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Abstract
Neutrinomass generation through theHiggsmechanismnot only suggests the need to reconsider the
physics of electroweak symmetry breaking from a newperspective, but also provides a new
theoretically consistent and experimentally viable paradigm.We illustrate this by describing themain
features of the electroweak symmetry breaking sector of the simplest type-II seesawmodel with
spontaneous breaking of lepton number. After reviewing the relevant ‘theoretical’ and astrophysical
restrictions on theHiggs sector, we perform an analysis of the sensitivities ofHiggs Boson searches at
the ongoing ATLAS andCMS experiments at the LHC, including not only the new contributions to
the decay channels present in the standardmodel (SM) but also genuinely non-SMHiggs Boson
decays, such as ‘invisible’Higgs Boson decays tomajorons.We find sensitivities that are likely to be
reached at the upcoming run of the experiments.

1. Introduction

The electroweak breaking sector is a fundamental ingredient of the standardmodel (SM), many of whose
detailed properties remain open even after the historic discovery of theHiggs Boson [1, 2]. The electroweak
breaking sector is subject tomany restrictions following fromdirect experimental searches at colliders [3, 4], as
well as globalfits [5, 6] of precision observables [7–9].Moreover, its properties aremay also be restricted by
theoretical consistency arguments, such as naturalness, perturbativity and stability [10]. The latter have long
provided strongmotivation for extensions of the SM such as those based on the idea of supersymmetry.

Following the approach recently suggested in [11, 12]we propose to take seriously the hints from the
neutrinomass generation scenario to the structure of the scalar sector. In particular, themost accepted scenario
of neutrinomass generation associates the small size of the neutrinomass to their charge neutrality which
suggests them to be ofMajorana nature due to some, currently unknown,mechanismof lepton number
violation. The latter requires an extension of the Ä ÄSU 3 SU 2 U 1c L Y( ) ( ) ( ) Higgs sector and hence the need to
reconsider the physics of symmetry breaking from anewperspective. In broad terms this would provide an
alternative to supersymmetry as a paradigmof electroweak breaking. Amongst its other characteristic features is
the presence of doubly charged scalar bosons, compressedmass spectra of heavy scalars dictated by stability and
perturbativity and the presence of ‘invisible’ decays ofHiggs Bosons to theNambu-Goldstone boson associated
to spontaneous lepton number violation and neutrinomass generation [13].

In this paperwe study the invisible decays of theHiggsBosons in the context of a type-II seesawmajoronmodel
[14] inwhich the neutrinomass is generated after spontaneous violation of leptonnumber at some low energy
scale, L L ~ TeVEW ( ) [15, 16]4. This scheme requires thepresence of two leptonnumber carrying scalar
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multiplets in the extended Ä ÄSU 3 SU 2 U 1c L Y( ) ( ) ( ) model, a singletσ and a tripletΔunder SU(2)—this
seesaw schemewas called ‘123’-seesawmodel in [14] andherewe take the ‘pure’ versionof this scheme,without
right-handedneutrinos. The presence of the new scalars implies the existence ofnew contributions to ‘visible’ SM
Higgs decays, such as the ggh decay channel, in addition to intrinsically newHiggs decay channels involving
the emission ofmajorons, such as the ‘invisible’decays of theCP-even scalar bosons. As a result, one can set upper
limits on the invisible decay channel basedon the available datawhich restrict the ‘visible’ channels.

The plan of this paper is as follows. In the next sectionwe describe themain features of the symmetry
breaking sector of the ‘123’ type II seesawmodel. In section 3we discuss the ‘theoretical’ and astrophysical
constraints relevant for theHiggs sector. Taking these into account, we study the sensitivities ofHiggs Boson
searches at the LHC to StandardModelscalar boson decays in section 4. Section 5 addresses the non-SMHiggs
decays of themodel. Section 6 summarizes our results andwe conclude in section 7.

2. The type-II seesawmodel

Our basic framework is the ‘123’ seesaw scheme originally proposed in [14]whoseHiggs sector contains, in
addition to the Ä ÄSU 3 SU 2 U 1c L Y( ) ( ) ( ) scalar doubletΦ, two lepton-number-carrying scalars: a complex
singletσ and a tripletΔ. All thesefields develop non-zero vacuum expectation values (vevs) leading to the
breaking of the StandardModel(SM) gauge group aswell as the global symmetryU 1 L( ) associated to lepton
number. The latter breaking accounts for generation of the small neutrinomasses.

Therefore, the scalar sector is given by
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with L=0 and = -L 2, respectively, and the scalar fieldσwith lepton number L=2. Belowwewill consider
the required vev hierarchies in themodel.

