
Eur. Phys. J. C (2020) 80:40
https://doi.org/10.1140/epjc/s10052-019-7596-4

Regular Article - Theoretical Physics

Study on wormhole geometry with ρ(R, R
′
) matter in modified

gravity

Nisha Godani1,a, Smrutirekha Debata2,b, Shantanu K. Biswal3,c, Gauranga C. Samanta4,d

1 Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
2 Government Polytechnic, Goa, India
3 Department of Physics, Gandhi Institute for Technological Advancement, Bhubaneswar, India
4 Department of Mathematics, BITS Pilani K K Birla Goa Campus, Goa, India

Received: 3 November 2019 / Accepted: 26 December 2019 / Published online: 16 January 2020
© The Author(s) 2020

Abstract In this work, static traversable wormholes are
investigated in R2 gravity with logarithmic trace term T ,
where R denotes the Ricci scalar, and T = −ρ + pr +
2pt > 0, the trace of the energy momentum tensor. The
connection between energy density of the matter component
and the Ricci scalar is taken into account. Exact wormhole
solutions are determined for three different novel forms of
energy density: ρ = α1R + β1R

′
eξ1R , ρ = α2Reξ2R and

ρ = α3R2 +β2R
′
eξ3R

′
, where prime denotes derivative with

respect to r . The parameters α1, β1, ξ1, α2, ξ2, α3, ξ3 and
β2 play an important role for the absence of exotic matter
inside the wormhole geometry. The parameter space is sepa-
rated into numerous regions where the energy conditions are
obeyed.

1 Introduction

The notion of wormhole was first proposed by L. Flamm in
1916 [1]. After Flamm, the more detailed nature of wormhole
was explored by Einstein and Rosen [2], which is famously
called as Einstein–Rosen bridge. A wormhole is a geomet-
rical piece of space-time, which is supposed as a shortcut
to join two distinct points in the same space-time or two
distinct space-times. The shape of wormhole is considered
like a tube, which is asymptotically flat at both sides. The
radius of the throat of wormhole can be either constant or
variable. If it is constant, then wormholes are termed as
static wormholes otherwise these are termed as non-static
wormholes. Further, investigation revealed that the Einstein–
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Rosen wormhole is opposing to outward appearances. For an
observer trying to pass through, the wormhole opens up and
closes too quickly for even a photon to get through [3]. Fur-
ther, investigation by Morris et al. [4] suggested that exotic
forms of matter threaded through a wormhole might keep it
open, however, it remains unclear whether such provisions
are physically possible. Finally, Morris and Thorne intro-
duced static traversable wormholes that describe interstellar
travel [5] and are exact solutions of the Einstein field equa-
tions in general relativity. After Morris and Thorne, Visser
[6] deeply studied in wormhole construction and showed that
the key factor in the wormhole geometry is the destruction of
classical energy conditions near the throat of wormhole, i.e.
for the matter contained near the throat of wormhole radial
tension must exceed the mass energy density (τ0 > ρ0c2). So
far no known matter has this property and such type of matter
must violate null energy condition. The matter that violates
Null Energy Condition (NEC) stated by Tμνkμkν ≥ 0, in
which kμ is any null vector and Tμν stress-energy tensor,
is called exotic matter. Hence, the exotic matter is one of
the necessary components to form a wormhole geometry in
general relativity [4–6]. So far laboratory and ordinary mat-
ters obey energy conditions, so, several researchers attempt
to explain the problem of exotic matter in studying worm-
hole theory. In scalar–tensor theories, scalar fields play the
part of exotic matter, in precise, wormhole solutions can be
found if scalar fields play as a role of phantom fluid [7–9].
Many classes of efforts have been built on the modified grav-
ity theories such as f (R) gravity [10–13], curvature matter
coupling [14,15] and brane-world [16–21]. In these theo-
ries, the effective stress energy tensor causes the violation of
energy conditions. Since in these theories the higher order
curvature terms have been used instead of an ordinary stress
energy tensor. For example, in the brane-world scenario,
the Einstein field equations are modified because the four-
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dimensional brane is embedded in five-dimensional bulk, so
in this consequence, the ordinary matter satisfies NEC and
violation of the NEC is because of the terms coming from
the bulk effects [20]. Nevertheless, there are extended theo-
ries in which a traversable wormhole respect NEC [22–26].
Recently, Samanta and Godani [27] studied static traversable
wormhole in viable f (R) model and showed that the pres-
ence of exotic matter near the throat could be avoided by
suitable choice of throat size. In fact, the study of traversable
wormholes in generalized theories is a major and noticeable
concern and many authors have carried out it from various
angles [28–46](mentioned few, only).

The theory of general relativity is modified in several
aspects in literature [47–51]. The modified theory of f (R)

gravity [52] is one which is adopted by various researchers
to describe the expanding scenario of the universe. This the-
ory replaces the scalar curvature R with an arbitrary function
f (R) in gravitational action. Starobinsky [53] studied f (R)

model with f (R) = R + αR2, where α > 0 and found it
to represent the inflationary epoch of the early universe. Fur-
thermore, the scenario to unify inflation with dark energy in
a consistent way was proposed in [54]. Bertolami et al. [55]
discussed a coupling between function f (R) and the mat-
ter Lagrangian which leads towards the presence of an extra
force in the geodesic equation of a perfect fluid. Further, this
force is found to be responsible factor for the accelerated
and expanding nature of our universe [56–58]. Moreover,
the cosmological models in the context of modified theo-
ries are explored in [59–79]. Many f (R) models are also
ruled out because they do not pass solar system tests [80].
Nevertheless, a number of realistic consistent f (R) grav-
ities which pass the solar tests were proposed in [81–83].
Further, f (R, T ) theory of gravity [84] is another modified
theory of gravity that includes an arbitrary function of both
R and T , where T denotes the trace of the stress-energy
tensor, in gravitational action. Several forms of f (R, T )

function are defined and studied in literature. Its split-up
f (R, T ) = f1(R) + f2(T ), where f1(R) and f2(T ) are
arbitrary functions of R and T respectively, has attracted the
attention of cosmologists in different perspectives [85–106].

In nature, the presence of wormholes can be anticipated
in extreme conditions. These may be found around either
black holes at the center of our galaxy or binary black hole
systems. In literature, efforts are put to discuss the possibil-
ities for the detection of wormholes. Bambi [107] analyzed
the iron kα line and explored the possibility of distinguish-
ing black holes and wormholes. Further, the same author
[108] suggested the possibility to examine through observa-
tions the idea that the supermassive objects in galactic nuclei
are wormholes. They explained that the observations of the
shadow of Sgr A∗, having mass of 4×106 M� with the corre-
sponding Schwarzchild radius of rg = 0.084 AU, could test
the possibility that Sgr A∗ is a wormhole rather than black

hole. Li and Bambi [109] discussed the possibility of test-
ing the existence of a wormhole at the center of our galaxy
through the observations of a hot blob of plasma orbiting
near the ISCO of Sgr A∗. It is known that Sgr A∗ harbors
a super massive black hole at the center of our galaxy. Dai
and Stojkovic [110] investigated the possibility that Sgr A∗
might be a wormhole. They studied the motion of star S2

orbiting a super massive black hole in Sgr A∗ at the center
of our galaxy and found that the near future data would soon
inform the harboring of a wormhole by black hole.

The purpose of this article is to explore the traversable
wormholes filled with non-exotic matter in f (R, T ) gravity
by defining energy density in following forms: ρ = α1R +
β1R

′
eξ1R , ρ = α2Reξ2R and ρ = α3R2 + β2R

′
eξ3R

′
. The

parametersα1,β1, ξ1,α2, ξ2,α3, ξ3 andβ2 are found to play an
important role to provide the existence of non-exotic matter
for the development of wormhole solutions. The structure of
the paper is as follows: In Sect. 2, the general field equations
for f (R, T ) gravity are mentioned. In Sect. 3, a new form of
f (R, T ) function, non-linear in R and logarithmic in T , is
defined and field equations are derived. In Sect. 4, three forms
of energy density are defined and wormhole solutions are
obtained for each form. Further, the results are also discussed
for each form. Finally, the findings are concluded in Sect. 5.

2 f (R, T ) gravity

The f (R, T ) theory, proposed by Harko et al. [84] is an
extended theory of relativity in which the gravitational action
is defined as

S = SG +Sm = 1

16π

∫
f (R, T )

√−gd4x+
∫ √−gLd4x,

(1)

where f (R, T ) stands for an arbitrary function of Ricci scalar
R and trace of the energy momentum tensor T . We have used
G = c = 1. The energy momentum tensor is defined in terms
of the matter action as [111]:

Tμν = −2δ(
√−gL)√−gδgμν

. (2)

which yields

Tμν = gμνL − 2
∂L

∂gμν
, (3)

where L denotes the matter Lagrangian density. The trace
of stress energy momentum tensor T and its variation with
respect to metric, respectively, are defined as T = gμνTμν

and
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δ(gαβTαβ)

δgμν
= Tμν + �μν, (4)

where �μν = gαβ δTαβ

δgμν . Varying action (1) with respect to
the metric tensor gμν , yields

fR(R, T )Rμν − 1

2
f (R, T )gμν + (gμν� − �μ�ν) fR(R, T )

= 8πTμν − fT (R, T )Tμν − fT (R, T )�μν, (5)

where fR(R, T ) ≡ ∂ f (R, T )

∂R
and fT (R, T ) ≡ ∂ f (R, T )

∂T
.

