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1 Introduction

Early studies of nuclear beta decays and, particularly, the problem of apparent non-

conservation of energy and violation of the spin-statistics theorem lead to Pauli’s pos-

tulation of the neutrino. Soon after, Fermi proposed a theory [1] describing these decays

which was inspired by QED’s vector current interaction which, however, was of a local

current-current type. This was the first step towards establishing the V-A nature of the

weak force and understanding its maximal parity violation. Now the original Fermi theory

is regarded as one of the possible contributions of dimension six effective operators to these

decays and it constitutes the basis for effective field theories. In this spirit, not only nu-

clear beta decays, but also purely leptonic lepton decays, pion decays into a lepton and its

corresponding neutrino and also strangeness-changing meson and baryon decays involving

a lepton charged current can be studied in a coherent and comprehensive way with direct

connection to the underlying theory at some TeVs [2–12]. Thus, it is possible to obtain

bounds on non-standard charged current interactions from either of these processes that

can be compared among them (assuming lepton universality if necessary). As a result,

quite generic New Physics (NP) is restricted in absence of deviations from the Standard

Model (SM) predictions. In the event of any such departures appearing, one would expect

them to point to the underlying new dynamics, as (nuclear) beta and muon decays did with
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the W mass value (provided the coupling intensity can be estimated from some symmetry

argument) and its left-handed couplings.

In ref. [13] we put forward that semileptonic tau decays are also an interesting scenario

in this respect. Particularly, our study of the τ− → π−(η/η′)ντ decays [13] showed that

they could be competitive with superallowed nuclear beta decays in restricting scalar non-

standard interactions. Our aim in this paper is to extend our previous analysis to the τ− →
π−π0ντ decays, which should not be sensitive to NP charged current scalar interactions (as

generally, they are very suppressed by the small isospin breaking effects giving rise to them

in this decay channel [14]) but could instead be very competitive restricting charged-current

tensor interactions. The recent letter [12] also addresses this question.

Only if the SM input (and particularly the hadronization) to the considered decays is

well under control one can actually set bounds on NP effective couplings. This is the case for

the vector and -to a lesser extent- the scalar interactions (where we will follow the treatment

in refs. [15] and [16], respectively) but only a theory-driven approach is possible for the

tensor form factor (where we will complement our previous work [13] guided by refs. [17]

and [18]). In all cases it is desirable to fulfill the requirements imposed by the approximate

chiral symmetry of QCD, which are automatically enforced in its low-energy effective field

theory, Chiral Perturbation Theory (χPT ) [19–21]. If possible, it is also convenient to

use dispersion relations to warrant analyticity and comply with unitarity, at least in the

elastic region (for the ππ system it amounts to ∼ 1 GeV). Within this formalism, known

short-distance QCD constraints [22, 23] can also be satisfied. In the absence of data (as it

the case for the tensor form factor) enlarging the domain of applicability of χPT coupled to

tensor sources [24, 25] by including resonances as explicit degrees of freedom [26, 27] could

seem useful, although we will show in the appendix of this paper that it is not the case.

This work is organized as follows: in section 2 we present the basics for an effective

field theory treatment of the considered decays. In section 3 the different contributions to

the matrix element are identified and the participant meson form factors defined. These

are the subject of section 4, with a special focus on the tensor form factor. With all SM

contributions fixed, we perform a phenomenological study in search for NP signatures,

examining the hadron spectrum and branching ratio, the Dalitz plot distributions and the

forward-backward asymmetry in section 5. The conclusions of this research are summarized

in section 6.

2 Effective theory analysis of τ− → ντ ūd

For low-energy charged current processes, the effective Lagrangian with SU(2) ⊗ U(1) in-

variant dimension six operators1 reads [2, 3]

L(eff) = LSM +
1

Λ2

∑
i

αiOi → LSM +
1

v2

∑
i

α̂iOi, (2.1)

with α̂i = (v2/Λ2)αi the dimensionless multi-TeV NP couplings.

1See in refs. [28, 29] the most general effective Lagrangian including SM fields.
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If we particularize it for the O(1 GeV) semileptonic strangeness and lepton-flavor con-

serving2 charged current transitions involving any lepton (` = e, µ, τ) and only left-handed

neutrino fields, the following Lagrangian is obtained (where subscripts L(R) stand for left-

handedness (right-handedness))

LCC = −4GF√
2

[
(1 + [vL]``)¯̀

Lγµν`L ūLγ
µdL + [vR]`` ¯̀

Lγµν`L ūRγ
µdR

+ [sL]`` ¯̀
Rν`L ūRdL + [sR]`` ¯̀

Rν`L ūLdR

+ [tL]`` ¯̀
Rσµνν`L ūRσ

µνdL
]

+ h.c..

(2.2)

In the previous equation GF is the tree-level definition of the Fermi constant and

σµν ≡ i [γµ, γν ] /2. The SM Lagrangian is recovered setting vL = vR = sL = sR = tL = 0.

Heavy degrees of freedom (H, W± and Z bosons plus c, b and t quarks) have been integrated

out to obtain eq. (2.2). The effective couplings vL,R, sL,R and tL generated by the NP can

be taken real since we are only interested in CP conserving quantities.3

Although observables are renormalization scale and scheme independent, this scale

independence comes after the cancellation of the scale dependence of the effective couplings

(vL,R, sL,R and tL) by the corresponding scale dependence of the hadronic matrix elements.

These encode the amplitude for the quark current to produce/annihilate the measured

hadrons. As it conventional, we select µ = 2 GeV as the renormalization scale.

It is advantageous to shift our basis for the spin-zero currents so that the new ones have

defined parity. This is achieved by means of introducing εS = sL + sR and εP = sL − sR.

Although the other elements in the basis of currents remain unmodified, we also rename

them to avoid any confusion between both bases: εR,L = vL,R and εT = tL.

One can proceed with ` = e, µ, τ in full generality (which may be profitable if lep-

ton universality is an approximate symmetry). We, however, focus now on the tau case

(and omit the corresponding flavor subindex in the following), in such a way that the

corresponding semileptonic effective Lagrangian is:

LCC = −GF√
2
Vud(1 + εL + εR){τ̄ γµ(1− γ5)ντ ū

[
γµ − (1− 2ε̂R)γµγ5

]
d

+ τ̄(1− γ5)ντ ū(ε̂S − ε̂Pγ5)d

+ 2ε̂T τ̄σµν(1− γ5)ντ ūσ
µνd}+ h.c.,

(2.3)

where ε̂i ≡ εi/(1 + εL + εR) for i = R,S, P, T . From this expression it is easily seen

that, working at linear order in the ε̂i, one is insensitive to non-standard spin-one charged

current interactions because the overall dependence on εL + εR cannot be isolated, as it is

subsumed in the determination of GF . That is, conveniently normalized rates cancel the

overall factor (1 + εL + εR) in the previous equation.4 We note that, at linear order in the

ε̂i’s, these agree with ref. [3].

2An EFT framework study of strangeness-changing processes is carried out in refs. [6, 8, 9].
3Appendix A in ref. [3] provides with these couplings as functions of the α̂i couplings.
4This implicitly assumes lepton universality.

