hẑ
y , g

gx ;hŷ
z , h

gx,gy,gz ;hŷ,hẑ
x̂ ) ,

and we notate G-coloured graph-states of T[T2
�] that satisfy the above conditions, and thus

define G-coloured graph-states of T3
�, as

∣∣∣ hx̂

gy

gz

gx
hẑ

hŷ

〉
T3
�

.

In order to obtain the ground states on T3
�, we are left to enforce the 0-form gauge invariance

along the unique vertex (0) ≡ (1) ≡ . . . ≡ (7) and the 1-form gauge invariance along the

edges x := (02) ≡ (13) ≡ (46) ≡ (57), y := (01) ≡ (23) ≡ (45) ≡ (67) and z := (04) ≡ (15) ≡
(26) ≡ (37) via the projectors Av and Ae, respectively. The action of the gauge operators

on the G-colourings of T3
� reads

Ak(0)A
λz
z Aλyy Aλxx

∣∣∣ hx̂

gy

gz

gx
hẑ

hŷ

〉
T3
�

=
∣∣∣ h̃x̂

g̃y

g̃z

g̃x
h̃ẑ

h̃ŷ

〉
T3
�

for all k ∈ G and λx, λy, λz ∈ H, where

(g̃y, g̃z, h̃x̂) = (g
k−1;λ−1

y
y , gk

−1;λ−1
z

z , h
k−1,gz,gy ;λ−1

y ,λ−1
z

x̂ )

(g̃x, h̃ŷ, h̃ẑ) = (gk
−1;λ−1

x
x , hk

−1,gx,gz ;λ−1
z ,λ−1

x

ŷ , h
k−1,gx,gy ;λ−1

y ,λ−1
x

ẑ ) .
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Using the above action of the gauge operators on the G-colourings of T3
�, we can explicitly

define the ground state projector for T3
� via

PG [T3
�] =

1

|G||H|3
∑

gx,gy,gz∈G
hx̂,hŷ,hẑ∈H

∑
k∈G

λx,λy,λz∈H

Ak(0)A
λz
z Aλyy Aλxx

∣∣∣ hx̂

gy

gz

gx
hẑ

hŷ

〉〈
hx̂

gy

gz

gx
hẑ

hŷ

∣∣∣ (5.7)

× δ(hx̂, h
gx,gy,gz ;hŷ,hẑ
x̂ ) δ(gy, g

gx ;hẑ
y ) δ(gz, g

gx ;hŷ
z ) δ(gz, g

gy ;hx̂
z ) .

Having described the ground state projector PG [T3
�], we are now able to construct the

ground state subspace VG [T3
�] := Im PG [T3

�] of T3
�. However, from (5.7) alone, the form of

the ground state subspace is relatively obtuse. In order to proceed with our discussion, it

is instructive to observe that the ground state projector PG [T3
�] can be equally expressed

in terms of the basis elements of TubeG [T2
�] as follows:

PG [T3
�] =

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

∑
g′y,g

′
z∈G

h′x̂∈H | g′z=g
′g′y;h′x̂
z

E ′
g′y,g′z

∈Bg′y,g′z

(∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉−1
?
∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉)〈
hx̂

gy

gz

Egy,gz
∣∣∣ ,

(5.8)

where given an equivalence class Egy,gz whose representative element is (ex,1, fŷ,1, fẑ,1) we

have ∣∣∣ hx̂

gy

gz

Egy,gz
〉−1

:=
∣∣∣ h̄x̂

ḡy

ḡz

E−1
ḡy,ḡz

〉
(5.9)

with ḡy = g
ex,1 ; fẑ,1
y , ḡz = g

ex,1 ; fŷ,1
z , h̄x̂ = h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂ and such that E−1

ḡy,ḡz ∈ Bḡy,ḡz is

the equivalence class with representative element (e−1
x,1, e

−1
x,1.f

−1
ŷ,1 , e

−1
x,1.f

−1
ẑ,1 ). The proof that

both expressions do define the same operator is presented in appendix C.4. Furthermore,

we can define the identity element of TubeG [T2
�] via

1TubeG [T2
�] :=

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

∣∣∣ hx̂

gy

gz

Egy,gz
〉−1
?
∣∣∣ hx̂

gy

gz

Egy,gz
〉

such that

1TubeG [T2
�] ?

∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
∣∣∣ hx̂

gy

gz

Egy,gz
〉
? 1TubeG [T2

�] ,

∀
∣∣∣ hx̂

gy

gz

Egy,gz
〉
∈ TubeG [T2

�] .

It then follows that the image of the ground state projector consists of all elements |ψ〉 ∈
TubeG [T2

�] satisfying the condition

|ψ〉 ?
∣∣∣ hx̂

gy

gz

Egy,gz
〉

=
∣∣∣ hx̂

gy

gz

Egy,gz
〉
? |ψ〉 , ∀

∣∣∣ hx̂

gy

gz

Egy,gz
〉
∈ TubeG [T2

�] .
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This expression is nothing else than the definition of the central subalgebra Z(TubeG [T2
�])

defined in section 5.2, and as such we can make the identifications

VG [T3
�] := Im PG [T3

�] = Z(TubeG [T2
�]) = SpanC

{
|C, R〉

}
∀ C,R ,

where the central elements |C, R〉 were defined in (5.6). One immediate consequence of this

result is that the ground state degeneracy of the three-torus in the higher gauge model is

equal to the number of elementary loop-like excitations.

