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1 Introduction

The action of Witten’s open string field theory (SFT) [1] has close apparent resemblances
with Chern-Simons (CS) action in three dimensions. The action of SFT is given by

SSFT = 1
g2

∫ (1
2ΨQBΨ + 1

3Ψ3
)
, (1.1)

where Ψ is the string field carrying ghost number Ngh[Ψ] = 1 and satisfying the reality
condition Ψ‡ = Ψ. This is invariant under the infinitesimal gauge transformation

δΨ = QBΛ + [Ψ, Λ], (1.2)

and the EOM from the action is given by

QBΨ + Ψ2 = 0. (1.3)

Under the finite gauge transformation

Ψ→ ΨV = V (QB + Ψ)V −1, (1.4)
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there emerges an extra topological term:

SSFT → SSFT −
1

6g2

∫ (
V QBV

−1)3. (1.5)

On the other hand, the action of CS theory is given by

SCS = k

2π

∫
M3

Tr
(1

2AdA+ 1
3A

3
)
, (1.6)

where M3 is a three dimensional compact manifold, and A = Aµdxµ is anti-hermitian
(A† = −A). The infinitesimal gauge transformation in CS theory

δA = dλ+ [A, λ], (1.7)

keeps the action invariant, while under the finite gauge transformation

A→ Ag = g(d +A)g−1, (1.8)

SCS transforms as

SCS → SCS −
k

12π

∫
M3

Tr
(
gdg−1)3. (1.9)

As seen from the above, there are the following correspondences:

∗ ↔ ∧, QB ↔ d, Ψ↔ A,

∫
↔
∫
M3

Tr, V ↔ g, (1.10)

where the star product ∗ and the exterior product ∧ are omitted in (1.1) and (1.6), respec-
tively. More generally, a quantity with Ngh = p in SFT corresponds to a p-form field in
CS theory.

The construction of CS theory is based on the theory of differential forms. Besides
wedge product, exterior derivative and forms, the theory of differential forms contains other
two important operations; interior product and Lie derivative. However, these concepts
are not known in SFT. The purpose of this paper is to introduce the interior product
and the Lie derivative in SFT, and further to apply them to construct the Wilson line, by
restricting the argument to the KBc subsector.

In the KBc subsector of SFT [2], all quantities are represented by K, B and c, which
satisfy the following (anti-)commutation relations and BRST transformation rules:

[K, B] = 0, {B, c} = I, B2 = 0, c2 = 0, (1.11)
QBK = 0, QBB = K, QBc = cKc. (1.12)

Eqs. (1.11) and (1.12) are called KBc algebra (see [3] for a review). Exact classical solu-
tions of SFT representing the tachyon vacuum [4, 5] and multiple branes [6–9] have been
constructed in the KBc subsector.

First, we construct the interior product IX in SFT, which is specified by a “KBc tan-
gent vector” X. This operation lowers the ghost number by 1, corresponding to that the or-
dinary interior product iX maps p-form to (p−1)-form. Besides this property, we demand on
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IX the anti-Leibniz rule, nilpotency and the consistency with the KBc (anti-)commutation
relations (1.11). The first two properties are natural SFT version of the properties satis-
fied by iX . From these requirements, we find that the operation of IX on K, B and c is
uniquely determined by a two-component tangent vector X = (X1(K), X2(K)) consisting
of two real functions of K. Then we define the Lie derivative £X by £X = −i{QB, IX} in
analogy with the relation LX = {d, iX} for the ordinary Lie derivative LX . Our KBc in-
terior products and Lie derivatives satisfy the same kind of commutation relations as the
ordinary ones, by using a suitably defined Lie bracket.

Next, by using the KBc Lie derivative, we define the KBc manifold. This is the space
of triads (K(ξ), B(ξ), c(ξ)) satisfying the same KBc algebra (1.11) and (1.12) and specified
by a two-component real function of K, ξ = (ξ1(K), ξ2(K)). A triad (K(ξ), B(ξ), c(ξ))
is first constructed by successively applying (1 + ∆s£ξ̇(s)) on the original triad along a
curve ξ(s) with parameter s. By solving the differential equation expressing this process,
we find that the triad does not depend on the curve, but only on its end point. Thus, we
can consistently define the KBc manifold. The interior product and the Lie derivative are
extended to the operations on each point on the KBc manifold. The string field Ψ is also
generalized to the “field” Ψ(ξ) on the KBc manifold.

Once we established the notion of the KBc manifold, we can introduce the Wilson
line in SFT. For explaining this, let us summarize the Wilson line in CS theory (or more
generally in gauge theories). Let C be a curve x(s) on M3 parametrized by s ∈ [a, b] in CS
theory. The Wilson line along C is defined as

WC(x(b), x(a)) := P exp
(∫

C
A

)
= P exp

(∫ b

a
ds iẋ(s)A(x(s))

)
, (1.13)

where P denotes the path ordering (a quantity with smaller s is put more right). If one
performs a gauge transformation (1.8) on A, the Wilson line is transformed as

WC(x(b), x(a))→ g(x(b))WC(x(b), x(a)) g(x(a))−1. (1.14)

Let us consider two infinitesimal paths C1 and C2 connecting x and y = x + ε + η with ε
and η being infinitesimal constant vectors (see figure 1):

C1 : x→ x+ ε→ x+ ε+ η = y

C2 : x→ x+ η → x+ η + ε = y . (1.15)

Then the difference between the two Wilson lines is given by the field strength F :=dA+A2 as

WC1(y, x)−WC2(y, x) = iηiεF (x). (1.16)

In SFT, we define the Wilson line along a curve ξ(s) on the KBc manifold, by replacing
iẋ(s)A(x(s)) in (1.13) with Iξ̇(s)Ψ(ξ(s)). This Wilson line satisfies properties similar to those
in CS theory, except a number of modifications. The gauge transformation rule of the SFT
Wilson line is different from (1.14); there appears an extra term due to the fact that a
quantity with Ngh = 0 is not annihilated by the operation of interior product, IXV 6= 0 (in
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Figure 1. The two paths C1 and C2 on M3.

contrast, we have iXg = 0 in CS theory). By the same reason, an extra term emerges on
the SFT version of the r.h.s. of (1.16). However, this extra term is missing in the special
case where the Lie bracket of the two infinitesimal tangent vectors ε and η vanishes (this is
the case for CS theory). Finally, we present the formula for the SFT Wilson line operated
by QB + Ψ which corresponds to the covariant derivative d +A in CS theory. We find that
the Wilson line is “almost” annihilated by the operation when Ψ is on-shell. This formula
is expected to be useful for the analysis of fluctuation modes around a multi-brane solution.