2.1. Yukawa sector
Herewe consider the simplest version of the seesaw scheme proposed in [14] inwhich no right-handed
neutrinos are added, and only the Ä ÄSU 3 SU 2 U 1c L Y( ) ( ) ( ) electroweak breaking sector is extended so as to
spontaneously break lepton number givingmass to neutrinos. Such ‘123’majoron–seesawmodel is described by
the Ä ÄSU 3 SU 2 U 1c L Y( ) ( ) ( ) Ä U 1 L( ) invariant Yukawa Lagrangian,

 = F + F + F + D +ny Q u y Q d y L y L C L h.c. 2Y ij
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In thismodel the neutrinomass (see figure 1) is given by,
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where v1 and v2 are the vevs of the singlet and the doublet, respectively. Hereκ is a dimensionless parameter that
describes the interaction amongst the three scalarfields (see below), and Dm is themass of the scalar tripletΔ.

At this point we note that the smallness of neutrinomass i.e.

nm e1 V

Figure 1.Diagram that generates non-zero neutrinomass in themodel.

2

New J. Phys. 18 (2016) 033033 CBonilla et al



may define interesting regions of the parameter space in any neutrinomass generationmodel where the new
physics is expected to be hidden fromdirect observation. In particular, we are interested in spotting those regions
accessible at collider searches such as the ongoing experiments at the LHC (see [20] and references therein).

In our pure type II seesawmodel where lepton number is spontaneously violated at some low energy scale we
have

= áDñn
nm y

with the effective vev is given as máDñ = áFñ DM2 2 whereΔ is the isotriplet lepton–number–carrying scalar.
Here áFñ isfixed by themass of theW boson and

m k= v1

is the dimensionful parameter responsible of lepton number violation, see equation (3). Therefore if ~ny 1( )
and themass DM lies at 1TeV region then one has that áDñ ~ nm and m ~ e1 V.

Note that onemay consider two situations: Lv EW1 (high-scale seesawmechanism) inwhose case the
scalar singlet and the invisible decays of theHiggs are decoupled [15]; the second interesting case is when

 L vEW 1 fewTeV (low-scale seesawmechanism). In this case the parameterκ is the range - -10 , 1014 16[ ] for
~ny 1( ). In this case one has new physics at the TeV region including the ‘invisible’ decays of theHiggs

Bosons.
Therefore, led by the smallness of the neutrinomass we can qualitatively determine that the analysis to be

carried out is characterized by having a vev hierarchy

 v v v1 2 3

and the smallness of the couplingκ, that is k  1.

2.2. The scalar potential
The scalar potential invariant under the Ä ÄSU 3 SU 2 U 1c L Y( ) ( ) ( ) Ä U 1 L( ) symmetry is given by [15, 16] 5
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Asmentioned above the scalar fieldsσ,f andΔ acquire non-zero vacuum expectation values, v1, v2 and v3,
respectively, so that, they can be shifted as follows,
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Theminimization conditions of equation (4) are given by,
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and from these one can derive a vev seesaw relation of the type

k~v v v ,1 3 2
2

whereκ is the dimensionless coupling that generates themass parameter associated to the cubic term in the
scalar potential of the simplest triplet seesaw schemewith explicit lepton number violationas proposed in [21]
and recently revisited in [12].

NeutralHiggs Bosons
One can nowwrite the resulting squaredmassmatrix for theCP-even scalars in theweak basis R R R, ,1 2 3( ) as

follows,

5
Fromnowonwe follow the notation and conventions used in [16].
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R is diagonalized by an orthogonalmatrix as follows,  =M m m mdiag , ,R R R
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and a a= =c scos , sinij ij ij ij, so that the rotationmatrixR is re-expressed in terms of themixing angles in the
followingway:

 = - - -
- + - -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

c c c s s
c s c s s c c s s s c s
c c s s s c s s c s c c

. 9R

12 13 13 12 13

23 12 12 13 23 23 12 12 13 23 13 23

12 23 13 23 12 23 12 13 12 23 13 23

( )

On the other hand, the squaredmassmatrix for theCP-odd scalars in theweak basis I I I, ,1 2 3( ) is given as,
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ThematrixM2
I is diagonalized as,  =M mdiag 0, 0,I I I

