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A R T I C L E I N F O A B S T R A C T

Editor: J. Hisano Recent work has applied supervised deep learning to derive continuous symmetry transformations that preserve 
the data labels and to obtain the corresponding algebras of symmetry generators. This letter introduces two 
improved algorithms that significantly speed up the discovery of these symmetry transformations. The new 
methods are demonstrated by deriving the complete set of generators for the unitary groups 𝑈 (𝑛) and the 
exceptional Lie groups 𝐺2, 𝐹4, and 𝐸6. A third post-processing algorithm renders the found generators in sparse 
form. We benchmark the performance improvement of the new algorithms relative to the standard approach. 
Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning 
method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.
1. Introduction

The beginning of the 20th century significantly changed theoretical 
physics. It became evident that the laws of nature are closely tied to 
principles of symmetry [1]. Emmy Noether taught us that a continuous 
symmetry within any physical system inherently implies a conservation 
law, providing profound insights about the system [2]. This concept 
has deepened our understanding of fundamental physics, from the sim-

plest principles of classical mechanics to the intricacies of the Universe 
at large. In particle physics, these symmetries serve as the foundation 
that organizes the particles and their associated interactions. They are 
instrumental in guiding theoretical physicists in exploring possible ex-

tensions of the Standard Model [3,4].

Group theory has traditionally served as the framework for study-

ing symmetries [5]. Among the numerous types of classical Lie groups, 
the special orthogonal groups 𝑆𝑂(𝑛) and the special unitary groups 
𝑆𝑈 (𝑛) are most commonly used in particle physics. While some classi-

cal Lie groups describe symmetries observed in nature, the exceptional 
Lie groups [6] open up new possibilities for theoretical physics, poten-

tially enabling us to describe new kinds of gauge theories, including 
grand unified theories (GUTs) [7].

There exist five exceptional Lie groups — 𝐺2, 𝐹4, 𝐸6, 𝐸7, and 𝐸8, all 
of which have found various applications in theoretical physics [8]. For 
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example, the smallest among them, 𝐺2, has been widely used in string 
theory, e.g., in the studies of seven-dimensional manifolds known as 𝐺2-

manifolds, used in M-theory compactifications [9–12]. The next excep-

tional group, 𝐹4, plays an important role in Jordan algebra theory [13]

and has also been used in the context of gauge theories [14,15]. The 
exceptional Lie group 𝐸6 has been broadly employed in GUTs [16,17]. 
The two remaining exceptional groups, 𝐸7 and 𝐸8, have also been con-

sidered as potential GUT candidates [18,19].

The use of machine learning (ML) to uncover and recognize sym-

metries in datasets has recently sparked considerable interest [20–31]. 
Specific applications to group theory include calculating tensor prod-

ucts and branching rules of irreducible representations of Lie groups 
[32] or testing for the presence of a conjectured Lie group symmetry 
in the data [25,27]. More recent work has focused on discovering from 
first principles the Lie group generators reflecting symmetries in the 
data [28–31]. In this Letter, we introduce new algorithms that signif-

icantly enhance the symmetry discovery process outlined in [28–31]. 
After introducing the problem in Section 2, in Section 3 we describe the 
new methods and demonstrate their advantages on the unitary groups 
𝑈 (𝑛). Then in Sections 4, 5 and 6 we consecutively consider three of 
the five exceptional Lie groups: 𝐺2, 𝐹4, and 𝐸6. We derive the complete 
set of generators, in sparse form, which preserve the respective poly-

nomial invariants. Our approach is completely general, and could be 
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easily extended to the remaining two exceptional Lie groups 𝐸7 and 𝐸8. 
Section 7 is reserved for our summary.

2. Problem description

The classical groups are the linear groups of transformations over 
the real numbers ℝ, the complex numbers ℂ, and quaternions ℍ. Con-

sequently, a symmetry transformation operates on a feature vector 
𝐱 ≡ {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}, where 𝐱 ∈ ℝ𝑛 (𝐱 ∈ ℂ𝑛) for real (complex) rep-

resentations. To encapsulate the effect of a group transformation on ℝ𝑛

or ℂ𝑛, we examine a representative set of 𝑚 points {𝐱} ≡
{
𝐱1,𝐱2,… ,𝐱𝑚

}
sampled from a finite domain. The selection of a sampling distribution, 
as well as the size and location of the domain, are inconsequential. We 
adopt a standard normal distribution and pick 𝑚 on the order of several 
hundred, depending on the complexity of the problem.