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
8

3 Semileptonic τ decay amplitude

From now on, we will study the semileptonic τ− → π−(Pπ−)π0(Pπ0) ντ (P ′) decays, where

pions parity determines that only scalar, vector and tensor currents contribute. The decay

amplitude reads5

M =MV +MS +MT

=
GFVud

√
SEW√

2
(1 + εL + εR)

[
LµH

µ + ε̂SLH + 2ε̂TLµνH
µν
]
,

(3.1)

where the following lepton currents were introduced:

Lµ = ū(P ′)γµ(1− γ5)u(P ), (3.2a)

L = ū(P ′)(1 + γ5)u(P ), (3.2b)

Lµν = ū(P ′)σµν(1 + γ5)u(P ). (3.2c)

The scalar (H), vector (Hµ) and tensor (Hµν) hadron matrix elements entering eq. (3.1)

can be decomposed using Lorentz invariance and discrete QCD symmetries in terms of

a number of allowed Lorentz structures times the corresponding form factors, which are

scalar functions encoding the hadronization procedure. Specifically, these are

H = 〈π0π−|d̄u|0〉 ≡ FS(s), (3.3a)

Hµ = 〈π0π−|d̄γµu|0〉 = CVQ
µF+(s) + CS

(
∆π−π0

s

)
qµF0(s), (3.3b)

Hµν = 〈π0π−|d̄σµνu|0〉 = iFT (s)(Pµ
π0P

ν
π− − P

µ
π−P

ν
π0) . (3.3c)

In the previous equations, the momentum of the meson system is qµ = (Pπ− +Pπ0)µ, with

s = q2. We also introduced Qµ = (Pπ− − Pπ0)µ + (∆π0π−/s)q
µ, and ∆π0π− = m2

π0 −m2
π− .

Clebsch-Gordan flavor coefficients are CS = CV =
√

2 for this decay channel.

The FS(s) and F0(s) form factors can be related by taking the divergence of the vector

current via

FS(s) = CS
∆π−π0

(md −mu)
F0(s). (3.4)

As in ref. [13], the scalar contribution can be absorbed into the vector current amplitude.

This can achieved by replacing

CS
∆π−π0

s
−→ CS

∆π−π0

s

[
1 +

s ε̂S
mτ (md −mu)

]
, (3.5)

in eq. (3.3b).

Obtaining the F0(s), F+(s) and FT (s) form factors is discussed in the following section.

5As in ref. [13], we take the short-distance electroweak radiative corrections encoded in SEW [30–37] as

a global factor in eq. (3.1). Although SEW does not affect the scalar and tensor contributions, the error of

this approximation is negligible and renders simpler expressions than proceeding otherwise.
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4 Hadronization of the scalar, vector and tensor currents

Lorentz invariance, together with the discrete symmetries of the strong interactions, de-

termine eqs. (3.3a) to (3.3c). QCD dynamics is encoded in these hadron matrix elements,

although it is not possible to determine them using the Lagrangian of the underlying theory

unambiguously. Nevertheless, QCD properties are useful in restricting this hadronic input.

On the one hand, it is desirable to keep the properties derived from the (very approxi-

mate) chiral symmetry of low-energy QCD and from asymptotic strong interactions, where

known. On the other, using dispersion relations is ideal to warrant the correct analytic

structure of the amplitudes and to comply with unitarity (at least in the elastic region).

These properties will be exploited in what follows, as we will briefly review.

As shown in ref. [15], the scalar form factor F0(s) can be determined in an essentially

model-independent way in the low-energy region, though it does not involve resonance

contributions to first order in isospin breaking. The S-wave π−π0 system must have isospin

I = 2. Watson’s final-state interactions theorem [38] ensures that -in the elastic region-

the phase of the di-meson form factor with definite angular momentum (L) and isospin (I)

coincides with the corresponding meson-meson scattering phase shift having the same L

and I values (L = 0 and I = 2 in our case, so this phase shift is δ2
0(s) according to the usual

notation). Neglecting inelastic effects (that is a good approximation up to s ∼ 1 GeV2 in

this case), the required di-pion scalar form factor can be obtained [15] by means of a phase

dispersive representation (F0(0) = 1 has been used)

F0(s) = exp

{
s

π

∫ ∞
4m2

π

ds′
δ2

0(s′)

s′(s′ − s− iε)

}
, (4.1)

since the phase shift δ2
0(s) has been measured [39, 40]. |F0(s)| and δ2

0(s) are plotted

in the upper panel of figure 12 in ref. [15]. As expected, there is no hint of resonance

dynamics in F0(s).

The vector form factor, F+(s), is known with great accuracy, both theoretically and

experimentally. In absence of new-physics interactions, it can be extracted directly from

τ− → π−π0ντ data (since the scalar form factor is negligible up to second-order isospin-

violating corrections [14], which are tiny). The di-pion invariant mass spectrum in these

decays has been most precisely measured by the Belle Collaboration [41] (it was earlier

obtained by the CLEO [42], and ALEPH [43] and OPAL [44] LEP collaborations). F+(s)

can also be accessed -through a CVC violating correction [14, 45]- via e+e− → π+π−

cross-section data at low energies, which has been measured very precisely by BaBar [46],

BES-III [47], CMD-2 [48], KLOE-2 [49] and SND [50, 51]. Finally, in the elastic region

(s . 1 GeV2), F+(s) is related via unitarity with the spin-one isospin-one ππ scattering

amplitude, for which accurate measurements have been performed [52–54]. All previous

measurements correspond to the s > 0 region, e−π scattering [55] probes F+(s < 0).

Theoretically, F+(s) is well-constrained at low-energies by χPT [19–21] and in the

asymptotic regime by short-distance QCD results [22, 23]. In the intermediate energy

(O(1) GeV) region, resonance dynamics is needed to interpolate between the two former

limits. An adequate tool to connect all energy ranges taking advantage of analyticity

and unitarity constraints on F+(s) are the dispersion relations, which have been employed

widely in this context (see i.e. ref. [16] and references therein). We will not discuss at
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length the procedure here, but only recall that an excellent description of the data can be

achieved with three subtractions (one is used to set F+(0) = 1)

F+(s) = exp

[
α1s+

α2

2
s2 +

s3

π

∫ ∞
4m2

π

ds′
δ1

1(s)

(s′)3(s′ − s− iε)

]
, (4.2)

being α1,2 the remaining subtraction constants, to be fitted to low-energy data, and δ1
1(s)

the relevant phase shift. In ref. [16], δ1
1(s) is given (below the ρ′ resonance region), in

terms of the ρ(770) pole position and the pion decay constant, Fπ. Its description in the

[Mρ′ .
√
s ≤Mτ ] interval depends on the ρ′ and ρ′′ properties. We will use this framework

in what follows. The central values of the modulus and phase of F+(s) are plotted and

compared to data in figures 1 and 2 in ref. [16]. We will use the best fit results corresponding

to case III in this reference, which includes first-order isospin breaking corrections. Both

statistical and systematic uncertainties on F+(s) are taking into account throughout our

numerical analysis.