T
A

2 2( ), where the nullmasses correspond to thewould-
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Themass eigenstates are linkedwith the original ones by the following rotation,
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ChargedHiggs Bosons
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The squaredmassmatrix for the singly-charged scalar bosons in the original weak basis f D ,( ) is given by,
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2.3. Scalar bosonmass sum rules
Notice that using the fact that the smallness of the neutrinomass implies that the parametersκ and v3 are very
small one can, to a good approximation, rewrite equation (6) schematically in the form,
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As a result, the scalarH3 and the pseudo-scalarA are almost degenerate,
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In the sameway, by using equations (11), (18) and (19), one can derive the followingmass relations,
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This sum rule is also satisfied in the type-II seesawmodel with explicit breaking of lepton number. Imposing the
perturbativity condition one finds that the squaredmass difference between, say doubly and singly charged
scalar bosons, cannot be too large [12]. Explicit comparison shows that l5 in equation (4) corresponds to l¢ DH in
[12]. Thereforewhen the couplings of the singletσ in equation (4) are small, l5 is constrained to be in the range
-0.85, 0.85[ ], so that the remaining couplings are kept small up to the Planck scale and vacuum stability is
guaranteed. See figure 4 in [12]. Likewisewhen one decouples the triplet one also recovers the results found
in [11].

3. Theoretical constraints

Before analyzing the sensitivities of the searches forHiggs Bosons at the LHC experiments, wefirst discuss the
restrictions that follow from the consistency requirements of theHiggs potential.We can rewrite the
dimensionless parameters l1,2,3 and b1,2,3 in equation (4) in terms of themixing angles, aij and scalar themasses

mH1,2,3 by solving  =M m m mdiag , ,R R R
T
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In addition, using equations (11), (18) and (19)we canwrite the dimensionless parameters l4,5 andκ as
functions of the vevs v1,2,3 and themasses of the pseudo-, singly- and doubly-charged scalar bosons (i.e.mA, mH

and Dm , respectively) as,
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From the theoretical sidewe have to ensure that the scalar potential in themodel is bounded from
below (BFB).

3.1. Boundedness conditions
In order to ensure that the scalar potential in equation (4) is bounded frombelowwe have to derive the
conditions on the dimensionless parameters such the quartic part of the scalar potential is positive >V 04( ) as
thefields go to infinity.We have that the parameter k  1 (due to the smallness of the neutrinomass) and non-
negative. This follows from
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wherewe have used the last expression in equation (24) and the fact that v v v,3 2 1. Thenκ is neglectedwith
respect to the other dimensionless parameters li and bj, i.e. l b k,i j . As a result the quartic part of the
potential k=V 4
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copositivity criteria described in [22]may be applied and the boundedness conditions for equation (4) are the
following,

l b l l b b l

l b b l l l q l l l l

b l l l q l l b b l b l lll

> > > º + >

º + > º + - + >

+ + - + + + >

0, 0, 0, 2 0,

2 0, 2 0, and

0, 26

1 1 24 2 1 1

3 1 24 3 5 5 1 24

1 1 24 3 5 5 1 2 24 3 1

ˆ
˜ ¯ ( )

[ ( ) ] ˆ ˜ ¯ ( )

where l l lº +24 2 4. In addition all the dimensionless parameters in the scalar potential are required to be less
than p4 in order to fulfill the perturbativity condition.

3.2. Astrophysical constraints
In our type-II seesawmodel there are some constraints on themagnitude of SU(2) triplet’s vev áDñ = v3, that
onemust take into account. First of all, v3 is constrained to be smaller than a fewGeVs due to the ρparameter
(r = 1.0004 0.00024 [23]).

On the other hand, the presence of theNambu-Goldstone boson associated to spontaneous lepton number
violationand neutrinomass generation implies that there is amost stringent constraint on v3 coming from

6
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astrophysics, due to supernova cooling. If themajoron is a strict Goldstone boson (or lighter than typical stellar
temperatures) one has an upper bound for theMajoron-electron coupling

 -g 10 ,Jee
13∣ ∣

This is discussed, for example, in [24] and references therein. This implies

=g m v .Jee
I

e12 2∣ ∣ ∣ ∣

Taking into account the profile of theMajoron [14]6 one can translate this as a bound on the projection of the
Majoron onto the doublet as follows [16]

fá ñ =
+ + +

-J
v v

v v v v v v v

2

4 4
10 . 272 3

2

1
2

2
2

3
2 2

2
2

3
4

2
4

3
2

7∣ ∣ ∣ ∣ ∣

( )
( )

Notice that this restriction on the triplet’s vev is stronger that the one stemming from the ρ parameter. The
shaded region infigure 2 corresponds to the allowed region of v3 as function of v1.

To close this sectionwemention that our phenomenological analysis remains valid if theNambu-Goldstone
boson picks up a smallmass from, say, quantumgravity effects.