The classical groups can be defined in terms of polynomial invariants 
over their respective fields. For example, the orthogonal group 𝑂(𝑛)
preserves the values of the polynomial oracle,

𝜑𝑂(𝐱) ≡ |𝐱|2 = 𝑛∑
𝑗=1

(
𝑥(𝑗)

)2
, 𝑥(𝑗) ∈ℝ , (1)

the Lorentz group in 𝑛 = 4 dimensions preserves

𝜑𝐿(𝐱) ≡
(
𝑥(1)

)2 − (
𝑥(2)

)2 − (
𝑥(3)

)2 − (
𝑥(4)

)2
, 𝑥(𝑗) ∈ℝ , (2)

and the unitary group 𝑈 (𝑛) preserves

𝜑𝑈 (𝐱) ≡

𝑛∑
𝑗=1

(
𝑥(𝑗)

)∗
𝑥(𝑗), 𝑥(𝑗) ∈ℂ . (3)

A symmetry transformation 𝐟 is a map 𝐱′ = 𝐟(𝐱) that preserves the 
respective oracle (1)-(3) everywhere, or in our case, for each of the 
sampled 𝑚 points:

𝜑(𝐱′𝑖 ) ≡ 𝜑(𝐟(𝐱𝑖)) = 𝜑(𝐱𝑖), ∀𝑖 = 1,2,… ,𝑚 . (4)

The basic task is to find such a symmetry map 𝐟 in parametric form. 
To focus on the generators of the symmetry transformation group, 𝐟 is 
linearized by considering infinitesimal transformations 𝛿𝐟 in the vicinity 
of the identity transformation 𝕀:

𝛿𝐟 ≡ 𝕀+ 𝜀𝔾 , (5)

where 𝜀 is an infinitesimal parameter and 𝔾 is an 𝑛 × 𝑛 matrix. After 
training with the invariance loss function 𝐿inv(𝔾, {𝐱}) defined in (A.1), 
the components of 𝔾 evolve towards their trained values, thereby pro-

ducing a valid symmetry generator [29]

𝕁 ≡ argmin
𝔾

(
𝐿(𝔾,{𝐱})

)
. (6)

As shown in the flowchart of Fig. 1, this idea was used in [29] to 
simultaneously train 𝑁𝑔 generators, which were designed to be normal-

ized, orthogonal to each other, and to form a closed algebra, by adding 
suitable terms to the loss function. However, as indicated in Fig. 1, the 
resulting set of 𝑁𝑔 symmetry generators {𝕁𝛼} was not sparse. An im-

provement was implemented in [31], by adding an extra term to the 
loss function, Eq. (A.4), which encourages the learning of sparse gener-

ators in the canonical textbook form.

3. Iterative constructions of symmetry generators

The advantage of learning 𝑁𝑔 symmetry generators in one go is that 
one can impose the closure condition in the loss function and thus guar-

antee that the learned set {𝕁𝛼} is closed. However, there are drawbacks 
to this approach as well. First, due to the large number of trainable 
parameters (∼ 𝑛2 ×𝑁𝑔), the training is challenging and becomes pro-

hibitively slow for large groups (large 𝑁𝑔) and/or high dimensions 
2

(large 𝑛). For this reason, in Section 3.1 we explore an alternative 
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Algorithm 1: The greedy algorithm.

1 Parameters: 𝜆, 𝐿𝑚𝑖𝑛, 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 ;

2 {𝕁} ← [];
3  ←𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∼ ;

4 for i from 1 to 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 do

5 L ←𝐿greedy(𝔾(), {𝕁}, 𝐱) ;

6 if 𝐿 <𝐿𝑚𝑖𝑛 then

7 append 𝔾() to {𝕁};

8 goto 3;

9 end

10  ← − 𝜆∇𝐿greedy;

11 end

12 stop

“greedy” approach, which trains one generator at a time. Secondly, a 
closed algebra of generators only exists for certain values of 𝑁𝑔 , which 
are a priori unknown, and with the previous algorithms, would have to 
be guessed by trial and error. In contrast, the greedy approach automat-

ically finds the largest possible closed set of generators. Furthermore, 
we can use the closure condition to find additional generators directly, 
without any training. We refer to this last method as the “Lie bracket 
trick” (LBT), which is described in Section 3.2. In principle, both of 
the two new methods could accommodate the sparsity condition (A.4). 
However, we find that the training is more efficient when we look for 
nonsparse generators, therefore we postpone their sparsification to a 
postprocessing step which we describe in Section 3.3.