Although it is difficult to constrain the hadronization of the tensor current, eq. (3.3c),

from first principles, this would be desirable as it turns out that the τ− → π−π0ντ decays

have the potential to set competitive bounds on (non-standard) charged current tensor

interactions. This is in contrast with the τ− → π−η(′)ντ decays explored in ref. [13],

which are competitive for new scalar contributions but not for tensor ones, which justified

using leading-order χPT results for eq. (3.3c) in that analysis. Unfortunately, there is

no experimental data that can guide us in building FT (s), so will rely only on theory to

accomplish this task.

Since s can vary from the two-pion threshold up to M2
τ , light resonances contribution

(giving the energy dependence of the form factor) should be included in a refined analysis,

as we intend. We show in the appendix that, for FT (s), it is not convenient to extend

the energy range of applicability of χPT by including the resonances as explicit degrees of

freedom, in the so-called Resonance Chiral Theory [26]. Instead, it will be more appropriate

to use a dispersive construction of FT (s) taking advantage of unitarity constraints on its

phase [17]. FT (0) will be studied within χPT in the following.

The lowest-order χPT Lagrangian with tensor sources, which is O(p4) in the chiral

counting [25], includes only four operators. Among them, only the one with coefficient Λ2

contributes to the studied decays:

L = Λ1〈tµν+ f+µν〉 − iΛ2〈tµν+ uµuν〉+ . . . . (4.3)

In the preceding equation, tµν+ = u†tµνu† + utµν†u and 〈· · · 〉 means a flavor space trace.

Operators in eq. (4.3) are built with chiral tensors [56], with three of them entering the

displayed operators:

• uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, which includes the left- and right-handed

sources, `µ and rµ.

• The chiral tensor sources tµν and its adjoint, and

• fµν+ = uFµνL u† + u†FµνR u, including the left- and right-handed field-strength tensors,

FµνL and FµνR , given in terms of `µ and rµ.

– 6 –
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Let us recall the non-linear representation of the pseudo Goldstone bosons, given by

u = exp
[

i√
2F
φ
]

[57, 58], where (for two flavors)

φ =

(
π0
√

2
π+

π− − π0
√

2

)
, (4.4)

F being the pion decay constant in the chiral limit, F ∼ Fπ ∼ 92 MeV. All resonance

multiplets considered below have analogous flavor structure to eq. (4.4).

The tensor source (t̄µν) is related to its chiral projections (tµν and tµν†) by means of [25]

tµν = PµνλρL t̄λρ, 4PµνλρL = (gµλgνρ − gµρgνλ + iεµνλρ), (4.5)

where Ψ̄σµν t̄
µνΨ is the tensor quark current.

From eq. (4.3) it can be shown [13] that, in the limit of isospin symmetry,6

i

〈
π−π0

∣∣∣∣∣∣δL
O(p4)
χPT

δt̄αβ

∣∣∣∣∣∣ 0
〉

=

√
2Λ2

F 2

(
pαπ−p

β
π0 − pαπ0p

β
π−

)
. (4.6)

We show in the appendix that it is not convenient to include the energy-dependence

of the tensor form factor by extending χPT [19–21] including resonances [26, 27].

Ref. [18] evaluated fT (0) = 2mπFT (0) on the lattice. Their result, fT (0) = 0.195±0.010

yields Λ2 = (12.0 ± 0.6) MeV, that we will use in the following. This value of Λ2 is

roughly a factor three smaller than the prediction for Λ1 obtained using short-distance

QCD properties [24], Λ1 = (33 ± 2) MeV. Since both operators displayed in eq. (4.3)

have the same chiral counting order, one would have guessed Λ2 ∼ Λ1, resulting in an

overestimation of Λ2, as we did in ref. [13].7

We will follow ref. [17] and obtain FT (s) using again a phase dispersive representation.

As shown in ref. [17] (see also the appendix of this article), the tensor form factor phase

equals the vector form factor phase, δT (s) = δ+(s), in the elastic region. We will use the

previous equation also above the onset of inelasticities in our dispersion relation

FT (s)

FT (0)
= exp

{
s

π

∫ ∞
4m2

π

ds′
δT (s′)

s′(s′ − s− iε)

}
, (4.7)

and fix FT (0) =
√

2Λ2
F 2 according to the leading-order χPT result. We plot in figure 1 the

modulus and phase of FT (s) obtained using eq. (4.7). The different curves on the left

panel are obtained for smax = M2
τ , 4 and 9 GeV2,8 and we will take this range for FT (s)

6Since FT (s), as given by eq. (4.6), is purely real and the sign of Λ2 was unknown, a factor i was absorbed

redefining FT (s) in ref. [13]. As we consider a non-vanishing tensor form factor phase (see eq. (4.7) and

related discussion), we will not follow this procedure in the present analysis.
7Fortunately, since the τ− → η(′)π−ντ decays are quite insensitive to tensor interactions, this does not

change the limits obtained in this paper for ε̂S .
8The parameter smax corresponds to the cutoff of the dispersive integral. The unphysical dependence

on it is a consequence of the dispersion relation (4.7) being once-subtracted. Additional subtractions

would reduce the artificial dependence on smax. However, since we lack low-energy information to fix these

subtraction constants, we cannot follow this procedure. Taking this into account, we restrict the smax values

in the previously quoted range.
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Figure 1. Modulus and phase, |FT (s)| (left) and δT (s) (right), of the tensor form factor, FT (s),

corresponding to eq. (4.7).

as an estimate of our corresponding error (our plots will be given for smax = 4 GeV2 in

the following). We neglect the uncertainty associated to our ignorance on the inelasticities

affecting δT (s) (see the related discussion in ref. [17]), which are small below
√
s = 1.3 GeV.

5 Decay observables

In order to study possible NP effects in these decays, one should use not only the hadronic

spectrum and branching ratio, but also Dalitz plot distributions and the measurable

forward-backward asymmetry. In this section, we focus in the study of the possible ef-

fects of the non-standard effective couplings described in section 2 in these τ− → π−π0ντ
decay observables. We will start with the Dalitz plots (which should contain more dynam-

ical information, as no integration over any of the two independent kinematical variables

has been performed) and move later on to (partially) integrated observables: differential

decay rate as function of the di-meson invariant mass, forward-backward asymmetry and,

finally, branching ratio.

The differential decay width of the τ− → π−π0ντ decays, in the τ lepton rest frame, is

d2Γ

dsdt
=

1

32(2π)3M3
τ

|M|2, (5.1)

where |M|2 represents the unpolarized spin-averaged squared matrix element, s being

the π0π− system invariant mass, limited in the interval (mπ0 + mπ−)2 ≤ s ≤ M2
τ and

t = (p′ + pπ0)2 = (p− pπ−)2 with t−(s) ≤ t ≤ t+(s), where

t±(s) =
1

2s

[
2s(M2

τ +m2
π0 − s)− (M2

τ − s)(s+m2
π− −mπ0)

± (M2
τ − s)

√
λ(s,m2

π− ,m
2
π0)

]
, (5.2)

and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the usual Kallen function.