4. Type-II seesawHiggs searches at the LHC

Wenow turn to the study of the experimental sensitivities of the LHC experiments to the parameters
characterizing the ‘123’ type-IImajoron seesawHiggs sector, as proposed in [14]. In the followingwewill
assume that < <m m mH H H1 2 3

where 1, 2, 3 refer to themass ordering in theCP evenHiggs sector. Therefore,
there are two possible cases that can be considered7:

i. <m mH H1
and =m m ;H H2

ii. =m mH H1
,

wheremH is themass of theHiggs reported by theATLAS [2] andCMS [25] collaborations, i.e.
=  m e125.09 0.21 stat. 0.11 syst. G VH ( ) ( ) [26]. For case (i), we have to enforce the constraints coming

fromLEP-II data on the lightest CP-even scalar coupling to the SMand those coming from the LHCRun-1 on
the heavier scalars. Such situation has been discussed by us in [13] in the simplest ‘12-type’ seesawMajoron
model. In case (ii), only the constraints coming from the LHCmust be taken into account.

Figure 2.The shaded region represents the allowed region of v3 as function of v1.

6
This is derived either by explicit analysis of the scalar potential or simply by symmetry, usingNoether’s theorem [14].

7
Recall that »m mH A3 , equation (22), which implies that themass ofH3must be close to that of the doubly-charged scalarmass. Therefore,

as wewill see in the next section, the existing bounds on searches of the doubly-charged scalar exclude the casewhere mH3 is lighter than the
other CP-evenmass eigenstates.
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The neutral component of the StandardModelHiggs doublet couplings getmodified as follows,

f  + +C H C H C H 280
1 1 2 2 3 3 ( )

wherewe have defined ºCi i
R
2 and ij

R are thematrix elements ofR in equation (9).

4.1. LEP constraints on invisibleHiggs decays
The constraints onH1, when <m e125 G VH1

, stem from the process  + -e e Zh Zbb̄ which is written as
[27]

s s

s

= ´ ´ 

= ´




R BR h bb

C , 29

hZ bbZ hZ
SM

hZ

hZ
SM

Z h bb
2

( ¯)
( )

¯

( ¯)

where shZ
SM is the SM hZ cross section,RhZ is the suppression factor related to the coupling of theHiggs Boson8 to

the gauge bosonZ. Since v v3 2, we have that the factor »R CH Z i
2

i
where a a=C cos sin1 13 12, equation (28).

Notice that a»C sin1 12 for the limit a  113 and then one obtains the same exclusion region depicted infigure
1 in [13].

4.2. LHC constraints on theHiggs signal strengths
In addition, we have to enforce the limits coming from the StandardModeldecay channels of theHiggs Boson.
These are given in terms of the signal strength parameters,

m
s
s

=






pp h

pp h

BR h f

BR h f
, 30f

NP

SM

NP

SM

( )
( )

( )
( )

( )

whereσ is the cross section forHiggs production, BR h f( ) is the branching ratio into the Standard
Modelfinal state f, the labelsNP and SM stand forNewPhysics and StandardModel, respectively. These can be
comparedwith those given by the experimental collaborations. Themost recent results of the signal strengths
from a combinedATLAS andCMS analysis [28] are shown in table 1.

One can seewith ease that the LHC results indicate that m ~ 1VV . In our analysis, we assume that the LHC
allows deviations up to 20%as follows,

 m0.8 1.2 31XX ( )

Table 1.Current experimental results of ATLAS and
CMS, [28].

channel ATLAS CMS ATLAS+CMS

mgg -
+1.15 0.25

0.27
-
+1.12 0.23

0.25
-
+1.16 0.18

0.20

mWW -
+1.23 0.21

0.23
-
+0.91 0.21

0.24
-
+1.11 0.17

0.18

mZZ -
+1.51 0.34

0.39
-
+1.05 0.27

0.32
-
+1.31 0.24

0.27

mtt -
+1.41 0.35

0.40
-
+0.89 0.28

0.31
-
+1.12 0.23

0.25

mbb -
+0.62 0.36

0.37
-
+0.81 0.42

0.45
-
+0.69 0.27

0.29

Table 2. Scalarmass eigenstates in themodel.

= +c v v v22 2
2

3
2 , = +s v v v2 23 2

2
3
2 .

