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1 Introduction

The transport properties of a chiral medium (many-body system involving chiral fermions)
and their deep connection to quantum anomalies have attracted significant interests re-
cently. Of particular importance is the behavior of electric conductivity (or its inverse,
electric resistance) under the external magnetic field B. In table-top experiments, the
negative magnetoresistance is proposed as a signature of the chiral magnetic effect (CME),
the anomaly-induced vector current in the presence of magnetic field and chiral charge im-
balance [1–4]. Indeed, as shown in refs. [5–7], the balance between the axial charge density
nA production due to the chiral anomaly and axial charge relaxation requires that in a
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steady state in the presence of electric field E, the axial charge density nA ∝ CE ·B/r,
where r denotes the axial charge relaxation rate and C is the anomaly coefficient. Then,
with the CME, one finds an additional contribution to the longitudinal conductivity

∆σL ∝
C2B2

r
. (1.1)

The measurements of magnetoresistance in Weyl and Dirac semimetals have been reported
in refs. [8–11].

Nevertheless, the fluctuation effects have not yet been taken into account in eq. (1.1). It
is well-known that in an ordinary fluid, the fluctuations and interactions among sound and
diffusive modes lead to significant effects on the behavior of transport coefficients [12–18].
Therefore, one may naturally ask how fluctuations would modify the magnetoresistance in
a chiral medium. Addressing this question is the primary goal of the present work. For
definiteness, we shall consider the fluctuations of both vector and axial charge densities.
As in previous studies [5, 19], we assume that r is parametrically small compared with the
microscopic relaxation rate, and hence we include the axial charge density as a slow mode.

We here use the recently developed non-equilibrium effective field theory (EFT) for
hydrodynamics fluctuations [20, 21] (see ref. [22] for a review and refs. [23, 24] for related
developments), including the effects of quantum anomaly [25], to perform our analysis.
Compared with the traditional methods, the EFTs are derived based on the symmetries
and action principle and provide a basis for the systematic analysis. In some situations,
such as the one considered in ref. [26], EFT calculations lead to different results as compared
with traditional analysis. Previous work including the fluctuations of a single chiral charge
and CME can be found in ref. [27]. See refs. [7, 28] for the diagrammatic calculation of
magnetoresistance for quark-gluon plasma (QGP) based on perturbative QCD.

In two situations, r 6= 0 and r = 0, we determine specific corrections to the conduc-
tivity due to the combined effects of the CME and fluctuations in the small B regime
(see eq. (3.43) and eq. (4.22), respectively). Physically, those CME-related contributions
have two origins. First, the CME is proportional to the axial chemical potential which
generically depends on charge density non-linearly and gives rise to non-linear coupling
among density fluctuations. Second, the CME modifies the dispersion relation of fluctua-
tions modes [6, 29]. Given the difference in physical origin, we should not be surprised to
see that the fluctuation corrections are in marked difference from eq. (1.1). One important
qualitative feature we observe is that the sign of fluctuation contributions is opposite to
that of eq. (1.1), meaning they give rise to positive magnetoresistance. Moreover, we find
a non-zero contribution to transverse conductivity when r = 0. As already noticed in some
references [7, 28, 30], other mechanisms unrelated to the anomaly could cause magnetore-
sistance. The present work aims to demonstrate that even if one only focuses on the effects
of the chiral anomaly, the contribution from fluctuations to magnetoresistance can be qual-
itatively different from that at “tree-level.” Our results might apply to physical systems,
such as the QGP created by heavy-ion collisions, Weyl semimetals, and the electroweak
plasma in the primordial Universe.
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This paper is organized as follows. After reviewing the construction of the EFT action
in section 2, we determine the relevant Feynman rules and vertices. In sections 3 and 4,
we respectively calculate the conductivity at one-loop at finite and vanishing axial charge
relaxation rate. We conclude in section 5.

In this paper, we use ~ = c = kB = e = 1 and the mostly plus metric ηµν =
diag (−1, 1, 1, 1). We use the shorthand notation for space-time and frequency-momentum
integrations:

∫
x =

∫
d4x with xµ = (t,x);

∫
Q =

∫
q0
∫
q with Qµ = (q0, q) and q ≡ |q|;∫

q0 =
∫

dq0/(2π);
∫
q =

∫
d3q/(2π)3.

2 Non-equilibrium effective field theory

2.1 The action

We are interested in the fluctuation dynamics of vector charge density nV and axial charge
density nA in a chiral medium. As already mentioned in the Introduction, we shall assume
the relaxation rate of nA is small compared with the microscopic relaxation rate. Further-
more, we shall limit ourselves to situations that temperature is much smaller than vector
chemical potential µV and/or axial chemical potential µA. In this regime, we could ignore
the mixing of nV and nA with the energy density. We also note in electron systems includ-
ing Weyl semimetals, the mean free path of momentum-relaxing scattering (e.g., impurity
scattering) can typically be shorter than the mean free path of momentum-conserving
scattering (electron-electron scattering). In such a situation, the momentum is not a hy-
drodynamic variable, and ignoring the coupling of (charge) density modes to sound/shear
modes can be well justified. Therefore, in long-time and large-distance limits, we can in-
tegrate out other modes and obtain the effective action Ieff describing the remaining slow
modes nV and nA. In general, it is difficult to obtain Ieff directly from microscopic theories.
Instead, one should construct Ieff based on the symmetries together with other physical
requirements, as we shall do below following the formalism developed by refs. [20, 21, 25]
(see ref. [22] for a pedagogical introduction).

We begin with the path integral representation of the generating functional on the
Schwinger-Keldysh contour,

eiW [Ar,Aa] =
∫ ∏

α=V,A

∏
s=a,r

Dψsα eiIeff [ψa,ψr;Aa,Ar] . (2.1)

Here, we have introduced the external gauge fields Ar
α and Aa

α and the dynamical fields ψr
α

and ψa
α associated with charge density nα, in the “r-” and “a-” basis. One can interpret

ψr
α and ψa

α as the U(1) phase rotations of each fluid element (see refs. [20, 22] for more
details). The r-variables are related to the physical observables, while the a-variables are
the associated noise variables.

Next, we list various symmetries and consistency requirements which Ieff should satisfy:

1. Gauge symmetries: Ieff has to be invariant under U(1)V gauge symmetry. Further-
more, we require U(1)A gauge symmetry for Ieff in the limit that the axial relaxation
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and the chiral anomaly are absent. Here, U(1)α gauge transformation can be written
explicitly as

Asµ,α → Asµ,α − ∂µφsα , ψsα → ψsα + φsα , (2.2)

where φsα is an arbitrary U(1)α phase. For a term invariant under the U(1)α symme-
try, its dependence on Aµ,sα and ψsα should come through the gauge-invariant combi-
nation:

Asµ,α = Asµ,α + ∂µψ
s
α . (2.3)

In particular, the vector and axial chemical potentials are expressed as

µα = Ar
0,α. (2.4)

2. Shift symmetries: for each fluid element, it should have the freedom of making inde-
pendent U(1)α phase rotations as far as those phases ζα(x) are time-independent:

ψr
α → ψr

α + ζα(x) . (2.5)

Note that shift symmetries will be absent when the global U(1)α symmetry is spon-
taneously broken (see refs. [20, 31] for further details).

3. Dynamical Kubo-Martin-Schwinger (KMS) symmetry: suppose the microscopic the-
ory is invariant under a Z2 anti-unitary transformation Θ, then Ieff is invariant under
the KMS transformation [21], which, in the “classical” limit that quantum fluctua-
tions are small compared with the thermodynamic fluctuations, is defined as

Ar
µ → ΘAr

µ , Aa
µ → ΘAa

µ + i
T

Θ∂tAr
µ , (2.6a)

µα → Θµα , ψa
α → Θψa

α + i
T

Θ∂tψr
α , (2.6b)

where T is the background temperature. The dynamical KMS symmetry is motivated
by the KMS condition satisfied by a thermal system and can be viewed as a definition
of local thermal equilibrium. Generically, one can take Θ that includes T , i.e., Θ can
be T itself, or any combination of C,P with T [21], depending on the systems of
interest. The presence of background magnetic field and vector charge will break the
symmetries under T and C, respectively, so we shall take Θ = CPT in this work.