The organization of the rest of this paper is as follows. We first define KBc interior
product, Lie derivative and tangent vector in section 2. In section 3, using the KBc Lie
derivative, we introduce triads (K(ξ), B(ξ), c(ξ)) satisfying the KBc algebra, which leads to
the notion of the KBc manifold. In section 4, we define the Wilson line in the KBc subsec-
tor of SFT and examine its properties. The final section (section 5) is devoted to summary
and discussions. In appendix A, we derive the form of the KBc interior product satisfying
the conditions. In appendix B, we present formulas for interior products and Lie deriva-
tives used in the text. In appendix C, we sketch a possible scenario of the emergence of
degenerate excitation modes around a multi-brane solution in SFT.

2 KBc interior product, Lie derivative and tangent vector

In this section, we would like to introduce the KBc interior product and Lie derivative.
Usually, we need the notions of manifold and tangent vector on it before introducing these
operations. However, since such notions are not known in SFT, we adopt a heuristic
approach here. Namely, we first construct the KBc interior product by imposing suitable
conditions on it. This naturally induces the KBc tangent vector, and further the KBc man-
ifold. In the following, all quantities are in the sliver frame [10], and we assume that they
consist only of K, B and c.

We introduce the KBc interior product IX as a linear operation on the KBc subsector
which lowers the ghost number by one and satisfies the following four conditions:

1. Anti-Leibniz rule

IX(AB) = (IXA)B + (−1)|A|A(IXB), (2.1)
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2. Double-conjugation property

(IXA)‡ = −(−1)|A|IXA‡, (2.2)

3. Nilpotency

(IX)2 = 0, (2.3)

4. Consistency with KBc (anti-)commutation relations (1.11).

Here A and B are any quantities consisting of K, B and c, and

(−1)|A| :=

1 (A is Grasmann-even)
−1 (A is Grasmann-odd)

. (2.4)

At this stage, we have assumed that each KBc interior product IX is specified by some
quantity X. The properties 1 and 3 are the SFT version of the properties satisfied by the
ordinary interior product. Note that the first property implies, in particular, that IXI = 0.
The property 2 is the hermiticity of IX , which is also satisfied by QB. The fourth property
means that the operation of IX on both hand sides of each relation in (1.11) keeps the
equality. For example,

IX({B, c}) = IXI = 0, IXc2 = IX0 = 0, (2.5)

should hold for {B, c} = I and c2 = 0, respectively.
As shown in appendix A, the most general form of the operation of IX on K, B and

c is given by

IXK = iBX1, IXB = 0, IXc = X2

K
+
[
X2

K
, Bc

]
, (2.6)

where X =
(
X1(K), X2(K)

)
is a two-component real function of K, and is called KBc tan-

gent vector.1 KBc tangent vector X is supposed to correspond to tangent vector at a point
on M3 in CS theory. This will be generalized to KBc vector field later.

Different KBc tangent vectors give different KBc interior products. For any two tan-
gent vectors2 X and Y , IX and IY anti-commute with each other:

{IX , IY } = 0. (2.7)

This is shown as follows. First, {IX , IY }A = 0 holds for A = K, B, c since we have

IXIYA = 0 (for A = K, B, c). (2.8)
1Readers may wonder why X2 in (2.6) is divided by K. The reason is that, in order for the solution

of (3.1) to be path-independent, we should regard X2 and not X2/K as the second component of the
KBc tangent vector.

2Hereafter, we often omit “KBc” which distinguishes the KBc version from that in the theory of differ-
ential forms.
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Next, {IX , IY }A = 0 for a generic A which is a sum of products of K, B and c is shown
by induction by using the identity following from the anti-Leibniz rule (2.1):

{IX , IY }(AB) = (IXIYA)B +AIXIY B
+ (−1)|A| [(IXA)IY B − (IYA)IXB] + (X � Y )

= ({IX , IY }A)B +A({IX , IY }B). (2.9)

Another good property is

IαX+βY = αIX + βIY , (2.10)

where α and β are real numbers and

αX + βY = (αX1 + βY 1, αX2 + βY 2). (2.11)

This follows from (2.6) and the anti-Leibniz rule (2.1).
There is a critical difference between the KBc interior product IX and the ordinary

one iX ; the latter annihilates the 0-forms, while IX does not annihilate quantities with
Ngh = 0. Instead, we have IXO = 0 for any O with Ngh[O] = −1 since there is no quantity
consisting only of K, B and c and carrying Ngh ≤ −2.

Now we define the KBc Lie derivative £X as

£X := −i{QB, IX}, (2.12)

which carries no ghost number. This is of the same form as the ordinary Lie derivative
LX = {d, iX}, except for the phase factor −i. From the double-conjugation property (2.2)
of IX and that of QB, we see that £X enjoys

(£XA)‡ = £XA‡. (2.13)

Our KBc Lie derivative £X shares the following properties with the ordinary one LX (with
of course the replacement d→ QB):

[£X , QB] = 0, [£X , IY ] = [IX , £Y ] = −[£Y , IX ],
£X(AB) = (£XA)B +A(£XB), £αX+βY = α£X + β£Y . (2.14)

The concrete action of £X on K, B and c are as follows:

£XK = KX1, £XB = BX1, £Xc = −cX1Bc− i[X2, c]. (2.15)

An important property of £X is that the transformation with an infinitesimal constant ε,

(K,B, c)→ (K ′, B′, c′) = (1 + ε£X)(K,B, c), (2.16)

keeps the KBc algebra, namely (K ′, B′, c′) satisfies (1.11) and (1.12) to O(ε). This is
because IX and QB keep (1.11) and £X commutes with QB. For this reason, if Ψ is
a solution to the EOM (1.3), (1 + ε£X)Ψ is also a solution to O(ε), because only the

– 6 –
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KBc algebra is used when one shows that Ψ consisting of K, B and c is a solution. In
fact, ε£XΨ for a solution Ψ is equal to the infinitesimal gauge transformation (1.2) with
Λ = −iεIXΨ:

£XΨ = −iQBIXΨ− iIXQBΨ = −iQBIXΨ + iIXΨ2

= −iQBIXΨ + [Ψ, −iIXΨ]. (2.17)

The commutator of the ordinary Lie derivative LX and the interior product iY is again
an interior product: [LX , iY ] = i[X,Y ]. This is also the case for the present £X and IY
(with the replacement of the commutator [X, Y ] by a suitable one). In order to see this,
let us first consider the action of [£X , IY ] on K, B and c:

[£X , IY ]K = iB
(
X1K∂Y 1 − Y 1K∂X1

)
, (2.18)

[£X , IY ]B = 0, (2.19)

[£X , IY ]c = X1K∂Y 2 − Y 1K∂X2 +
[
X1K∂Y 2 − Y 1K∂X2, Bc

]
. (2.20)

with ∂ := ∂/∂K. Therefore defining [X, Y ]L as

[X, Y ]L :=
(
X1K∂Y 1 − Y 1K∂X1, X1K∂Y 2 − Y 1K∂X2

)
, (2.21)

we find that the relation

[£X , IY ] = I[X,Y ]L , (2.22)

holds at least when the both hand sides act on K, B and c. Then using that [£X , IY ]
satisfies the same anti-Leibniz rule as (2.1) for IX , we see that (2.22) holds against any
quantity consisting of K, B, and c. In addition, because £X commutes with QB, one
also gets

[£X , £Y ] = −i[£X , QBIY + IYQB] = −iQB[£X , IY ]− i[£X , IY ]QB

= −i(QBI[X,Y ]L − iI[X,Y ]LQB) = £[X,Y ]L , (2.23)

as expected.
The bracket [X, Y ]L is a Lie bracket, namely, it satisfies the bilinearity, the anti-

symmetry

[X, Y ]L = −[Y, X]L, (2.24)

and the Jacobi identity

[X, [Y, Z]L]L + [Y, [Z, X]L]L + [Z, [X, Y ]L]L = 0. (2.25)

In fact, by introducing3

X̂ = X1K∂ +X2, (2.26)
3X̂ given by (2.26) can be replaced by X̂ = X1K∂ + λX2 with any complex number λ.

– 7 –
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it is not hard to show that

[X̂, Ŷ ] = ([X, Y ]L)1K∂ + ([X, Y ]L)2 = ̂[X, Y ]L, (2.27)

so [X, Y ]L is reduced to a simple commutator [X̂, Ŷ ]. This implies that [X, Y ]L is a
Lie bracket.

We can simplify the expression of the Lie bracket (2.21) as

[X, Y ]L = X1K∂Y − Y 1K∂X = £XY −£YX. (2.28)

This expression also holds for the hat version4

[X̂, Ŷ ] = £X Ŷ −£Y X̂, (2.29)

because £X = X1K∂ for any function of K.

3 KBc manifold

3.1 The construction

In order to introduce the Wilson line in SFT, first of all, we should establish the notion of a
manifold, which corresponds toM3 in CS theory. We shall show that each point on the man-
ifold corresponds to a certain triad of (K(ξ), B(ξ), c(ξ)) specified by ξ = (ξ1(K), ξ2(K)),
which is a two-component real function of K. Each triad (K(ξ), B(ξ), c(ξ)) satisfies the
same KBc algebra as the original one (K,B, c).

Let ξs = (ξ1
s (K), ξ2

s (K)) be a two-component real function of K parametrized by a
real variable s, and we set ξs=0 = 0. For this ξs, let us consider the triad (Ks, Bs, cs)
determined by the following differential equation and initial condition:

d
ds (Ks, Bs, cs) = £ξ̇s

(Ks, Bs, cs), (K0, B0, c0) = (K,B, c), (3.1)

where the Lie derivative £ξ̇s
is defined to be given by (2.15) with (K,B, c) replaced by

(Ks, Bs, cs), and the dot denotes the s derivative. Concretely, (3.1) reads

K̇s = ξ̇1
sKs, (3.2)

Ḃs = ξ̇1
sBs, (3.3)

ċs = −csξ̇1
sBscs − i[ξ̇2

s , cs]. (3.4)

Since the Lie derivative preserves the KBc algebra, if (Ks, Bs, cs) satisfies KBc algebra,
then

(Ks + δsK̇s, Bs + δsḂs, cs + δs ċs)

also satisfies it to O(δs). Therefore, (Ks, Bs, cs) determined by (3.1) satisfies the KBc al-
gebra for any s.

4Defining VX := X1K∂, (2.29) is rewritten as [VX +X2, VY +Y 2] = [VX , VY ] + £XY
2−£YX

2. This is
apparently of the form of Courant bracket for the direct sum of tangent vector and 0-form. This resemblance
may give a clue for deeper understanding of the KBc manifold introduced in the next section.
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Let us solve the differential equations (3.2)–(3.4). Because K commutes with B, (3.2)
and (3.3) can be easily solved to give

Ks = eξ
1
sK, Bs = eξ

1
sB. (3.5)

In order to solve (3.4), we first consider the differential equation for σs := Bscs, which is
obtained from (3.3) and (3.4):

σ̇s = −i[ξ̇2
s , σs]. (3.6)

This gives

σs = e−iξ
2
sσ0 e

iξ2
s = e−iξ

2
sBc eiξ

2
s . (3.7)

Substituting (3.7) back to (3.4), we obtain

ċs = −csξ̇1
se
−iξ2

sBc eiξ
2
s − i[ξ̇2

s , cs], (3.8)

which reduces to a simpler equation for c̃s := eiξ
2
s cse

−iξ2
s :

˙̃cs = −c̃sξ̇1
sBc. (3.9)

This can be solved to give

c̃s = c e−ξ
1
sBc, (3.10)

and we finally obtain

cs = e−iξ
2
s c e−ξ

1
sBc eiξ

2
s . (3.11)

From (3.5) and (3.11), we see that the solution (Ks, Bs, cs) depends only on ξs and
not on the intermediate ξt and ξ̇t for 0 ≤ t < s: the solution is completely specified by the
end point. This fact leads us to define the KBc manifold K as follows:

• K contains all the solutions of (3.1) as the points on K.

• Each point has the expression

K(ξ) = eξ
1
K, B(ξ) = eξ

1
B, c(ξ) = e−iξ

2
c e−ξ

1
Bc eiξ

2
, (3.12)

in terms of a two-component real function ξ = (ξ1(K), ξ2(K)). We regard ξ as the
coordinate of K (or often as the point on K).5

5In the special case of ξ2 = 0, (3.12) is the EMNT transformation [11–14]. In the EMNT transformation,
eξ

1(K) is expressed as an arbitrary real function g(K). However, our restriction of g(K) to eξ
1(K) seems

more natural since it keeps the property K(ξ) ≥ 0.
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In short, the KBc manifold K is regarded as the space of two-component real functions of
K. In order for the triad (K(ξ), B(ξ), c(ξ)) also to span the KBc subsector, it is necessary
and sufficient that the original triad (K,B, c) is expressed by this triad. By tracing the
curve C in the reverse direction from its end point ξ to the origin, of course, the original
triad is expressed as

K = e−ξ
1
K(ξ), B = e−ξ

1
B(ξ), c = eiξ

2
c(ξ)eξ1

B(ξ)c(ξ) e−iξ2
. (3.13)

However, (3.13) does not give the original triad (K,B, c) in terms of (K(ξ), B(ξ), c(ξ)),
since e±ξ1 and e±iξ2 on the r.h.s. are functions of the original K. Therefore, by restricting
ourselves to the coordinate patch such that the map K 7→ K(ξ) = eξ

1(K)K is one-to-one,
any quantity in the KBc subsector can be represented by any triad on K.