Mass eigenstatef Mass squared fm2 Composition

Hi =i 1, 2, 3( ) mi
2   + +R R Ri

R
i
R

i
R

1 1 2 2 3 3

J 0   + +I I II I I
11 1 12 2 13 3

G0 0  +I II I
22 2 23 3

A k
+ +v v v v v v

v v

4

2
2
2

1
2

2
2

3
2

3
2

1
2

3 1( )   + +I I II I I
31 1 32 2 33 3

G 0 f + D



c s

H k l- +v v v v2 2
v

1

4 1 5 3 2
2

3
2

3
( )( ) f- + D




s c

D k l l- -v v v v v2
v

1

2 1 2
2

4 3
3

5 2
2

3
3
( ) D

8
The Feynman rules for the couplings of theHiggs BosonsHi to theZ are the following:  + mni v v g

g

c i
R

i
R

2 2 2 3 3
W

2

2 ( ) .
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4.3. LHCbounds on the heavy neutral scalars
In our studywewill impose the constraints on the heavy scalars from the recent LHC scalar boson searches.
Therefore, we use the bounds set by the search for a heavyHiggs in the H WW and H ZZ decay channels
in the range -145 1000 GeV[ ] [29] and in the tth decay channel in the range range -100 1000 GeV[ ] [30].
We also adopt the constraints on the process ggh in the range -65 600 GeV[ ] [31] and the range
150, 850 GeV[ ] [32]. Besides, we impose the bounds in the A Zh decay channel in the range

-220 1000 GeV[ ] [33].

4.4. Summary of the searches of charged scalars
The type-II seesawmodel with explicit breaking of lepton number contains seven physical scalars: twoCP-even
neutral scalarsH1 andH2, oneCP-odd scalarA and four charged scalarsD and H . Such a scenario has been
widely studied in the literature and turns out to be quite appealing because it could be tested at the LHC [34–44].
For instance, the existence of charged scalar bosons provides additional contributions to the one-loop decays of
the StandardModelHiggs Boson. Indeed, they could affect the one-loop decays ggh [39, 40] and gh Z
[40] in a substantial way. In this case the signal strength mgg can set bounds on themass of the charged scalars,

D and/or H .
The doubly-charged scalar boson has the following possible decay channels:  ℓ ℓ ,  W W ,  W H and

 H H . However, it is known that for an approximately degenerate tripletmass spectrum and vev
 -v 10 GeV3

4 the doubly chargedHiggs coupling to W is suppressed (because it is proportional to v3 as can
be seen from table 3) and henceD predominantly decays into like-sign dileptons [41, 44, 45]. In this case,
CMS [46] andATLAS [47] have currently excluded at 95%C.L., depending on the assumptions on the branching
ratios into like-sign dileptons, doubly-chargedmasses between 200 and 460GeV9. For  -v 10 GeV3

4 , the
Yukawa couplings of triplet to leptons are too small so thatD dominantly decays to like-sign dibosons, in
which case the collider limits are rather weak [43, 48–50].

In the present ‘123’ type-II seesawmodel there are two additional physical scalars, amassive CP-even scalar
H3 and themasslessmajoron J. The latter, associated to the spontaneous breaking of lepton number, provides
non-standard decay channels of otherHiggs Bosons asmissing energy in the final state10.

5. InvisibleHiggs decays at the LHC

Wenow turn to the case of genuinely non-standardHiggs decays.We focus on investigating the LHC
sensitivities on the invisibleHiggs decays. In so doingwe take into account how they are constrained by the
available experimental data. In the previous sectionwementioned that in our study theCP- even scalars obey the
followingmass hierarchy < <m m mH H H1 2 3

. Furthermore, wewill also assume that themasses mH3
,mA, +mH

and D++m are nearly degenerate.
As a consequence, the decay of anyCP-evenHiggsHi into the pseudo-scalarA is not kinematically allowed.

Therefore, the new decay channels of the CP-even scalars are just, H JJi and H H2i j (when <mH
m

2i

Hj for

¹i j). The latter contributing also to the invisible decay channel of theHiggs as,  H H J2 4i j .
TheHiggs-Majoron couplings are given by,








= + +

⎛
⎝⎜

⎞
⎠⎟g

v v v
m , 32H JJ

I

a
R

I

a
R

I

a
R

H
12

2

2
2

13
2

3
3

11
2

1
1

2
a a

( ) ( ) ( ) ( )

where ij
I are the elements of the rotationmatrix in equation (13) and the decaywidth is given by

p
G  =H JJ

g

m

1

32
. 33a

H JJ

H

2
a

a

( ) ( )

9
Fromdoubly-charged scalar boson searches performed byATLAS andCMSone can also constrain the lepton number violation processes
 D D     pp W Wℓ ℓ and  D    pp H W Zℓ ℓ [41]. Thismay also shed light on theMajorana phases of the lepton

mixingmatrix [34–36].
10

These include, for example, H JJi and  H JW . Here we focusmainly on thefirst, the decays of H deserve further study but it is
beyond the scope of this work andwill be considered elsewhere.
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Table 3. Feynman rules for the couplings of theHiggs BosonsHi to the gauge bosons.