4. Unitarity: the unitarity of the underlying system requires that (suppressing α and µ
indices)

Ieff [ψr, Ar;ψa = 0, Aa = 0] = 0 , (2.7)
I∗eff [ψr, Ar;ψa, Aa] = −Ieff [ψr, Ar;−ψa,−Aa] . (2.8)
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To consider the low-energy regime of the system, we also perform a derivative expansion
based on the basic philosophy of EFT. For definiteness, we take the following counting
scheme in this paper: Aa

0,α ∼ ∂tAr
0,α ∼ ε2, Aa

i,α ∼ ∂tAr
i,α ∼ ε (such that ∂tψa

α ∼ ε2,
∇ψa

α ∼ ε), and ψa
α ∼ ∂tψr

α ∼ ε0, where ε is a small expansion parameter.
Now, we are ready to write down the non-equilibrium action Ieff explicitly. Because of

eq. (2.7), L has to contain at least one power of a-field. We shall study L up to quadratic
order in a-field. More explicitly, we consider the Lagrangian density L, which is related to
Ieff through the standard relation

Ieff [ψr, Ar;ψa, Aa] =
∫
x
L[ψr, Ar;ψa, Aa] , (2.9)

and divide L into three parts:

L = Linv + Ldamp + Lanom . (2.10)

Here, Linv corresponds to L in the limit that both the effects of the axial charge damping
and chiral anomaly are absent. In this case, nA is also conserved. Hence, Linv up to
O(ε2) should be of the same form as the hydrodynamic effective action with two conserved
charges as derived in ref. [20] (see also ref. [26]):

Linv =
∑
α

nαAa
0,α −

∑
i,j,α,β

σijαβ

(
Aa
i,α∂tAr

j,β − iTAa
i,αAa

j,β

)
, (2.11)

where σijαβ is the conductivity matrix which is symmetric with respect to (i, j) and (α, β).
Because of the shift symmetries, Linv is independent of Ar

i,α.
Turning to Lanom, which describes the effects of the chiral anomaly, we explicitly have

Lanom = Cψa
AE ·B + CµVB ·∇ψa

A + CµAB ·Aa
V , (2.12)

where C = 1/(2π2) denotes the anomaly coefficient and the electric and magnetic fields
are defined by E = ∇Ar

0,V− ∂tAr
V and B = ∇×Ar

V. To simplify the expression, we shall
consider the cases in the absence of the axial gauge fields here and from now on. The first
term in eq. (2.12) leads to the anomaly contribution to the non-conservation of the axial
current (see eq. (2.17) below). The second and the third terms correspond to the chiral
separation effect (CSE) [32, 33] and CME, respectively. In appendix A, we present the
derivation of eq. (2.12) by generalizing the formulation for a single chiral charge in ref. [25].

Finally, we postulate to use

Ldamp = −γ
[
µAψ

a
A − iT (ψa

A)2
]
, (2.13)

to describe the axial charge relaxation. Here, γ denotes the axial damping coefficient,
which is assumed to be O(ε2) so that Ldamp contributes to the same order as the other
terms in eq. (2.10). Equation (2.13) satisfies all requirements as listed above.

We here point out that the equations of motion from Ieff is equivalent to the (non-
)conservation equations for the currents. For the vector charge density, we have

δIeff
δψa

V
= 0↔ ∂µJ

µ,r = 0 , Jµ,r = δIeff
δAa

µ,V
, (2.14)
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since Ieff only depends on the combination Aa
µ,V+∂µψa

V but not on Aa
µ,V and ψa

V individually.
For later purpose, we obtain the expressions for J r and Ja by differentiating (2.10) with
respect to Aa and Ar, respectively:

J r = −σV∇µV + 2iTσV∇ψV + CµAB , (2.15)
Ja = ∂t (σV∇ψV + CψAB) + C∇× (µA∇ψV + µV∇ψA +EψA) . (2.16)

We can also define the axial current JµA through the variation of Ieff . In that case, we find
that the equation of motion for ψa

A is nothing but the non-conservation equation for the
axial current due to the chiral anomaly and axial charge damping,

∂µJ
µ,r
A = CE ·B − γµA + 2iγTψa

A . (2.17)

In summary, we shall use the following effective action up to O(ε2) for the subsequent
analysis for systems with a background magnetic field B based on eqs. (2.11), (2.12),
and (2.13):

L =
∑
α

(∂tψα)nα −
∑
α

σα
[
(∇ψα) ·∇µα − iT (∇ψα)2

]
+ CµAB ·∇ψV + CµVB ·∇ψA − γ

[
ψAµA − iT (ψA)2

]
. (2.18)

For notational brevity, here and hereafter, we suppress the a-index for ψa
α. Note that

B = O(ε) in our counting scheme above, and we may ignore the B-dependence of σα and
γ at the level of this effective Lagrangian.

In this work, our goal is to showcase the non-trivial interplay among the axial charge
density relaxation, CME, and fluctuations in the simplest possible settings. In eq. (2.18),
we have assumed that at the tree level, σijαβ = σα δ

ijδαβ , which is sufficient for the present
illustrative purpose. In the same spirit, we shall use the susceptibility matrix χαβ ≡
∂nα/∂µβ which is also diagonalized, χαβ = χαδαβ .

Before closing this section, we point out that the first equation in eq. (2.14) and
eq. (2.17) can be matched to the standard stochastic equations for nV and nA in the
presence of the CME/CSE [34–36]. Conversely, one might construct an action of a similar
form to eq. (2.18) from the stochastic equation following the bottom-up approach of Martin-
Siggia-Rose-Janssen-de Dominicis [37–39], as was done in ref. [36]. However, the formalism
of refs. [20, 21, 25] as we employ here provides a basis for the systematic analysis.

2.2 Expansion around thermal equilibrium

Let us consider the fluctuations around the equilibrium state characterized by a static and
homogeneous background vector and axial charge densities (nV)0 and (nA)0, where the
subscript “0” denotes those equilibrium values. In section 3.4, we shall study the situation
that axial charge damping coefficient γ is finite so that (nA)0 = 0. In section 4, we take
the limit γ = 0 and consider the systems with a finite (nA)0. In both cases, we shall
use δnα = nα − (nα)0 as the dynamical fluctuating fields for r-variable and ψα as the
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dynamical a-fields; the latter vanishes in equilibrium.1 In addition, we rescale δnα and ψα
for convenience by

λα = gαδnα , ψα → gαψα , gα = 1√
Tχα

. (2.19)

Note that g−2
α = Tχα is the equilibrium fluctuation of δnα per unit volume. This means

that the fluctuations of the rescaled variables λα are of the order unity, which is real
motivation for the definition (2.19). Here and throughout this paper, we do not take the
summation over dummy vector/axial indices (α = V,A) unless the summation symbol Σ
is present.

We shall expand the Lagrangian density as

L = (L)1 + (L)2 + (L)3 + . . . , (2.20)

where the subscript of (· · · ) denotes the number of fluctuating fields. By construction,
(L)1 is a total derivative. We shall use (L)2 to obtain propagators and read cubic vertices
from (L)3. The quartic vertices from (L)4 can contribute to one-loop corrections, but
such contributions are simply proportional to the UV cut-off and will not be of physical
importance. In short, L2,3 are sufficient for the computing fluctuations corrections at one-
loop order. Note that if we demand σα, γ, and |B| to be counted as g−2

α , then (L)n ∼
gn−2
α and gα can be viewed as the effective coupling constant organizing the fluctuation
corrections to the tree-level results.

To determine L2,3, we need to expand µV,A, σ, and γ in terms of δnV,A:

µα = (µα)1 + (µα)2 + · · · , (2.21a)
σα = (σα)0 + (σα)1 + · · · , (2.21b)
γ = (γ)0 + (γ)1 + · · · . (2.21c)

Defining

σα;β ≡
1
σα

√
χα
χβ

∂σα
∂µβ

, γ;α ≡
1
γ

√
χA
χα

∂γ

∂µα
, nα;βγ ≡

1
√
χβχγ

∂2nα
∂µβ∂µγ

, (2.22)

we have explicitly

(µα)1 =
√
T

χα
λα , (µα)2 = − T

2χα

∑
β,γ

nα;βγλβλγ , (2.23a)

(σα)1 = σα

√
T

χα

∑
β

σα;βλβ , (γ)1 = γ

√
T

χA

∑
α

γ;αλα . (2.23b)

Here, the normalizations are chosen to make the counting in terms of gα manifest in the
following expressions. From now on, we omit the label (. . .)0 for equilibrium quantities
when doing so would not lead to confusion.

1Although we have written down the action (2.18) explicitly as a functional of µV,A to make the dy-
namical KMS symmetry (2.6a) and (2.6b) manifest, the resulting vertices will contain time derivatives that
would potentially complicate the analysis if we were using δµV,A as the dynamical r-variables.
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Substituting eq. (2.21) into eq. (2.18) and further using eq. (2.23), we arrive at the
expressions:

(L)2 =
∑
α

[(∂tψα)λα−Dα(∇ψα)·∇(λα−iψα)]+v ·(λV∇ψA+λA∇ψV)−rψA (λA−iψA) ,

(2.24)

(L)3 =−T
∑
α,β

gαDασα;βλβ(∇ψα)·∇(λα−iψα)−T2
∑
α,β,γ

gαDαnα;βγλβλγ∇2ψα

−T2
∑
α,β

(gVnA;αβvA ·∇ψV+gAnV;αβvV ·∇ψA)λαλβ (2.25)

−TgAr
∑
α

γ;αλαψA (λA−iψA)+TgAr

2
∑
α,β

nA;αβψAλαλβ ,

with

Dα ≡
σα
χα

, v ≡ CB
√
χVχA

, vα ≡
CB

χα
, r ≡ γ

χA
. (2.26)

Here, r and v correspond to the bare axial relation rate and the velocity of the chiral
magnetic wave (CMW) [29, 40], respectively. The first and the third lines in eq. (2.25) arise
from the non-linearity due to the charge diffusion and axial charge relaxation, respectively.
Since µV,A is generically a non-linear function of nV and nA, the CME/CSE induce non-
linear couplings among fluctuating fields, as is shown in the second line of eq. (2.25). In
the cubic action (2.25), the terms involving two a-fields correspond to the multiplicative
noise contribution, which is necessary to ensure the KMS invariance.