6 Discussion

Topological models with a higher gauge theory interpretation have recently been under

much scrutiny. In this manuscript, we studied within the lattice Hamiltonian formalism

the excitation content of higher gauge models whose input data are strict 2-groups. In or-

der to accomplish this task, we generalized the tube algebra approach, which has been very

successful in the study of gauge models, to higher gauge models. More precisely, we con-

sidered the tube algebra associated with the manifold T2× [0, 1] so that the corresponding

simple modules classify the elementary loop-like excitations of the model. The methodol-

ogy is exactly the same as the one followed to derive the elementary loop-like excitations

of Dijkgraaf-Witten models. However, the derivations are considerably more subtle in the

higher gauge theory case due to the presence of both 1-form and 2-form degrees of freedom

that interact in a non-trivial way, as well as the requirement of 1-form gauge invariance on

the ground states of T2 × [0, 1].

Although we focused on the case of loop-like excitations, we could easily consider

more complex excitations whose classifications correspond to the classifications of bound-

ary conditions of higher-genus surfaces Σ. Such scenarios have been studied using the

language of strict 2-groupoids [54]. In this case, the relevant 2-groupoid consists of objects

given by boundary colourings of Σ × [0, 1], 1-morphisms given by bulk colourings, and

2-morphisms that correspond to 1-form gauge transformations between bulk colourings.

Within this context, tube algebras can be rephrased in terms of groupoid algebras, and the

corresponding simple modules can be conveniently found using the technology of groupoid

representations [55].

The techniques introduced in this work admit several generalisations. Firstly, we

could include a crossed module 4-cocycle as input of our model, where such an algebraic

cocycle would be identified with a simplicial 4-cocycle in the cohomology of the crossed

module classifying space. Secondly, we could replace the input strict 2-group by a weak

2-group defined as a monoidal category whose objects are all weakly invertible and mor-

phisms are all invertible. Isomorphism classes of weak 2-groups are classified by quadruples

(Γ1,Γ2, [α], .) where Γ1 is a group, Γ2 an abelian group, . : Γ1 → Aut(Γ2) a group ac-

tion, and [α] ∈ H3(Γ1,Γ2). In the present context, the 3-cocycle α, which determines

the monoidal associator, would appear in the definition of the 2-flatness constraint for a

3-simplex. As such, this scenario would require dealing with triangulations instead of cubu-

lations. Thirdly, the strategy employed in this manuscript can be adapted to study the
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excitation content of gapped boundaries for higher gauge models. These generalizations

will be reported in a forthcoming paper.

Finally, it is tantalising to study the fusion and the braiding statistics of the elemen-

tary loop-like excitations derived in this manuscript. Indeed, the authors showed in [44]

that for gauge models the tube algebra for torus boundary can be equipped with a co-

multiplication map and an R-matrix that encode the fusion and the braiding statistics of

the excitations, respectively. Similarly, we could try to endow the algebra obtained in the

present manuscript with the corresponding structures. However, in light of the complexity

of the elementary excitations in higher gauge models, there is no straightforward way of

generalizing these notions. A well-studied approach to understanding the braid statistics

of loop-like excitations in (3+1)d is to consider the mapping class group representations of

the three-torus SL(3,Z) induced from the three-torus ground state subspace [50, 56–58].

It is expected that the fusion rules for loop-like excitations are related to a generalised

Verlinde formula [59] induced by representations of SL(2,Z) ⊂ SL(3,Z). Such techniques

will be applied to the higher gauge theory model in a subsequent work [33].
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A Strict 2-groups and 2-groupoids

In this appendix, we formulate strict 2-groups as one-object 2-groupoids. We then show

that this can be used to define strict 2-group connections as functors from path 2-groupoids

to strict 2-groups.

A.1 Crossed modules as 2-groupoids

Given a crossed module (G,H, ∂, .), let us derive the corresponding strict 2-group G, or

more precisely its delooping. The strict 2-group G is a 2-groupoid whose single object is

notated •, (1-)morphisms are elements in G depicted as •
g−→ •, and 2-morphisms are pairs

λ := (g, h) ∈ G×H such that (g, h) is the 2-morphisms from the source 1-morphism g to

the target 1-morphism ∂(h)g depicted as

• •

g

∂(h)g

h .

– 29 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
7

The 1-morphisms compose according to the group multiplication in G, i.e. •
g1−−→ •

g2−−→=

•
g1g2−−→ •, while the vertical composition of the 2-morphisms is provided by the group

multiplication in H, i.e.

• •

g

∂(h2h1)g

h1

h2

= • •

g

∂(h2h1)g

h2h1 .

It is also possible to compose the 2-morphisms horizontally

• • •

g1

∂(h1)g1

h1

g2

∂(h2)g2

h2
= • •

g1g2

∂(h)g1g2

h̃

with h̃ := h2(g2 . h1) so that the set of 2-morphisms forms the semidirect product GnH.

Notating λi := (gi, hi), the multiplication rule ∗ in GnH reads

λh1 ∗ λh2 = (g1, h1) ∗ (g2, h2) = (g1g2, h2(g2 . h1)) .