Vertex GaugeCoupling

1 m n
+ -H W W1  + mni v v g2

g R R
2 12 2 13 3

2
( )

2 m n
+ -H W W2  + mni v v g2

g R R
2 22 2 23 3

2
( )

3 m n
+ -H W W3  + mni v v g2

g R R
2 32 2 33 3

2
( )

4 D m n
  W W mni g g2 v2

2
3

5 m n
 H W Z mn

i g
g

c

c v

2W

2
3

6 m n
 G W Z + + mn i s c s s g1

g

c

v
W

v
W2

2
2

2

W

2
2 3( )( )

7 m n
 G W A - mniem gW

8 D D m n
++ -- + -W W mnig g2

9 m n
+ - + -H H W W + mni c g1 3

g

2
2

2
( )

10 m n
+ - + -G G W W + mni s g1 3

g

2
2

2
( )

11 m n
+ -H H W W1 1  + mni g2

g R R
2 12

2
13

2
2
( )

12 m n
+ -H H W W2 2  + mni g2

g R R
2 22

2
23

2
2
( )

13 m n
+ -H H W W3 3  + mni g2

g R R
2 32

2
33

2
2
( )

14 m n
+ -JJW W  + mni g2

g I I
2 12

2
13

2
2
( )

15 m n
+ -G G W W0 0  + mni g2

g I I
2 22

2
23

2
2
( )

16 m n
+ -AAW W  + mni g2

g I I
2 32

2
33

2
2
( )

17 D n
  H W - migc p p1 2( )

18 D n
  G W - migs p p1 2( )

19 m
 H H W1   - - m i s c p p2

g R R
2 12 13 1 2( ) ( )

20 m
 H H W2   - - m i s c p p2

g R R
2 22 23 1 2( ) ( )

21 m
 H H W3   - - m i s c p p2

g R R
2 32 33 1 2( ) ( )

22 m
 H JW  + - m s c p p2

g I I
2 12 13 1 2( ) ( )

23 m
 G H W0  - + - m s c p p2

g I I
2 22 23 1 2( ) ( )

24 m
 AH W  - + - m s c p p2

g I I
2 32 33 1 2( ) ( )

25 m
 G H W1   + - m i c s p p2

g R R
2 12 13 1 2( ) ( )

26 m
 G H W2   + - m i c s p p2

g R R
2 22 23 1 2( ) ( )

27 m
 G H W3   + - m i c s p p2

g R R
2 32 33 1 2( ) ( )

28 m
 G JW  - - - m c s p p2

g I I
2 12 13 1 2( ) ( )

29 m
 -G G W0  - - m c s p p2

g I I
2 22 23 1 2( ) ( )
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Table 3. (Continued.)

Vertex GaugeCoupling

30 m
 -AG W  - - m c s p p2

g I I
2 32 33 1 2( ) ( )

Vertex GaugeCoupling

31 m nH Z Z1  + mni v v g4
g

c
R R

2 12 2 13 3
W

2

2 ( )

32 m nH Z Z2  + mni v v g4
g

c
R R

2 22 2 23 3
W

2

2 ( )

33 m nH Z Z3  + mni v v g4
g

c
R R

2 32 2 33 3
W

2

2 ( )

34 D D m n
++ --Z Z - mni c s g

g

c W W
2 2 2 2

W

2

2 ( )

35 m n
+ -H H Z Z - + mn i s c s s c g4

g

c W W W2
2 2 2 2 4 2

W

2

2 ( ( ) )

36 m n
+ -G G Z Z - + mn i c c s s s g4

g

c W W W2
2 2 2 2 4 2

W

2

2 ( ( ) )

37 m nH H Z Z1 1  + mni g4
g

c
R R

2 12
2

13
2

W

2

2 ( )

38 m nH H Z Z2 2  + mni g4
g

c
R R

2 22
2

23
2

W

2

2 ( )

39 m nH H Z Z3 3  + mni g4
g

c
R R

2 32
2

33
2

W

2

2 ( )

40 m nJJZ Z  + mni g4
g

c
I I

2 12
2

13
2

W

2

2 ( )

41 m nG G Z Z0 0  + mni g4
g

c
I I

2 22
2

23
2

W

2

2 ( )