The argument in the previous section about the tangent vector, interior product and
Lie derivative for the original triad can be generalized to K. Now we can define a KBc vector
field X(ξ) on K, which returns a tangent vector for each point ξ ∈ K, like a vector field in
CS theory. An example is

X(ξ) =
(
ξ1 + (ξ2)2 + 3K, eξ1 +K2 + 1

)
. (3.14)

As given in (3.14), X(ξ) may have dependences on K = K(0) not through ξ1(K) and
ξ2(K). The special class of vector fields without the dependence on ξ, for example,

X(ξ) = (K2 + 2, eK), (3.15)

are called constant vector fields, or constant vectors for short.
The interior product defined in (2.6) for the original triad can be extended to any point

(K(ξ), B(ξ), c(ξ)) in K. Denoting the interior product at ξ by I(ξ)
X , which coincides with

IX at ξ = 0, its operation is given by

I(ξ)
X K(ξ) = iB(ξ)X1(ξ), I(ξ)

X B(ξ) = 0,

I(ξ)
X c(ξ) = X2(ξ)

K(ξ) +
[
X2(ξ)
K(ξ) , B(ξ)c(ξ)

]
. (3.16)

The corresponding Lie derivative £(ξ)
X is defined as

£(ξ)
X = −i

{
QB, I

(ξ)
X

}
, (3.17)

and its operation on K(ξ), B(ξ) and c(ξ) is given by6

£(ξ)
X K(ξ) = K(ξ)X1(ξ), £(ξ)

X B(ξ) = B(ξ)X1(ξ),

£(ξ)
X c(ξ) = −c(ξ)X1(ξ)B(ξ)c(ξ)− i[X2(ξ), c(ξ)]. (3.18)

The other properties (2.22) and (2.23) also hold for the present case, with the Lie bracket

[X, Y ]L(ξ) = £(ξ)
X Y (ξ)−£(ξ)

Y X(ξ). (3.19)
6The relation between the interior products (and the Lie derivatives) at ξ and at the origin is given in

appendix B.
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In the rest of this paper, we often omit the index (ξ) on I(ξ)
X and £(ξ)

X if there is
no ambiguity.

Finally, let us clarify the correspondence between M3 and K by referring to their
dimensionality. In CS theory, M3 is a manifold of real dimension three, and the coordinate
x has three real components (x1, x2, x3). A tangent vector at x ∈ M3 is also expressed as
(v1, v2, v3) and a vector field as (v1(x), v2(x), v3(x)). Our KBc manifold is described by
the coordinate ξ = (ξ1(K), ξ2(K)), which has two components that are real functions of K.
Assuming that they can be Taylor-expanded as ξi(K) = ∑

n a
(i)
n Kn, the dimension of K is

countably infinite. A tangent vector is expressed as (X1, X2) = (∑nX
(1)
n Kn,

∑
nX

(2)
n Kn)

and a vector field as (X1(ξ), X2(ξ)) = (∑nX
(1)
n (ξ)Kn,

∑
nX

(2)
n (ξ)Kn), where each X(i)

n (ξ)
returns a real number for each point ξ ∈ K.

3.2 String field on K

In the Introduction, we discussed the correspondence between SFT and CS theory. Now
that the KBc manifold has been introduced, it is more natural to modify the relation
A↔ Ψ to

A(x)↔ Ψ(ξ). (3.20)

Here Ψ(ξ) is obtained by the replacement

(K,B, c)→ (K(ξ), B(ξ), c(ξ)) (3.21)

for all (K,B, c) in Ψ. In general, when an operator O is given by (K,B, c), the new operator
obtained by the replacement (3.21) is denoted by O|0→ξ.7

Under the translation ξ → ξ + δξ with δξ being an infinitesimal constant vector, Ψ(ξ)
transforms as

Ψ(ξ)→ Ψ(ξ + δξ) = (1 + £δξ)Ψ(ξ). (3.22)

This is of the same form as in CS theory. Let ε be an infinitesimal constant vector on M3.
Then by the translation x→ x+ ε, the gauge field 1-form A(x) transforms as

A(x)→ A(x+ ε) = (1 + Lε)A(x), (3.23)

because ∂µεν = 0. Note that, from (3.22) and the discussion just below (2.16), Ψ(ξ) is
automatically on-shell if Ψ is on-shell.

For the finite gauge transformation at ξ = 0,

ΨV = V (QB + Ψ)V −1, (3.24)

the following relation holds for ΨV (ξ) = ΨV |0→ξ and V (ξ) = V |0→ξ:

ΨV (ξ) = V (ξ)(QB + Ψ(ξ))V −1(ξ). (3.25)

This is because ΨV is also another string field at ξ = 0.
7It is possible to consider Ψ(ξ) having the ξ dependences not through (K(ξ), B(ξ), c(ξ)), like the vector

field (3.14). However, we restrict ourselves only to Ψ(ξ) = Ψ|0→ξ for which (3.22) holds.
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4 Wilson lines in SFT

4.1 The definition

The infinitesimal version of (1.13), which we call Wilson link, is

W (x+ ε, x) = 1 + iεA(x) = 1 + εµAµ(x). (4.1)

Taking the hermitian conjugate, we have to O(ε)

W (x+ ε, x)† = 1− εµAµ(x) = 1− εµAµ(x+ ε) = W (x, x+ ε). (4.2)

In SFT, let us define the Wilson link specified by an infinitesimal constant vector ζ by

W(ξ + ζ, ξ) := 1 + iIζΨ(ξ). (4.3)

Note that we have W(ξ+ ζ, ξ)‡ =W(ξ, ξ+ ζ) by the same procedure as (4.2), which is due
to (2.2) and the reality condition of Ψ; Ψ‡ = Ψ.