Vertical and horizontal compositions can be checked to satisfy the interchange law

(λ1 ◦ λ2) ∗ (λ′1 ◦ λ′2) = (λ1 ∗ λ′1) ◦ (λ2 ∗ λ′2)

such that there is a well-defined 2-morphism associated with the diagram

• • •

g1

∂(h2h1)g1

h1

h2

g2

∂(h′
2h

′
1)g2

h′
1

h′
2

,

independent of the order of composition. Conversely, we can define the crossed module

associated with a given one-object 2-groupoid.

A.2 Path groupoids and strict 2-group colourings

Conventional gauge theories are built from (1-)connections on principle bundles, and,

given a topologically trivial bundle, a 1-connection can be completely determined by the

holonomies of a 1-form gauge field valued in the Lie algebra of the gauge group. In the

limiting case that G is a finite group, the 1-connection is commonly replaced by a G-valued

1-cochain. In this limit, a systematic way of providing a local description of a connection on

a manifoldM is through the language of category theory in terms of path groupoids. The

same language can then be used to describe strict 2-group connections. Here we provide

only an overview of such ideas and suggest the following sources for a more comprehensive

treatment: [6, 7, 60, 61].

Let us begin by describing the path groupoid P(M) for a manifold M. The path

groupoid P(M) is a category whose object set is given by a finite set of points in M and

morphisms are given by oriented paths connecting such points. Composition of morphisms
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then corresponds to the concatenation of paths. Given two points v, v′ ∈ M, we denote

an oriented (1-)path between them as v
e−→ v′.7 For such data to define a category, we

additionally require for each point v ∈ M a ‘trivial path’ v
1v−−→ v whose support is the

point v, defining the identity morphism for the point v. The groupoid structure is given

by defining the inverse of an oriented path v
e−→ v′ as the orientation reversal of the path,

notated via v′ e−1

−−→ v so that it satisfies the identities

v
e−→ v′ e−1

−−→ v := v
1v−−→ v and v′ e−1

−−→ v
e−→ v′ := v′

1v′−−→ v′ .

Building on the path groupoid construction, a G-connection is expressed via the 1-holonomy

functor

hol1 : P(M)→ G ,

where G is the delooping of G, i.e. the one object groupoid with morphisms labelled by

elements of G and composition given by multiplication in G. In particular, the functor

hol1 assigns to each path v
e−→ v′ ∈ HomP(M)(v, v

′) an element hol1(v
e−→ v′) = •

ge−→ • ∈ G
such that

hol1(v
e−→ v′ e′−→ v′′) = hol1(v

e−→ v′)hol1(v′ e′−→ v′′) ,

where the composition rule on the r.h.s. is the multiplication in G. Furthermore, functoral-

ity implies the relations

hol1(v′ e−1

−−→ v) = hol1(v
e−→ v′)−1 and hol1(v

1e−→ v) = 1G .

In this way, the requirement that hol1 is a functor is equivalent to the condition that compo-

sition of holonomies is well-defined in the connection. In this manuscript, we are primarily

interested in 2-connections arising from 2-bundles associated to finite 2-groups G, which we

refer to as G-labellings. One key advantage of the category theoretical definition of a finite

G-connection presented above is that it can be neatly extended to 2-connections for finite

2-bundles. Mimicking the group case, let us begin by defining the path 2-groupoid P2(M).

The path 2-groupoid P2(M) is a strict 2-groupoid whose underlying 1-category is the path

groupoid P(M) and 2-morphisms e
p

=⇒ e′ correspond to 2-paths in M with the topology

of a bigon connecting pairs (e, e′) of 1-paths with the same source and target points, e.g.

v v′

e

e′

p .

To ensure this defines a strict 2-category, we require for each path v
e−→ v′ a ‘trivial 2-path’

e
1e==⇒ e′ whose support is contained on the path v

e−→ v′, defining the identity 2-morphism

for the path v
e−→ v′. The 2-groupoid structure then follows by defining a vertical inverse

7In order to facilitate the comparison, we use the same notation for points, 1-paths and 2-paths as the

one for vertices, edges and plaquettes in section 2 namely v, e and p, respectively.
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−1 and a horizontal inverse †, associated with the two ways in which we can reverse the

orientation of a bigon, via

(
v v′

e

e′

p

)−1

= v v′

e

e′

p−1 and

(
v v′

e

e′

p

)†
= v′ v

e−1

e′−1

p† .

Building on the path 2-groupoid construction, a G-connection is expressed via the

holonomy strict 2-functor

hol2 : P2(M)→ G .

In particular, the requirement that such a map corresponds to a strict 2-functor states

that there is a functor hol1 : P(M) → G of the underlying 1-category assigning to each

path v
e−→ v′ ∈ HomP(M)(v, v

′) a morphism •
ge−→ • ∈ G and to each 2-path

hol2 : v v′

e

e′

p 7→ • •

ge

ge′=∂(hp)ge

hp ∈ GnH ,

which is compatible with the 1-functor hol1 by the requirement ge′ = ∂(hp)ge. This

compatibility between 1-path and 2-path labellings corresponds to the fake-flatness

condition expressed in (2.4). Additionally the functor requires

hol2

(
v v′

e

e′

p−1

)
= • •

e

e′

h−1
p

, hol2

(
v v′

e−1

e
′−1

p†

)
= • •

e−1

e
′−1

h̃p

with h̃p = g−1
e . h−1

p , and

hol2

(
v v′

e

e

1e

)
= v v′

ge

ge

1H

ensuring that composition of 2-holonomies is well defined. This definition is very general.