3.1. Greedy algorithm

The basic idea of the greedy algorithm is illustrated in Fig. 1 and the 
corresponding pseudocode is shown in Algorithm 1. We use Eq. (6) to 
train one generator 𝔾() at a time, where  denotes the trainable pa-

rameters of the matrix 𝔾. The generator 𝔾 is required to i) preserve the 
oracle, ii) be normalized, and iii) be orthogonal to the set of generators 
{𝕁𝛼} already found so far. Therefore, the loss function is

𝐿greedy(𝔾(),{𝕁},{𝐱}) =𝐿inv +𝐿norm +𝐿ortho, (7)

where 𝐿inv, 𝐿norm and 𝐿ortho are defined in (A.1), (A.2) and (A.3), re-

spectively.

As shown in Fig. 1, at the start of the algorithm the learned set 
{𝕁} is empty (𝑖 = 0). At this point, the orthogonality loss 𝐿ortho is not 
applicable and is turned off. The minimization in Eq. (6) will yield a 
single new symmetry generator 𝕁new = 𝕁1, the first to be added to the 
learned set {𝕁}. Now the orthogonality loss 𝐿ortho is turned on and the 
process continues until the algorithm fails to find a new valid symmetry 
generator 𝕁new. The resulting set {𝕁1, … , 𝕁𝑁𝑔

} is the largest orthogonal 
set of nontrivial symmetry generators. For the orthogonal groups 𝑂(𝑛)
with the oracle (1), this procedure terminates when 𝑁𝑔 = 𝑛(𝑛 − 1)∕2, 
while for the unitary groups 𝑈 (𝑛) with the oracle (3), it stops at 𝑁𝑔 = 𝑛2.

3.2. Lie bracket trick

Algorithm 2 shows the pseudocode for the Lie bracket trick algo-

rithm, which leverages the existing group structure among the symme-

try generators. As shown with the left side branch in Fig. 1, the LBT 
can be (optionally) applied in conjunction with the greedy algorithm, 
once two orthogonal generators, 𝕁1 and 𝕁2, have been found. At that 
point, one can compute their commutator (Lie bracket) 

[
𝕁1,𝕁2

]
, with 

three possible outcomes. First, if the commutator is zero, we gain noth-

ing from the LBT and must return to the greedy algorithm. If, however, 
the chosen pair does not commute, the result may include a component 
outside the span of the generators discovered so far, which would lead 
to a new valid symmetry generator that we can extract for free. To iso-

late this component, we employ Gram-Schmidt orthogonalization (line 
11 in Algorithm 2). If the result is zero, we are again out of luck and 
must return to the greedy method. However, if the out-of-span compo-
nent is nonzero, it becomes (after the normalization in line 13) a new 
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Fig. 1. Flowchart illustrating the algorithms discussed in Section 3 (left side) and the algorithms from Refs. [29] and [31] (right side).
generator which can be added to the set {𝐽}. This process can be re-

peated for every pair of known generators, including the newly found 
ones via the LBT method. The LBT algorithm terminates when all pos-

sible Lie brackets close in the current set {𝕁}. We note that when using 
the two Algorithms 1 and 2 together, one should choose judiciously the 
respective values of the loss thresholds 𝐿𝑚𝑖𝑛.

3.3. Sparsification

Suppose we have already found a set of 𝑁𝑔 generators 𝐽𝛼 , 𝛼 =
1, 2, … , 𝑁𝑔 . We can transform them to a new sparse basis, 𝐽𝛼 , by ro-

tating with an orthogonal 𝑁𝑔 ×𝑁𝑔 matrix 𝑂,

𝐽𝛼(𝑂) =𝑂𝛼𝛽𝐽𝛽 . (8)

In analogy to (A.4), the loss function for the sparsification of the gener-
3

ators can be defined as
𝐿sp(𝑂) =
𝑁𝑔∑
𝛼=1

𝑛∑
𝑗,𝑗′=1
𝑘,𝑘′=1

|||𝐽 (𝑗𝑘)
𝛼 (𝑂)𝐽 (𝑗′𝑘′)

𝛼 (𝑂)|||
(
1 − 𝛿𝑗𝑗′𝛿𝑘𝑘′

)
. (9)

It takes into account all possible pairs of entries in each transformed 
generator 𝐽𝛼 . We minimize over this loss to obtain the desired orthog-

onal transformation 𝑂, and subsequently, apply this transformation to 
the original generators 𝐽𝛼 to find the sparse generators 𝐽𝛼 as in (8).