2.3 Propagators and vertices

We now define the two-point correlation functions of the fields:

Grr
αβ(x) = 〈λα(x)λβ(0)〉 , (2.27a)
Gra
αβ(x) = 〈λα(x)ψβ(0)〉 , Gar

αβ(x) = 〈ψα(x)λβ(0)〉 , (2.27b)

while 〈ψα(x)ψβ(0)〉 = 0 by causality.
To perform the diagrammatic analysis, we shall consider the free propagators Grr

αβ , G
ra
αβ ,

and Gar
αβ , which are Grr

αβ ,Gra
αβ , and Gar

αβ at the tree level, respectively. Suppressing the indices
α and β, we can read their expressions from (L)2 given by eq. (2.24) as(

Grr Gra

Gar 0

)
=
(

0 −iM †

−iM N

)−1

, (2.28)

where in the Fourier space with Kµ = (ω,k),

M(K) =
(

iω −DVk
2 −iv · k

−iv · k iω − (r +DAk
2)

)
, N(k) = 2

(
DVk

2 0
0 r +DAk

2

)
. (2.29)

Note that MT = M . From eq. (2.28), we obtain

Gra = iM−1 , Gar = i(M−1)† , Grr = −GraNGar . (2.30)
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α β
(a)Gra

αβ

(b)Grr
αβ

α β
(c)Uk1;k2,k3

α;βγ

α, k1
β, k2

γ, k3
(d)Vk1,k2;k3

αβ;γ

α, k1

β, k2
γ, k3

Figure 1. Diagrammatic representations of (a) Gra
αβ , (b) Grr

αβ , and the vertices (c) U and (d) V .
The solid and dotted lines correspond to λ (r-field) and ψ (a-field), respectively.

The diagrammatic representations of Gra
αβ and Grr

αβ are given by figures 1(a) and (b),
respectively.

The retarded propagator Gra is the basic building block in the subsequent diagram-
matic computations, whereas Gar and Grr can be expressed in terms of Gra:

Gar(K) = −(Gra)†(K) = Gra(−K) , (2.31)
Grr(K) = i [Gra(K) +Gar(K)] , (2.32)

as one can verify explicitly from eqs. (2.30) and (2.29). A particular useful form for Gra is
that in a Laurent expansion:

Gra(K) =
∑
m=±

Rm(k)
ω − Ωm(k) , (2.33)

where m = +,− labels two independent collective modes with

Ω±(k) = − i
2(r +DVk

2 +DAk
2)± 1

2

√
4(v · k)2 − (r +DAk2 −DVk2)2 , (2.34)

R±(k) = ±1
Ω+(k)− Ω−(k)

(
Ω±(k) + i(r +DAk

2) v · k
v · k Ω±(k) + iDVk

2

)
. (2.35)

In the limit r = 0 and for k · B̂ > 0, these two modes (m = +,−) correspond to the CMW
propagating in the same/opposite directions to the magnetic field, respectively.

Next, we define the interaction vertices from L3 as

i
∫
x
(L)3 = T

∑
α,β,γ

gα

∫
dt
∫
k1,k2,k3

(
Uk1;k2,k3
αβγ ψk1

α λ
k2
β λ

k3
γ + V k1,k2;k3

αβγ ψk1
α ψ

k2
β λ

k3
γ

)
, (2.36)

where ψkα ≡ ψ(t,k) and λkα ≡ λ(t,k). There are two types of vertices: U couples one a-field
with two r-fields; V couples two a-fields with one r-field. They can be read from the cubic

– 9 –
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action (2.25)

Uk1;k2,k3
V;αβ = −iDV

2

(
σV;Vk

2
1 −σV;Ak1 · k2

−σV;Ak1 · k3 0

)
+ i

2DVnV;αβk
2
1 + 1

2vA · k1nA;αβ ,

(2.37a)

Uk1;k2,k3
A;αβ = −iDA

2

(
0 −σA;Vk1 · k3

−σA;Vk1 · k2 σA;Ak
2
1

)
+ i

2DAnA;αβk
2
1 + 1

2vV · k1nV;αβ

− ir
2

(
0 γ;V
γ;V 2γ;A

)
+ ir

2 nA;αβ , (2.37b)

V k1,k2;k3
Vα;β = DVk1 · k2

(
σV;V σV;A

0 0

)
, (2.37c)

V k1,k2;k3
Aα;β = DAk1 · k2

(
0 0

σA;V σA;A

)
− r

(
0 0
γ;V γ;A

)
. (2.37d)

Note, the first term in the second line of eq. (2.37b) and the last term in eq. (2.37d) arise
from the fact that the axial damping coefficient γ depends on nV and nA.

The graphic presentations of Uk1,k2,k3
αβγ and V k1,k2,k3

αβγ are shown in figures 1(c) and (d),
respectively. With the propagators and vertices at hand, we are ready to compute one-loop
corrections to the conductivity.

3 Conductivity at finite axial relaxation rate

3.1 Conductivity

From the symmetrized correlator of the vector current Jµ, Cµν ∼ 〈JµJν〉, we can determine
the (AC) conductivity tensor through the standard Kubo formula

σij(ω) = lim
k→0

1
2T C

ij(K) . (3.1)

Alternatively, we can extract σij from the retarded correlator (see eq. (4.1) in section 4).
The conductivity tensor in the presence of the external magnetic field can be decomposed as

σij = σ‖B̂
iB̂j + σ⊥(δij − B̂iB̂j) , (3.2)

where σ‖ and σ⊥ are the longitudinal and transverse conductivity, respectively. In this
work, we will not consider the Hall conductivity. From the Ward-Takahashi identity, we
also have

lim
k→0

1
2T

ω2

k2 C
00(K) = lim

k→0

1
2T k̂

ik̂jCij(K) = σ⊥(ω) + [σ‖(ω)− σ⊥(ω)](k̂ · B̂)2 , (3.3)

which allows us to extract σ‖ and σ⊥ from the small k behavior of C00.
In what follows, we determine C00 and hence σij(ω) from the relation,

C00 = TχVGrr
VV , (3.4)

– 10 –
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= +
=

(a)

(b)

=
+

+ + + h . c . +⋯
Figure 2. Diagrammatic representations of the Dyson equations: (a) for the Gra propagator (3.8);
(b) for the Grr propagator (3.9). The last expression on (b) is the first-order expansion with respect
to the self-energies. Here, double lines represent the full propagators. The white bubbles and the
bubble with diagonal lines correspond to Σaa and Σar, respectively. The cross vertex denotes −N ,
which is related to the free propagators by eq. (2.30). Note that (α, β) labels are suppressed in
these diagrams.

which follows from the definitions of the rescaled fields, eq. (2.19). At tree level, an explicit
calculation using eq. (2.30) yields

lim
k→0

ω2

2k2G
rr
VV(K) = DV + v2r

ω2 + r2 . (3.5)

It then follows from eqs. (3.3) and (3.2) that

(σ‖)tree(ω) = (σV)0 + C2B2r

χA(r2 + ω2) , (σ⊥)tree(ω) = (σV)0 , (3.6)

which reproduces the well-known CME-induced negative magnetoresistance [5]. However,
the tree level result (3.6) does not take into account the fluctuation effects. We shall study
the one-loop corrections to σij by computing Grr

VV dressed by the self-energies.