It can thus be used to redefine G-labellings on cubulations as presented in the main

text, but also to define G-labellings of cell decompositions of a manifold given by any

CW-complex as illustrated in [31].

B Properties of the representations matrices

In this appendix, we collect the proofs of several properties satisfied by the representation

matrices.
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B.1 Proof of (4.6)

Given definitions (4.1), (4.4) and (4.5), we confirm in this appendix that [Estab.
C ]i,j ∈ ZC for

every Egy,gz ∈ Bgy,gz . Following the definition (4.2) of ZC , we first compute

c
p−1
x,iex,1px,j ;p−1

x,i.[q
−1
ẑ,i fẑ,1(ex,1.qẑ,j)]

y,1
def
= (p−1

x,je
−1
x,1px,i)∂

(
p−1

x,i .
[
(ex,1 .q

−1
ẑ,j )f−1

ẑ,1 qẑ,i

])
cy,1 (p−1

x,i ex,1px,j)

(2.1)
= p−1

x,je
−1
x,1∂

(
(ex,1 .q

−1
ẑ,j )f−1

ẑ,1 qẑ,i

)
px,i cy,1 p

−1
x,i ex,1px,j

(2.1)
= p−1

x,j ∂(q−1
ẑ,j )e−1

x,1∂(f−1
ẑ,1 )∂(qẑ,i)px,i cy,1 p

−1
x,i ex,1px,j

(4.1)
= p−1

x,j ∂(q−1
ẑ,j )e−1

x,1∂(f−1
ẑ,1 )cy,i ex,1px,j

(4.4)
= p−1

x,j∂(q−1
ẑ,j )cy,jpx,j

(4.1)
= cy,1 (B.1)

where we used between the second and third lines the fact that ∂ is a group homomorphism

in addition to (2.1). Following exactly the same steps, we similarly find that

c
p−1
x,igxpx,j ; p−1

x,i.[q
−1
ŷ,i fŷ,1(ex,1.qŷ,j)]

z,1 = cz,1 . (B.2)

We are left to check the final identity, namely

d
p−1
x,iex,1px,j ,cy,1,cz,1 ; p−1

x,i.[q
−1
ŷ,i fŷ,1(ex,1.qŷ,j)],p−1

x,i.[q
−1
ẑ,i fẑ,1(ex,1.qẑ,j)]

x̂,1 = dx̂,1 . (B.3)

By definition of the notation, the l.h.s. is equal to

l.h.s.(B.3) = (p−1
x,je
−1
x,1px,i).

[(
p−1

x,i . [(ex,1 .q
−1
ŷ,j )f

−1
ŷ,1qŷ,i]

)(
(cz,1p

−1
x,i ). [(ex,1 .q

−1
ẑ,j )f−1

ẑ,1 qẑ,i]
)

dx̂,1

(
(cy,1p

−1
x,i ). [q−1

ŷ,i fŷ,1(ex,1 .qŷ,j)]
)(
p−1

x,i . [q−1
ẑ,i fẑ,1(ex,1 .qẑ,j)]

)]
which in virtue of the axioms (2.3) can be rewritten

l.h.s.(B.3)=(p−1
x,je
−1
x,1).

[(
(ex,1.q

−1
ŷ,j )f

−1
ŷ,1qŷ,i

)(
(px,icz,1p

−1
x,i ).[(ex,1.q

−1
ẑ,j )f−1

ẑ,1 qẑ,i]
)

(
px,i.dx̂,1

)(
(px,icy,1p

−1
x,i ).[q−1

ŷ,i fŷ,1(ex,1.qŷ,j)]
)(
q−1

ẑ,i fẑ,1(ex,1.qẑ,j)
)]
.

But according to (4.1) we have px,icz,1p
−1
x,i = ∂(q−1

ŷ,i )cz,i and px,icy,1p
−1
x,i = ∂(q−1

ẑ,i )cy,i. More-

over, using the second Peiffer identity (2.2) together with the axioms (2.3), the expression

above becomes

l.h.s.(B.3) = (p−1
x,je
−1
x,1).

[(
(ex,1 .q

−1
ŷ,j )f

−1
ŷ,1qŷ,i

)
q−1

ŷ,i

(
cz,i . [(ex,1 .q

−1
ẑ,j )f−1

ẑ,1 qẑ,i]
)
qŷ,i(

px,i .dx̂,1

)
q−1

ẑ,i

(
cy,i . [q−1

ŷ,i fŷ,1(ex,1 .qŷ,j)]
)
qẑ,i

(
q−1

ẑ,i fẑ,1(ex,1 .qẑ,j)
)]
.

Removing superfluous brackets, applying the axioms (2.3), and using the fact that accord-

ing to (4.1) we have dx̂,1 = p−1
x,i . [q−1

ŷ,i (cz,i . q
−1
ẑ,i )dx̂,i(cy,i . qŷ,i)qẑ,i] yields

l.h.s.(B.3) = (p−1
x,je
−1
x,1) .