3.4. Timing tests

The main advantage of the two new algorithms is that they signifi-

cantly speed up the training procedure. To quantify this improvement, 
in Fig. 2 we present the results from timing tests on a personal laptop for 
different 𝑈 (𝑛) groups, using the three approaches discussed earlier: the 
standard algorithm [31] (blue squares), the greedy Algorithm 1 (orange 
diamonds) and the LBT Algorithm 2 (green circles). The plot shows the 

time in seconds that it took to learn all 𝑛2 generators for the 𝑈 (𝑛) group, 
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Algorithm 2: The Lie bracket trick (LBT) algorithm.

1 Input: {𝐽1 , … , 𝐽𝑖}: known algebra; 𝐽𝑖+1 : new generator;

2 append 𝐽𝑖+1 to 𝐺;

3 repeat

4 𝑘 ← |𝐺|;
5 𝑖 ← |𝐽 |;
6 append G to J;

7 clear G;

8 for p from 1 to i do

9 for q from i+1 to i+k do

10 C ← 𝐽𝑝𝐽𝑞 − 𝐽𝑞𝐽𝑝 ;

11 C ← C−
∑

𝑔∈𝐽
𝑔

||𝑔|| × (C ⋅ 𝑔);

12 if ||𝐶|| ≠ 0 then

13 C ← C

||C|| ;
14 if 𝐿𝑖𝑛𝑣(𝐶, 𝐱) <𝐿𝑚𝑖𝑛 then

15 append C to G;

16 end

17 end

18 end

19 end

20 until |𝐺| = 0;

Fig. 2. Comparison of the running times of the different algorithms in finding 
the full algebras of the 𝑈 (𝑛) family: the standard algorithm [31] (blue squares), 
the greedy Algorithm 1 (orange diamonds) and the Lie bracket trick Algorithm 2

(green circles).

as a function of the dimension 𝑛, at a learning rate 2.5 × 10−2. The gen-

erators were found in sparse form by applying the post-processing step 
from Section 3.3, whose duration was included in the total time shown 
in Fig. 2. We observe that for small 𝑛 the performance of all three meth-

ods is comparable, but for large 𝑛 the new methods offer significant 
improvement. In particular, for 𝑛 ∼ 10 the standard method would re-

quire training for days, while the new methods reduce the training time 
to less than a minute.

4. The exceptional group 𝑮𝟐

The ML approach described in the previous two sections can be used 
to discover the orthogonal groups 𝑂(𝑛) [29] and the unitary groups 
𝑈 (𝑛) [31]. The method can also be generalized to the case of vector 
(i.e., multicomponent) oracles [30]. We shall now apply it to excep-

tional (non-classical) Lie algebras, which have relatively large number 
of generators, and would benefit from the speed-up offered by the new 
algorithms. We consider three of the five exceptional Lie groups: 𝐺2 in 
this section, 𝐹4 in Section 5, and 𝐸6 in Section 6. These exceptional Lie 
groups have found various applications in high energy physics in the 
context of gauge theories and model building [8,14,16,33–39]. Given 
the significant mathematical complexity of these groups, our ability to 
successfully derive their algebras attests to the robustness and general-
4

ity of our ML techniques.
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Fig. 3. Fano plane illustrating the multiplication rules for the imaginary unit 
octonions 𝑒1, … , 𝑒7 in our conventions. For each triple 𝑒𝑖 , 𝑒𝑗 and 𝑒𝑘 connected 
by a solid line, the result of the multiplication 𝑒𝑖𝑒𝑗 is equal to +𝑒𝑘 (−𝑒𝑘) when 
going along (against) the arrows. The dashed lines have been added to guide 
the eye in following each triplet cycle.