For f (R, T ) = R, the Eq. (5) reduces to Einstein’s field
equations of general relativity and for f (R, T ) = f (R),
(5) reduces to Einstein’s field equations of f (R) gravity. We
consider the stress-energy tensor in the form of

Tμν = (p + ρ)uμuν − pgμν, (6)

and the matter Lagrangian L as L = −p. The four velocity
uμ satisfies the conditions uμuμ = 1 and uμ�νuμ = 0. If the
matter source is a perfect fluid, then �μν = −2Tμν − pgμν .

In this present study, we consider f (R, T ) = f (R) +
2 f (T ), where f (R) and f (T ) are arbitrary functions of R
and T .

3 f (R, T ) = R + αR2 + 2β ln(T ) and field equations

In the present section, we define f (R, T ) function as

f (R, T ) = R + αR2 + 2β ln(T ), (7)

where T = −ρ + pr + 2pt > 0 and, α and β are constants.
The metric of static, spherical and symmetric wormhole
geometry is defined as

ds2 = −e2�(r)dt2 + dr2

1 − b(r)/r
+ r2(dθ2 + sin2 θdφ2),

(8)

where r is the radial coordinate that can take values from
r0 �= 0 to ∞, where r0 stands for the radius of the throat. In
metric (8), b(r) is called shape function and �(r) is called
redshift function. The values of angles θ and φ lie from 0 to π

and 0 to 2π , respectively. The red shift function must be finite
everywhere in order to avoid the existence of singularities and
horizons. The shape function b(r) must fulfill the following
characteristics: (i) b(r)

r < 1 for r > r0, (ii) b(r0) = r0 at

r = r0, (iii) b(r)
r → 0 as r → ∞, (iv) b(r)−b′(r)r

b(r)2 > 0

for r > r0 and (v) b′(r0) ≤ 1. The condition (i) is nec-
essary for the radial metric component to be negative. The
shape function possesses minimum value equal to r0 given
by condition (ii). To obtain asymptotically flat space time as
r → ∞, the condition (iii) is required. Conditions (iv) and

(v) are known as flaring out condition which are required to
obtain traversable wormholes.

For the matter source of wormholes, the energy momen-
tum tensor is defined as

Tμν = (ρ + pt )uμuν − pt gμν + (pr − pt )XμXν, (9)

such that

uμuμ = −1 and XμXμ = 1, (10)

where ρ denotes the energy density, pr and pt stand for the
radial and tangential pressures respectively.

For the metric (8), the Ricci scalar R = 2b′(r)
r2 . The field

equations with f (R, T ) = R+αR2+2β ln(T ) for the metric
(8) are:

b′(r)
r2 + A(r) = 8πρ − 2β − β ln(−ρ + pr + 2pt ) (11)

−b(r)

r3 + B(r) = 8πpr

+ 4β(pr + pt )

−ρ + pr + 2pt
+ β ln(−ρ + pr + 2pt ) (12)

b(r) − rb′(r)
2r3 + C(r) = 8πpt

+ 2β(3pt + pr )

−ρ + pr + 2pt
+ β ln(−ρ + pr + 2pt ), (13)

where A(r) = 1
r5

[
6rαb′(r)2 + b′(r)

(
4αb(r) + r3 − 8αr −

2r2αb′′(r)
)

+ r
(

8rαb′′(r) − 6αb(r)b′′(r) − 4r2αb′′′(r) +
4rαb(r)b′′′(r)

)]
,

B(r) = 1
r5

[
12αb(r)b′(r) − 8rαb(r)b′′(r) − 16αrb′(r) +

2rαb′(r)2 + 8r2αb′′(r)
]

and C(r) = 1
2r5

[
− 20αb(r)b′(r) + 20αb(r)b′′(r) −

8rαb(r)b′′′(r)−8rαb′(r)2 +32rαb′(r)+4r2αb′(r)b′′(r)+
24rαb′′(r) − 8r2αb′′′(r)

]
.

4 Different forms of matter density

In this section, some new exact static traversable wormhole
solutions sustained by non-exotic matter, by assuming dif-
ferent hypotheses for their matter content in f (R, T ) =
R + αR2 + 2β ln(T ) gravity, are found. In particular, we
would like to construct exact traversable wormhole models
assuming that the energy density of the matter contained
in wormhole could be described by one of the following
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terminologies: ρ = α1R + β1R
′
eξ1R , ρ = α2Reξ2R and

ρ = α3R2 +β2R
′
eξ3R

′
, respectively, where prime stands for

derivative with respect to r and R denote the Ricci scalar. In
our first form of ρ, if we consider ξ1 = 0, then our first form
of the ρ(r) will be reduced to the model studied by [42], i.e.
ρ = α1R + β1R

′
, in this particular model if we consider

α1 = 1 and β1 = r
2 , then the matter content of the wormhole

will depend on the second derivative of shape function, i.e.

ρ = b
′′
r . In our second form of ρ, if we neglect the higher

degree of eξ2R terms, then the form of ρ will be reduced to
the model discussed by [42]. In our third form of ρ, if we
consider ξ3 = 0, then the form of ρ will be reduced to the
model discussed by [42]. The more detailed and comparisons
of the models are discussed in the next section.

The wormhole modeling with power-law shape func-
tion have been studied by several authors [10,27,112–116].
Samanta and Godani [27] considered power law shape func-
tion, which is defined as

b(r) = r0

(
r

r0

)γ

, (14)

where 0 < γ < 1. They obtained wormhole solutions using
the framework of f (R) gravity and found the satisfaction of
energy conditions for wormholes having the radius of throat
greater 1.7. So the following natural questions arise: (i) What
are the wormhole solutions in the setting of f (R, T ) gravity?
(ii) Are the energy conditions satisfied in the new setting of
f (R, T ) gravity? (iii) What should be the radius of throat
for the validation of energy conditions? To answer all these
questions, we have taken the same shape function (14) with
a novel function f (R, T ) = R + αR2 + 2β ln(T ), where α

and β are constants. To obtain the explicit form of the radial
and tangential pressure, we would like to consider one more
condition pt = kpr .

Model-I: In this model, we assumed the following form of
the energy density for the wormhole geometry:

ρ = α1R + β1R
′
eξ1R (15)

Let us use the shape function defined in Eq. (14) and the
condition pt = kpr , to obtain the explicit form of ρ and pr .

ρ = 2γ r0

r4

(
r

r0

)γ
(

α1(−r) − β1(γ − 3)e− 2γ ξ1r0

(
r
r0

)γ

r3

)

(16)

pr =
[

2γ r0

(
r

r0

)γ (
r
(

8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )
e− 2γ ξ1r0

(
r
r0

)γ

r3

(
β1(γ − 3) + α1re

2γ ξ1r0

(
r
r0

)γ

r3

) ]

÷
[
r4

(
r
(

8α(γ − 5)(γ − 1)γ + r3(−3γ

+ (4γ − 2)k − 1) − 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2)) + 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+19k − 4))

(
r

r0

)γ )]
. (17)

The wormhole sustain by non-exotic matter is a major part in
this study, so we try to minimize exotic matter in the worm-
hole geometry. Hence we need to check all energy condi-
tions to minimize exotic matter. The terms ρ + pr , ρ + pt ,
ρ + pr + 2pt , ρ − |pr | and ρ − |pt | are computed below:

ρ + pr = 2γ r0

r4

(
r

r0

)γ

×
(

α1(−r) − β1(γ − 3)e− 2γ ξ1r0

(
r
r0

)γ

r3

)

+
[

2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )
e− 2γ ξ1r0

(
r
r0

)γ

r3

×
(

β1(γ − 3) + α1re
2γ ξ1r0

(
r
r0

)γ

r3

)]

÷
[
r4 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ

+ (4γ − 2)k − 1) − 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+19k − 4))

(
r

r0

)γ )]
(18)

ρ + pt = 2γ r0

r4

(
r

r0

)γ

×
(

α1(−r) − β1(γ − 3)e− 2γ ξ1r0

(
r
r0

)γ

r3

)

+ k

[
2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )
e− 2γ ξ1r0

(
r
r0

)γ

r3

×
(

β1(γ − 3) + α1re
2γ ξ1r0

(
r
r0

)γ

r3

) ]

÷
[
r4 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ

+ (4γ − 2)k − 1) − 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2)) + 4αγ r0((γ − 1)(2γ − 9)
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+ r(−2(γ − 4)γ + (γ − 8)γ k

+19k − 4))

(
r

r0

)γ )]
(19)

ρ + pr + 2pt = 2γ r0

r4

(
r

r0

)γ

×
(

α1(−r) − β1(γ − 3)e− 2γ ξ1r0

(
r
r0

)γ

r3

)
+ (1 + 2k)

×
[

2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )
e− 2γ ξ1r0

(
r
r0

)γ

r3

×
(

β1(γ − 3) + α1re
2γ ξ1r0

(
r
r0

)γ

r3

)]

÷
[
r4 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ

+ (4γ − 2)k − 1) − 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2)) + 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]
(20)

ρ − |pr | = 2γ r0

r4

(
r

r0

)γ

×
(

α1(−r) − β1(γ − 3)e− 2γ ξ1r0

(
r
r0

)γ

r3

)

−
∣∣∣∣
[

2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )
e− 2γ ξ1r0

(
r
r0

)γ

r3

×
(

β1(γ − 3) + α1re
2γ ξ1r0

(
r
r0

)γ

r3

)]