[
(ex,1 . q

−1
ŷ,j )f

−1
ŷ,1

(
cz,i . [(ex,1 . q

−1
ẑ,j )f−1

ẑ,1 ]
)
dx̂,i(

cy,i . [fŷ,1(ex,1 . qŷ,j)]
)
fẑ,1(ex,1 . qẑ,j)

]
(2.3)
=
(
p−1

x,je
−1
x,1

)
.
[
(ex,1 . q

−1
ŷ,j )f

−1
ŷ,1 (cz,iex,1 . q

−1
ẑ,j )(cz,i . f

−1
ẑ,1 )dx̂,i

(cy,i . fŷ,1)(cy,iex,1 . qŷ,j)fẑ,1(ex,1 . qẑ,j)
]
.
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Making use of the delta functions entering the definition (4.4) of the representation matri-

ces, we finally obtain

l.h.s.(B.3) = (p−1
x,je
−1
x,1).

[
(ex,1 .q

−1
ŷ,j )f

−1
ŷ,1

(
∂(fŷ,1)ex,1cz,j .q

−1
ẑ,j

)
(cz,i .f

−1
ẑ,1 )dx̂,i

(cy,i .fŷ,1)
(
∂(fẑ,1)ex,1cy,i .qŷ,j

)
fẑ,1(ex,1 .qẑ,j)

]
(2.2)
= (p−1

x,je
−1
x,1).

[
(ex,1 .q

−1
ŷ,j )(ex,1cz,j .q

−1
ẑ,j )f−1

ŷ,1 (cz,i .f
−1
ẑ,1 )dx̂,i

(cy,i .fŷ,1)fẑ,1(ex,1cy,i .qŷ,j)(ex,1 .qẑ,j)
]

(2.3)
= p−1

x,j .
[
q−1

ŷ,j

(
cz,j .q

−1
ẑ,j )
(
e−1

x,1 . [f−1
ŷ,1 (cz,i .f

−1
ẑ,1 )dx̂,i(cy,i .fŷ,1)fẑ,1]

)
(cy,i .qŷ,j)qẑ,j

]
(4.4)
= p−1

x,j .
[
q−1

ŷ,j (cz,j .q
−1
ẑ,j )dx̂,j(cy,i .qŷ,j)qẑ,j

]
(4.1)
= dx̂,1 ,

hence the identity (B.3). Putting (B.1)–(B.3) together, we checked that (4.6) is true, hence

confirming definition (4.4).

B.2 Proof of the linearity property (4.7)

In this appendix, we check that the representation matrices as defined in (4.4) indeed realise

an algebra homomorphism:

|C|∑
k=1

dim(VR)∑
o=1

DC,Rim,ko

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,Rko,jn

(∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉)
=

|C|∑
k=1

δ(gy, cy,i)δ(gz, cz,i)δ(hx̂,dx̂,i)δ(g
ex,1 ;fẑ,1
y , cy,k)δ(g

ex,1 ;fŷ,1
z , cz,k)δ(h

ex,1,gy,gz ;fŷ,1,fẑ,1
x̂ ,dx̂,k)

×δ(g′y, cy,k)δ(g
′
z, cz,k)δ(h

′
x̂,dx̂,k)δ(g

′e′x,1 ;f ′ẑ,1
y , cy,j)δ(g

′e′x,1 ;f ′ŷ,1
z , cz,j)δ(h

′e′x,1,g′y,g′z ;f ′ŷ,1,f
′
ẑ,1

x̂ ,dx̂,j)

×
dim(VR)∑
o=1

DR
mo

(∣∣ [Estab.C ]i,k−−−−−−→
〉)
DR
on

(∣∣ [E ′stab.C ]k,j−−−−−−−→
〉)

= δ(gy, cy,i)δ(gz, cz,i)δ(hx̂,dx̂,i)δ(g
′e′x,1 ;f ′ẑ,1
y , cy,j)δ(g

′e′x,1 ;f ′ŷ,1
z , cz,j)δ(h

′e′x,1,g′y,g′z ;f ′ŷ,1,f
′
ẑ,1

x̂ ,dx̂,j)

×δ(gex,1 ;fẑ,1
y ,g′y)δ(g

ex,1 ;fŷ,1
z ,g′z)δ(h

ex,1,gy,gz ;fŷ,1,fẑ,1
x̂ ,h′x̂)DR

mn

(∣∣ [(E·E ′)stab.C ]i,j−−−−−−−−−→
)

=DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉)
,

where we used in particular the fact that

p−1
x,i . [q−1

ẑ,i fẑ,1(ex,1 . qẑ,k)](p
−1
x,i ex,1px,k) . p

−1
x,k . [q−1

ẑ,kf
′
ẑ,1(e′x,1 . qẑ,j)]

= p−1
x,i . [q−1

ẑ,i fẑ,1(ex,1 . f
′
ẑ,1)(ex,1e

′
x,1 . qẑ,j)] ,

which simply follows from repeated use of the axioms (2.3), so as to define the equivalence

class [(E · E ′)stab.
C ]i,j ∈ BC whose representative element is provided by the triplet(

p−1
x,i ex,1e

′
x,1px,j , p

−1
x,i . [q−1

ẑ,i fẑ,1(ex,1 . f
′
ẑ,1)(ex,1e

′
x,1 . qẑ,j)] ,

p−1
x,i . [q−1

ŷ,i fŷ,1(ex,1 . f
′
ŷ,1)(ex,1e

′
x,1 . qŷ,j)]

)
.
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Furthermore, between the second and the third steps, we used the linearity of the irreducible

representation on ZC .