The smallest exceptional Lie group is the 𝐺2 group, which has rank 
2 and dimension 14. This group emerges as the automorphism group of 
the octonion algebra [40]. An octonion 𝐨 is a linear combination

𝐨 =
7∑

𝑖=0
𝑥(𝑖)𝑒𝑖 (10)

of the unit octonions 𝑒𝑖 with real coefficients 𝑥(𝑖). Here 𝑒0 is the real 
element which obeys 𝑒20 = +1 and can be identified with the real number 
1. The remaining 𝑒1, … , 𝑒7 are the seven imaginary unit octonions which 
obey 𝑒2

𝑖
= −1. Their multiplication rules can be visualized in the Fano 

plane of Fig. 3. The figure shows only one of 480 possible definitions for 
octonion multiplication with 𝑒0 = 1; the other definitions are isomorphic 
and can be obtained by permuting and/or changing the signs of the 
imaginary basis elements.

The group 𝐺2 has a fundamental representation of dimension 7, 
hence in this section 𝐱 ∈ ℝ7. The components of the feature vector 𝐱
will be identified with the coefficients 𝑥(𝑖), 𝑖 = 1, … , 7, of the imaginary

unit octonions in (10). Correspondingly, the generators {𝐽} will be real 
7 × 7 matrices.

In general, the exceptional groups preserve 𝐾 vector oracles 
𝜑(1), … , 𝜑(𝐾), where each component 𝜑(𝑖) represents an invariant poly-

nomial characteristic of the group. The group 𝐺2 preserves 𝐾 = 2 such 
polynomials. The first one is the norm of a purely imaginary octonion,

𝜑
(1)
𝐺2
(𝐱) =

7∑
𝑖=1

(
𝑥(𝑖)

)2
. (11)

To define the second oracle, we need to introduce the real part of the 
product of three octonions 𝐨1, 𝐨2 and 𝐨3

Re
(
𝐨1𝐨2𝐨3

)
=

7∑
𝑖,𝑗,𝑘=0

𝑖𝑗𝑘 𝑥
(𝑖)
1 𝑥

(𝑗)
2 𝑥

(𝑘)
3 . (12)

Using the multiplication rules from Fig. 3, the components of the rank 
three tensor 𝑖𝑗𝑘 can be easily derived and are shown in Fig. 4. The 
group 𝐺2 preserves the real component of the product of three purely 
imaginary octonions, hence the second 𝐺2 oracle is (note that the sums 

start from 1 instead of 0)
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Fig. 4. A pictorial visualization of the rank three tensor 𝑖𝑗𝑘 defined in Eq. (12). 
Each plane represents a slice at a fixed 𝑖 = 0, 1, … , 7 (from left to right). The blue, 
red and grey boxes indicate coefficient values of +1, −1 and 0, respectively.

𝜑
(2)
𝐺2
(𝐱1,𝐱2,𝐱3) =

7∑
𝑖,𝑗,𝑘=1

𝑖𝑗𝑘 𝑥
(𝑖)
1 𝑥

(𝑗)
2 𝑥

(𝑘)
3 . (13)

For the training of the 𝐺2 generators, we use 𝑚 = 900 samples (7-

dimensional vectors in ℝ7) and fix 𝜀 = 10−3. For the computation of the 
second oracle (13) we split the sample into three equally sized groups of 
300, from which we draw the three vectors 𝐱1 , 𝐱2 and 𝐱3. The training 
was done with the ADAM optimizer [41] for 1,000 epochs and with 
learning rate of 2.5 × 10−2.

Our results for the learned 𝐺2 generators are shown in Fig. 5. The 
panels in the top two rows depict the 14 generators found by the greedy 
algorithm (as expected, the algorithm failed to find a valid 15th gener-

ator, where even after 10,000 epochs, the loss stayed of order 1). The 
panels in the bottom two rows show the corresponding results after ap-

plying the sparsification procedure of Section 3.3. Note that all found 
generators are antisymmetric (𝐺2 is a subgroup of 𝑆𝑂(7)), and that they 
can be organized into 7 pairs which share common matrix elements: 𝕁1
and 𝕁9, 𝕁2 and 𝕁7, 𝕁3 and 𝕁4, 𝕁5 and 𝕁10, 𝕁6 and 𝕁12, 𝕁8 and 𝕁11, 𝕁13
and 𝕁14. Note that in each pair, one generator has six non-zero elements, 
while the other has only four. Therefore our version is sparser than the 
conventional textbook representation, in which each generator has six 
nonvanishing elements.