÷
[
r4 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ

+ (4γ − 2)k − 1) − 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+19k − 4))

(
r

r0

)γ )]∣∣∣∣ (21)

ρ − |pt | = 2γ r0

r4

(
r

r0

)γ

×
(

α1(−r) − β1(γ − 3)e− 2γ ξ1r0

(
r
r0

)γ

r3

)

−
∣∣∣∣k

[
2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+ (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )

×e− 2γ ξ1r0

(
r
r0

)γ

r3

×
(

β1(γ − 3) + α1re
2γ ξ1r0

(
r
r0

)γ

r3

) ]

÷
[
r4 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ

+ (4γ − 2)k − 1)

− 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+19k − 4))

(
r

r0

)γ )]∣∣∣∣. (22)

Discussion for Model-I: ρ = α1R + β1R
′
eξ1R

The parameter α1, β1 and ξ1 are the controlling parameters
for the model ρ = α1R+β1R

′
eξ1R . The function f (R, T ) =

R+αR2 +2β ln(T ) is dependent on constants α and β. The
constant ξ1 can be zero, positive or negative. So, there are
three possible cases:

• Case-I: ξ1 = 0
• Case-II: ξ1 > 0
• Case-III: ξ1 < 0

For each case, there are following eight possible subcases:
(i) α1 > 0, β1 > 0, α > 0, (ii) α1 > 0, β1 > 0, α < 0, (iii)
α1 < 0, β1 < 0, α > 0, (iv) α1 < 0, β1 < 0, α < 0, (v)
α1 > 0, β1 < 0, α > 0, (vi) α1 > 0, β1 < 0, α < 0, (vii)
α1 < 0, β1 > 0, α > 0, (viii) α1 < 0, β1 > 0, α < 0.
Thus, there are total 24 following subcases for Model-I.
1. ξ1 = 0, α1 > 0, β1 > 0, α > 0, 2. ξ1 = 0, α1 > 0,
β1 > 0, α < 0,
3. ξ1 = 0, α1 < 0, β1 < 0, α > 0, 4. ξ1 = 0, α1 < 0,
β1 < 0, α < 0,
5. ξ1 = 0, α1 > 0, β1 < 0, α > 0, 6. ξ1 = 0, α1 > 0,
β1 < 0, α < 0,
7. ξ1 = 0, α1 < 0, β1 > 0, α > 0, 8. ξ1 = 0, α1 < 0,
β1 > 0, α < 0,
9. ξ1 > 0, α1 > 0, β1 > 0, α > 0, 10. ξ1 > 0, α1 > 0,
β1 > 0, α < 0,
11. ξ1 > 0, α1 < 0, β1 < 0, α > 0, 12. ξ1 > 0, α1 < 0,
β1 < 0, α < 0,
13. ξ1 > 0, α1 > 0, β1 < 0, α > 0, 14. ξ1 > 0, α1 > 0,
β1 < 0, α < 0,
15. ξ1 > 0, α1 < 0, β1 > 0, α > 0, 16. ξ1 > 0, α1 < 0,
β1 > 0, α < 0,
17. ξ1 < 0, α1 > 0, β1 > 0, α > 0, 18. ξ1 < 0, α1 > 0,
β1 > 0, α < 0,
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Table 1 Results for Model-I: ρ = α1R + β1R
′
eξ1R

S. no. Terms Subcase 1 Subcase 2 Subcase 4
ξ1 = 0, α1 > 0, β1 > 0, α > 0 ξ1 = 0, α1 > 0, β1 > 0, α < 0 ξ1 = 0, α1 < 0, β1 < 0, α < 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, r > 2.4, ∀k
2 ρ + pr > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, r > 2.4, k ≤ 0

3 ρ + pt > 0, ∀r , k ∈ [0, 2) > 0, ∀r , ∀k > 0, r > 2.4, k ≤ 0

4 ρ + pr + 2pt < 0, ∀r , ∀k > 0, ∀r , k = 0 > 0, r > 2.4, k ≤ 0

5 ρ − |pr | > 0, ∀r , k > 0 > 0, ∀r , k �= 0 > 0, r > 2.4, k ≤ 0

6 ρ − |pt | > 0, ∀r , k ∈ [0, 1] > 0, ∀r , ∀k < 0,∀r , ∀k
7 � > 0, ∀r , k ∈ [0, 1] > 0, ∀r , k = 1 > 0, r > 2.4, k ≤ 0

8 ω > 0, ∀r , k ≤ −1 > 0, ∀r , k ≤ 0 < 0, ∀r , ∀k

Table 2 Results for Model-I: ρ = α1R + β1R
′
eξ1R

S. no. Terms Subcase 7 Subcase 8 Subcase 9
ξ1 = 0, α1 < 0, β1 > 0, α > 0 ξ1 = 0, α1 < 0, β1 > 0, α < 0 ξ1 > 0, α1 > 0, β1 > 0, α > 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, r < 2.5, ∀k
2 ρ + pr > 0, ∀r , k �= 0 > 0, ∀r , ∀k > 0, r < 2.5, ∀k
3 ρ + pt > 0, r < 1.6, ∀k > 0, ∀r , k �= 1 > 0, 0.2 < r < 1.6, ∀k
4 ρ + pr + 2pt > 0, r < 1.6, k ≤ 0 > 0, ∀r , k ≤ 0 > 0, r ∈ (0.2, 0.6) ∪ (2.4,∞), ∀k
5 ρ − |pr | > 0, ∀r , k > 2 > 0, ∀r , k ≤ 0 > 0, r ∈ (.2, 2.6), ∀k
6 ρ − |pt | > 0, ∀r , k ∈ (−1, 1) < 0, ∀r , ∀k > 0, r ∈ (.2, 2.6), ∀k
7 � > 0, ∀r , k ∈ (−1, 2) > 0, ∀r , k ≤ 0 > 0, r > 2.4, ∀k
8 ω > 0, r > 0.4, k ≤ 0 < 0, ∀r , ∀k > 0, r > 0.4, k < 0

19. ξ1 < 0, α1 < 0, β1 < 0, α > 0, 20. ξ1 < 0, α1 < 0,
β1 < 0, α < 0,
21. ξ1 < 0, α1 > 0, β1 < 0, α > 0, 22. ξ1 < 0, α1 > 0,
β1 < 0, α < 0,
23. ξ1 < 0, α1 < 0, β1 > 0, α > 0, 24. ξ1 < 0, α1 < 0,
β1 > 0, α < 0.
The all possible studies of the model have been taken into
account. The energy conditions and geometry are investi-
gated for each subcase with the variation of r and k. In Sub-
cases 3, 5, 6, 12, 13, 14, 19, 21 and 22, the energy density
and NEC terms are found to be negative near and outside the
throat of the wormhole, which implies that whole geometry
filled with exotic matter. As per the requirement for the con-
struction of wormhole, the NEC could be violated near the
throat, which indicates the presence of exotic matter near the
throat. However, outside throat the wormhole must be filled
with normal matter, which implies that all energy condition
must be satisfied. Therefore, these subcases are either unre-
alistic or beyond of our knowledge to judge the nature, so we
ignore these subcases for our discussion.

For remaining subcases, the results are summarized in
Tables 1, 2, 3, 4 and 5. In Subcase 1, both WEC and DEC
are satisfied for all r > 0 and k ∈ [0, 1], however SEC is
dissatisfied. In Subcase 2, if k = 0, both WEC and SEC are
satisfied and DEC is not satisfied for all r > 0. If k �= 0, both

WEC and DEC are satisfied everywhere and SEC is not. In
Subcase 4, WEC and SEC validate for r > 2.4 and k ≤ 0,
so in this subcase if we assume the minimum size of the
throat is r0 = 2.4, then we can avoid exotic matter, unless
exotic matter could be available near throat. In Subcase 7,
WEC and SEC are satisfied for r < 1.6 and k < 0 and DEC
is violated everywhere, which implies that the huge amount
of exotic matter is threaded in the wormhole geometry. In
Subcase 8, although WEC and SEC are valid for all r and
k ≤ 0, however DEC is invalid everywhere, so we are not
about the presence or absence of exotic matter.