3.2 Self-energies

We start from the full propagators which are dressed by self-energies Σar,Σra, and Σaa

through the Dyson equation:(
Grr Gra

Gar 0

)−1

=
(
Grr Gra

Gar 0

)−1

−
(

0 Σra

Σar Σrr

)
, (3.7)

or equivalently,

Gra = [(Gra)−1 − Σar]−1 = (−iM − Σar)−1 , (3.8)
Grr = −Gra(N − Σaa)Gar . (3.9)

See figures 2(a) and (b) for graphical representations of eqs. (3.8) and (3.9), respectively.
To determine the small k behavior of Grr

VV from eq. (3.9), we shall first consider the
behavior of the self-energies in this limit. We note Σaa

αβ can be connected to two exter-
nal legs associated with ψα and ψβ . Since ψV is always combined with ∇ in the cubic
Lagrangian density (L)3 in eq. (2.25), we have Σaa

αβ ∼ kδαV+δβV and Σar
αβ ∼ kδαV , where

– 11 –
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δαβ is the Kronecker delta. Then, the relevant components of the self-energies can be
parametrized as

(χV)0Σaa
VV(K) = −2∆σ⊥(ω)k2 − 2

[
∆σ‖(ω)−∆σ⊥(ω)

]
(k · B̂)2 + . . . , (3.10a)

(χA)0Σaa
AA(K) = −2∆γ(ω) + . . . , (3.10b)

Σar
AA(K) = −i∆r(ω) + . . . , (3.10c)

Σar
VA(K) = k ·∆vA(ω) + . . . , (3.10d)

where . . . are the terms suppressed by small k. Note that ∆γ,∆r, and ∆vA can be viewed
as the finite frequency corrections to γ, r, and v, respectively. To see this, one should keep
in mind that Σaa and Σar enter as the correction to −N and iM , respectively, in eqs. (3.9)
and (3.8) while (χA)0NAA = 2γ+O(k2) ,MAA = −r+O(k2), andMVA = −i(k ·v)+O(k2).

By substituting eq. (3.10) into the Dyson equation (3.9) and evaluate the Kubo rela-
tion (3.3) with (3.4), we eventually find

σ⊥(ω) = (σV)0 + ∆σ⊥(ω) , (3.11a)

σ‖(ω) = (σV)0 + ∆σ‖(ω) + [(v)0 + ∆vA(ω)]2[(χAr)0 + ∆γ(ω)](χV)0

(χA)0
[
ω2 + ((r)0 + ∆r(ω))2

] , (3.11b)

meaning the loop corrections to the conductivity can be expressed in terms of the following
ω-dependent functions:

∆σ⊥(ω) , ∆σ‖(ω) , ∆γ(ω) , ∆r(ω) , ∆vA(ω) , (3.12)

which we shall compute in section 3.4. Intuitively, we may understand eq. (3.11) by re-
placing (σV)0, γ, r, and v of eq. (3.6) into those including fluctuation corrections (3.12).

3.3 One-loop

In this subsection, we provide general expressions for computing the self-energies Σar
αβ and

Σaa
αβ at the one-loop level. We will give the derivation for the former and present only the

results for the latter, which can be derived similarly (see appendix B for details).
The self-energy Σar

αβ consists of three pieces:

Σar
αβ = (Σar

αβ)I + (Σar
αβ)II + (Σar

αβ)III , (3.13)

whose diagrammatic representations are given by figures 3(a)–(c), respectively. First of all,
the contribution from (Σar

αβ)III in figure 3(c) vanishes. This is because∫
q0
Gra
αβ(q0, q+)Gar

γδ(ω − q0,−q−) = 0 , (3.14)

where the integrand has poles only in the upper complex q0-plane so that the contour
integral vanishes. Here and hereafter, we use the notation q± = q ± k/2.

For the first term in eq. (3.13), we have

(Σar
αβ)I(K) = 4T 2 ∑

γδστ

∫
Q
gαU

−k;−q−,q+
α;γσ Grr

στ (q0, q+)Gra
γδ(ω − q0,−q−)gδUq−;k,−q+

δ;βτ

= 4iT 2 ∑
γδστ

∫
Q
gαU

−k;−q−,q+
α;γσ Gra

στ (q0, q+)Gra
γδ(ω − q0,−q−)gδUq−;k,−q+

δ;βτ . (3.15)

– 12 –
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(a) (Σar
αβ)I

α
γ δ
σ τ β

(e) (Σaa
αβ)II

α δ
τ β

(f) (Σaa
αβ)III

α δ
τ β

(c) (Σar
αβ)III

α δ
τ β

γ
σ

γ
σ

(b) (Σar
αβ)II

α δ
τ β

γ
σ

(d) (Σaa
αβ)I

δ
τ βα

γ
σ

γ
σ

Figure 3. Self-energies at the one-loop order.

To obtain the second line from the first line, we have replaced Grr(q0, q+) with iGra(q0, q+)
using eq. (2.32) together with eq. (3.14). Turning to (Σar

αβ)II, we have

(Σar
αβ)II(K) = 2T 2 ∑

γδστ

∫
Q
gαU

−k;−q−,q+
α;γσ Gra

στ (q0, q+)Gra
γδ(ω − q0,−q−)gδV q−,−q+;k

δτ ;β . (3.16)

Adding (Σar
αβ)I and (Σar

αβ)II, the self-energy becomes

Σar
αβ(K) = T 2

∫
Q

tr
[
Gra(q0, q+)(Γa

α)TGra(ω − q0,−q−)Γr
β

]
, (3.17)

where we have defined two-by-two matrices:

(Γa
α)βγ = gαU

−k;−q−,q+
α;βγ , (Γr

β)γδ = 4igγUq−;k,−q+
γ;βδ + 2gγV q−,−q+;k

γδ;β . (3.18)

We now carry out the integration over q0 in eq. (3.17) using the Cauchy residue theo-
rem, yielding∫

q0
Gra
στ (q0, q+)Gra

γδ(ω − q0,−q−) = −i
∑
m,m′

Rmστ (q+)Rm′γδ (−q−)∆mm′(K, q) , (3.19)

where we have used eq. (2.33) and introduced the notation,

∆mm′(K, q) ≡ 1
ω − Ωm(q+)− Ωm′(−q−) . (3.20)

Substituting eq. (3.19) into eq. (3.17) leads to the final result

Σar
αβ(K) = −iT 2 ∑

m,m′

∫
q
F ar,mm′
αβ (k, q)∆mm′(K, q) , (3.21)

where we have defined

F ar,mm′
αβ (k, q) = tr

[
Rm(q+)(Γa

α)TRm
′(−q−)Γr

β

]
. (3.22)
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One can also analyze Σaa
αβ following the similar treatment (see appendix B for details).

For our purpose, only the diagonal components of Σaa
αβ are needed; they read

Σaa
αα(K) = T 2 Im

∑
m,m′

∫
q
F aa,mm′
αα (k, q)∆mm′(K, q) , (3.23)

where we have defined

F aa,mm′
αβ (k, q) = tr

[
Rm(q+)(Γa

α)TRm
′(−q−)Γ′aβ

]
, (3.24)

with

(Γ′aβ )γδ = 4
(
−gβU

k;q−,−q+
β;γδ + 2igγV q−,k;−q+

γβ;δ

)
. (3.25)

Expressions (3.21) for Σar
αβ and (3.23) for Σaa

αα are the main results of this subsection.
These are to be used in the following subsection.

3.4 Results

We now compute one-loop contributions to the conductivity tensor. We first note that in
the absence of the background axial charge density,

nA;AA = nV;VA = nV;AV = nA;VV = 0, σV;A = σA;A = 0, γ;A = 0 . (3.26)

Let us further assume, for the present illustrative purpose,

χV = χA = χ, σV = σA = σ . (3.27)

Then, the vertices are parameterized by three independent parameters:

un ≡ nV;VV = nV;AA = nA;VA = nA;AV , uσ ≡ σV;V = σA;V , uγ ≡ γ;V . (3.28)

In this subsection, we will drop the subscript in D,v, and g because of eq. (3.27).
To evaluate eqs. (3.21) and (3.23), we first consider relevant Γa

α,Γ
′a
α , and Γr

α, which, in
the small k limit, are simplified as

Γa
V = −g2(v · k)

(
0 un
un 0

)
+O(k2) , (3.29a)

Γa
A = igr

2

(
0 un − uγ

un − uγ 0

)
+O(k) , (3.29b)

Γ′aA = −2igr
(

0 un − uγ
un + 3uγ 0

)
+O(k) , (3.29c)

Γ′aV = 8igD(k · q)
(
uσ 0
0 0

)
− 2g(v · k)

(
0 un
un 0

)
+O(k2) , (3.29d)

Γr
A = −2gq2D

(
0 un
un 0

)
+ 2ig(v · q)

(
un 0
0 un

)
+ 2gr

(
0 0

uγ − un 0

)
+O(k) . (3.29e)
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Applying eq. (3.29) to F aa,mm′
αβ and F ar,mm′

αβ , defined in eqs. (3.24) and (3.22), respectively,
one can directly verify the parametric behaviors:

F aa
VV ∼ k2 , F ar

VA ∼ k , F aa
AA ∼ F ar

AA ∼ k0 (m 6= m′) , (3.30a)
F aa

VV ∼ k3 , F ar
VA ∼ k2 , F aa

AA ∼ F ar
AA ∼ k (m = m′) . (3.30b)

Comparing eq. (3.30) with eq. (3.10), we observe that only the contribution from m 6= m′

are needed to evaluate the functions listed in eq. (3.12). Therefore, we can replace ∆mm′

in eqs. (3.21) and (3.23) with their expression in the limit k→ 0:

lim
k→0

∆+−(K, q) = lim
k→0

∆−+(K, q) = 1
ω + ir + 2iDq2 . (3.31)