B.3 Proof of the orthogonality relation (4.8)

In this appendix, we prove the orthogonality relation (4.8). It suffices to write down

explicitly the definition (4.4) for the irreducible representations of TubeG [T2
�] and use the

orthogonality of the representations in the stabiliser group, i.e.

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC
′,R′
i′m′,j′n′

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=
∑

gy,gz∈G
hx̂∈H | gz=g

gy;hx̂
z

Egy,gz∈Bgy,gz

δ(gy, cy,i) δ(gz, cz,i) δ(hx̂, dx̂,i)

× δ(gex,1 ; fẑ,1
y , cy,j) δ(g

ex,1 ; fŷ,1
z , cz,j) δ(h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂ , dx̂,j)

× δ(gy, cy,i′) δ(gz, cz,i′) δ(hx̂, dx̂,i′)

× δ(gex,1 ; fẑ,1
y , cy,j′) δ(g

ex,1 ; fŷ,1
z , cz,j′) δ(h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂ , dx̂,j′)

×DR
mn

(∣∣ [Estab.C ]i,j−−−−−−→
〉)
DR
m′n′

(∣∣ [Estab.C′ ]i′,j′−−−−−−−→
〉)

=
∑

Ecy,i,cy,j∈Bcy,i,cy,j

δ(c
ex,1 ; fẑ,1
y,i , cy,j) δ(c

ex,1 ; fŷ,1
z,i , cz,j) δ(d

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂,i , dx̂,j) δ(c

cy,i ; dx̂,i
z,i , cz,i)

× δC,C′δi,i′δj,j′DR
mn

(∣∣ [Estab.C ]i,j−−−−−−→
〉)
DR′
m′n′

(∣∣ [Estab.C ]i,j−−−−−−→
〉)

=
|BC |δC,C′δR,R′
|C|dim(VR)

δi,i′δj,j′δm,m′δn,n′ ,

where we used in the third step the orthogonality of the irreducible representations of ZC
as well as the orbit-stabiliser theorem which states that |BC | = |C| · |ZC |.

B.4 Proof of the completeness relation (4.9)

In this appendix, we prove the completeness relation (4.9). Let us first write down explicitly

the l.h.s. using definition (4.4):

1

|Bgy,gz |
∑
C,R

∑
i,j
m,n

|C|dim(VR)DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,Rim,jn

(∣∣∣ h̃x̂

g̃y

g̃z

Ẽg̃y,g̃z
〉)

=
∑
C,R

∑
i,j
m,n

δ(gy, cy,i) δ(gz, cz,i) δ(hx̂, dx̂,i)

× δ(gex,1 ; fẑ,1
y , cy,j) δ(g

ex,1 ; fŷ,1
z , cz,j) δ(h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂ , dx̂,j)

× δ(g̃y, cy,i) δ(g̃z, cz,i) δ(h̃x̂, dx̂,i) δ(g̃
ẽx,1 ; f̃ẑ,1
y , cy,j) δ(g̃

ẽx,1 ; f̃ŷ,1
z , cz,j) δ(h̃

ẽx,1,g̃y,g̃z ; f̃ŷ,1,f̃ẑ,1
x̂ , dx̂,j)

× |C|dim(VR)

|Bgy,gz |
DR
mn

(∣∣ [Estab.C ]i,j−−−−−−→
〉)
DR
mn

(∣∣ [Ẽstab.C ]i,j−−−−−−→
〉)
.
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But, given an equivalence class EC ∈ ZC whose representative element is (ex,1, fŷ,1, fẑ,1),

the representation matrices of ZC satisfy the identity

DR
mn

(∣∣ EC−−→ 〉)
= DR

nm

(∣∣ E−1
C−−−→

〉)
,

such that E−1
C is the equivalence class with representative element (e−1

x,1, e
−1
x,1.f

−1
ŷ,1 , e

−1
x,1.f

−1
ẑ,1 ).

Inserting this identity in the computation above, we can then use the linearity of the

representations of ZC together with (4.3) and the fundamental property

1

|ZC |
∑
{R}

dim(VR)χR
(∣∣ EC−−→ 〉)

= δ
(
EC , Etriv.

C
)

so as to obtain

1

|Bgy,gz |
∑
C,R

∑
i,j
m,n

|C|dim(VR)DC,Rim,jn
(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,Rim,jn

(∣∣∣ h̃x̂

g̃y

g̃z

Ẽg̃y,g̃z
〉)

=
〈

hx̂

gy

gz

Egy,gz
∣∣∣ h̃x̂

g̃y

g̃z

Ẽg̃y,g̃z
〉
.

C Properties of the canonical basis

In this appendix, we collect the proofs of several important properties satisfied by the

canonical basis defined in section 5.

C.1 Proof of the orthonormality relation (5.3)

In this appendix, we prove the orthonormality of the canonical basis stated in equa-

tion (5.3). Utilising the definition of the canonical basis in equation (5.1) and the inner

product for basis elements of TubeG [T2
�], it follows that

〈C′, R′;M ′N ′ | C, R ;MN〉

=

(
dC,RdC′,R′

|BC ||BC′ |

) 1
2 ∑

gy,gz∈G
hx̂∈H | gz=g

gy;hx̂
z

Egy,gz∈Bgy,gz

DC
′,R′
M ′N ′

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=

(
dC,RdC′,R′

|BC ||BC′ |

) 1
2 |BC |
dC,R

δC,C′ δR,R′ δM,M ′ δN,N ′ = δC,C′ δR,R′ δM,M ′ δN,N ′ ,

where we made use of eq. (4.8).