In Subcase 9, WEC and DEC are obeyed for r ∈ (0.2, 1.6)

and for all k and all WEC, SEC and DEC are obeyed for
r ∈ (0.2, 0.6) and for all k. In Subcase 10, WEC and DEC
are satisfied for r ∈ (0.2, 5) and k < 0 and all WEC, DEC
and SEC are also satisfied for r ∈ (0.2, 5) and k < −2.
In Subcase 11, SEC and DEC is satisfied nowhere, however
WEC is satisfied for r ∈ (2.5, 3.1) and k �= 0. In Subcase
15, DEC is not violated for r < 8. WEC is valid for all r
and k and SEC is valid for all r and k ≤ 0. Thus, both WEC
and SEC are valid for all r and k ≤ 0. In Subcase 16, WEC
holds everywhere for every k. SEC also holds everywhere
but for k ∈ [−1, 0]. DEC holds for r ∈ (0.6,∞) and k ∈
(−∞, 0] ∪ (1,∞). Thus, all WEC, SEC and DEC hold for
r > 0.6 and k ∈ [−1, 0], so in this subcase, if we consider
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Table 3 Results for Model-I: ρ = α1R + β1R
′
eξ1R

S. no. Terms Subcase 10 Subcase 11 Subcase 15
ξ1 > 0, α1 > 0, β1 > 0, α < 0 ξ1 > 0, α1 < 0, β1 < 0, α > 0 ξ1 > 0, α1 < 0, β1 > 0, α > 0

1 ρ > 0, r ∈ (0.2, 5), ∀k > 0, r ≥ 2.5, ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, r ∈ (0.2, 5), ∀k > 0, r ≥ 2.5, ∀k > 0, ∀r , ∀k
3 ρ + pt > 0, r ∈ (0.2, 5), ∀k > 0, r ∈ (2.5, 3.1), k �= 0 > 0, ∀r , ∀k
4 ρ + pr + 2pt > 0, r ∈ (0.2,∞), k < −2 > 0, r < 2.5, k > 0 > 0, ∀r , k ≤ 0

5 ρ − |pr | > 0, r ∈ (0.2, 5), k < 0 > 0, r ∈ (0, 0.2) ∪ (2.6,∞), ∀k > 0, ∀r , k ∈ (−∞,−1] ∪ [0,∞)

6 ρ − |pt | > 0, r ∈ (0.2, 5), k < 0 < 0, ∀r , ∀k > 0,r ∈ (0, 8), k ∈ (−∞,−1] ∪ [0,∞)

7 � > 0, r ∈ (0.2, 2.6), k ≤ 0 > 0, r ∈ (2.4, 3.2), k > 0 < 0, ∀r , ∀k
8 ω > 0, r > 0.6, k ≤ 0 > 0, r > 0.5, k �= 0 > 0, ∀r , k ≤ 0

Table 4 Results for Model-I: ρ = α1R + β1R
′
eξ1R

S. no. Terms Subcase 16 Subcase 17 Subcase 18
ξ1 > 0, α1 < 0, β1 > 0, α < 0 ξ1 < 0, α1 > 0, β1 > 0, α > 0 ξ1 < 0, α1 > 0, β1 > 0, α < 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
3 ρ + pt > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
4 ρ + pr + 2pt > 0, ∀r , k ∈ [−1, 0] > 0, ∀r , k ≤ 0 > 0, ∀r , ∀k
5 ρ − |pr | > 0, ∀r , k ∈ (−∞, 0] ∪ (1,∞) > 0, r > 2.5, ∀k > 0, r > 2.6, ∀k
6 ρ − |pt | > 0, r ∈ (0.6,∞), ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
7 � > 0, r ∈ (0, 0.6), k ∈ [0, 1] > 0, r > 2.5, ∀k > 0, r > 2.6, ∀k
8 ω > 0, r ∈ (−∞, 0) ∪ (0.5,∞), k ≤ 0 > 0, ∀r , k ≤ 0 > 0, r > 0.6, ∀k

Table 5 Results for Model-I:
ρ = α1R + β1R

′
eξ1R S. no. Terms Subcase 20 Subcase 23 Subcase 24

ξ1 < 0, α1 < 0, ξ1 < 0, α1 < 0 ξ1 < 0, α1 < 0,
β1 < 0, α < 0 β1 > 0, α > 0 β1 > 0, α < 0

1 ρ > 0, r > 2.5, ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, r > 2.5, ∀k > 0, ∀r , k �= 0 > 0, ∀r , ∀k
3 ρ + pt > 0, r > 2.5, ∀k > 0, ∀r , k ≤ 0 > 0, ∀r , ∀k
4 ρ + pr + 2pt ≥ 0, r > 9, ∀k > 0, ∀r , k < 0 > 0, ∀r , k �= 0

5 ρ − |pr | > 0, r > 2.5, ∀k > 0, r > 0.3, k < 0 > 0, ∀r , ∀k
6 ρ − |pt | > 0, r > 2.5, ∀k > 0, ∀r , k < 0 > 0, ∀r , ∀k
7 � < 0, r > 2.5, ∀k < 0, ∀r , ∀k < 0, r > 0.5, ∀k
8 ω Between −1 and 0, r > 1, ∀k > 0, r > 0.5, k < 0 > −1, ∀r , ∀k

the minimum throat size of the wormhole is r0 = 0.6, then
the presence of exotic matter could be avoidable.

In Subcase 17, WEC is obeyed everywhere for every k.
SEC is also obeyed everywhere but for k ≤ 0. DEC is obeyed
for r > 2.5 and for all k. Thus, all WEC, SEC and DEC are
obeyed for r > 2.5 and k ≤ 0, so in this subcase, if we
assume the minimum throat size is r0 = 2.5, then all ECs are
valid and consequently we can say that the wormhole could
be sustained without exotic matter. In Subcase 18, WEC and
SEC are satisfied everywhere for every k. DEC is obeyed for
r > 2.6 and for all k. Thus, all WEC, SEC and DEC are
obeyed for r > 2.6 and for all k, so in this subcase, if we

assume the throat size is r0 = 2.6 or more, then the exotic
matter can be removed for the development of wormhole
structure. In Subcase 20, NEC, WEC and DEC are validated
for r > 2.5 and for all k. SEC validates for r > 9 and for
all k. Thus, all ECs NEC, WEC, SEC and DEC validate for
r > 9 and for all k. In Subcase 23, WEC and SEC are satisfied
everywhere for k < 0, however DEC is satisfied for r > 0.9.
So, all ECs are satisfied for r > 0.3 and k < 0. In Subcase 24,
all WEC, SEC and DEC hold for any range of r , and k �= 0.
The results for subcases discussed above are also shown in
Fig. 1a–o. Hence, it is observed that the energy conditions are
satisfied in various subcases of Model-I. The highest ranges
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Fig. 1 Plots of EC terms for 15
subcases of model I:
ρ = α1R + β1R

′
eξ1R

(a) This figure depicts the behavior of all EC terms
for Model-I in Subcase 1 (ξ1 = 0, α1 > 0, β1 > 0,
α > 0). NEC, WEC and DEC are found to be
satisfied for every r > 0.

(b) This figure depicts the behavior of all EC terms
for Model-I in Subcase 2 (ξ1 = 0, α1 > 0, β1 > 0,
α < 0). NEC, WEC and DEC are found to be
satisfied for every r > 0.

(c) This figure shows the nature of all EC terms for
Model-I in Subcase 4 (ξ1 = 0, α1 < 0, β1 < 0, α <
0). Except SEC, all ECs are found to be satisfied
for every r > 0.

(d) This figure depicts the behavior of all EC terms
for Model-I in Subcase 7 (ξ1 = 0, α1 < 0, β1 >
0, α > 0). Except DEC, all ECs are found to be
satisfied for every r > 0.

(e) This figure depicts the behavior of all EC terms
for Model-I in Subcase 8 (ξ1 = 0, α1 < 0, β1 >
0, α < 0). Except DEC, all ECs are found to be
satisfied for every r > 0.

(f) This figure depicts the behavior of all EC terms
for Model-I in Subcase 9 (ξ1 > 0, α1 > 0, β1 > 0,
α > 0). All ECs are shown to satisfy for every
r > 0.
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Fig. 1 continued

for Model-I in Subcase 10 (ξ1 > 0, α1 > 0, β1 > 0,
α < 0). All ECs are shown to satisfy for r > 0.2.

for Model-I in Subcase 11 (ξ1 > 0, α1 < 0, β1 < 0,
α > 0). Only WEC is valid for r ∈ (2.5, 3.1).

for Model-I in Subcase 15 (ξ1 > 0, α1 < 0, β1 > 0,
α > 0). All ECs are shown to satisfy for r > 0.

for Model-I in Subcase 16 (ξ1 > 0, α1 < 0, β1 > 0,
α < 0). All ECs are found to be satisfied for every
r > 0.6.

for Model-I in Subcase 17 (ξ1 < 0, α1 > 0, β1 > 0,
α > 0). All ECs are found to be satisfied for every
r > 2.5.

(g)This figure depicts the behavior of all EC terms (h)This figure depicts the behavior of all EC terms

(i) This figure depicts the behavior of all EC terms (j) This figure shows the behavior of all EC terms

(k)This figure depicts the behavior of all EC terms (l) This figure depicts the behavior of all EC terms
for Model-I in Subcase 18 (ξ1 < 0, α1 > 0, β1 > 0,
α < 0). All ECs are found to be satisfied for every
r > 2.6.
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Fig. 1 continued

for Model-I in Subcase 20 (ξ1 < 0, α1 < 0, β1 < 0,
α < 0). All ECs are found to be satisfied for every
r > 9.

for Model-I in Subcase 23 (ξ1 < 0, α1 < 0, β1 > 0,
α > 0). All ECs are found to be satisfied for every
r > 0.3.

(m) This figure depicts the behavior of all EC terms (n) This figure depicts the behavior of all EC terms

(o) This figure depicts the behavior of all EC terms
for Model-I in Subcase 24 (ξ1 < 0, α1 < 0, β1 > 0,
α < 0). All ECs are found to be satisfied for every
r > 0.

of r and k for the validation of desired properties are found
in Subcase 24, i.e. ξ1 < 0, α1 < 0, β1 > 0, α < 0. In
this subcase, the energy conditions are valid for every r and
k �= 0. The geometry is repulsive near the throat till r = 0.6
and then it is attractive. In this subcase, the value of EoS
parameter ω > −1, i.e. the wormhole geometry is filled with
non-phantom fluid.