We first evaluate Σaa
VV which in turn determines ∆σ‖(ω) and ∆σ⊥(ω). From eqs. (3.29)

and (3.24), we have

F aa,+−
VV + F aa,−+

VV = 2g2u2
n(v · k)2 +O(k3) , (3.32)

so that eq. (3.23) becomes

Σaa
VV(K) = 2g2T 2u2

n(v · k)2 Im
∫
q

1
ω + ir + 2iDq2 +O(k4) . (3.33)

Comparing eq. (3.33) with eq. (3.10a), we find

∆σ‖(ω) = −g
2T 2χu2

nv
2

8πD Re
√
r − iω

2D , ∆σ⊥(ω) = 0 . (3.34)

Here and below, we use the dimensional regularization to perform the integration over q,∫
q

1
ω + ir + 2iDq2 = i

8πD

√
r − iω

2D ,

∫
q

q2

ω + ir + 2iDq2 = −i
8πD

(
r − iω

2D

) 3
2
. (3.35)

Evaluating loop integrals using dimensional regularization is essentially picking up the
contribution from the IR scale, which only depends on the physical inputs but does not
depend on the unphysical UV cut-off Λ of the EFT (see, e.g., ref. [41]). For instance, in
eqs. (3.35), the IR momentum scale is given by

q∗r (ω) =
∣∣∣∣∣
√
r − iω

2D

∣∣∣∣∣ , (3.36)

which arises from the competition between axial relaxation and diffusion at finite r. Such IR
momentum scale can be interpreted as the characteristic momentum of fluctuation modes
and has to be parametrically smaller than the cut-off scale of the EFT, which, in the present
case, is Λ ∼ l−1

mfp. Here, lmfp denotes the mean free path. Indeed, from D ∼ lmfp, it is easy
to verify that q∗r � Λ. Note that at r = 0, q∗r ∼

√
ω/D, which leads to hydrodynamic

long-time tail behavior [12–14].
Turning to Σaa

AA, a similar treatment results in

Σaa
AA(ω,0) = 2g2T 2r2(u2

n − u2
γ) Im

∫
q

1
ω + ir + 2iDq2 . (3.37)
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Therefore, ∆γ(ω), defined by eq. (3.10b), reads

∆γ(ω) = −
g2T 2χr2(u2

n − u2
γ)

8πD Re
√
r − iω

2D . (3.38)

We shall interpret our results for ∆γ(ω) at the end of this section.
Finally, we turn to Σar

VA and Σar
AA, which can be obtained from the familiar steps. They

are

Σar
AA(ω,0) = −g2T 2r(un − uγ)

∫
q

r(un − uγ) +Dq2(2un)
ω + ir + 2iDq2 , (3.39)

Σar
VA(ω,k) = −ig2T 2un(v · k)

∫
q

r(un − uγ) +Dq2(2un)
ω + ir + 2iDq2 +O(k2) , (3.40)

which, upon using eqs. (3.10c) and (3.10d), gives the expressions,

∆r(ω) = −g
2T 2r(un − uγ)(ruγ − iωun)

8πD Re
√
r − iω

2D , (3.41)

vA(ω) = −g
2T 2vun(ruγ − iωun)

8πD Re
√
r − iω

2D . (3.42)

We now have all the ingredients needed to compute the conductivity from eq. (3.11).
By the substitution of eqs. (3.34), (3.38), (3.41), and (3.42) into eq. (3.11), we find σ⊥ does
not receive any loop corrections while σ‖ at the one-loop order is given by

σ‖(0) = (σ)0 + C2B2

χr

1−
g2T 2

(
2u2

n + u2
γ

)
4π

(
r

2D

) 3
2

 , (3.43)

where the first and second terms in [. . .] correspond to the CME related tree contribution
(see eq. (3.6)) and the one-loop correction, respectively. Note that the fluctuation correc-
tion to σ‖ is of the opposite sign to the tree one and lead to a positive-magnetoresistance
contribution. Equation (3.43) is the main result of this section (see section 5 for further dis-
cussions).

Before closing this section, we remark that although the loop corrections to σ are
resulting from the combination of the set of functions listed in eq. (3.12), our expression
for each of them might be of interest on its own. Let us give two examples below.

For the first example, we recall that for a chiral medium microscopically described by
non-Abelian gauge theories, γ is referred to as Chern-Simons (CS) diffusion rate. In the
weak-coupling regime, the CS diffusion rate is computed by accounting for contributions
at the microscopic length scale g2T and time scale g4T [42]. Our result (3.38) can be
interpreted as the additional contribution to the CS diffusive rate from the macroscopic
length scale ∼

√
r/D.

As for the second example, we consider the pole of Gra
AA in the limit k→ 0, which, at

the tree level, is located at ω = −ir. The one-loop corrections to this relaxation pole can
be determined using the Dyson equation (3.8),

(Gra
AA)−1(ω,0) = 0 −→ ω + i[r + ∆r(ω)] = 0 . (3.44)
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Upon substituting eq. (3.41), we find

ω = −ir +O(g4) . (3.45)

This should be contrasted with the naive expectation that the correction is of the order g2.

4 Conductivity at zero relaxation rate

To complement the analysis in the previous section, we shall work on the limit that the axial
relaxation rate γ vanishes in this section. By sending r → 0 in the tree-level result (3.6),
we notice that the CME-related contribution to the conductivity vanishes. However, as
we shall show below, there is a CME-related contribution to the conductivity due to the
effects of the fluctuations.

Instead of extracting conductivity tensor σij from relevant self-energies as was done in
the previous section and in appendix D, in this section, we will employ a complementary
approach which determines σij from the retarded correlator of the vector current:

σij(ω) = lim
k→0

1
ω

Im CijR (K) . (4.1)

Here, we have used the fluctuation-dissipation relation

Cij(K) = 2T
ω

Im CijR (K) . (4.2)

Let us begin with the retarded correlator expressed in terms of the vector currents J r

and Ja:

CijR (K) = i〈J i,r(K)J j,a(−K)〉 . (4.3)

Here and hereafter, 〈. . .〉 denotes the average weighted by the path-integral (2.1) with
γ = 0. At one-loop order, CijR is given by the correlation of J r and Ja expanded to the
quadratic order in the fluctuating fields. In details, we use the expressions given by (2.15)
and (2.16) with E = 0 and have[

CijR (K)
]

loop
= i〈(J i,r)1(K) (J j,a)2(−K)〉+ i〈(J i,r)2(K) (J j,a)1(−K)〉

+ i〈(J i,r)2(K) (J j,a)2(−K)〉 , (4.4)

where

(J r)1 = CB(µA)1 +O(∇) , (4.5a)
(J r)2 = C(µA)2B − (σV)1∇(µV)1 + 2iT (σA)1∇ψV , (4.5b)
(Ja)1 = C∂tψAB +O(∇) , (4.5c)
(Ja)2 = ∂t [(σV)1∇ψV] +O(∇) . (4.5d)

Here, O(∇) denotes terms which would vanish in the limit k→ 0.
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To proceed further, we first show that the first two terms in eq. (4.4) do not contribute
to eq. (4.3) for k→ 0:

lim
k→0
〈(J i,r)1(K)(J j,a)2(−K)〉 = 0 , lim

k→0
〈(J i,r)2(K)(J j,a)1(−K)〉 = 0 . (4.6)

To see this, we consider

〈λα(x)(Ja)2(x′)〉=
∑
β

(∫
y
Grr
αβ(x,y)

〈
δIint
δλβ(y)(Ja)2(x′)

〉
0
+Gra

αβ(x,y)
〈

δIint
δψβ(y)(Ja)2(x′)

〉
0

)

=
∑
β

∫
y
Gra
αβ(x,y)

〈
δIint
δψβ(y)(Ja)2(x′)

〉
0
. (4.7)

Here, Iint =
∫
x(L)3 and 〈. . .〉0 denotes the average weighted by the Gaussian part of the

effective action, as this suffices to the present one-loop calculations. In eq. (4.7), we have
also used 〈

δIint
δλβ(y)(Ja)2(x′)

〉
0

= 0 , (4.8)

which can be shown by causality (see ref. [43] for a general discussion) and the fact that
both δIint/δψβ and (Ja)2 contain at least one power of the a-field. On the other hand,
in the absence of γ, one can confirm from eq. (2.18) that δIint/δψβ = ∇ · (J r

β)2, meaning
the Fourier transform of eq. (4.7) vanishes in the small k limit. Therefore, the first term
in eq. (4.4), which can be expressed as a linear combination of 〈λα(x) (Ja)2(x′)〉, should
also vanish in this limit. A similar analysis applies to the second term in eq. (4.4). As a
consequence, at one-loop order, eq. (4.4) is reduced to

lim
k→0
CijR (K) = i lim

k→0

〈
(J i,r)2(K)(J j,a)2(−K)