C.2 Proof of the completeness relation (5.4)

In this appendix, we prove that the canonical basis defined in equation (5.1) provides a

complete basis for TubeG [T2
�]. To confirm this statement, it is enough to verify that the
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dimension of the canonical basis is equal to the dimension of TubeG [T2
�], i.e.

∑
C,R

∑
M,N

〈C, R;MN | C, R ;MN〉

=
∑
C,R

∑
M,N

dC,R
|BC |

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=
∑

gy,gz∈G
hx̂∈H | gz=g

gy;hx̂
z

Egy,gz∈Bgy,gz

1 =
∣∣TubeG [T2

�]
∣∣ ,

where we made use of eq. (4.9).

C.3 Proof of the canonical algebra product (5.5)

In this appendix, we prove relation (5.5) that provides the tube algebra product for the

canonical basis elements defined in (5.1). By definition of the canonical basis elements we

have:

|C, R ;MN〉 ? |C′, R′;M ′N ′〉

=

(
dC,RdC′,R′

|BC ||BC′ |

) 1
2 ∑

gy,gz∈G
hx̂∈H | gz=g

gy;hx̂
z

Egy,gz∈Bgy,gz

∑
g′y,g

′
z∈G

h′x̂∈H | g′z=g
′g′y;h′x̂
z

E ′
g′y,g′z

∈Bg′y,g′z

DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

DC
′,R′
M ′N ′

(∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉)

×
∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉
.

The tube algebra product was defined to be

∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉

=
δ
(
h′x̂, h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂

)
δ
(
g′y, g

ex,1 ; fẑ,1
y

)
δ
(
g′z, g

ex,1 ; fŷ,1
z

)
|Bgy,gz |

1
2

∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉

where the tube algebra element on the r.h.s. can be decomposed into canonical basis states

as

∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉

=
1

|Bgy,gz |
1
2

∑
C′′,R′′

d
1
2
C′′,R′′

∑
M ′′,N ′′

DC
′′,R′′
M ′′N ′′

(∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉)
|C′′, R′′ ;M ′′N ′′〉 .
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But in virtue of (4.7), we have

δ
(
h′x̂, h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂

)
δ
(
g′y, g

ex,1 ; fẑ,1
y

)(
g′z, g

ex,1 ; fŷ,1
z

)
DC
′′,R′′
M ′′N ′′

(∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉)

=
∑
O

DC
′′,R′′
M ′′O

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC
′′,R′′
ON ′′

(∣∣∣ h′
x̂

g′y

g′z

E ′
gy,gz

〉)
.

The orthogonality relations

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

DC
′′,R′′
M ′′O

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)
DC,RMN

(∣∣∣ hx̂

gy

gz

Egy,gz
〉)

=
|BC |δC′′,CδR′′,R

dC,R
δM ′′,MδO,N

∑
g′y,g

′
z∈G

h′x̂∈H | g′z=g
′g′y;h′x̂
z

E ′
g′y,g′z

∈Bg′y,g′z

DC
′′,R′′
ON ′′

(∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉)
DC
′,R′
M ′N ′

(∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉)
=
|BC |δC′′,C′δR′′,R′

dC′,R′
δO,M ′δN ′′,N ′

finally yield the desired result, namely

|C, R ;MN〉 ? |C′, R′;M ′N ′〉 =
δN,M ′ δC,C′ δR,R′

d
1
2
C,R

|C, R ;MN ′〉 .

C.4 Ground state projector

In this appendix, we demonstrate the equality between the two expressions for the three-

torus ground state projector PG [T3
�] given in equations (5.7) and (5.8). Let us consider

∑
gy,gz∈G

hx̂∈H | gz=g
gy;hx̂
z

Egy,gz∈Bgy,gz

∑
g′y,g

′
z∈G

h′x̂∈H | g′z=g
′g′y;h′x̂
z

E ′
g′y,g′z

∈Bg′y,g′z

(∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉−1
?
∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉)〈
hx̂

gy

gz

Egy,gz
∣∣∣ . (C.1)

By definition of the tube algebra, we have

∣∣∣ hx̂

gy

gz

Egy,gz
〉
?
∣∣∣ h′

x̂

g′y

g′z

E ′
g′y,g′z

〉

=
δ
(
h′x̂, h

ex,1,gy,gz ; fŷ,1,fẑ,1
x̂

)
δ
(
g′y, g

ex,1 ; fẑ,1
y

)
δ
(
g′z, g

ex,1 ; fŷ,1
z

)
|Bgy,gz |

1
2

∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉

and it follows from def. (5.9) of the inverse that

∣∣∣ h′
x̂

g′y

g′z

E ′
g′y,g′z

〉−1
?
∣∣∣ hx̂

gy

gz

(E·E ′)gy,gz
〉

=
δ
(
h′x̂, hx̂

)
δ
(
g′y, gy

)
δ
(
g′z, gz

)
|Bgy,gz |

1
2

∣∣∣ h̄′x̂

ḡ′y

ḡ′z

(E ′−1·E·E ′)ḡy,ḡz
〉

(C.2)
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with ḡ′y = g′y
e′x,1 ; f ′ẑ,1 , ḡ′z = g′z