– 8 –
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5.1 Dalitz plot

Including possible non-standard weak charged current interactions, the unpolarized spin-

averaged squared amplitude yields9

|M|2 =
G2
F |Vud|2SEW

s2
(1 + εL + εR)2 [M00 +M++ +M0+ +MT+ +MT0 +MTT ] , (5.3)

where the scalar, vector and tensor squared amplitudes are M00, M++ and MTT , respec-

tively. Their corresponding interferences are denoted M0+, MT+, MT0. All these read10

M0+ = 2CV CSm
2
τ Re [F+(s)F ∗0 (s)] ∆π−π0

(
1 +

sε̂S
mτ (md −mu)

)
×
{
s
(
m2
τ − s− 2t+ Σπ−π0

)
−m2

τ∆π−π0

}
,

MT+ = 4CV ε̂T m
3
τ sRe

[
FT (s)F ∗+(s)

](
1− s

m2
τ

)
λ(s,m2

π− ,m
2
π0),

MT0 = 4CS ∆π−π0 ε̂T mτ sRe [FT (s)F ∗0 (s)]

(
1 +

sε̂S
mτ (md −mu)

)
×
{
s
(
m2
τ − s− 2t+ Σπ−π0

)
−m2

τ∆π−π0

}
,

M00 = C2
S (∆π−π0)2m4

τ

(
1− s

m2
τ

)
|F0(s)|2

(
1 +

sε̂S
mτ (md −mu)

)2

,

M++ = C2
V |F+(s)|2

{
m4
τ (s−∆π−π0)2

−m2
τs
[
s(s+ 4t)− 2∆π−π0 (s+ 2t− Σπ−π0) + (∆π−π0)2

]
+ 4m2

π−s
2
(
m2
π0 − t

)
+ 4s2t

(
s+ t−m2

π0

)}
,

MTT = 4ε̂2T |FT (s)|2s2
{
m4
π−
(
m2
τ − s

)
− 2m2

π−
(
m2
τ − s

) (
s+ 2t−m2

π0

)
−m4

π0

(
3m2

τ + s
)

+ 2m2
π0

[(
s+m2

τ

)
(s+ 2t)− 2m4

τ

]
− s

[
(s+ 2t)2 −m2

τ (s+ 4t)
]}
,

(5.4)

where the familiar definitions ∆π−π0 = m2
π−−m

2
π0 and Σπ−π0 = m2

π−+m2
π0 were employed.

Noteworthy, the scalar form factor is always suppressed by ∆π−π0 , which is tiny, in the

previous equations for M00, MT0 and M0+. This makes its effect negligible even for |ε̂S | ∼ 1

(low-energy processes limit |ε̂S | . 3.4 · 10−3 [59] and, under the reasonable assumption of

lepton flavor universality, this limit should also apply for the tau flavor considered here).

We now turn to analyze possible NP signatures in Dalitz plots distributions. The left

panel of figure 2 shows the squared matrix element |M|200 in the (s,t) plane, which is

obtained using the SM predictions for τ− → π−π0ντ form factors [15, 16]. The ρ(770)

meson dominance of the dynamics is clearly seen in this plot.

9We note a typo writing the corresponding equation, (22), of ref. [13], where the factor 2 should not

appear. All subsequent expressions and the numerical results of ref. [13] are not affected by this typo.
10Comparing eqs. (3.3a) to (3.3c) to their analogs in ref. [13], it can be verified that eqs. (5.4) agree with

the corresponding expressions in ref. [13].
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Figure 2. Dalitz plot distribution |M|200 in the SM, eq. (5.3): differential decay distribution

for τ− → π−π0ντ in the (s,t) variables (left). The right-hand figure shows the differential decay

distribution in the (s, cos θ) variables, eq. (5.6). The Mandelstam variables, s and t, are normal-

ized to M2
τ .

In order to better appreciate the modifications induced by non-vanishing ε̂S,T in Dalitz

plots, we introduce the observable

∆̃(ε̂S , ε̂T ) =

∣∣∣|M(ε̂S , ε̂T )|2 − |M(0, 0)|2
∣∣∣

|M(0, 0)|2
. (5.5)

In the left panel of figures 3 and 4, ∆̃(ε̂S , ε̂T ) (5.5) is shown for two representative values

of the set of (ε̂S , ε̂T ) parameters that are consistent with the BR(τ− → π−π0ντ ) (obtaining

these limits will be discussed in subsection 5.5). Although O(1) effects are seen in figure 3,

these are not realistic since two-pion tau decays are almost insensitive to ε̂S . Indeed, when

ε̂S is taken from more adequate processes [2, 3, 12, 13], the left panel of figure 5 shows

that only a measurement of ∆̃ with . 1% uncertainty could distinguish these new physics

effects. In the left plot of figure 4 (with (ε̂S = 0, ε̂T = −0.014)) the deviations with respect

to the SM are around 15% in a given region, but the left plot in figure 6 (obtained using

our best fit value for ε̂T in section 5.5) reduces the size of this signal to a 1% effect. These

O(1%) effects would be difficult to measure, even at Belle-II [60]. Our uncertainties do not

affect the conclusions drawn in this paragraph.

5.2 Angular distribution

The hadronic mass and angular distributions are also modified by the generic new effective

interactions that we are studying and can have different sensitivity to ε̂S and ε̂T . The rest

frame of the hadronic system is convenient for this analysis. It is defined by ~pπ− + ~pπ0 =

~pτ−~pν = 0. In this frame, the charged particle energies are given by Eτ = (s+M2
τ )/2
√
s and

Eπ− = (s+m2
π− −m

2
π0)/2

√
s. The measurable angle θ between these two particles can be

obtained from the invariant t variable by means of t = m2
π−+m2

τ−2EτEπ−+2|~pπ− ||~pτ | cos θ,

with |~pa| =
√
E2
a −m2

a for a = π−, τ−.

– 10 –
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Figure 3. Dalitz plot distribution for ∆̃(ε̂S , ε̂T ), (5.5), in the τ− → π−π0ντ decays: left-hand

side corresponds to eq. (5.3) and right-hand side corresponds to the differential decay distribution

in the (s, cos θ) variables, both with (ε̂S = 1.31, ε̂T = 0). The Mandelstam variables, s and t, are

normalized to M2
τ .

Figure 4. Dalitz plot distribution for ∆̃(ε̂S , ε̂T ), (5.5), in the τ− → π−π0ντ decays: left-hand side

corresponds to eq. (5.3) and right-hand side corresponds to the differential decay distribution in

the (s, cos θ) variables, both with (ε̂S = 0, ε̂T = −0.014). The Mandelstam variables, s and t, are

normalized to M2
τ .
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Figure 5. Dalitz plot distribution for ∆̃(ε̂S , ε̂T ), (5.5), in the τ− → π−π0ντ decays: left-hand side

corresponds to eq. (5.3) and right-hand side corresponds to the differential decay distribution in

the (s, cos θ) variables, both with (ε̂S = 0.008, ε̂T = 0). The Mandelstam variables, s and t, are

normalized to M2
τ .