〉
0
. (4.9)

To compute eq. (4.9), we rewrite (J r)2 and (Ja)2 in terms of the rescaled fields (2.19)
using eq. (2.22):

(J r)2 = −Tv2 ũn
(
λ2

V + λ2
A

)
− TDVũσλA (∇λV − 2i∇ψV) , (4.10)

(Ja)2 = DVũσ∂t (λA∇ψV) , (4.11)

where we have further assumed the absence of the background vector chemical potential,

(nV)0 = 0 , (nA)0 6= 0 , (4.12)

so that nA;VA = nA;AV = 0 and σV;V = 0. Here, the parameters which describe the strength
of non-linearity are defined by

ũn ≡ nA;VV = nV;AA , ũσ ≡ σV;A . (4.13)

Noting the correlation between the last term in eq. (4.10) and eq. (4.11) vanishes by
causality, we now have two remaining contributions to eq. (4.9): the correlations between
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(Ja)2 and the first term (CME part) and the second term (diffusive part) of eq. (4.10). We
shall first show that the former contribution vanishes for k→ 0. Indeed,

lim
k→0
〈(λVλV)(K)(λA∇λV)(−K)〉

=
∫
q

∑
m,m′

iq
[
RmVA(q)Rm′VV(−q)−RmVV(q)Rm′VA(−q)

]
∆mm′(ω, q) , (4.14)

and similarly,

lim
k→0
〈(λAλA)(K)(λA∇λV)(−K)〉

=
∫
q

∑
m,m′

iq
[
RmAA(q)Rm′AV(−q)−RmAV(q)Rm′AA(−q)

]
∆mm′(ω, q) . (4.15)

By evaluating eq. (2.35) at r = 0 and further assuming DV = DA, we find

R±(k) = 1
2

(
1 ±sgn(v · k)

±sgn(v · k) 1

)
. (4.16)

Substituting eq. (4.16) into eqs. (4.14) and (4.15) leads to

lim
k→0
〈(λ2

V + λ2
A)(K)(λA∇ψV)(−K)〉 = 0 . (4.17)

The one-loop corrections to the conductivity tensor now becomes[
σij(0)

]
loop

= TD2ũ2
σ Im lim

ω→0
lim
k→0

〈
(λA∂

iλV)(K)(λA∂
jψV)(−K)

〉
= TD2ũ2

σ Im
∫
Q
qiqj [Grr

AA(Q)Gra
VV(−Q)−Gra

AV(Q)Grr
VA(−Q))]

= TD2ũ2
σ Im i

∫
Q
qiqj [Gra

AA(Q)Gra
VV(−Q)−Gra

AV(Q)Gra
VA(−Q)]

= TD2ũ2
σ Im

∫
q

∑
m,m′

qiqj
[
RmAA(q)Rm′VV(−q)−RmAV(q)Rm′VA(−q)

]
∆mm′(0, q) .

(4.18)

It is straightforward to show from eq. (4.16) that the terms inside [. . .] of eq. (4.18) vanish
when (m,m′) = (+,−), (−,+). On the other hand, the contributions from (m,m′) =
(+,+), (−,−) give a finite result with

∆mm(0, q) = 1
2iDq2 − 2m|v · q| . (4.19)

Thus, we finally have

[
σij(0)

]
loop

= −T (Dũσ)2

D

∫
q

D2q2qiqj

2[(Dq2)2 + (v · q)2]

= −T (Dũσ)2

192πD

( |v|
D

)3 [
4v̂iv̂j + (δij − v̂iv̂j)

]
. (4.20)

– 19 –



J
H
E
P
0
9
(
2
0
2
1
)
1
3
1

From the first line to the second line in eq. (4.20), we have first used the dimensional
regularization to integrate q and then integrate over the angle B̂ · q̂ analytically. The
result of doing so gives rise to an emergent IR scale,

q∗B = |v|
D
. (4.21)

In our counting scheme B = O(ε), it follows that |v| � 1, and one can again verify that
q∗B � Λ.

Finally, by comparing eq. (4.20) with eq. (3.2), we find the main results of this section,

∆σV‖(0)
(σ)0

= 4∆σV⊥(0)
(σ)0

= −(gT ũσ)2

48π

( |v|
D

)3
. (4.22)

See the subsequent section for the discussion of eq. (4.22).
In ref. [27], the authors consider the fluctuation effects of a single chiral charge in

the presence of the CME. For spatial dimension d = 3, they find finite corrections to
the AC conductivity (ω 6= 0) but vanishing DC conductivity (ω = 0). The differences
between theirs and the present results mainly arise from the fact that we have considered
the couplings between the axial and vector charge densities (see also refs. [16, 26, 44] on
the studies of fluctuation dynamics with multiple conserved charges).

5 Discussion

5.1 Positive magnetoresistance

We presented in this paper the diagrammatic calculation of the modifications of conduc-
tivity (the inverse of resistance) for a chiral medium with the chiral magnetic effect (CME)
based on the non-equilibrium effective field theory (EFT) approach. We consider a generic
vector charge density and axial charge density as slow variables and study the intertwined
effects from their fluctuations and CME. For the first time, we obtain the CME-related
modifications to the conductivity tensors due to fluctuations for systems with finite and
vanishing axial relaxation rate r, as summarized in eq. (3.43) and eq. (4.22), respectively.

Contrary to the common statement that the CME leads to a negative magnetoresis-
tance, we find that CME-related effects due to fluctuations give rise to a positive magne-
toresistance. Whether the net magnetoresistance is positive or negative is determined by
the competition between the two terms inside [. . .] in eq. (3.43). Note, to apply our one-
loop results, we should require the fluctuation contribution to be much smaller than the
tree-level expression, which includes both the first term and second term on the right-hand
side of eq. (3.43) (cf. eq. (3.6)). Since we are working in the weak B limit, the tree-level
contribution is dominated by (σ)0, which is indeed much larger than the one-loop cor-
rection, i.e., the third term on the right-hand side of eq. (3.43). However, this does not
necessarily mean that the third term has to be smaller than the second term. Therefore,
the net CME-related contribution can in principle be dominated by the fluctuations effects.
We have made a number of simplifications in our analysis, but we hope this qualitative
feature might have some implication to real physical systems. Interestingly, a positive
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magnetoresistance might have already been seen in Weyl semimetals when the magnetic
field is small (e.g., ref. [8]).

It is truly striking that the CME contributes to the conductivity even in the limit r = 0
(see eq. (4.22)). This is in a marked difference from the result, which does not account for
fluctuations that the CME contribution vanishes in this limit. Moreover, the fluctuation
modifies both longitudinal and transverse conductivities, while at finite r, only longitudinal
conductivity receives the correction from the CME.

The parametric behavior of the ratio of fluctuation effects to the tree-level contribution
is very instructive. From eqs. (3.43) and (4.22), we schematically have

(Hydrodynamic fluctuation)
(Bare contribution) ∼ (Tu)2g2q3

∗ , (5.1)

where q∗ is characteristic momentum of fluctuating modes. For the case with r 6= 0,
q∗ =

√
r/D, resulting from the competition between the diffusion of vector charge and the

damping of the axial charge, whereas for r = 0, q∗ = |v|/D originating from the competition
between diffusion and propagation of the chiral magnetic wave (CMW). Equation (5.1) in-
dicates that the relative importance of fluctuation corrections is determined by two factors,
a) the strength of non-linearity (Tu)2 and b) the ratio between the phase space volume of
the long-wavelength fluctuating modes, q3

∗, and that of the whole system, g−2 = χT .
Let us end this section by comparing the role the CME played in two cases under study.

For r 6= 0, the CME gives rise to non-linear couplings among charge fluctuations but plays
no role in determining the IR scale. In contrast, for r = 0 and at vanishing background
vector charge, the non-linearity relevant to the finite corrections to the conductivity solely
comes from the density-dependence of diffusive constant and conductivity but does not rely
on the CME. However, the competition between CMW propagation and charge diffusion
leads to the emergent IR scale. Due to the differences explained above, C|B| dependence
of ∆σ is different. The correction to the conductivity scales as (CB)2 in the former case
and scales as (C|B|)3 in the latter case.

5.2 Remarks on hydrodynamic fluctuations

Another motivation of the present study is to advance our understanding of general aspects
of hydrodynamic fluctuations. Here, we employ the recently developed non-equilibrium
EFT for the present studies. Our exercise here demonstrates this EFT approach allows
us to use powerful (and familiar) field theory techniques to analyze hydrodynamic fluctu-
ations. By construction, the EFT automatically takes into account the constraints from
symmetries. For example, in appendix D, we show explicitly how fluctuations-dissipation
theorem and the Ward-Takahashi identity are satisfied at one-loop order. In the tradi-
tional method, special care is needed to ensure those relations (see the recent work [45] for
the former).