42 m nAAZ Z  + mni g4
g

c
I I

2 32
2

33
2

W

2

2 ( )

43 D D m
++ --Z - - - mc s p p

ig

c W W
2 2

1 2W
( ) ( )

44 m
- +H H Z - - - m s c s s c p p2

ig

c W W W2
2 2 2 2 2

1 2W
( ( ) ) ( )

45 m
- +G G Z - - - m c c s s s p p2

ig

c W W W2
2 2 2 2 2

1 2W
( ( ) ) ( )

46 mH JZ1    - - - mp p2
g

c
R I R I

2 12 12 13 13 1 2W
( ) ( )

47 mG H Z0
1    - - mp p2

g

c
R I R I

2 12 22 13 23 1 2W
( ) ( )

48 mAH Z1    - - mp p2
g

c
R I R I

2 12 32 13 33 1 2W
( ) ( )

49 mH JZ2    - - - mp p2
g

c
R I R I

2 22 12 23 13 1 2W
( ) ( )

50 mG H Z0
2    - - mp p2

g

c
R I R I

2 22 22 23 23 1 2W
( ) ( )

51 mAH Z2    - - mp p2
g

c
R I R I

2 22 32 23 33 1 2W
( ) ( )

52 mH JZ3    - - - mp p2
g

c
R I R I

2 32 12 33 13 1 2W
( ) ( )

53 mG H Z0
3    - - mp p2

g

c
R I R I

2 32 22 33 23 1 2W
( ) ( )

54 mAH Z3    - - mp p2
g

c
R I R I

2 32 32 33 33 1 2W
( ) ( )
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Table 3. (Continued.)

Vertex GaugeCoupling

55 m
G H Z - m  c s p p

g

c2 1 2W
( )

56 D D m m
++ --A A mnie g8 2

57 m m
- +H H A A mni e g2 2

58 m m
- +G G A A mni e g2 2

59 D D m
++ --A - - mie p p2 1 2( )

60 m
+ -H H A - mie p p1 2( )

61 m
+ -G G A - mie p p1 2( )

62 D D m n
++ --A Z - mni c s g4

eg

c W W
2 2

W
( )

63 m n
+ -H H A Z - - mn i s c s c s g2

eg

c W W W
2 2 2 2 2

W
( ( ) )

64 m n
+ -G G A Z - - mn i c c s s s g2

eg

c W W W
2 2 2 2 2

W
( ( ) )
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Following our conventionswe have that the trilinear coupling H H H2 1 1 turns out to be,

   

       

         

       

         

  

l l l

l l

b
b

b

k

= + +

+
+

+ + +

+ + + + +

+ + + +

+ - - + - +

+ +

g
v v

v v v v

v v v v v

v v v v

v v v v v

v v

2
3 3

2
2

3
2

2

2
2

2
2 2

. 34

H H H R R R R

R R R R R R R R

R R R R R R R R R R

R R R R R R R R

R R R R R R R R R R

R R R

1 12
2

22 2 2 4 13
2

23 3

3 5
13

2
22 2 12

2
23 3 12 13 23 2 22 3

1 11
2

21 1
2

12
2

21 1 11
2

22 2 11 12 22 1 21 2

3
13

2
21 1 11

2
23 3 11 13 23 1 21 3

11 13 22 2 12
2

23 1 21 3 12 13 22 1 21 2

11 23 2 22 3

2 1 1 ( ) ( )( )

( ) [( ) ( ) ( )]

( ) [( ) ( ) ( )]

[( ) ( ) ( ))]

[ ( ) ( ) ( ( )

( ))] ( )

and hence, for examplewhen <m m2H H1 2
, the decaywidth H H H2 1 1 is given by

p
G  = -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H H H

g

m

m

m32
1

4
. 35H H H

H

H

H
2 1 1

2 2

2

1 2

2 1 1

2

1

2

( ) ( )

Aswe alreadymentioned, a salient feature of adding an isotriplet to the StandardModelis that some visible
decay channels of theHiggs receive further contributions from the charged scalars, namely the one-loop decays

ggh and gh Z . That is, the scalars H andD contribute to the one-loop coupling of theHiggs to two-
photons and toZ-photon, leading to deviations from the StandardModelexpectations for these decay channels.
The interactions betweenCP-even and charged scalars are described by the following vertices,

D D

+ -

++ --
D D

+ -

++ --

H H H ig

H ig

:

:

a H H H

a H

a

a

where

   

   

 

  

l l l l

l b b

k

l l b

=
+

+ + + +
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Note that the contributions of H andD to the decays ggh and gh Z are functions of the singlet’s
vev v1, this is in contrast towhat happens in the type-II seesawmodel with explicit violation of lepton number.
According to equation (26) the dimensionless parameters li and bi can change the sign of the couplings of

+ -gH H Ha
and D D++ --gHa

, hence the contribution of the charged scalars to ggh and gh Z may be either
constructive or destructive.