Figure 6. Dalitz plot distribution for ∆̃(ε̂S , ε̂T ), (5.5), in the τ− → π−π0ντ decays: left-hand side

corresponds to eq. (5.3) and right-hand side corresponds to the differential decay distribution in

the (s, cos θ) variables, both with (ε̂S = 0, ε̂T = −0.001). The Mandelstam variables, s and t, are

normalized to M2
τ .
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The Dalitz decay distribution in the (s, cos θ) variables, for general ε̂S and ε̂T reads

d2Γ

d
√
sd cos θ

=
G2
F |Vud|2SEW

128π3mτ
(1 + εL + εR)2

(
m2
τ

s
− 1

)2

|~pπ− |

×
{
C2
S (∆π−π0)2 |F0(s)|2

(
1 +

sε̂S
mτ (md −mu)

)2

+ 16|~pπ− |2s2

∣∣∣∣ CV2mτ
F+(s) + ε̂TFT (s)

∣∣∣∣2
+ 4|~pπ− |2s

(
1− s

m2
τ

)
cos2 θ

[
C2
V |F+(s)|2 − 4sε̂2T |FT (s)|2

]
− 4CS∆π−π0 |~pπ− |

√
s cos θ

(
1 +

sε̂S
mτ (md −mu)

)
×
[
CV Re

[
F0(s)F ∗+(s)

]
+

2sε̂T
mτ

Re [FT (s)F ∗0 (s)]

]}
,

(5.6)

which coincides with the SM result when these two effective NP couplings are set to zero.

The right panel of figure 2 shows eq. (5.6) for π−π0 in the SM case. In the right panel

of figures 3 and 4 the (s, cos θ) distributions for ∆̃(ε̂S , ε̂T ), (5.5), are plotted; for the same

representative values of (ε̂S , ε̂T ) used in order to obtain the left panel of these figures.

Again for non-standard scalar interactions, the large effect seen in the left panel of figure 3

is unrealistic and it will be challenging to measure the reduced effect (. 6%) of figure 5 at

Belle-II [60]. For tensor interactions, the deviation from the SM depicted in the right plot

of figure 4 could be measurable, but this is not the case for the effect seen in the right plot

of figure 6 (. 1%), obtained using our preferred value for ε̂T . Again, our uncertainties do

not affect the preceding discussion.

5.3 Decay rate

The di-pion invariant mass distributions is obtained integrating upon the t variable in

eq. (5.1)

dΓ

ds
=
G2
F |Vud|2m3

τSEW

384π3s
(1 + εL + εR)2

(
1− s

m2
τ

)2

λ1/2
(
s,m2

π0 ,m
2
π−
)

×
[
XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2

]
,

(5.7)

where

XV A =
1

2s2

[
3|F0(s)|2C2

S∆2
π−π0 + |F+(s)|2C2

V

(
1 +

2s

m2
τ

)
λ
(
s,m2

π0 ,m
2
π−
)]
, (5.8a)

XS =
3

smτ
|F0(s)|2C2

S

∆2
π−π0

md −mu
, (5.8b)

XT =
6

smτ
Re
[
FT (s)F ∗+(s)

]
CV λ

(
s,m2

π0 ,m
2
π−
)
, (5.8c)

XS2 =
3

2m2
τ

|F0(s)|2C2
S

∆2
π−π0

(md −mu)2 , (5.8d)

XT 2 =
4

s
|FT (s)|2

(
1 +

s

2m2
τ

)
λ
(
s,m2

π0 ,m
2
π−
)
. (5.8e)
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Figure 7. The π0π− hadronic invariant mass distribution for the SM (solid line) and ε̂S =

1.31, ε̂T = 0 (dashed line), ε̂S = 0, ε̂T = −0.014 (dotted line). Axes units are given in GeV

powers and the decay distributions are normalized to the tau decay width.

Again, the SM limit is recovered with εL = εR = ε̂S = ε̂T = 0. Figure 7 plots the

invariant mass distribution of the di-pion system for τ− → π−π0ντ decays. It is almost

impossible to distinguish the case of tensor interactions from the SM curve and, although

some departure is seen for non-standard scalar interactions, it goes away when realistic

values on |ε̂S | ∼ 10−2 [2, 3, 5, 13, 59] are considered.

5.4 Forward-backward asymmetry

The forward-backward asymmetry is defined [15] by

Aππ(s) =

∫ 1
0 d cos θ d2Γ

dsd cos θ −
∫ 0
−1 d cos θ d2Γ

dsd cos θ∫ 1
0 d cos θ d2Γ

dsd cos θ +
∫ 0
−1 d cos θ d2Γ

dsd cos θ

. (5.9)

We can obtain it for τ− → π−π0ντ decays plugging in eq. (5.6) into eq. (5.9) and integrating

upon the cos θ variable,

Aππ(s) =
−3CS

√
λ
(
s,m2

π− ,m
2
π0

)
2s2
[
XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2

] (1 +
sε̂S

mτ (md −mu)

)
∆π−π0

×
{
CV Re[F0(s)F ∗+(s)] +

2s ε̂T
mτ

Re[FT (s)F ∗0 (s)]

}
, (5.10)

where, again, the SM forward-backward asymmetry is recovered for εR = εL = ε̂S = ε̂T = 0.

This reference case is plotted in figure 8, which agrees with the prediction in ref. [15] (this

asymmetry was first studied in ref. [61]). This observable is plotted in figure 9 for an

unrealistically large value of ε̂S , for which there is a large deviation with respect to the

SM case. Since such large departures disappear for reasonable values of ε̂S,T , in order
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Figure 8. The forward-backward asymmetry in the τ− → π−π0ντ decay as a function of the ππ

energy for the SM case. The low-energy region is shown in the left plot and remaining energy range

is represented in the right plot.
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Figure 9. Forward-asymmetry for ε̂S = 1.31, ε̂T = 0 (dashed line) compared to the SM prediction

(solid line). The left plot shows the low-energy region and the right plot includes the remaining

energy range.

to enhance the sensitivity to new physics effects, we define the observable (odd under

ε̂S ↔ −ε̂S)

∆AFB = AFB(s, ε̂S , ε̂T )−AFB(s, 0, 0), (5.11)

which is plotted in figures 10. Even by using this observable it does not seem possible to

evidence non-vanishing ε̂S,T using the forward-backward asymmetry.

As advanced before, Aππ(s) in eq. (5.10) is a good observable for finding non-standard

scalar interactions: despite its numerator is suppressed by the small value of ∆π−π0 , its

denominator is further suppressed by the dependence of XS2 on ∆2
π−π0 , which enhances

the sensitivity of this forward-backward asymmetry to scalar contributions. However, as

just observed, if the strict limits on |ε̂S | obtained in other low-energy processes are applied,

even Aππ(s) happens to be unable of evidencing this kind of NP contributions.