Remarkably, the fluctuation contribution to the conductivity is finite due to the CME.
This should be contrasted with the case of an ordinary fluid that fluctuation corrections to
transport coefficients (at zero frequency limit) are typically zero. Such difference is related
to the emergent IR momentum scale behavior in the loop integration, q∗. Generically, the
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corrections to transport coefficients should scale with q∗ to an appropriate (and positive)
power for d = 3. For a normal fluid, q∗ ∼

√
ω, giving rise to the renowned long-time tail

phenomena [12–14], and consequently vanishes in the limit ω → 0 (see also refs. [46–48]
for related discussion). Therefore, to obtain finite corrections to transport coefficients in
this limit, there must be additional soft scales. Such scales are generated by the mag-
netic field and/or axial relaxation rate in the present study. Given the generality of the
discussion above, we anticipate that the CME and hydrodynamic fluctuations together
might contribute to other transports coefficients. A natural follow-up would be to include
fluctuations from energy and momentum densities and study the effects on shear and bulk
viscosities. We leave these and other extensions of this work to future studies.
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A Derivation of Ianom

In this section, we shall present the derivation of Ianom in eq. (2.12) used in the main text
following the method of ref. [25]. We shall see the anomaly relation combined with KMS
invariance uniquely fix the form of CME. This should be contrasted with the derivation of
CME in hydrodynamics from the second law of thermodynamics [19, 49].

Let us first consider the low-energy effective action describing the slow mode associated
with a single chiral charge. We consider the action divided into two parts,

I = Iinv + Ianom , (A.1)

where Iinv is identical to the hydrodynamic action of a conserved charge (see eq. (2.11)).
We shall focus on the anomaly-related action Ianom from now on.

Because of the anomaly, the consistent r-current,

Jµ = δI

δAa
µ

(A.2)

obeys the anomaly equation

∂µJ
µ = −κC24 FµνF̃

µν , (A.3)

where κ = ±1 correspond to the right-handed and left-handed charge, respectively. In this
appendix, we shall keep the index “a” but suppress the index “r.” To obtain eq. (A.3), we
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use the consistent anomaly equation on the two segments of Schwinger-Keldysh contour
labeled by “1,2”:

∂µJ
µ
1 = −κC24 Fµν,1F̃

µν
1 , ∂µJ

µ
2 = −κC24 Fµν,2F̃

µν
2 , (A.4)

to compute ∂µJµ = ∂µ (Jµ1 + Jµ2 ). We have not included a contribution quadratic in a-field
on the right-hand side of eq. (A.3) since such contribution should arise from the action
involving three powers of a-field. Similar to the discussion presented in the main text, the
equation of motion for ψa,

δI

δψa = 0 , (A.5)

should be equivalent to the consistent anomaly equation (A.3). Therefore, the anomaly
part of the action takes the form

Ianom =
∫
x

(
−κC24 ψ

aFµνF̃
µν + JµconsAa

µ

)
. (A.6)

Here, Aa
µ = Aa

µ + ∂µψ
a as given in eq. (2.3) and Jcons (Jcov) denotes the contribution to

the consistent (covariant) current only from Ianom, distinguished with the current J from
the total action I. The difference between Jcons and Jcov defines the Chern-Simons (CS)
current as

Jcov = Jcons + JCS , (A.7)

where

JµCS = −κC6 F̃µν Aν . (A.8)

Similar to our previous treatment of the consistent anomaly equation (A.3), we have
dropped terms quadratic in a-fields in eq. (A.8). Substituting eqs. (A.8) and (A.7) into
eq. (A.6), we now have

Ianom =
∫
x

(
−Cκ24 ψ

aFµνF̃
µν + κC

6 F̃µνAνAa
µ + JµcovAa

µ

)
. (A.9)

We shall consider the following form for Jµcov:

Jµcov = ξ(µ)Bµ , (A.10)

where ξ(µ) is a function of µ and we have defined Eµ = Fµν`ν and Bµ = F̃µν`ν with
`µ = (1,0) denoting the frame of the medium. We shall also use below that µ = ` · A (see
eq. (2.4)). Since Ianom is invariant under the KMS transformations (2.6a) and (2.6b),

Ar
µ → ΘAr

µ , ψr → Θψr ,

Aa
µ → ΘAa

µ + i
T

Θ (`α∂αAµ)

= ΘAa
µ + i

T
Θ`α (Fαµ + ∂µAα) = ΘAa

µ + i
T

Θ (−Eµ + ∂µµ) ,

ψa → Θψa + i
T

Θ (`α∂αψ) . (A.11)
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The variance of the first two terms in eq. (A.9) under the KMS transformation should
precisely cancel that from the last term. This requirement uniquely fixes ξ(µ), as we shall
explain below.

Indeed, for Θ = CPT , we have

δKMS

∫
x
ψaFµνF̃

µν = − i
T

∫
x

(`α∂αψ)FµνF̃µν , (A.12)

where we have used ΘAµ(x) = −Aµ(−x), ΘF̃µν(x) = F̃µν(−x), and Θ`µ(x) = `µ(−x).
Similarly,

δKMS

∫
x
F̃µνAνAa

µ = − i
T

∫
x
F̃µνAν(−Eµ + ∂µµ) = i

T

∫
x

[1
4(` ·A) + µ

2

]
FµνF̃

µν , (A.13)

where we have used the identity

F̃µνAνEµ =
(
`µBν − `νBµ + εµναβ`αEβ

)
AνEµ = −B · E(` ·A) = 1

4FµνF̃
µν(` ·A) .

(A.14)

Putting all pieces together, we find

δKMS

∫
x

(
−Cκ24 ψ

aFµνF̃
µν + κC

6 F̃µνAνAa
µ

)
= iκC

6T

∫
x

[1
4(` · ∂)ψa + 1

4(` ·A) + µ

2

]
FµνF̃

µν

= iκC
8T

∫
x
µFµνF̃

µν . (A.15)

On the other hand,

δKMS

∫
x
JµcovAa

µ = i
T

∫
x
ξ(−µ)Bµ (−Eµ + ∂µµ) = i

4T

∫
x
ξ(−µ)FµνF̃µν , (A.16)

where we used the fact that ξ(−µ)Bµ∂µµ is a total derivative. For eq. (A.15) to cancel
eq. (A.16), we have the appropriate form for the CME:

ξ(µ) = κC

2 µ , Jµcov = κC

2 µBµ . (A.17)

Now, we generalize the discussion above to the system with both axial and vector
charges. From the consistent anomaly relation,

∂µJ
µ
V = 0 , (A.18)

∂µJ
µ
A = − C12

(
3Fµν,VF̃µνV + Fµν,AF̃

µν
A

)
. (A.19)

Thus, we have, in analogous to eq. (A.6), the expression for Ianom:

Ianom =
∫
x

[
− C12ψ

a
A

(
3Fµν,VF̃µνV + Fµν,AF̃

µν
A

)
+
(
Jµcov,V + CF̃µνV Aν,A

)
Aa
µ,V +

(
Jµcov,A + C

3 F̃
µν
A Aν,A

)
Aa
µ,A

]
. (A.20)

By imposing the KMS symmetry to eq. (A.20), we find

Jµcov,V = C (µAB
µ
V + µVB

µ
A) , Jµcov,A = C (µVB

µ
V + µAB

µ
A) . (A.21)

Substituting eq. (A.21) into eq. (A.20) leads to the desired expression for Ianom, which
reduces to eq. (2.12) when the external axial gauge field is absent.
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B One-loop expression for self-energy Σaa
αβ

We here show the expression for Σaa
αβ defined in eq. (3.9) at the one-loop level. There are

three contributions

(Σaa
αβ) = (Σaa

αβ)I + (Σaa
αβ)II + (Σaa

αβ)III , (B.1)

which correspond to the diagrams given by figures 3(d), (e), and (f), respectively. Let us
start with the first two contributions in eq. (B.1):

(Σaa
αβ)I(K) = 4T 2 ∑

γδστ

∫
Q
gαU

−k;−q−,q+
α;γσ Grr

στ (q0, q+)Gra
γδ(ω − q0,−q−)gδV q−,k;−q+

δβ;τ , (B.2)

(Σaa
αβ)II(K) = 4T 2 ∑

γδστ

∫
Q
gγV

−k,−q−;q+
αγ;σ Grr

στ (q0, q+)Gar
γδ(ω − q0,−q−)gβUk;q−,−q+

β;δτ . (B.3)

One can show that

(Σaa
αβ)II = (Σaa

βα)∗I , (B.4)

using eq. (2.31),

Grr(K) = (Grr)†(K) = Grr(−K) , (B.5)

and (
Uk1;k2,k3
α;βγ

)∗
= −U−k1;−k2,−k3

α;βγ ,
(
V k1,k2;k3

Aα;β

)∗
= V k1,k2;k3

Aα;β , (B.6)

which can be verified from eq. (2.37).
To calculate (Σaa

αβ)I, we use eq. (2.32) and write Grr as a sum of Gra and Gar. Then, we
drop the latter contribution using eq. (3.14) and carry out the q0 integral from the former
contribution using eq. (3.19). We obtain

(Σaa
αβ)I(K) = −iT 2 ∑

γδστ

∑
mm′

∫
Q

(
F aa,mm′
αβ

)
I
(k, q)∆mm′(k, q) , (B.7)

with(
F aa,mm′
αβ

)
I
(k, q) = tr

[
Rm(q+)

(
gαU

−k;−q−,q+
α

)T
Rm

′(−q−)
(
4igV q−,k;−q+

β

)]
, (B.8)

where we have used the same matrix form as eq. (3.18):(
gαU

−k;−q−,q+
α

)
βγ

= gαU
−k;−q−,q+
α;βγ ,

(
4igV q−,k;−q+

β

)
γδ

= 4igγV q−,k;−q+
γβ;δ . (B.9)

By using eq. (B.4) we have

(Σaa
αβ)I(K) + (Σaa

αβ)II(K) = −iT 2 ∑
mm′

∫
q

[(
F aa,mm′
αβ

)
I
(k, q)∆mm′(k, q)− (α↔ β + c.c.)