e′x,1 ; f ′ŷ,1 , h̄′x̂ = h′x̂
e′x,1,g

′
y,g
′
z ; f ′ŷ,1,f

′
ẑ,1 and such that (E ′−1·E·E ′)ḡ′y,ḡ′z ∈

Bḡ′y,ḡ′z is the equivalence class with representative element(
e′−1

x,1 ex,1e
′
x,1 , e

′−1
x,1 . [f ′−1

ŷ,1 fŷ,1(ex,1 . f
′
ŷ,1)] , e′−1

x,1 . [f ′−1
ẑ,1 fẑ,1(ex,1 . f

′
ẑ,1)]

)
.

In order to obtain the delta functions in (C.2), we used the fact that

ḡ′y
e′−1
x,1 ; e′−1

x,1 .f
′−1
ẑ,1 = g′y , ḡ′z

e′−1
x,1 ; e′−1

x,1 .f
′−1
ŷ,1 = g′z

and h̄′x̂
e′−1
x,1 ,g

′
y
e′x,1 ; f ′ẑ,1 ,g′z

e′x,1 ; f ′ŷ,1 ; e′−1
x,1 .f

′−1
ŷ,1 ,e

′−1
x,1 .f

′−1
ẑ,1 = h′x̂ .

Expanding the resulting tube algebra element in (C.2) according to (3.9), we can rewrite

this equation in terms of the gauge operators as

l.h.s.(C.2) =
δ
(
h′x̂, hx̂

)
δ
(
g′y, gy

)
δ
(
g′z, gz

)
|Bgy,gz |

1
2 |H||ZEgy,gz |

×
∑

λ,λ′∈H
A
e′−1
x,1 .[λ

′−1λ(ex,1.λ′)]
x A

e′−1
x,1

(0) A
f ′−1
ŷ,1

z A
f ′−1
ẑ,1

y

∣∣∣ hx̂

gy

gz

ex,1
fẑ,1

fŷ,1

〉
=
δ
(
h′x̂, hx̂

)
δ
(
g′y, gy

)
δ
(
g′z, gz

)
|Bgy,gz |

1
2 |H||ZEgy,gz |

×
∑

λ,λ′∈H
A
e′−1
x,1 ∂(λ′−1)

(0) A
λ′f ′−1

ŷ,1 (gz.λ′−1)
z A

λ′f ′−1
ẑ,1 (gy.λ′−1)

y Aλx

∣∣∣ hx̂

gy

gz

ex,1
fẑ,1

fŷ,1

〉
.

Moreover, we can introduce a new summation variable via∑
λ∈H

Aλx =
1

|H|
∑

λ,λx∈H
Aλxx Aλx .

Putting everything together so far, and using the fact that |Bgy,gz | = |G||H||ZEgy,gz |, we

have obtained that

(C.1) =
1

|G||H|3
∑

gy,gz∈G
hx̂∈H |gz=g

gy;hx̂
z

Egy,gz ,E ′gy,gz,∈Bgy,gz

1

|ZEgy,gz |2
δ(hx̂,h

ex,1,gy,gz ;fŷ,1,fẑ,1
x̂ )δ(gy,g

ex,1 ;fẑ,1
y )δ(gz,g

ex,1 ;fŷ,1
z )

×
∑

λ,λ′,λx∈H
A
e′−1
x,1 ∂(λ′−1)

(0) A
λ′f ′−1

ŷ,1 (gz.λ′−1)
z A

λ′f ′−1
ẑ,1 (gy.λ′−1)

y Aλxx

∣∣∣ hx̂gy
gz

∂(λ)ex,1
(gy.λ)fẑ,1λ

−1

(gz.λ)fŷ,1λ
−1

〉〈
hx̂

gy

gz

∂(λ)ex,1
(gy.λ)fẑ,1λ

−1

(gz.λ)fŷ,1λ
−1

∣∣∣ .
Performing the changes of variables∑
Egy,gz∈Bgy,gz

1

|ZEgy,gz |
∑
λ∈H

=
∑
gx∈G

∑
hŷ,hẑ∈H

and
∑

E ′gy,gz∈Bgy,gz

1

|ZE ′gy,gz |
∑
λ′∈H

=
∑
k∈G

∑
λy,λz∈H

,

where the factors |ZEgy,gz | and |ZE ′gy,gz | account for the possible overcounting of G-colourings,

we finally obtain that

(C.1) =
1

|G||H|3
∑

gx,gy,gz∈G
hx̂,hŷ,hẑ∈H

∑
k∈G

λx,λy,λz∈H

Ak(0)A
λz
z Aλyy Aλxx

∣∣∣ hx̂

gy

gz

gx
hẑ

hŷ

〉〈
hx̂

gy

gz

gx
hẑ

hŷ

∣∣∣
× δ(hx̂,h

gx,gy,gz ;hŷ,hẑ
x̂ )δ(gy,g

gx ;hẑ
y )δ(gz,g

gx ;hŷ
z )δ(gz,g

gy ;hx̂
z ) ,

which is the definition of PG [T3
�] given in (5.7), as expected.
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