5.5 Limits on ε̂S and ε̂T

The τ− → π−π0ντ decay width can be obtained integrating the invariant mass distribution,

using the expressions for the form factors [15, 16]. Since the total decay width depends

on the effective couplings, this process branching ratio sets bounds on ε̂S and ε̂T . For
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Figure 10. Normalized difference with respect to the SM for the forward-backward asymmetry

(∆AFB) in the case of scalar interactions (left plot, with ε̂S = 0.008, ε̂T = 0) and tensor interactions

(right plot, ε̂T = −0.001, ε̂S = 0).
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Figure 11. ∆ as a function of ε̂S for ε̂T = 0 (left-hand) and ε̂T for ε̂S = 0 (right-hand) for τ− →
π−π0ντ decays. Horizontal lines represent the values of ∆ according to the current measurement and

theory error (at three standard deviations) of the branching ratio (dashed line) and the hypothetical

case of this value being measured by Belle-II with three times reduced error (dotted line).

that, we compare the decay rate (Γ) for τ− → π−π0ντ in the presence of non-vanishing

NP effective couplings with respect to the one (Γ0) obtained by neglecting them (SM

case). Using the best fit results of case III in ref. [16], we obtain a value of Γ0 which

corresponds to the branching ratio (25.53± 0.24)%, in excellent agreement with the PDG

value of (25.49 ± 0.09)%. Integrating eq. (5.7) we get the relative shift produced by NP

contributions as follows

∆ ≡ Γ− Γ0

Γ0
= αε̂S + βε̂T + γε̂2S + δε̂2T , (5.12)

for whose coefficients we get: α = 3.5×10−4, β = 3.3+0.6
−0.4, γ = 2.2×10−2, δ = 4.7+2.0

−1.0. The

relative error of the coefficients α and γ due to our uncertainties is ≤ 2%. Eq. (5.12) is a

quadratic function of the effective scalar and tensor couplings, which can be used to explore

the sensitivity of τ− → π−π0ντ decays to non-standard scalar and tensor interactions. We

will do this in two steps. Firstly, we can make the analysis for one vanishing and one

non-vanishing coupling. This is shown in figure 11 where we represent with horizontal lines

the current experimental limits on ∆ (at three standard deviations) and use eq. (5.12) to

translate this information into bounds for ε̂S and ε̂T . According to this procedure, we get
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Figure 12. Constraints on the scalar and tensor couplings obtained from ∆(τ− → π−π0ντ ) using

the Belle measurement and the theory uncertainty (at three standard deviations) of the branching

ratio. The left-hand plot shows the constraints obtained from current data. On the right-hand plot

we show a magnification of the top part of this ellipse, where the solid line represents the upper

limit on ε̂S and ε̂T , while the dashed lines intend to illustrate the effect of a possible threefold

improvement in the measurement at the Belle-II experiment.

the following constraint −1.33 ≤ ε̂S ≤ 1.31 with ε̂T = 0 and [−0.79,−0.57]∪[−1.4, 1.3]·10−2

as the allowed region for ε̂T with ε̂S = 0 (at three standard deviations). The previous

results were used to estimate the values of ε̂S and ε̂T which were employed in the preceding

subsections: ε̂S ∼ 1.31 and ε̂T ∼ −0.014.11 The dotted lines illustrate how the limits would

evolve for an error reduced by a factor three, which could be achieved at Belle-II (the

theory error is not assumed to decrease in this exercise).

Then, we can also fix joint constraints on the scalar and tensor effective interactions

assuming both ε̂S and ε̂T non-vanishing and using again eq. (5.12) as before. This result is

shown in figure 12, where the limits on the scalar and tensor couplings are contained inside

an ellipse in the ε̂S − ε̂T plane. As a rough estimate of the possible impact of Belle-II data

we repeat the exercise of assuming a threefold error improvement with respect to Belle-I.

The dashed lines of the figure 12 (right panel) are illustrative of this effect.

Table 1 summarizes the constraints on the scalar and tensor effective couplings that can

be obtained (at three standard deviations) from the Belle measurement of the branching

ratio for τ− → π−π0ντ decays (including theory errors). The bottom part of table 1

illustrates the bounds that could be achieved with a threefold reduction of the uncertainty

at Belle-II. These results illustrate the maximum sensitivity to non-standard interactions

that can be obtained from this type of analysis but cannot be taken at face value as the

SM description is only varied within the ranges obtained in the fits of ref. [16].

Next we consider fits to the data reported by Belle [41] for the normalized spectrum

(1/Nππ)(dNππ/ds) and integrated branching ratio using the function12

1

Γ(ε̂S , ε̂T )

dΓ(s, ε̂S , ε̂T )

ds
, (5.13)

11The value ε̂T ∼ −0.001 could seem a bit too small, compared to the intervals just given. However, we

will see later in this section that the fits to the di-pion mass spectrum justify such an estimate.
12All discussed uncertainties are considered in our fits.
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∆ limits ε̂S (ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T

Belle [−1.33, 1.31] [−0.79,−0.57]∪
[−1.4, 1.3] · 10−2

[−5.2, 5.2] [−0.79, 0.013]

3-fold improved

measurement

[−1.20, 1.18] [−0.79,−0.57]∪
[−1.1, 1.1] · 10−2

[−5.1, 5.1] [−0.78, 0.011]

Table 1. Constraints on the scalar and tensor couplings obtained (at three standard deviations)

through the limits on the current branching ratio measurements and the hypothetical case where

this value be measured by Belle II with a three times smaller error. Theory errors are included.

where the SM vector form factor is included according to eq. (4.2). When fitting ε̂S and

ε̂T to Belle data in order to search for non-standard interactions, we are assuming that

our description of Γ0 (based on ref. [16]) is a reliable estimate of the corresponding SM

prediction (including theoretical uncertainties, that are accounted for in the fits). Thus, we

examine whether it is possible or not to improve the agreement of the SM prediction with

data by means of non-vanishing new physics scalar or tensor interactions. To this end, the

parameters entering eq. (4.2) are not fitted. As it is seen below, even doing so, one needs

to restrict ε̂S to realistic values in the fit to avoid large degeneracies in the
{
ε̂S , ε̂T

}
plane.

Because of this issue, our corresponding results should be taken as an illustrative exercise

of the maximum sensitivity to ε̂T and not as real bounds on it.

If both ε̂S and ε̂T are fitted, bounds of order one on ε̂S and of order 0.1 on ε̂T are

obtained, with a χ2/d.o.f. ∼ 0.9. Because of this unrealistic bounds for ε̂S , which hinder

the extraction of ε̂T , in our reference fits we restrict |ε̂S | < 0.8 × 10−2 [2, 3, 5] (nothing

changes if the bound in ref. [59], which halves this upper limit, is taken instead) and fit

only ε̂T . In this case we find ε̂T =
(
−1.3+1.5

−2.2

)
· 10−3 (χ2/d.o.f. ∼ 1.2), which shows a small

preference (0.9 sigma) for charged current tensor interactions. We believe, however, that it

is interesting to check this conclusion with more precise measurements of these decays and

scrutinizing F+(s), hopefully with improved knowledge on the inelastic effects on FT (s).