Model-II: In this model, we assumed the energy density in
the following form:

ρ = α2Re
ξ2R (23)

Let us use the shape function defined in Eq. (14) and the
condition pt = kpr , then

ρ = −
2α2γ r0

(
r
r0

)γ

e− 2γ ξ2r0

(
r
r0

)γ

r3

r3 (24)

pr =
[

2α2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )
e− 2γ ξ2r0

(
r
r0

)γ

r3

]

÷
[
r3 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k − 1) − 8αγ r(−(γ − 5)γ

+ (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9) + r(−2(γ − 4)γ

+ (γ − 8)γ k + 19k − 4))

(
r

r0

)γ ) ]
. (25)

The wormhole sustain by non-exotic matter is a major
part in this study, so we try to minimize exotic matter in
the wormhole geometry. Hence we need to check all energy
conditions to minimize exotic matter. The terms ρ + pr , ρ +
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Table 6 Results for Form II: ρ = α2Reξ2R

S. no. Terms Subcase 3 Subcase 4 Subcase 7
ξ2 = 0, α2 < 0, α > 0 ξ2 = 0, α2 < 0, α < 0 ξ2 > 0, α2 < 0, α > 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, ∀r , k ∈ (−∞, 0) ∪ (1,∞) > 0, ∀r , k �= 1 > 0, ∀r , k ∈ (−∞, 0) ∪ (1,∞)

3 ρ + pt > 0, r < 4.7, k �= 1 > 0, ∀r , k �= 1 > 0, ∀r , ∀k
4 ρ + pr + 2pt > 0, r ≤ 5, k ≤ 0 > 0, ∀r , k ∈ [−4, 0) > 0, r ≥ 6, k ≤ 0

5 ρ − |pr | > 0, r < 4.7, k ≤ −1 > 0, ∀r , k ∈ (−∞, 0) ∪ (1,∞) > 0, ∀r , k ≤ 0

6 ρ − |pt | > 0, r > 1.5, k ≤ 0 > 0, ∀r , k �= 1 > 0, ∀r , k ≤ 0

7 � < 0, ∀r , k ∈ (−∞, 0) ∪ (1,∞) > 0, r < 0.1, k �= 1 > 0, r < 0.6, k ≤ 0

8 ω > 0, ∀r , k ≤ 0 > 0, ∀r , k ≤ 0 > 0, r > 0.5, k ≤ 0

Table 7 Results for Form II: ρ = α2Reξ2R

S. no. Terms Subcase 8 Subcase 11 Subcase 12
ξ2 > 0, α2 < 0, α < 0 ξ2 < 0, α2 < 0, α > 0 ξ2 < 0, α2 < 0, α < 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, r > 0.5, k �= 1 > 0, r > 0.3, ∀k > 0, ∀r , k �= 1

3 ρ + pt > 0, ∀r , k �= 1 > 0, r > .1, ∀k > 0, r > 0.2, ∀k
4 ρ + pr + 2pt > 0, ∀r , k ≤ 0 > 0, r > 4, k ≥ 0 ∀r , k ≥ 0

5 ρ − |pr | > 0, r > 0.5, k ∈ (−∞, 0) ∪ (1,∞) > 0, ∀r , k > 0 > 0, r > 0.5, ∀k
6 ρ − |pt | > 0, r > 0.5, k �= 1 > 0, ∀r , k ≥ 0 > 0, r > 0.55, ∀k
7 � < 0, ∀r , k �= 1 > 0, ∀r , k < 0 > 0, r < 0.6, k < 0

8 ω > 0, ∀r , k ≤ 0 > 0, ∀r , k < 0 > 0, ∀r , k ≤ 0

pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | are computed as
below:

ρ + pr = −
2α2γ r0

(
r
r0

)γ

e− 2γ ξ2r0

(
r
r0

)γ

r3

r3

+
[

2α2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+(γ − 3)r3 + 16α(γ − 5)γ r)

− 4αγ r0
(
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2γ ξ2r0

(
r
r0

)γ

r3

]
÷

[
r3 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k − 1)

− 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2)

+ 4αγ r0((γ − 1)(2γ − 9))

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ ) ]
(26)

ρ + pt = −
2α2γ r0

(
r
r0

)γ

e− 2γ ξ2r0

(
r
r0

)γ

r3

r3

+k

[
2α2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+(γ − 3)r3 + 16α(γ − 5)γ r)

− 4αγ r0
(
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2γ ξ2r0

(
r
r0

)γ

r3

]
÷

[
r3 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k − 1)

− 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2)

+ 4αγ r0((γ − 1)(2γ − 9))

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]
(27)

ρ + pr + 2pt = −
2α2γ r0

(
r
r0

)γ

e− 2γ ξ2r0

(
r
r0

)γ

r3

r3

+(1 + 2k)

[
2α2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+(γ − 3)r3 + 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )

×e− 2γ ξ2r0

(
r
r0

)γ

r3

]
÷

[
r3 (r (8α(γ − 5)(γ − 1)γ
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+ r3(−3γ + (4γ − 2)k − 1)

− 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2)

+ 4αγ r0((γ − 1)(2γ − 9))

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ ) ]
(28)

ρ − |pr | = −
2α2γ r0

(
r
r0

)γ

e− 2γ ξ2r0

(
r
r0

)γ

r3

r3

+
∣∣∣∣
[

2α2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+(γ − 3)r3 + 16α(γ − 5)γ r) − 4αγ r0 (11γ

+ γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )

×e− 2γ ξ2r0

(
r
r0

)γ

r3

]
÷

[
r3 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k − 1)

− 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2)

+ 4αγ r0((γ − 1)(2γ − 9))

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]∣∣∣∣ (29)

ρ − |pt | = −
2α2γ r0

(
r
r0

)γ

e− 2γ ξ2r0

(
r
r0

)γ

r3

r3

+
∣∣∣∣k

[
2α2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+ (γ − 3)r3 + 16α(γ − 5)γ r
)

− 4αγ r0

(
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2γ ξ2r0

(
r
r0

)γ

r3

]
÷

[
r3 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k − 1)

− 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2)

+ 4αγ r0((γ − 1)(2γ − 9))

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ ) ]∣∣∣∣. (30)

Discussion for Model-II: ρ = α2Reξ2R

This form of ρ is dependent on constants α2 and ξ2 and
f (R, T ) = R + αR2 + 2β ln(T ) is dependent on constants
α and β. For the detail study of the model, we can consider

the constant ξ2 to be zero, positive or negative. So, there are
three possible cases:

• Case-I: ξ2 = 0
• Case-II: ξ2 > 0
• Case-III: ξ2 < 0

For each case, there are following four possible subcases: (i)
α2 > 0, α > 0, (ii) α2 > 0, α < 0, (iii) α2 < 0, α > 0 and
(iv) α2 < 0, α < 0.
Thus, there are total 12 following subcases for Model-II.
1. ξ2 = 0, α2 > 0, α > 0, 2. ξ2 = 0, α2 > 0, α < 0,
3. ξ2 = 0, α2 < 0, α > 0
4. ξ2 = 0, α2 < 0, α < 0, 5. ξ2 > 0, α2 > 0, α > 0,
6. ξ2 > 0, α2 > 0, α < 0,
7. ξ2 > 0, α2 < 0, α > 0, 8. ξ2 > 0, α2 < 0, α < 0,
9. ξ2 < 0, α2 > 0, α > 0,
10. ξ2 < 0, α2 > 0, α < 0 11. ξ2 < 0, α2 < 0, α > 0,
12. ξ2 < 0, α2 < 0, α < 0.
The energy conditions and geometry are investigated for each
subcase with the variation of r and k. It is found that the
energy density and NEC terms are negative in Subcases 1,
2, 5, 6, 9 and 10. Furthermore it is found that the NEC is
violated for entire region of the wormhole geometry which
implies that the whole geometry is threaded with exotic mat-
ter. Therefore, those subcases are either physically unrealistic
or beyond of our knowledge to study.

For remaining subcases, the results are summarized in
Tables 6 and 7. In Subcase 3, WEC is satisfied for r < 4.7
and k ∈ (−∞, 0) ∪ (1,∞). SEC is valid for r ≤ 5 and
k ≤ 0. DEC is valid for 1.5 < r < 4.7 and k ≤ −1.
Thus, WEC & DEC are valid for 1.5 < r < 4.7 and k ≤
−1 and WEC & SEC are valid for r ≤ 1 and k ≤ 0. In
Subcase 4, WEC is satisfied for all r and k �= 1. SEC is
satisfied for all r and k ∈ (−4, 0). DEC is satisfied for all
r and k ∈ (−∞, 0) ∪ (1,∞). All, WEC, SEC and DEC
are satisfied for all r and k ∈ (−4, 0), so in this subcase,
we realized that the wormhole could be sustained without
exotic matter. In Subcase 7, WEC is obeyed for all r and
k ∈ (−∞, 0) ∪ (1,∞). SEC is obeyed for r ≥ 6 and k < 0.
DEC is obeyed for all r and k ≤ 0. So, WEC, SEC and DEC
are obeyed for r ≥ 6 and k ≤ 0, so in this subcase, to avoid
exotic matter, we require to assume the minimum throat size
r0 = 6. In Subcase 8, WEC is valid for r > 0.5 and k �= 1.
SEC is valid for r > 0.5 and k ≤ 0. DEC is valid for r > 0.5
and k ∈ (−∞, 0) ∪ (1,∞). Thus, all WEC, SEC and DEC
are validated for r > 0.5 and k < 0, so, to avoid exotic matter
in the wormhole, the minimum throat size will be r0 = 0.5.
In Subcase 11, WEC holds for r > 0.3 and for all k. SEC
holds for r > 4 and k ≥ 0. DEC holds for all r and k > 0.
Thus, all WEC, SEC and DEC hold for r > 4 and k > 0,
so, to avoid exotic matter in the wormhole construction, the
minimum throat size will be r0 = 4. In Subcase 12, WEC
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is not violated for r > 0.2 and k �= 1. SEC is not violated
for r > 0.2 and k ∈ [0, 1) ∪ (1,∞). DEC is not violated
for r > 0.55 and for all k. Hence, all WEC, SEC and DEC
are not violated for r > 0.55 and k ∈ [0, 1) ∪ (1,∞). The
results for subcases discussed above are shown in Fig. 2a–f.
Thus, it can be seen that in Subcase 4 i.e. ξ2 = 0, α2 < 0,
α < 0, all energy conditions are satisfied for all r > 0
and k ∈ [−4, 0). The wormholes are filled with ordinary
fluid having repulsive geometry for r < 0.1 and attractive
geometry for r ≥ 1.