5. The exceptional group 𝑭𝟒

In this and the next section we follow the notation of refs. [42] and 
[43], where the generators for 𝐹4 and 𝐸6 have been explicitly derived. 
The exceptional group 𝐹4 has rank 4 and dimension 52. It is the auto-

morphism group of the Jordan algebra

𝔥3 =
⎛⎜⎜⎝
𝑟1 𝐨1 𝐨2
𝐨∗1 𝑟2 𝐨3
𝐨∗2 𝐨∗3 𝑟3

⎞⎟⎟⎠ , (14)

where 𝑟𝑎 are three real numbers (𝑎 = 1, 2, 3), and 𝐨𝑎 are three octonions 
[42]. The asterisk notation in (14) stands for octonion conjugation

𝐨∗ = 𝑥(0)𝑒0 −
7∑

𝑖=1
𝑥(𝑖)𝑒𝑖. (15)

The fundamental representation is of dimension 26. Following [42,43], 
we find it convenient to work in ℝ27 instead and map the components 
of the feature vector 𝐱 onto 𝑟𝑎 and 𝐨𝑎 as follows

𝑟1 = 𝑥(1), 𝐨1 =
7∑

𝑖=0
𝑥(2+𝑖) 𝑒𝑖, (16a)

𝑟2 = 𝑥(18), 𝐨2 =
7∑

𝑖=0
𝑥(10+𝑖) 𝑒𝑖, (16b)

𝑟3 = 𝑥(27), 𝐨3 =
7∑

𝑖=0
𝑥(19+𝑖) 𝑒𝑖. (16c)

The group 𝐹4 preserves 𝐾 = 3 different oracles (invariant polynomi-

als), which can be expressed in terms of the variables (16) as follows:

(1)
3∑

(1) (18) (27)
5

𝜑
𝐹4
(𝐱) = Tr𝔥3 =

𝑎=1
𝑟𝑎 = 𝑥 + 𝑥 + 𝑥 , (17)
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𝜑
(2)
𝐹4
(𝐱) = Tr𝔥23 =

3∑
𝑎=1

(
𝑟2𝑎 + 2 |𝐨𝑎|2 )

= 2
27∑
𝑖=1

(
𝑥(𝑖)

)2 − ∑
𝑖∈{1,18,27}

(
𝑥(𝑖)

)2
, (18)

𝜑
(3)
𝐹4
(𝐱) = det 𝔥3 = 𝑟1𝑟2𝑟3 −

3∑
𝑎=1

𝑟𝑎 |𝐨4−𝑎|2 + 2Re
(
𝐨3𝐨∗2𝐨1

)

= 𝑥(1)𝑥(18)𝑥(27) − 𝑥(1)
26∑

𝑖=19

(
𝑥(𝑖)

)2

− 𝑥(18)
17∑

𝑖=10

(
𝑥(𝑖)

)2 − 𝑥(27)
9∑

𝑖=2

(
𝑥(𝑖)

)2

+ 2
7∑

𝑖,𝑗,𝑘=0
𝑖𝑗𝑘 𝑥

(19+𝑖) 𝑥(10+𝑗) 𝑥(2+𝑘) (2𝛿𝑗,10 − 1), (19)

where the tensor 𝑖𝑗𝑘 was defined in Eq. (12) and pictorially illustrated 
in Fig. 4. The additional factor of (2𝛿𝑗,10 − 1) in the last line flips the 
sign of the 𝑥(11), 𝑥(12), … , 𝑥(17) factors in the sum and thus accounts for 
the conjugation of 𝐨2 in the triple product 𝐨3𝐨∗2𝐨1.

The results from the training of 52 𝐹4 generators with the greedy 
algorithm and with the oracles (17)-(19) are shown in Fig. 6. We used 
𝑚 = 900 samples of the 𝑛 = 27 input features 𝑥(𝑖), organized as in (16). 
The training ran over up to 26,000 epochs with the ADAM optimizer, 
𝜀 = 10−4 and learning rate of 5 × 10−4. A 53rd generator was not found 
after more than 250,000 epochs.