In CS theory, the Wilson link is gauge-transformed as (1.14):

W (x+ ε, x)→ g(x+ ε)W (x+ ε, x)g(x)−1. (4.4)

Unfortunately, the same gauge transformation rule does not hold for the SFT Wilson link.
In order to see this, we consider the case of W(ζ, 0) for simplicity, but the result for
W(ξ + ζ, ξ) can be obtained by the replacement V → V (ξ), Ψ → Ψ(ξ) in the following.
Under the gauge transformation of Ψ given by (1.4), W(ζ, 0) transforms as

W(ζ, 0)→ 1 + iIζ
[
V (QB + Ψ)V −1

]
= 1− iIζ

[
(QBV )V −1

]
+ iIζ

[
VΨV −1

]
= [(1 + £ζ)V ]V −1 + i(QBIζV )V −1 + i(QBV )IζV −1

+ i(IζV )ΨV −1 + iV (IζΨ)V −1 − iVΨ(IζV −1)

= [(1 + £ζ)V ]V −1 + iV
[
QB

(
V −1IζV

)]
V −1

+ iV
{

Ψ, V −1IζV
}
V −1 + iV (IζΨ)V −1

=
(
(1 + £ζ)V

) [
1 + iIζΨ + iQΨ(V −1IζV )

]
V −1, (4.5)

up to O(ζ2). In this derivation, we have used V QBV
−1 = −(QBV )V −1 at the first equality,

and V IζV −1 = −(IζV )V −1 at the third one. The operator QΨ is the BRST operator on
the background Ψ defined as

QΨA := QBA+ ΨA− (−1)|A|AΨ. (4.6)

Besides the expected term (1 + £ζ)V = V (ζ) in the last expression of (4.5), there has
emerged the extra term iQΨ(V −1IζV ) due to the fact that IζV does not vanish in general.
In CS theory, the gauge parameter g(x) is a 0-form, so it vanishes by the action of the
interior product.
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Let us proceed to the Wilson line. Let C be a curve ξ(s) on K. By analogy with (1.13),
we define the SFT Wilson line as

WC(ξ(b), ξ(a)) = P exp
(
i

∫ b

a
ds Iξ̇(s)Ψ(ξ(s))

)
. (4.7)

Setting ξ(a) = ξ and ξ(b) = ξ + ζ, this is reduced to (4.3). Regarding the Wilson line as
a product of Wilson links and using the gauge transformation rule (4.5), we find that the
gauge transformation rule of our Wilson line (4.7) is as follows:

WC(ξ(b), ξ(a))→

V (ξ(b)) P exp
[
i

∫ b

a
ds
(
Iξ̇(s)Ψ(ξ(s)) +QΨ(ξ(s))

(
V (ξ(s))−1Iξ̇(s)V (ξ(s))

))]
V (ξ(a))−1. (4.8)

As given in (4.8), there appears an extra term in the exponent. However, as we shall see
in the next subsection, some nice properties still hold for the present Wilson line, though
they are deformed from the corresponding ones in CS theory.

4.2 Some properties

First, let us consider the SFT counterpart of (1.16). Let C1 and C2 be two infinitesimal
paths on K connecting ξ and ξ′:

C1 : ξ → ξ + ζ → ξ + ζ + η = ξ′

C2 : ξ → ξ + η → ξ + η + ζ = ξ′. (4.9)

Here ζ and η are infinitesimal constant tangent vectors. For notational simplicity, we
abbreviate Ψ(ξ) and Ψ(ξ + ζ) as Ψ and Ψζ , respectively. Let us calculate the difference
between WC1(ξ′, ξ) and WC2(ξ′, ξ)

WC1(ξ′, ξ)−WC2(ξ′, ξ) = (1 + iIηΨζ)(1 + iIζΨ)− (η � ζ). (4.10)

To be precise, IηΨζ should be written as I(ξ+ζ)
η Ψ(ξ + ζ), so by using (B.10)8 and (3.22),

IηΨζ is expanded as follows:

I(ξ+ζ)
η Ψζ = I(ξ)

η Ψζ − I
(ξ)
£(ξ)
η ζ

Ψζ = I(ξ)
η Ψ + I(ξ)

η £(ξ)
ζ Ψ− I(ξ)

£(ξ)
η ζ

Ψ. (4.11)

Omitting the superscript (ξ), we get

WC1(ξ′, ξ)−WC2(ξ′, ξ) = i(Iη£ζ − Iζ£η)Ψ− [IηΨ, IζΨ]− iI[η, ζ]LΨ, (4.12)

by using (3.19). For the first and second terms on the r.h.s., the following formulas hold:

i(Iη£ζ − Iζ£η) = [IηIζ , QB] + iI[η, ζ]L , (4.13)
[IηΨ, IζΨ] = −IηIζΨ2 + {Ψ, IηIζΨ}. (4.14)

8In appendix B, we derive the relation between interior products (and Lie derivatives) at different points
on the KBc manifold.
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We finally obtain

WC1(ξ′, ξ)−WC2(ξ′, ξ) = −IηIζ(QBΨ + Ψ2) +QΨ(IζIηΨ). (4.15)

On the r.h.s. of this formula, the first term corresponds to the r.h.s. of (1.16), but there
exists an additional term in SFT.

In the special case of ζ = (0, h) and η = (0, g), the last term of (4.15) vanishes.
This is shown as follows. In the notation introduced in [9], Ψ is generally expressed as
Ψ13 = F123c12(Bc)23 with F123 = F (K1,K2,K3).9 Using this, IζIηΨ is calculated as
follows:

IζIηΨ = Iζ [F123((g/K)1I12 + [g/K, Bc]12)(Bc)23 + F123c12B2(g/K)2I23]
= Iζ [(F113(g/K)1 − F133(g/K)3)(Bc)13 + (F111(g/K)1I13)]
= −(F113(g/K)1 − F133(g/K)3)B1(h/K)1I13

= 0, (4.16)

where we have used in particular IηK = IζK = 0 in the present case. Therefore (4.15) is
reduced to

WC1(ξ′, ξ)−WC2(ξ′, ξ) = −IηIζ(QBΨ + Ψ2). (4.17)

In the restriction ζ = (0, h) and η = (0, g), ζ and η commute each other, [ζ, η]L = 0, which
is the case in (1.16) for CS theory.