Model-III: In this model, we assumed the energy density in
the following form:

ρ = α3R
2 + β2R

′
eξ3R

′
(31)

Let us use the shape function defined in equation (14) and
the condition pt = kpr , then

ρ = 2γ r0

r6

(
r

r0

)γ (
2α3γ r0

(
r

r0

)γ

− β2(γ − 3)r2e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

)
(32)

pr =
[

2γ r0

(
r

r0

)γ (
r
(

8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0

×
(

11γ + γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )

×e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4
(
β2(γ − 3)r2 − 2α3γ r0

×
(
r

r0

)γ

e
2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

) ]

÷
[
r6 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k

− 1) − 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]
. (33)

The wormhole sustain by non-exotic matter is a crucial part
in this study, so we try to minimize exotic matter in the worm-
hole geometry. Hence we need to check all energy conditions
to minimize exotic matter. The expressions for ρ+ pr , ρ+ pt ,
ρ + pr + 2pt , ρ − |pr | and ρ − |pt | are computed below:

ρ + pr = 2γ r0

r6

(
r

r0

)γ (
2α3γ r0

(
r

r0

)γ

− β2(γ − 3)r2e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

)

+
[

2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0

× (
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4
(
β2(γ − 3)r2 − 2α3γ r0

×
(
r

r0

)γ

e
2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

) ]
÷

[
r6 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k

− 1) − 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k + 19k − 4))

(
r

r0

)γ )]

(34)

ρ + pt = 2γ r0

r6

(
r

r0

)γ (
2α3γ r0

(
r

r0

)γ

− β2(γ − 3)r2e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

)

+k

[
2γ r0

(
r

r0

)γ (
r
(

8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0

×
(

11γ + γ 2(r − 2) − 3(5r + 3)
) (

r

r0

)γ )

×e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4
(
β2(γ − 3)r2 − 2α3γ r0

×
(
r

r0

)γ

e
2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

) ]
÷

[
r6 (r (8α(γ − 5)(γ − 1)γ

+ r3(−3γ + (4γ − 2)k

− 1) − 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ ) ]
(35)

ρ + pr + 2pt = 2γ r0

r6

(
r

r0

)γ (
2α3γ r0

(
r

r0

)γ

− β2(γ − 3)r2e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

)
+ (1 + 2k)

×
[

2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ+(γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0

× (
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4
(
β2(γ − 3)r2 − 2α3γ r0

×
(
r

r0

)γ

e
2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

) ]

÷
[
r6 (

r
(
8α(γ − 5)(γ − 1)γ+r3(−3γ+(4γ − 2)k
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(a) This figure depicts the behavior of all EC terms
for Model-II in Subcase 3 (ξ2 = 0, α2 < 0, α > 0).
All ECs are shown to satisfy for r > 1.5.

(b) This figure shows the behavior of all EC terms
for Model-II in Subcase 4 (ξ2 = 0, α2 < 0, α < 0).
All ECs are found to be satisfied for every r > 0.

(c) This figure depicts the behavior of all EC terms
for Model-II in Subcase 7 (ξ2 > 0, α2 < 0, α > 0).
All ECs are found to be satisfied for every r > 6.

(d) This figure depicts the behavior of all EC terms
for Model-II in Subcase 8 (ξ2 > 0, α2 < 0, α < 0).
All ECs are found to be satisfied for every r > 0.5.

(e) This figure depicts the behavior of all EC terms
for Model-II in Subcase 11 (ξ2 < 0, α2 < 0, α > 0).
All ECs are found to be satisfied for every r > 4.

(f) This figure depicts the behavior of all EC terms
for Model-II in Subcase 12 (ξ2 < 0, α2 < 0, α < 0).
All ECs are found to be satisfied for every r > 0.55.

Fig. 2 Plots of EC terms for 6 subcases of model II: ρ = α2Reξ2R
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− 1) − 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]
(36)

ρ − |pr | = 2γ r0

r6

(
r

r0

)γ (
2α3γ r0

(
r

r0

)γ

− β2(γ − 3)r2e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

)

−
∣∣∣∣
[

2γ r0

(
r

r0

)γ (
r
(
8α(γ − 5)(γ − 1)γ + (γ − 3)r3

+ 16α(γ − 5)γ r) − 4αγ r0

× (
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4
(
β2(γ − 3)r2 − 2α3γ r0

×
(
r

r0

)γ

e
2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

) ]

÷
[
r6 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ + (4γ − 2)k

− 1) − 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]∣∣∣∣ (37)

ρ − |pt | = 2γ r0

r6

(
r

r0

)γ (
2α3γ r0

(
r

r0

)γ

− β2(γ − 3)r2e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

)

−
∣∣∣∣k

[
2γ r0

(
r

r0

)γ

(r (8α(γ − 5)(γ − 1)γ

+ (γ − 3)r3 + 16α(γ − 5)γ r
) − 4αγ r0

× (
11γ + γ 2(r − 2) − 3(5r + 3)

) (
r

r0

)γ )

×e− 2(γ−3)γ ξ3r0

(
r
r0

)γ

r4
(
β2(γ − 3)r2 − 2α3γ r0

×
(
r

r0

)γ

e
2(γ−3)γ ξ3r0

(
r
r0

)γ

r4

) ]

÷
[
r6 (

r
(
8α(γ − 5)(γ − 1)γ + r3(−3γ + (4γ − 2)k

− 1) − 8αγ r(−(γ − 5)γ + (γ − 4)(γ − 3)k − 2))

+ 4αγ r0((γ − 1)(2γ − 9)

+ r(−2(γ − 4)γ + (γ − 8)γ k

+ 19k − 4))

(
r

r0

)γ )]∣∣∣∣. (38)

Discussion for Model-III: ρ = α3R2 + β2R
′
eξ3R

′

This form of ρ is dependent on constants α3, β2 and ξ3 and
f (R, T ) = R + αR2 + 2β ln(T ) is dependent on constants
α and β. Like first two forms, our model consists of four

constants α3, β2, ξ3 and α. The constant ξ3 can be zero,
positive or negative. So, there are three possible cases:

• Case-I: ξ3 = 0,
• Case-II: ξ3 > 0,
• Case-III: ξ3 < 0

For each case, there are following eight possible subcases:
(i) α3 > 0, β2 > 0, α > 0, (ii) α3 > 0, β2 > 0, α < 0, (iii)
α3 < 0, β2 < 0, α > 0, (iv) α3 < 0, β2 < 0, α < 0, (v)
α3 > 0, β2 < 0, α > 0, (vi) α3 > 0, β2 < 0, α < 0, (vii)
α3 < 0, β2 > 0, α > 0, (viii) α3 < 0, β2 > 0, α < 0.
Thus, there are total 24 following subcases for Model-III.
1. ξ3 = 0, α3 > 0, β2 > 0, α > 0, 2. ξ3 = 0, α3 > 0,
β2 > 0, α < 0,
3. ξ3 = 0, α3 < 0, β2 < 0, α > 0, 4. ξ3 = 0, α3 < 0,
β2 < 0, α < 0,
5. ξ3 = 0, α3 > 0, β2 < 0, α > 0, 6. ξ3 = 0, α3 > 0,
β2 < 0, α < 0,
7. ξ3 = 0, α3 < 0, β2 > 0, α > 0, 8. ξ3 = 0, α3 < 0,
β2 > 0, α < 0,
9. ξ3 > 0, α3 > 0, β2 > 0, α > 0, 10. ξ3 > 0, α3 > 0,
β2 > 0, α < 0,
11. ξ3 > 0, α3 < 0, β2 < 0, α > 0, 12. ξ3 > 0, α3 < 0,
β2 < 0, α < 0,
13. ξ3 > 0, α3 > 0, β2 < 0, α > 0, 14. ξ3 > 0, α3 > 0,
β2 < 0, α < 0,
15. ξ3 > 0, α3 < 0, β2 > 0, α > 0, 16. ξ3 > 0, α3 < 0,
β2 > 0, α < 0,
17. ξ3 < 0, α3 > 0, β2 > 0, α > 0, 18. ξ3 < 0, α3 > 0,
β2 > 0, α < 0,
19. ξ3 < 0, α3 < 0, β2 < 0, α > 0, 20. ξ3 < 0, α3 < 0,
β2 < 0, α < 0,
21. ξ3 < 0, α3 > 0, β2 < 0, α > 0, 22. ξ3 < 0, α3 > 0,
β2 < 0, α < 0,
23. ξ3 < 0, α3 < 0, β2 > 0, α > 0, 24. ξ3 < 0, α3 < 0,
β2 > 0, α < 0.
Like first two models, the energy conditions and geometry
are investigated for each subcase with the variation of r and
k. In Subcases 3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21, and 22 the
energy density and NEC terms are found to be negative for
entire region. Therefore, in those subcases the entire worm-
hole geometry completely filled with exotic matter, which
is unrealistic. So, these subcases are not of our interest. For
remaining subcases, the results are summarized in Tables 8,
9, 10 and 11. In Subcase 1, WEC is satisfied for r > 0.2
and k ∈ (−∞, 0) ∪ (1,∞), SEC is satisfied for r > 0.2
and k ∈ (−∞, 0) and DEC is satisfied for r > 0.22 and
k �= 0. All WEC, SEC and DEC are satisfied for r > 0.22 and
k ∈ (−∞, 0). So, in this subcase, the existence of exotic mat-
ter can be avoided by choosing size of the throat as r0 = 0.22.
In Subcase 2, WEC and SEC hold for all r and k ≤ 0 and
DEC holds for all r and k = 0. k = 0, means the tangen-
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Table 8 Results for Form III: ρ = α3R2 + β2R
′
eξ3R