The numerically derived generators in Fig. 6 can be compared 
against explicit analytical constructions of the 𝐹4 generators in the liter-

ature. For example, we have verified that the set of generators in Fig. 6

is isomorphic (in the sense that the matrix 𝑂 relating the two sets as 
in (8) is orthogonal) to the set of fifty two 27 × 27 matrices ℂ𝛼 listed in 
Appendix C of [42]. This comparison is rather nontrivial in light of the 
following differences between the two studies:

• Octonion multiplication table. The multiplication rules satisfied by 
the imaginary unit octonions 𝑒′

𝑖
in [42] are different from those of 

Fig. 3. The two bases are related as 𝑒′1 = 𝑒1, 𝑒′2 = 𝑒2, 𝑒′3 = 𝑒4, 𝑒′4 = 𝑒3, 
𝑒′5 = 𝑒6, 𝑒′6 = −𝑒7, 𝑒′7 = 𝑒5. As a result, the two sets of generators 
appear visually different, as the non-vanishing components of the 
respective matrices are located in different rows and/or columns. 
As it turns out, the conventions of Fig. 3 happen to produce an 
aesthetically more pleasing result — note how all non-vanishing 
entries in Fig. 6 are nicely lined up diagonally, while the corre-

sponding patterns in Appendix C of [42] appear more scattered 
and chaotic.

• Normalization. The 𝐹4 generators ℂ𝛼 in [42] are normalized 
as Tr(ℂ𝛼ℂ𝛽 ) = − 6 𝛿𝛼𝛽 , while those in Fig. 6 are normalized as 
Tr(𝕁𝛼𝕁𝑇𝛽 ) = 𝛿𝛼𝛽 as per (A.2) and (A.3).

• Basis of ℝ27. Since the first oracle (17) is linear in 𝐱, one can apply 
an orthogonal rotation to 𝑟1, 𝑟2 and 𝑟3, so that one of the coor-

dinates in the new basis, say the last one, is directly proportional 
to 𝜑(1)

𝐹4
[42]. This choice has the advantage that the last row and 

the last column of each generator matrix are filled with zeros, as 
in [42], confirming that the fundamental representation of 𝐹4 is 
26-dimensional. If we apply the same rotation to the learned gen-

erators in Fig. 6, the resulting matrices all have zeros in their last 
rows and columns as well.

6. The exceptional group 𝑬𝟔

The exceptional group 𝐸6 is of rank 6 and dimension 78. Following 
[43], we work in the real case, which results in the split form of the 
𝐸6 algebra, with signature (52, 26). (By multiplying the 26 added gener-

ators by 𝑖, the algebra remains real, and the Killing form becomes the 

compact one. For details, we refer the interested reader to [43].) The 
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Fig. 5. The fourteen 𝐺2 generators learned with the greedy method (top panels) and the result from their sparsification (bottom panels). In this and all subsequent 
such figures, each panel represents a learned generator 𝕁 in matrix form, where the values of the individual elements of the matrix are indicated by the color bar.
𝛼

relevant 27 variables are those in (16). In this case, we require invari-

ance with respect to only the last oracle, (19), but not the first two, 
(17) and (18). This allows for the presence of 78 − 52 = 26 additional 
generators beyond those of Fig. 6. Our goal in this section will be to de-

rive those additional 26 generators which are not contained in the 𝐹4
subalgebra of 𝐸6.

The straightforward approach to deriving all 𝐸6 generators would be 
to apply the greedy algorithm and learn from scratch 78 generators pre-

serving the oracle (19). However, we can save a significant amount of 
work by leveraging the learned 𝐹4 generators from the previous section 
which already satisfy (19) by definition. In other words, given the 52 al-

ready discovered 𝐹4 generators, we are looking to find the additional 26 
which complete 𝐹4 to 𝐸6. This is the perfect setup for applying the Lie 
bracket trick — treat the 𝐹4 generators as the starter set {𝕁1, … , 𝕁52}, 
learn a single new non-sparse generator 𝕁53 with the greedy algorithm, 
and then hand those 52 + 1 generators over to the LBT algorithm and 
let it do its job. The result from this procedure (after the correspond-

ing sparsification of the 26 new generators among themselves) is shown 
in Fig. 7. Notably, the LBT algorithm was able to find all of the miss-

ing 25 generators from a single non-sparse seed 𝕁53. The key to this was 
that the seed 𝕁53 was non-sparse, and therefore a linear combination 
involving a large number of the canonical sparse 𝐸6 generators.