It is interesting to ask whether it should be expected that the di-pion invariant mass

spectrum can be more sensitive to tensor interactions than the integrated branching ratio,

or not. According to our understanding, it should indeed be expected: although the

vector and tensor form factors share phase (in the elastic region, and also -to a good

approximation- up to the tau mass energy scale), the energy-dependence of their moduli is

not the same. Therefore, the experimental spectrum should have sensitivity to distinguish

two curves (with different values of ε̂T ) giving, however, the same branching ratio upon

integration in the di-pion invariant mass.

A caveat is, of course, in order: although chiral symmetry (at low energies) and the use

of dispersion relations together with precise measurements (especially useful outside the

χPT regime of applicability) makes us confident on our knowledge of the vector two-pion

form factor, F+(s), one should be very cautious before claiming evidence for NP from this

type of analysis.13 Provided a hint for an anomaly appears, different investigations should

13In the case of τ− → π−(η/η′)ντ decays [13] this would be noticeably more difficult: although the

hadronization of the vector current is given again in terms of the precisely-known two-pion vector form
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be performed to test it: it may be worth considering a dispersive coupled-channel analysis

of the two-pion and two-kaon vector form factors [63–66], one should analyze along these

lines the compatibility between the F+(s) form factor measured by Belle and the L = 1 = I

ππ scattering amplitude. . .

We can finally compare the constraints in tables 1 and the best fit results to the

di-pion spectrum with those obtained in ref. [3]. For this, we need to assume lepton

universality because our decays involve the tau lepton, while their analysis involves electron

and muon flavors. According to refs. [2, 3, 13], it is clear τ− → π−π0ντ decays cannot be

competitive setting constraints on the non-standard scalar interactions. Our three sigma

upper limit (using current data) is |ε̂S | < 1.3 while the limit from other low-energy processes

is |ε̂S | < 0.34× 10−2 (at 90% C.L.). Conversely, our best fit result, ε̂T = (−1.3+1.5
−2.2) · 10−3,

is competitive in the case of tensor interactions since the limit reported in [2, 3] is |ε̂T | <
0.1×10−2 (at 90% C.L.). Notwithstanding, we find that the measured branching ratio only

limits ε̂T ∈ [−0.79,−0.57]∪ [−1.4, 1.3]·10−2 (at three sigma), which is not competitive with

the previous value. Our results in this work and in ref. [13] are compatible with those in

ref. [12] (which also analyze semileptonic tau decays in this context): ε̂S = (−0.6±1.5)·10−2,

ε̂T = (−0.04± 0.46) · 10−2. It must be noted that the analysis in ref. [13] does not include

theory errors, which explains the smaller uncertainties quoted therein for ε̂S . In this work,

our bounds using only the measured branching ratio are less restrictive than those in

ref. [12], and we can only achieve stronger limits with our fit to both the branching ratio and

spectrum (using the error band for Γ0 obtained in ref. [16] and restricting |ε̂S | . 1× 10−2).

In the light of more precise and diverse measurements of the τ− → π−π0ντ decays, improved

theory analysis shall be needed to pursue cornering new physics with these decays.

6 Summary and conclusions

We have considered the τ− → π−π0ντ decays in the presence of generic New Physics effec-

tive interactions up to dimension-six operators, assuming left-handed neutrinos and that

the new dynamics scale is in the multi-TeV range. Within this setting, we have paid par-

ticular attention to the hadron matrix elements, which are needed SM inputs in order to

set bounds on the non-standard scalar and tensor couplings, ε̂S and ε̂T , respectively (we

recall that it is not possible to restrict spin-one non-standard interactions in the considered

processes within lepton universality). For this, we have employed previous results using

dispersion relations for the scalar [15], vector [16] and tensor [17] form factors implementing

the known chiral constraints at low energies and QCD asymptotics at short distances, ac-

cording to data. For the tensor form factor, since no experimental information is available,

we have pursued a purely theoretical determination of its leading chiral behaviour using

Chiral Perturbation Theory. In this work, we improved over our previous treatment of the

tensor form factor where only leading-order chiral predictions were considered and unitarity

constraints were ignored [13], motivated here by the fact that di-pion tau decays consti-

tute an excellent arena to set competitive limits on ε̂T . Lattice QCD results [18] allowed

factor, the dominant scalar contribution is subject to large uncertainties still [62].
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determining the only leading low-energy constant of the tensor form factor, permitting a

direct access to ε̂T .

Within this framework, we have set bounds on ε̂S and ε̂T using the measured Belle

branching ratio, through our observable ∆. This procedure yields quite competitive limits

with the world-best bounds for the tensor case (that we have thus used in the remaining

analysis), but quite poor (unrealistic assuming some reasonable approximate lepton uni-

versality holds for them) in the scalar case, which is a consequence of its suppression in all

considered observables (but the forward-backward asymmetry) by the tiny difference be-

tween charged and neutral pion masses squared. Because of this feature, we have assumed

ε̂S limits similar to those obtained in light quark beta and τ− → π−(η/η′)ντ decays in the

remaining analysis.

As a result of our study, it turns out that Dalitz plot distributions (both in the Mandel-

stam variables s and t and also replacing t by the angle between the two charged particles)

are not very sensitive to non-zero realistic values of ε̂S and ε̂T , as it also happens with the

forward-backward asymmetry. Apparently, the hadronic invariant mass distribution is not

sensitive either to charged-current tensor interactions. However, a fit to Belle data on this

observable (limiting |ε̂S | . 1× 10−2 and with Γ0 fixed -within errors- previously) hints for

a slight preference for non-zero ε̂T . Therefore, it is very worth measuring with extreme

precision the di-pion invariant mass distribution in τ− → π−π0ντ decays at Belle-II, as it

will serve to further restrict ε̂T and this way offer complementary information to other low-

energy processes in the searches for non-standard charged current interactions. This effort

would need to come together with both a tight scrutiny of the dominant vector form factor

SM prediction and measurements of Dalitz distributions and forward-backward asymmetry.
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A FT (s) including resonances as explicit degrees of freedom

We show in this appendix that it is not convenient to build FT (s)/FT (0) including reso-

nances as explicit degrees of freedom.

As we will see, the tensor current couples to the JPC = 1−− and JPC = 1+− reso-

nances, but the contribution of the second tower of resonances is suppressed in the processes

under consideration. This can be seen phenomenologically, since the b1(1235) resonance

(which shares all quantum numbers with the ρ(770) meson but has opposed parity) is not

known to couple to the two-pion system (precisely because of parity b1 cannot decay into

two pseudoscalars, though it could be exchanged in meson-meson scattering, but ππ scat-

tering data do not show any hint for exchange of the b1 meson). Therefore, the ρ(770) is

the lightest resonance whose exchange provides an energy-dependence to FT , increasing its
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effect and allowing us to set more restrictive bounds on ε̂T (we neglect the contributions

from ρ excitations in this study).