Next, considering the curve C given by ξ(s) (s ∈ [0, b]) connecting ξ(0) = 0 and ξ(b),
we will derive the following formula for the Wilson line operated by ←−QB + Ψ:10

WC(ξ(b), 0)
(←−
QB + Ψ(0)

)
= Ψ(ξ(b))WC(ξ(b), 0)

+ i

∫ b

0
dsWC(ξ(b), ξ(s))

[
Iξ̇(s)F(ξ(s))

]
WC(ξ(s), 0), (4.18)

with F(ξ) := QBΨ(ξ) + Ψ(ξ)2. Here we have introduced the new operator ←−QB:

A
←−
QB := −(−1)|A|QBA, (4.19)

which has the following properties:

(A←−QB)‡ = −(−1)|A|A‡←−QB, (4.20)

(AB)←−QB = A(B←−QB) + (−1)|B|(A←−QB)B. (4.21)
9For Ψ =

∑
a
αa(K)cβa(K)Bcγa(K) in the ordinary notation, we have F (K1,K2,K3) =

∑
a
αa(K1)

βa(K2)γa(K3).
10In CS theory, the Wilson line (1.13) follows the formula

WC(x(b), x(a))
(←−d

da + iẋ(a)A(x(a))
)

= 0.

The largest difference between this formula and (4.18) is that, while the a-derivative in the former acts only
on the start point, ←−QB in the latter acts on the whole curve C.
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The last term in (4.18) vanishes if Ψ is on-shell (then Ψ(ξ) is also on-shell as discussed
in section 3.2). The formula (4.18) is expected to be useful for a scenario of degenerate
fluctuation modes around a multi-brane solution explained in appendix C.

For showing (4.18), let us discretize the curve C by using the parameter points
sj = jb/N (j = 0, 1, · · · , N) to express the Wilson line as a product of Wilson links:

WC(ξ(b), 0) = lim
N→∞

W(ξ(b), ξ(sN−1)) · · ·W(ξ(s2), ξ(s1))W(ξ(s1), 0). (4.22)

We start by applying ←−QB + Ψ on w := W(ξ(s1), 0) = 1 + iIξ(s1)Ψ. Writing Ψ(0) = Ψ,
F(0) = F , ξ(s1) = ξ1 and Ψ(ξ(s1)) = Ψ1, we obtain to O(b/N),

w
(←−
QB + Ψ

)
=←−QBw −QBw + wΨ =←−QBw − iQBIξ1Ψ + Ψ + i(Iξ1Ψ)Ψ

=←−QBw + (1 + £ξ1)Ψ + iIξ1QBΨ + iIξ1(Ψ2) + iΨIξ1Ψ

=←−QBw + Ψ1 + iΨ1Iξ1Ψ + iIξ1F

=
(←−
QB + Ψ1

)
w + iIξ1F . (4.23)

Continuing this process to the remaining N − 1 Wilson links in (4.22), we obtain

WC(ξ(b),0)
(←−
QB+Ψ(0)

)
=Ψ(ξ(b))WC(ξ(b),0) (4.24)

+i lim
N→∞

b

N

N−1∑
j=0
WC(ξ(b), ξ(sj+1))

[
Iξ̇(sj)F(ξ(si))

]
WC(ξ(sj),0),

which is nothing but (4.18).

5 Summary and discussions

In this paper, we proposed the KBc interior product IX and the Lie derivative £X spec-
ified by a KBc tangent vector X. By solving the differential equation (3.1) given by
the Lie derivative £X , we constructed infinite number of triads (K(ξ), B(ξ), c(ξ)) which
again satisfies the KBc algebra. Using this, we defined the KBc manifold K consisting of
(K(ξ), B(ξ), c(ξ)) and having ξ as its coordinate. Once we get the notion of the manifold,
the KBc interior product, the Lie derivative and the tangent vector are pushed up onto
the whole K. On the KBc manifold, a curve C is parametrized by a real variable s as ξ(s)
and the Wilson line along C can be naturally defined as (4.7). We found that the Wilson
line has the properties (4.8), (4.15) and (4.18).

There remain many questions/problems to be answered. First, our KBc manifold is
not completely parallel to the ordinary manifold. One of the largest differences is that
quantities carrying ghost number 0, which seem to correspond to 0-forms in CS theory,
do not vanish by the action of interior products. This makes the gauge transformation
rule of Wilson lines complicated. As another example, the action of the Lie derivative
against vectors (2.28) differs from that in differential geometry. In addition to this, there
is a question about KBc tangent vectors. By analogy with the fact that tangent vectors
in differential geometry are expressed as X = Xi∂i, we found the expression of X̂ (2.26)
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and succeeded in reducing [X, Y ]L to [X̂, Ŷ ]. Since we adopted ξ as the coordinate of the
KBc manifold, it is strange that the K-derivative ∂, not the ξ-derivative, appears in the
first term X1K∂ of (2.26). One reason for this would be that we started by introducing
KBc interior product, not by defining KBc tangent vector. To find out a way to construct
KBc manifold from the general principle of the manifold is also an important subject.

As the second problem, the correspondence between SFT and CS theory is incomplete.
Although we introduced the KBc manifold K and regarded that it corresponds to M3 in
CS theory, we have not defined “integration over K.” In fact, the integration

∫
in the SFT

action (1.1) already corresponds to the integration overM3 in CS theory, as given in (1.10).
Thirdly, we comment on the Wilson loop in SFT. In CS theory, we can construct a

gauge-invariant quantity, the Wilson loop, by considering the Wilson line along a closed
loop C and taking the trace; TrWC(x(b), x(a)) with x(b) = x(a). In SFT, one might be
tempted to consider a similar quantity

∫
WC(ξ(b), ξ(a)) consisting of a Wilson line for a

closed curve C with ξ(b) = ξ(a) and the integration
∫
giving the SFT action (1.1). Indeed,

under the gauge transformation, V (ξ(b)) and V (ξ(a))−1 in (4.8) cancel each other due
to
∫
. However, the extra term in the exponent in (4.8) persists. Even worse, since our

Wilson line carries no ghost number,
∫
WC(ξ(b), ξ(a)) vanishes identically; we need an

insertion of Ngh = 3 quantity to make this non-trivial. Construction of gauge invariant
quantities in SFT11 from the Wilson line by circumventing these difficulties would be an
interesting problem.

Finally, the tools we have found in this paper are restricted to the KBc subsector of
SFT. However, we expect that they could be generalized to the whole SFT.

A The determination of IX

Here we determine the KBc interior product IX which carries ghost number −1 and satisfies
the four properties 1–4 mentioned at the beginning of section 2. Since, at this stage, we do
not know that the interior product is specified by a KBc tangent vector X, we write the
interior product as I without X.