]
.

(B.10)
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Here, (α↔ β+ c.c.) denotes the complex conjugate of the first term with the interchanged
(α, β) labels.

The third contribution, figure 3(f), can be written as

(Σaa
αβ)III(K) = 2T 2 ∑

γδστ

∫
Q
gαU

−k;−q−,q+
α;γσ Grr

στ (q0, q+)Grr
γδ(ω − q0,−q−)gβUk;q−,−q+

β;δτ .

(B.11)

Using eqs. (2.31) and (2.32), the q0 integral relevant to (B.11) can be written as∫
q0
Grr
στ (q0, q+)Grr

γδ(ω − q0,−q−) = i
∫
q0

[
iGra

στ (q0, q+)Gra
γδ(ω − q0,−q−)− (c.c.)

]
. (B.12)

Further using

gαU
−k;−q−,q+
α;γσ gβU

k;q−,−q+
β;δτ =

(
gβU

−k;−q−,q+
β;δτ gαU

k;q−,−q+
α;γσ

)∗
, (B.13)

which can be readily checked from eq. (B.6), we express eq. (B.11) as

(Σaa
αβ)III(K) = 2iT 2 ∑

γδστ

∫
Q

[
gαU

−k;−q−,q+
α;γσ Gra

στ (q0, q+)iGra
γδ(ω − q0,−q−)gβUk;q−,−q+

β;δτ

− (α↔ β + c.c.)
]
.

(B.14)

Finally, we can combine eqs. (B.10) and (B.14) into the form:

(Σaa
αβ)(K) = − iT 2

2
∑
mm′

∫
q

[
F aa,mm′
αβ (k, q)∆mm′(k, q)− (α↔ β + c.c.)

]
, (B.15)

where

F aa,mm′
αβ (k, q) = tr

[
Rm(q+) (Γa

α)TRm
′(−q−)Γ′aβ

]
, (B.16)

with

(Γa
α)βγ = gαU

−k;−q−,q+
α;βγ , (B.17)

(Γ′aβ )γδ = 4
(
−gβU

k;q−,−q+
γ;βδ + 2igγV q−,k;−q+

γβ;δ

)
. (B.18)

If α = β, eq. (B.15) reduces to the form (3.23) in the main text.

C Conductivity tensor from density-density correlator at zero axial re-
laxation rate

We here show another derivation of the one-loop conductivity, using the symmetrized
density-density correlator C00

S , at the vanishing axial relaxation rate with zero background
vector charge density but finite axial charge density. The derivation here is more parallel
to the analysis in section 3.4, whereas it will give consistent results with those in section 4,
namely eq. (4.22).
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First of all, by taking the limit r → 0 followed by ω → 0, eqs. (3.11a) and (3.11b) are
reduced to

σ⊥(0) = (σV)0 + ∆σ⊥(0) , σ‖(0) = (σV)0 + ∆σ‖(0) , (C.1)

where ∆σ⊥(0) and ∆σ‖(0) can be obtained from eq. (3.10a) by calculating Σaa
VV using

eq. (3.23). In parallel to the analysis on eq. (3.29), we consider Γa
V and Γa′

V defined in
eqs. (3.18) and (3.25) at the small k limit:

Γa
V = − igD

2 (k · q)
(

0 −ũσ
ũσ 0

)
− g

2(vA · k)
(
ũn 0
0 ũn

)
, (C.2)

Γa′
V = 2igD(k · q)

(
0 3ũσ
ũσ 0

)
− 2g(vA · k)

(
ũn 0
0 ũn

)
, (C.3)

where we have assumed eq. (4.12) and used eq. (4.13). It is easy to check that finite
contribution to the DC conductivity comes from (m,m′) = (+,+), (−,−) contribution
with

F aa,++
VV = F aa,−−

VV = −(Dgũσk · q)2 . (C.4)

We thus find

Σaa
VV(0,k) = (DgT ũσ)2

∫
q

(k · q)2Dq2

(Dq2)2 + (v · q)2 +O(k3) . (C.5)

Using eq. (3.10a), we obtain eq. (4.20) and resulting eq. (4.22), as it should be.

D Explicit verification of the fluctuation-dissipation relation and Ward-
Takahashi identity at one-loop

In this appendix, we show explicitly that at one-loop order, the symmetrized current-
current correlator Cij is related to the retarded correlator CijR through the fluctuation-
dissipation relation (4.2). Since we have already demonstrated that conductivity tensor
obtained from C00 coincides with that from CijR in appendix C, we therefore verify the
constraint imposed by Ward-Takahashi identity at one-loop order between C00 and Cij .

For illustrative purpose, we shall focus on the diffusive part of the current at quadratic
order in fluctuations,

(J r)dif
2 = −TDVũσλA (∇λV − 2i∇ψV) , (D.1)

(Ja)dif
2 = DVũσ∂t (λA∇ψV) . (D.2)

The second term in eq. (D.1), which is proportional to the a-field ψ, arises from the
multiplicative noise. We shall see this multiplicative noise contribution is crucial to ensure
the fluctuation-dissipation relation and the Ward-Takahashi identity at one-loop order.
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We begin by computing the one-loop corrections to the symmetrized correlator[
Cij,dif(K)

]
loop

=
〈

(J i,r)dif
2 (K)(J j,r)dif

2 (−K)
〉

= (TDVũσ)2
〈[
λA∂

i (λV − 2iψV)
]

(K)
[
λA∂

j (λV − 2iψV)
]

(−K)
〉

= (TDVũσ)2
(
F ij,rr − 2iF ij,ra − 2iF ij,ar

)
, (D.3)

where

F ij,rr =
〈
λA∂

iλV(K)
(
λA∂

jλV
)

(−K)
〉
, (D.4)

F ij,ra =
〈
λA∂

iλV(K)
(
λA∂

jψV
)

(−K)
〉
, F ij,ar =

〈
λA∂

iψV(K)
(
λA∂

jλV
)

(−K)
〉
.

(D.5)

From eqs. (2.32) and (2.31), it is straightforward to show that

F ij,rr(K) = iF ij,ra(K) + iF ij,ar(K) , F ij,ra(K) = −(F ij,ar)∗(K) . (D.6)

We therefore have[
Cij,dif(K)

]
loop

= (TDũσ)2
[
−iF ij,ra(K)− iF ij,ar(K)

]
= 2(TDũσ)2 ImF ij,ra(K) . (D.7)

On the other hand, the one-loop corrections to the retarded correlator is given by[
Cij,dif

R (K)
]

loop
= i〈(J i,r)dif

2 (K) (J j,a)dif
2 (−K)〉

= ωT (DVũσ)2〈
(
λA∂

i(λV − 2iψA)
)

(K) (λA∂
jψV)(−K)〉

= ωT (DVũσ)2F ij,ra(K) . (D.8)

Comparing eq. (D.7) with eq. (D.8), we immediately verify(
Cij,dif

)
loop

= 2T
ω

Im
(
Cij,dif

R

)
loop

. (D.9)

Note that if we had ignored the multiplicative noise contributions, i.e., the last two terms
in eq. (D.3), we would obtain the wrong relation[

Cij,dif(K)
]

loop
= (TDũσ)2F rr(K) = −2T

ω
Im
[
Cij,dif

R (K)
]

loop
. (D.10)

Furthermore, one would also get a wrong relation between C00 obtained in appendix C and
Cij :

lim
k→0

1
2T k̂

ik̂j
[
Cij,dif(K)

]
loop

= − lim
k→0

1
2T

ω2

k2 C
00(K) , (D.11)

which contradicts with eq. (3.3) based on the Ward-Takahashi identity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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