′

S. no. Terms Subcase 1 Subcase 2 Subcase 7
ξ3 = 0, α3 > 0, β2 > 0, α > 0 ξ3 = 0, α3 > 0, β2 > 0, α < 0 ξ3 = 0, α3 < 0, β2 > 0, α > 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, r > 0.25, ∀k
2 ρ + pr > 0, r > 0.2, k ∈ (−∞, 0) ∪ (1,∞) > 0, ∀r , k ≤ 0 > 0, r > 0.2, ∀k
3 ρ + pt > 0, ∀r , ∀k, > 0, ∀r , k ≤ 0 > 0, r > 0.5, ∀k
4 ρ + pr + 2pt > 0, ∀r , k ≤ 0 > 0, ∀r , k ≤ 0 < 0, ∀r , ∀k
5 ρ − |pr | > 0, r > 0.21, k �= 0 > 0, ∀r , k ≤ 0 > 0, ∀r , k ∈ (−∞,−1) ∪ (0,∞)

6 ρ − |pt | > 0, r > 0.22, ∀k > 0, ∀r , k = 0 > 0, 0.5 < r < 2.7, ∀k
7 � < 0, ∀r , k �= 1 > 0, ∀r , k ≤ 1 > 0, ∀r , k �= 1

8 ω > 0, ∀r , k ≤ 0 < 0, ∀r , ∀k > 0, ∀r , k ≤ 0

Table 9 Results for Form III: ρ = α3R2 + β2R
′
eξ3R

′

S. no. Terms Subcase 8 Subcase 9 Subcase 10
ξ3 = 0, α3 < 0, β2 > 0, α < 0 ξ3 > 0, α3 > 0, β2 > 0, α > 0 ξ3 > 0, α3 > 0, β2 > 0, α < 0

1 ρ > 0, r > 0.2, ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, r > 0.2, ∀k > 0, r > 0.3, k ∈ [0, 1) > 0, ∀r , ∀k
3 ρ + pt > 0, r > 0.2, ∀k, > 0, r < 3.7, ∀k > 0, r > 0.2, ∀k
4 ρ + pr + 2pt > 0, r > 0.2, k ∈ (−1, 0) > 0, r < 1, k ≤ 0 > 0, ∀r , k ∈ (−1, 0)

5 ρ − |pr | > 0, r > 0.25, k �= 0 > 0, 0.3 < r < 3.7, ∀k > 0, r > 0.3, k �= 0

6 ρ − |pt | > 0, r > 0.2, ∀k > 0, 0.4 < r < 3.7, ∀k > 0, r > 0.3, k �= 0

7 � < 0, ∀r , k �= 1 > 0, ∀r , k ≤ 1 > 0, r < 0.6, ∀k
8 ω > 0, r > 0.5, k ≤ 0 > 0, ∀r , k ≤ 0 > 0, r > 0.1, k ≤ 0

Table 10 Results for Form III: ρ = α3R2 + β2R
′
eξ3R

′

S. no. Terms Subcase 15 Subcase 16 Subcase 17
ξ3 > 0, α3 < 0, β2 > 0, α > 0 ξ3 > 0, α3 < 0, β2 > 0, α < 0 ξ3 < 0, α3 > 0, β2 > 0, α > 0

1 ρ > 0, ∀r , ∀k > 0, ∀r , ∀k > 0, ∀r , ∀k
2 ρ + pr > 0, r > 0, k �= 0 > 0, r > 0.2, ∀k > 0, 0.3 < r < 3.7, ∀k
3 ρ + pt > 0, r > 0, k �= 0, > 0, r > 0.2, ∀k > 0, 0.3 < r < 3.7, ∀k
4 ρ + pr + 2pt > 0, r > 2.4, k �= 0 > 0, ∀r , k ∈ (−1, 0) > 0, r < 3.7, k ∈ (−1, 0)

5 ρ − |pr | > 0, r > 0, ∀k > 0, r > 0.3, k �= 0 > 0, r < 3.7, k ∈ (−1, 0)

6 ρ − |pt | > 0, r > 0, ∀k > 0, r > 0.2, ∀k > 0, 0.3 < r < 3.7, ∀k
7 � < 0, ∀r , k �= 1 < 0, ∀r , k �= 1 < 0, ∀r , ∀k
8 ω > 0, ∀r , k ≤ 0 < 0, ∀r , ∀k > 0, ∀r , k ≤ 0

Table 11 Results for Form III: ρ = α3R2 + β2R
′
eξ3R

′

S. no. Terms Subcase 18 Subcase 23 Subcase 24
ξ3 < 0, α3 > 0, β2 > 0, α < 0 ξ3 < 0, α3 < 0, β2 > 0, α > 0 ξ3 < 0, α3 < 0, β2 > 0, α < 0

1 ρ > 0, ∀r , ∀k > 0, r > 0.9, ∀k > 0, r > 0.9, ∀k
2 ρ + pr > 0, ∀r , k �= 1 > 0, r > 0.9, k ∈ (−∞, 0) ∪ (1,∞) > 0, r > 0.9, ∀k
3 ρ + pt > 0, ∀r , k �= 1, > 0, r > 0.9, ∀k > 0, r > 0.9, ∀k
4 ρ + pr + 2pt > 0, ∀r , k �= 0 ≥ 0, r > 6, ∀k > 0, r > 0.9, k �= 0

5 ρ − |pr | > 0, r > 4, k �= 0 > 0,r > 0.9, ∀k > 0, r > 3, k �= 0

6 ρ − |pt | > 0, r > 0.6, ∀k > 0, r > 0.9, ∀k > 0, r > 0.9, ∀k
7 � < 0, ∀r , k �= 1 > 0, 0.5 < r < 1, ∀k > 0, r < 3.7, k = 1

8 ω > 0, ∀r , k ≤ 0 < 0, r > 0.9, k ≤ 0 > 0, ∀r , k ≤ 0
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tial pressure pt is zero. In this subcase, we can say that the
matter could be avoided by taking zero tangential pressure,
however, which could be unrealistic. In subcase 7, WEC is
valid for r > 0.5 and for all k. SEC is invalid everywhere.
DEC is valid for 0.5 < r < 2.7 and k ∈ (−∞,−1)∪(0,∞).
All WEC, SEC and DEC are valid for 0.5 < r < 2.7 and
k ∈ (−∞,−1) ∪ (0,∞), which implies that the wormhole
geometry is filled with normal matter for very small region
0.5 < r < 2.7, elsewhere, the geometry filled with exotic
matter. In Subcase 8, WEC holds for r > 0.2 and for all
k. SEC holds for r > 0.2 and k ∈ (−1, 0). DEC holds for
r > 0.25 and k �= 0. Thus, all WEC, SEC and DEC hold for
r > 0.25 and k ∈ (−1, 0), so in this subcase, if we assume
the minimum size of the throat is r0 = 0.25, then we can
remove the necessity of exotic matter. In Subcase 9, WEC is
satisfied for 0.3 < r < 3.7 and k ∈ [0, 1). SEC is satisfied
for r < 1 and k = 0. DEC is satisfied for 0.4 < r < 3.7 and
for all k. All WEC, SEC and DEC are satisfied 0.4 < r < 1
and k = 0. This subcase may be irrelevant for the study of
the wormhole, because we obtained very small region where
all ECs are satisfied with the zero tangential pressure. In Sub-
case 10, WEC is not violated for r > 0.2 and for all k. SEC
is not violated for r > 0.2 and k ∈ (−1, 0). DEC is not
violated for r > 0.3 and k �= 0. Hence, WEC, DEC and
SEC are not violated for r > 0.3 and k ∈ (−1, 0), so in this
subcase we may choose the minimum size of the throat is
r0 = 0.3 to avoid the presence of exotic matter. In Subcase
15, WEC and DEC are obeyed for r > 0 and k �= 0. SEC
is obeyed for r > 2.4 and for all k. Thus, all WEC, SEC
and DEC are obeyed for r > 2.4 and k �= 0. In Subcase
16, WEC is valid for r > 0.2 and for all k. SEC is valid
for r > 0.2 and k ∈ (−1, 0). DEC is valid for r > 0.3 and
k �= 0. All WEC, SEC and DEC are valid for r > 0.3 and
k ∈ (−1, 0). In Subcase 17, WEC holds for 0.3 < r < 3.7
and for all k. Both SEC and DEC hold for 0.3 < r < 3.7 and
k ∈ (−1, 0). All WEC, SEC and DEC hold for 0.3 < r < 3.7
and k ∈ (−1, 0). In Subcase 18, WEC is satisfied for all r
and k �= 1. SEC is satisfied for all r and k = 0. DEC is
satisfied for r > 4 and k �= 0. Thus, all ECs are valid for
r > 4 and k /∈ {0, 1}. In Subcase 23, WEC is obeyed for
r > 0.9 and k ∈ (−∞, 0)∪ (1,∞). SEC is obeyed for r > 6
and k ∈ (−∞, 0) ∪ (1,∞). DEC is obeyed for r > 0.9 and
for all k. All WEC, SEC and DEC are obeyed for r > 6 and
k ∈ (−∞, 0) ∪ (1,∞). In Subcase 24, WEC validates for
r > 0.9 and for all k, SEC validates for r > 0.9 and k �= 0
and DEC validates for r > 3 and k �= 0. Thus, both WEC
and SEC are validated for r > 0.9 and k �= 0 and both WEC
and DEC are validated for r > 3 and k �= 0. All WEC, SEC
and DEC are satisfied nowhere. The results for subcases dis-
cussed above are plotted in Fig. 3a–l. It can be observed that
the highest range of r for the validity of energy conditions
is r > 0 in Subcase 2 but only for k = 0. This implies the
zero tangential pressure which is not preferable. In Subcases