The property 1, the anti-Leibniz rule (2.1), is just the definition of the operation of I.
Assuming that the actions of I on K, B and c is again represented by K, B and c, they
are generically expressed as

IK = iBh, IB = 0, (Ic)12 = f1I12 + ig12[B, c]12, (A.1)

where h = h(K), f = f(K) and g12 = g(K1,K2) are arbitrary complex functions of K, and
especially g has two variables. For the symbol ( )12, see section 2.1 of [9].12 Demanding
the property 2 for K,

IK = −(IK)‡ = iBh∗(K), (A.2)

11See [15] and [16] for earlier attempts.
12For Ic = f(K) + i

∑
a
La(K)[B, c]Ra(K) in the ordinary notation, we have g(K1,K2) =

∑
a
La(K1)

Ra(K2).
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we find that h is a real function of K. The property 2 for B is trivially satisfied, and that
for c gives f∗ = f and g∗21 = g12, because

(Ic)12 = (Ic)‡12 = f∗1 I12 + ig∗21[B, c]12 . (A.3)

Once the property 2 is satisfied for K, B and c, one can verify that it is also satisfied for
any generic product of K, B and c due to the anti-Leibniz rule (2.1).

Next, we examine the property 3. The nilpotencies I2K = 0 and I2B = 0 are
automatically satisfied by (A.1). For the condition I2c = 0, from

(I2c)12 = I(f1I12 + ig12[B, c]12)
= iB1I12 (2h1Im(∂1g12)|2→1 + (∂1f1)h1 − 2g11f1) , (A.4)

obtained by using (1.11), we get the following condition:

2h1Im (∂1g12)|2→1 + (∂1f1)h1 − 2g11f1 = 0 . (A.5)

In (A.4), ∂1 denotes ∂/∂K1, ( )2→1 denotes the replacement K2 → K1, and we have used
the relation ∂2g12I12 = ∂2g

∗
21I12 = ∂1g

∗
12I12 .

Finally, let us consider the property 4. The conditions I([K,B]) = 0 and IB2 = 0 are
trivially satisfied. For the remaining two conditions, using

(I{B, c})12 = 2ig11B1I11, (A.6)
(Ic2)13 = (f1 − f3 + i(g11 − g33 − 2g13)) c13 + 2i (g12 + g23) c12(cB)23, (A.7)

we obtain the following three conditions:

g11 = 0, f1 − f2 + i(g11 − g22 − 2g12) = 0, g12 + g23 = K2-indep. (A.8)

The following conditions are rearrangements of those obtained above:

h∗ = h, f∗ = f, g∗21 = g12, g11 = 0 , (A.9)
h1
(
2 Im (∂1g12)|2→1 + ∂1f1

)
= 0 , (A.10)

g12 + g23 = K2-indep , (A.11)
f1 − f2 − 2ig12 = 0 . (A.12)

One can easily verify that the independent conditions are only h∗ = h, f∗ = f and (A.12);
other conditions follow from the three. Since we have

(Ic)12 = f1I12 + 1
2(f1 − f2)[B, c]12 = f1I12 + 1

2 [f, [B, c]]12 , (A.13)

by using (A.12), we obtain (2.6) by the identification X = (X1, X2) = (h,Kf).
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B Relation between interior products at different points

In this appendix, we derive the relation between interior products (and Lie derivatives)
at 1) infinitesimally separated points ξ and ξ + δξ, and 2) the origin and ξ. Here δξ is a
constant vector.

For this purpose, we define a map φα : K → K by

φα(ξ) = ξ − α(ξ), (B.1)

with α being a vector field. An induced map φ∗α maps the vector field X to another vector
field φ∗αX, which is defined by the following relation:

(φ∗αX)(ξ) := X(φα(ξ)) = X(ξ − α(ξ)). (B.2)

This map φ∗α is called differential map in the context of differential geometry.
First, we consider the case 1). Let O(ξ) be a generic product of K(ξ), B(ξ) and c(ξ)

at ξ ∈ K. The operation of I(ξ)
X on O(ξ) is again represented by K(ξ), B(ξ) and c(ξ), so

can be expressed as

I(ξ)
X O(ξ) = FO(K(ξ), B(ξ), c(ξ);X(ξ)). (B.3)

Applying 1 + £(ξ)
δξ against the both hand sides, we get to O(δξ),

(l.h.s.)→ I(ξ)
X

(
1 + £(ξ)

δξ

)
O(ξ) + [£(ξ)

δξ , I
(ξ)
X ]O(ξ) =

(
I(ξ)
X + I(ξ)

[δξ,X]L

)
O(ξ + δξ) (B.4)

and

(r.h.s.)→ FO(K(ξ + δξ), B(ξ + δξ), c(ξ + δξ); (1 + £(ξ)
δξ )X(ξ)) = I(ξ+δξ)

X̃
O(ξ + δξ). (B.5)

Here we have used (2.22) for (B.4) and defined X̃ as

X̃(ξ) = φ∗δξ[(1 + £(ξ)
δξ )X(ξ)] = X(ξ − δξ) + £(ξ−δξ)

δξ X(ξ − δξ). (B.6)

This implies the relation

I(ξ)
X + I(ξ)

[δξ,X]L = I(ξ+δξ)
X̃

. (B.7)

Then using (3.19) and the following relation which is valid to O(δξ),

X = φ∗−δξ[(1−£(ξ)
δξ )X̃], (B.8)

and making the replacement X̃ → X, (B.7) is rewritten as

I(ξ+δξ)
X = I(ξ)

φ∗−δξ(X−£(ξ)
X δξ)

. (B.9)

The formula (B.9) with a constant vector X(ξ) = f ,

I(ξ+δξ)
f = I(ξ)

f−£(ξ)
f
δξ
, (B.10)
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is used to show a property of the Wilson line in subsection 4.2. We can show that the same
formula holds for the Lie derivative:

£(ξ+δξ)
X = £(ξ)

φ∗−δξ(X−£(ξ)
X δξ)

. (B.11)

Next, in order to find the relation for the case 2), we start with applying I(0)
X on K(ξ),

B(ξ) and c(ξ):

I(0)
X K(ξ) = iB(ξ)X1(0)(1 + ∂ξ1), I(0)

X B(ξ) = 0,

I(0)
X c(ξ) = X2(0) +X1(0)K∂ξ2

K(ξ) +
[
X2(0) +X1(0)K∂ξ2

K(ξ) , B(ξ)c(ξ)
]
. (B.12)

Note that these expressions are of the form of (3.16). By defining

X̃ ′(ξ) := (φ∗ξX)(ξ) + (φ∗ξX)1(ξ)K∂ξ = X(0) +X1(0)K∂ξ, (B.13)

the relation

I(0)
X = I(ξ)

X̃′
= I(ξ)

φ∗
ξ
X+(φ∗

ξ
X)1K∂ξ , (B.14)

holds for K(ξ), B(ξ) and c(ξ). Using that each of the three expressions of (B.14) follow the
anti-Leibniz rule (2.1), this relation (B.14) holds in the KBc subsector. The same relation
as (B.14) holds for the Lie derivative:

£(0)
X = £(ξ)

φ∗
ξ
X+(φ∗

ξ
X)1K∂ξ . (B.15)

C A mechanism of emergence of degenerate fluctuation modes using the
SFT Wilson line

In this appendix, as a possible application of our Wilson line in SFT, we present a scenario
of the emergence of degenerate fluctuation modes around a multi-brane solution within the
KBc subsector. See [17] for another approach.