The machine-learned generators shown in Fig. 7 can be verified 
against analytically derived results in the literature. We have compared 
our results to the additional 26 𝐸6 generators ℂ53, … , ℂ78 listed in Ap-

pendix C of [43] and found perfect agreement, once we account for the 
differences in our conventions (see discussion at the end of Section 5). 
For example, the LBT algorithm correctly finds exactly two diagonal 
generators, namely 𝕁66 and 𝕁72 (respectively proportional to ℂ53 and 
ℂ70 in [43]). This is expected, since the rank of 𝐸6 is larger than the 
rank of 𝐹4 by 2. Also note that all generators are antisymmetric in the 
octonionic indices 2 −17, 19 −26. Once again, we find regular linear pat-

terns in the locations of the nonzero matrix elements in the generators 
in Fig. 7.

7. Summary

Discovering symmetries in data is crucial for both fundamental the-
6

ory and data science. Recent advancements in ML algorithms, coupled 
with the growth in computational resources, have facilitated progress in 
this area. However, when dealing with highly complex and multidimen-

sional problems, training machine-learning models remains a significant 
bottleneck. This paper introduces two novel algorithms that greatly 
accelerate the symmetry discovery process. The new methods were rig-

orously tested and showcased using examples of symmetries from the 
exceptional groups 𝐺2, 𝐹4, and 𝐸6 (the generators for the remaining 
two exceptional groups, 𝐸7 and 𝐸8, can be learned in a similar fashion, 
since their polynomial invariants are known as well [44]). Remark-

ably, the symmetry generators were learned accurately and in a nicer 
form than the conventional representations found in textbooks. Further-

more, as demonstrated in a follow up paper [45], the method can also 
reveal the existing subalgebra structures within the set of learned gen-

erators. With these groundbreaking techniques at our disposal, we can 
now confidently tackle even more intricate and challenging problems 
in mathematical physics, particle phenomenology, and data analysis.
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Appendix A. Loss function

In this appendix we adapt the loss functions from [29,31] to the 
case where we train a single generator 𝔾. The loss function is chosen to 

ensure that 𝔾 has the following properties:
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Fig. 6. The learned 27 × 27 sparse generators 𝐽𝛼 , 𝛼 = 1,… ,52, for the case of 𝐹4 .
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Fig. 7. The additional learned 27 × 27 sparse generators 𝐽𝛼 , 𝛼 = 53, … , 78, for the case of 𝐸6 . The hyperparameters used in the training of the single non-sparse 
generator 𝕁 used to seed the algorithm were as in Section 5.
53

Invariance: preserving the values of a vector oracle 𝜑⃗(𝐱) for all sam-

pled datapoints {𝐱} under a given candidate transformation 𝔾:

𝐿inv

(
𝔾,{𝐱}

)
= 1

𝑚𝜀2

𝑚∑
𝑖=1

[
𝜑⃗
(
𝐱𝑖 + 𝜀𝔾 ⋅ 𝐱𝑖

)
− 𝜑⃗(𝐱𝑖)

]2
, (A.1)

where “⋅” denotes ordinary tensor multiplication and the arrow vector 
notation implies summation over the 𝐾 oracle components.

Normalization: ensuring that the transformation 𝔾 is not trivial and 
normalized to 1:

𝐿norm

(
𝔾
)
=
[
Tr
(
𝔾 ⋅𝔾𝑇

)
− 1

]2
. (A.2)

Orthogonality. This condition is used if we already have some ex-

isting orthonormalized generators {𝐽} and want to find an additional 
generator 𝔾. It guarantees that the transformation 𝔾 is not in the set 
{𝐽}:

𝐿ortho

(
𝔾,{𝕁}

)
=
∑
𝛼

[
Tr
(
𝔾 ⋅ 𝕁𝑇𝛼

)]2
. (A.3)

Sparsity: an additional loss term designed to encourage sparsity was 
introduced in Ref. [31]:

𝐿sp

(
𝔾
)
=

𝑛∑
𝑗,𝑘=1

𝑛∑
𝑗′ ,𝑘′=1

|||𝔾(𝑗𝑘)𝔾(𝑗′𝑘′)|||
(
1 − 𝛿𝑗𝑗′𝛿𝑘𝑘′

)
, (A.4)

where 𝔾(𝑗𝑘) denotes the 𝑗𝑘-component of 𝔾.

In this study, the total loss function was formed as a plain sum of 
8

the relevant individual terms (A.1)-(A.4).
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