8, 10 and 16, we have same results for energy conditions.
In these subcases, energy conditions are valid for r > 0.3
ad k ∈ (−1, 0). In Subcase 8, the geometry is attractive, in
Subcase 10, it is repulsive for 0.3 < r < 0.6 and attractive
for r ≥ 0.6 and in Subcase 16, it is also attractive. In Subcase
8 and 16, ω > 0 for r > 0.5 and in Subcase 10, ω > 0 for
r > 0.1. Since we are finding the existence of wormholes
filled with ordinary fluid having repulsive geometry near the
throat and attractive away from the throat, we have all desired
geometrical properties in Subcase 10 of Model-III.

Thus, we have most favourable results for (i) ρ = α1R +
β1R

′
eξ1R with r > 0 & k �= 0 (Subcase 24 in Model-I),

(ii) ρ = α2Reξ2R with r > 0 & k ∈ (−4, 0) (Subcase 4 in

Model-II) and (iii) ρ = α3R2 + β2R
′
eξ3R

′
with r > 0.3 &

k ∈ (−1, 0) (Subcase 10 in Model-III).

5 Conclusion

The present paper is aimed at the investigation of traversable
wormhole solutions in f (R, T ) gravity with novel function
f (R, T ) = R+αR2+2β ln(T ), where α and β are constants
and T = −ρ + pr + 2pt > 0. Using this f (R, T ) function,
the field equations are derived in Sect. 3. To solve these field
equations, the shape function b(r) is considered as b(r) =
r0

(
r
r0

)γ

, where 0 < γ < 1. Further, the radial pressure

pr and tangential pressure pt are considered to be related
as pt = kpr . Furthermore, the connection between Ricci
scalar and energy density of the matter component is taken
into account. We have defined three new forms of energy
density: I. ρ = α1R + β1R

′
eξ1R , II. ρ = α2Reξ2R and III.

ρ = α3R2+β2R
′
eξ3R

′
, where α1, α2, α3, β1, β2, ξ1, ξ2 and ξ2

are constants. For each ρ function, the solutions are obtained
in preceding section.

In our first form of ρ, if we consider ξ1 = 0, then our
first form of the ρ will be reduced to ρ = α1R + β1R

′
,

which is studied by [42]. For this particular model, Elizalde
and Khurshudyan [42] showed that the violation of the NEC
and DEC at the throat which implies that the existence of
exotic matter is not avoidable in their work. However, in
our model results are quite different and interesting. From
the Tables 1 and 2, subcases-1, 2, 4, 7 and 8, it is observed
that NEC, WEC and SEC are valid for different range of
r , moreover the DEC term is violated for some particular
range of r . For ρ = α1R + β1R

′
, if we consider α1 = 1 and

β1 = r
2 , then the matter content of wormhole will depend on

the second derivative of shape function, i.e ρ = b
′′
r . Hence

from the Model-I, it is observed that the subcase-24 (Table
5) is more interesting, i.e. for ρ = α1R + β1R

′
eξ1R with

ξ1 < 0, α1 < 0, β1 > 0 and α < 0, for this particular
model, the validation of all energy conditions are achieved
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(a) This figure depicts the behavior of all EC terms
for Model-III in Subcase 1 (ξ3 = 0, α3 > 0, β2 > 0,
α > 0). All ECs are found to be satisfied for every
r > 0.22.

(b) This figure depicts the behavior of all EC terms
for Model-III in Subcase 2 (ξ3 = 0, α3 > 0, β2 > 0,
α < 0). All ECs are found to be satisfied for every
r > 0.

(c) This figure depicts the behavior of all EC terms
for Model-III in Subcase 7 (ξ3 = 0, α3 < 0, β2 > 0,
α > 0). All ECs are shown to satisfy for 0.55 < r.

(d) This figure depicts the behavior of all EC terms
for Model-III in Subcase 8 (ξ3 = 0, α3 < 0, β2 > 0,
α < 0). All ECs are found to be satisfied for every
r > 0.25.

for Model-III in Subcase 9 (ξ3 > 0, α3 > 0, β2 > 0,
α > 0). All ECs are shown to satisfy for every
.4 < r.

(e) This figure depicts the behavior of all EC terms (f) This figure depicts the behavior of all EC terms
for Model-III in Subcase 10 (ξ3 > 0, α3 > 0, β2 > 0,
α < 0). All ECs are found to be satisfied for every
r > 0.3.

Fig. 3 EC terms for 15 subcases of ρ = α3R2 + β2R
′
eξ3R

′
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(g) This figure depicts the behavior of all EC terms
for Model-III in Subcase 15 (ξ3 > 0, α3 < 0, β2 >,
α > 0). All ECs are found to be satisfied for every
r > 2.4.

(h) This figure depicts the behavior of all EC terms
for Model-III in Subcase 16 (ξ3 > 0, α3 < 0, β2 > 0,
α < 0). All ECs are found to be satisfied for every
r > 0.3.

(i) This figure depicts the behavior of all EC terms
for Model-III in Subcase 17 (ξ3 < 0, α3 > 0, β2 > 0,
α > 0). All ECs are shown to satisfy for r > 0.3.

(j) This figure depicts the behavior of all EC terms
for Model-III in Subcase 18 (ξ3 < 0, α3 > 0, β2 > 0,
α < 0). All ECs are found to be satisfied for every
r > 9.

(k) This figure depicts the behavior of all EC terms
for Model-III in Subcase 23 (ξ3 < 0, α3 < 0, β2 > 0,
α > 0). All ECs are found to be satisfied for every
r < 6.

(l) This figure depicts the behavior of all EC terms
for Model-III in Subcase 24 (ξ3 < 0, α3 < 0, β2 > 0,
α < 0). All ECs are found to be satisfied for every
r > 3.

Fig. 3 continued
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throughout the wormhole geometry for r > 0 & k �= 0. In
this subcase, the wormhole geometry is found to be supported
by non-exotic matter within f (R, T ) = R+αR2 +2β ln(T )

gravity for the aforesaid particular form of energy density.
In our second form of ρ, if we neglect the higher degree of

eξ2R terms, then the form of ρ will be reduced to the model
discussed by [42]. In Model-II, the most favorable form of
energy density is: ρ = α2Reξ2R , where ξ2 = 0, α2 < 0 and
α < 0, for this particular model, the validation of all energy
conditions are achieved throughout the wormhole geometry
for r > 0 & k ∈ (−4, 0) (subcase 4 in Model-II, Table 6).
Hence, the wormhole geometry could be supported by non-
exotic matter within f (R, T ) = R+αR2 +2β ln(T ) gravity
for the aforesaid particular form of energy density.

In our third form of ρ, if we consider ξ3 = 0, then the
form of our ρ will be reduced to the model discussed by
[42]. In Model-III, the most feasible form of energy density

is: ρ = α3R2 + β2R
′
eξ3R

′
, where ξ3 > 0, α3 > 0, β2 > 0,

α < 0, for this particular model, the validation of all energy
conditions are achieved throughout the wormhole geometry
for r > 0.3 & k ∈ (−1, 0) (Subcase 10 in Model-III). Hence,
the wormhole geometry could be supported by non-exotic
matter within f (R, T ) = R + αR2 + 2β ln(T ) gravity for
the aforesaid particular form of energy density by choosing
minimum throat size is r0 = 0.3, unless exotic matter is
required. Eventually, in all the cases it is observed that our
solutions are asymptotically flat. Hence, from the results of
the above three models, we conclude that the Model-I is more
general and reliable than other two.

Thus, for every possible case, we have divided the space
of controlling parameters and explored the regions where the
energy conditions are respected. We have determined exact
traversable wormhole solutions supported by non-exotic mat-
ter. The new models are considered by specifying new forms
of energy density in terms of Ricci scalar. We have stud-
ied the validity of ECs and found the regions where NEC,
WEC, SEC and DEC are respected. Consequently, it shows
a good performance of the obtained solutions. Other than
this, the regions where we have found the violation of some
ECs may also provide useful information in future. Hence,
in the present work, some efforts are put for the exploration
of wormhole geometries that may lead towards their deeper
investigation.
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