C.1 SFT with Chan-Paton factors

First, let us consider SFT with Chan-Paton factors, where the string field has indices; Ψab

(a, b = 1, · · · , N). This SFT describes the theory of N D25-branes, and each string state
has N2 degeneracies. Using vertex operators OF (k) for each string state F with momentum
kµ (an example is Otachyon(k) = e−K/2 c eik·Xe−K/2), Ψab is expanded as

Ψab =
∫

d26k

(2π)26

∑
F

OF (k)ϕabF (k), (C.1)

where ϕabF (k) is the associated component field. The present string field is subject to
the reality condition

(
Ψab

)‡ = Ψba. Taking the vertex operator satisfying the condition
OF (k)‡ = OF (−k), the component field has to satisfy the reality condition

ϕabF (k)‡ = ϕbaF (−k). (C.2)
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Then the SFT action with trace over Chan-Paton factors reads

S =
∫

Tr
(1

2ΨQBΨ + 1
3Ψ3

)
= 1

2

∫
k,k′

(∫
OF (k)QBOF ′(k′)

)
ϕabF (k)ϕbaF ′(k′)

+ 1
3

∫
k,k′,k′′

(∫
OF (k)OF ′(k′)OF ′′(k′′)

)
ϕabF (k)ϕbcF ′(k′)ϕcaF ′′(k′′), (C.3)

where we have omitted ∑F , used the abbreviation
∫
k =

∫
d26k/(2π)26, and put g2 = 1. In

the last two terms of (C.3), we have omitted the sign factors, which arise from the change
of the ordering of ϕabF ’s if we include the ghost fields in (C.1) (the sign factors are the same
as those in (C.8), which are also omitted there).

C.2 SFT around a multi-brane solution

Our problem is whether we can reproduce the action (C.3) for the fluctuation ∆Ψ around
a possible N brane classical solution Ψ0, Ψ = Ψ0 + ∆Ψ, in SFT (1.1) without Chan-Paton
factors. The action of the fluctuation ∆Ψ is given by

S =
∫ (1

2∆ΨQΨ0∆Ψ + 1
3∆Ψ3

)
, (C.4)

where QΨ0 the BRST operator around Ψ0 defined by (4.6). Here we assume that ∆Ψ is
expanded in terms of V ‡aOF (k)Vb with some Va (a = 1, · · · , N) carrying Ngh[Va] = 0 and
the associated component field ϕabF (k):

∆Ψ =
∫
k

∑
a,b

V ‡aOF (k)Vb ϕabF (k). (C.5)

The reality condition ∆Ψ‡ = ∆Ψ implies again (C.2). Let us substitute (C.5) into (C.4)
to examine whether we can reproduce (C.3). First, from

QΨ0

(
V ‡aOF (k)Vb

)
= V ‡a (QBOF (k))Vb +

[(
QB + Ψ0

)
V ‡a

]
OF (k)Vb

− (−1)|OF (k)|V ‡aOF (k)
[
Vb
(←−
QB + Ψ0

)]
, (C.6)

we find that Va should satisfy

Va
(←−
QB + Ψ0

)
= 0, (C.7)

which is equivalent to
(
QB + Ψ0

)
V ‡a = 0 by using (4.20). Assuming that Va satisfies (C.7),

we obtain

S = 1
2

∫
k,k′

(∫
V ‡aOF (k)VbV ‡a′

(
QBOF ′(k′)

)
Vb′

)
ϕab(k)ϕa′b′(k′) (C.8)

+ 1
3

∫
k,k′,k′′

(∫
V ‡aOF (k)Vb V ‡a′OF ′(k

′)Vb′ V ‡a′′OF ′′(k
′′)Vb′′

)
ϕabF (k)ϕa′b′F ′ (k′)ϕa′′b′′F ′′ (k′′).

This action is reduced to (C.3) by imposing another condition on Va:

VaV
‡
b = δa,bI (a, b = 1, · · · , N). (C.9)
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Therefore, the problem is to construct N Va ’s satisfying (C.7) and (C.9). First, let us
consider (C.7).13 The formula (4.18) for the SFT Wilson line suggests us that it could be
a candidate for Va satisfying (C.7). In fact, the last term of (4.18) with Ψ = Ψ0 vanishes
since F(ξ(s)) = 0. As for the first term on the r.h.s. of (4.18), Ψ0(ξ(b))WC(ξ(b), 0), it could
be possible that Ψ0(ξ(b)) goes to zero by taking ξ(b) to the “infinity” on the KBc manifold.
For example, let us consider the 2-brane solution [6–9] given by

Ψ2-brane = − 1√
K
c

K2

1 +K
Bc

1√
K
. (C.10)

Then taking ξ1 →∞, we find that Ψ2-brane(ξ)→ 0. This is because, from (3.12), Ψ2-brane(ξ)
is given as follows:

Ψ2-brane(ξ) = − e−iξ
2√

K(ξ)
c
e−ξ

1
K(ξ)2

1 +K(ξ) Bc
eiξ

2√
K(ξ)

∼ O(e−ξ1). (C.11)

Even if we adopt as Va the Wilson line extending to the infinity and satisfying (C.7),
there still remains a problem; whether there exist N curves Ca satisfying the orthonormality
condition (C.9). Note that VaV ‡b is a Wilson line of the curve which starts at the infinity,
goes along Cb in the reverse direction to reach the origin, and then returns to the infinity
along Ca. Therefore, the normalization condition VaV ‡a = I is automatically satisfied. For
establishing the orthogonality, VaV ‡b = 0 for a 6= b, we need a deeper understanding of the
KBc manifold.

13For a classical solution of pure-gauge type, Ψ0 = UQBU
−1, Va = U−1 is a solution to (C.7) since we

have Va
(←−
QB + Ψ0

)
= (VaU)←−QBU

−1.
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