We shall now discuss the chiral couplings of meson resonances to the pseudoscalar

Goldstone fields in the presence of tensor currents. We use the antisymmetric tensor

representation [26, 27] in order to describe the relevant spin-one degrees of freedom. To

determine the resonance exchange contributions to the τ− → π−π0ντ decays (or to the

effective chiral Lagrangian) we need the lowest order operators in the chiral expansion

which are linear in the resonance fields. Using the P and C transformation properties of

given JPC resonance fields: V (1−−), A(1++), S(0++), P (0−+) (see table 2 in ref. [26]), and

H(1+−) and T (2++) (see ref. [67]), we can, for the first time, construct the RχT Lagrangian

linear in resonance fields and coupled to the tensor source of lowest chiral order, which has

the following two pieces:

L[V (1−−)] = F TV MV

〈
Vµνt

µν
+

〉
, (A.1a)

L[H(1+−)] = iF THMH

〈
Hµνt

µν
−
〉
. (A.1b)

In the following, we neglect the effect of the latter operator (assuming F TH negligi-

ble) because of the seemingly small b1ππ coupling commented above. A straightforward

computation of the contribution of the former operator to the relevant hadronic matrix

element yields

〈π0π−|d̄σµνu|0〉 = iFT (s)
(
pµ
π0p

ν
π− − p

µ
π−p

ν
π0

)
, (A.2)

where

FT (s) =

√
2Λ2

F 2

[
1 +

GV F
T
V

Λ2

Mρ

M2
ρ − s

]
, (A.3)

in which the operator iGV√
2
〈Vµνuµuν〉 [26] was used in order to obtain the ρππ coupling.

Eq. (A.3) depends on three a priori unknown couplings. Fortunately, short-distance

QCD properties can shed light on their values, as we explain next. First, it is known from

the analysis of two-point correlators within RχT that GV = F/
√

2 [26] (also FV =
√

2F ,

which is used next). The large-NC asymptotic analysis of 〈V V 〉, 〈TT 〉 and 〈V T 〉 correlators

determines F TV /FV = 1/
√

2 [68], in such a way that only Λ2 remains unrestricted and

eq. (A.3) simplifies to

FT (s) =

√
2Λ2

F 2
+

Mρ

M2
ρ − s

. (A.4)

The ρ meson contribution shifts the value of FT (0) by ∼ 65%, which is unphysical.

As in the case of the vector form factor, the ρ-propagator in eq. (A.3) is modified by

the inclusion of the width Γρ(s) (proportional to the imaginary part of the corresponding

loop contributions) and also by shifting the pole mass value (according to the real part of

the loop contribution), as required by analyticity. Specifically,

(M2
ρ − x)−1 →

{
M2
ρ

(
1 +

x

96π2F 2
Re

[
Aπ(x) +

AK(x)

2

])
− x− iMρΓρ(x)

}−1

, (A.5)
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Figure 13. Modulus and phase, |FT (s)| (left) and δT (s) (right), of the tensor form factor, FT (s),

corresponding to the description explained in this appendix.

with

Γρ(x) =
Mρx

96πF 2

[
θ(x− 4m2

π)σ3
π(x) + θ(x− 4m2

K)
σ3
K(x)

2

]
= − Mρx

96π2F 2
Im

[
A

(
m2
π

x
,
m2
π

M2
ρ

)
+

1

2
A

(
m2
K

x
,
m2
K

M2
ρ

)]

and (AP (x) is short for A
(
m2
P
x ,

m2
P

M2
ρ

)
)

ReAP (x) = Log
m2
P

M2
ρ

+ 8
m2
P

x
− 5

3
+ σ3

P (x)Log

∣∣∣∣∣σP (x) + 1

σP (x)− 1

∣∣∣∣∣ , (A.6)

being σP (x) =

√
1− 4m2

P
x .

The tensor form factor, FT (s), given by eq. (A.4), and using the substitution eq. (A.5),

is plotted in figure 13 for Λ2 = 12 MeV [18]. There, it is seen how the ρ(770) meson

contribution modifies the constant χPT lowest-order result for |FT (s)|. The form factor

phase, δT (s), grows from zero to ∼ 110◦ for 0.85 ≤
√
s ≤ 0.90 GeV and decreases softly

to zero for larger energies. Both |FT (s)| and δT (s) are influenced by the on-shell ρ(770)

meson width as expected, according to its value of ∼ 145 MeV.

At this point unitarity arguments may convince us that this description of FT (s) cannot

be complete.14 As explained in ref. [17], the phase of FT (s) must coincide with the phase

of F+(s) in the elastic region (in this paper this was shown for the tau decays into the Kπ

system, but it is completely analogous to the ππ one considered here). We briefly review

the argument in what follows.

The unitarity relation for F+(s) can be written

=mF+(s) = σπ(s)F+(s)(f1
1 (s))∗θ(s− 4m2

π) , (A.7)

where f1
1 (s) is the the corresponding partial wave in ππ scattering. The previous equation

implies that, in the elastic region, δ1
1(s) = δ+(s), which is again Watson’s theorem. The

14We thank Bastian Kubis for pointing this to us.
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crucial point is that an analogous unitarity relation holds for FT (s):

=mFT (s) = σπ(s)FT (s)(f1
1 (s))∗θ(s− 4m2

π) , (A.8)

from which one can immediately derive that, in the elastic region, δT (s) = δ+(s), a feature

that is not satisfied by our expression for FT (s) considered up to now (and it will not be

satisfied for any value of Λ2). This should not be understood as a failure of eq. (A.4)

(together with eq. (A.5)), but rather as a manifestation of its incompleteness. Indeed, the

contributions from the next-to-leading order χPT Lagrangian with tensor sources (O(p6)

in the chiral counting [25]) should provide with the needed energy-dependence to satisfy

eq. (A.8). However, since the number of such operators is 75 (plus 3 contact terms) even

in the SU(2) case [25], we refrain from proceeding this way as any predictability would

be lost.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[16] D. Gómez Dumm and P. Roig, Dispersive representation of the pion vector form factor in

τ → ππντ decays, Eur. Phys. J. C 73 (2013) 2528 [arXiv:1301.6973] [INSPIRE].

[17] V. Cirigliano, A. Crivellin and M. Hoferichter, No-go theorem for nonstandard explanations

of the τ → KSπντ CP asymmetry, Phys. Rev. Lett. 120 (2018) 141803 [arXiv:1712.06595]

[INSPIRE].

[18] I. Baum, V. Lubicz, G. Martinelli, L. Orifici and S. Simula, Matrix elements of the

electromagnetic operator between kaon and pion states, Phys. Rev. D 84 (2011) 074503

[arXiv:1108.1021] [INSPIRE].

[19] S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

[20] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984)

142 [INSPIRE].

[21] J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the

strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

[22] S.J. Brodsky and G.R. Farrar, Scaling laws at large transverse momentum, Phys. Rev. Lett.

31 (1973) 1153 [INSPIRE].

[23] G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics,

Phys. Rev. D 22 (1980) 2157 [INSPIRE].

[24] V. Mateu and J. Portoles, Form-factors in radiative pion decay, Eur. Phys. J. C 52 (2007)

325 [arXiv:0706.1039] [INSPIRE].
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