For the computation of the decaywidths ggh and gh Z weuse the expressions and conventions
given in [51]. The decaywidth ggG Ha( ) turns out to be

gg
a

p
G  = + +gg gg ggH
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36a
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whereGF is the Fermi constant,α is thefine structure constant and the form factors Xi
j are given by11,
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where t = m m4x x Z
2 2. HereNc

F andQF denote, respectively, the number of colors and electric charge of a given
fermion. The one-loop function tf ( ) is defined in appendix B. The parametersCa correspond to the Standard
ModelHiggs couplings in equation (28).

11
We have taken into account that v3 is very small so that any contribution involving the triplet’s vev is neglected. Then for instance the

Feynman rule for the vertex +m n mn
+ -H W W i O v O v g: 2a

g
a
R

a
R

2 2 2 3 3

2
( ) , is approximated as~ mni O v g

g
a
R

2 2 2

2
( ) (see table 3).
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The decaywidth gG H Za( ), using the notation in [51], is expressed as follows
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where the form factorsXi
j are given by12,
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where Cb
0 andDB b

0 are defined in appendix B.

6. Type-II seesawneutralHiggs searches at the LHC

We stated above that in our studywe are assuming < <m m mH H H1 2 3
and v v1 2. Furthermore, because of the

ρ parameter and the astrophysical constraint on the triplet’s vevwe also have that v v v,3 1 2.We found that the
smallness of v3 and the perturbativity condition of the potential lead to a very smallmixing between themass
eigenstateH3 and theCP-even components of the fields,σ andΦ, in other words, the angles a13 and a23 must lie
close to 0 orπ. As a result, we obtain the following relation,

l-  m m v m m2 . 39H A H A
2 2

2 3
2

3 3⟹ ( )

This extramass relation is derived from equation (24), by using equation (25) and the fact that a p~ 013,23 ( ).
In addition, also as a result of a p~ 013,23 ( ), wefind that the coupling ofH3 to the StandardModelstates is

negligible,

= = ~
g

g

g

g
C 0. 40

H ff

hff

H VV

hVV
SM SM 3

3 3 ( )

Infigure 12 of appendix Awe give a schematic illustration of themass profile of theHiggs Bosons in our
model. Themass spectrum and composition are summarized in table 2, and provide a useful picture in our
following analyses.

6.1. Analysis (i)
In this case we have taken the isotriplet vev = -v 10 GeV3

5 , automatically safe from the constraints stemming
fromastrophysics and the ρparameter.We have also considered the followingmass spectrum,

= = =D   m m m m m m15, 115 GeV, 125 GeV, 500 GeV,H H H A H1 2 3[ ]

and varied the parameters as

a p a d p dÎ Î = -a av 100, 2500 GeV, 0, and 411 12 13,23[ ] [ ] ( ) ( )

where  d <a0 0.1. As described in section 4wemust enforce the LEP constraints on the lightest CP-even
HiggsH1 and LHC constraints on the heavier scalars. The nearmass degeneracy of H A H, ,3 andD ensures
that the oblique parameters are not affected. In analogy to the type-II seesawmodel with explicit lepton number
violationwe expect that, because of < -v 10 GeV3

4 , the doubly-charged scalar predominantly decays into same

12
Herewe have also assumed v 13 so as tomake the following approximation, q q- -m m

+ -
+ -H H Z ig p p: sin tanW W ( ) .
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sign dileptons [41, 44, 45] and that =Dm 500 GeV is consistent with current experimental data, see
section 4.4.

We show infigure 3 themass of the lightest CP-even scalar as a function of the absolute value of its coupling
to the StandardModelstates, C1∣ ∣ in equation (28). The blue region corresponds to the LEP exclusion region and
the green(red) one is the LHC allowed(exclusion) region provided by the signal strengths m< <0.8 1.2XX .

The presence of light charged scalars can enhance significantly the diphoton channel of theHiggs [39].
Figure 4 shows the correlation between mZZ and mgg (m gZ ) on the left(right)with mgg 1.2 for chargedHiggs
Bosons of 500 GeV.

The correlation between the signal strength mZZ and the signal strengths mgg and m gZ is shown infigure 4.Note
that the formermay exceed onedue to the newcontributions of the singly anddoubly chargedHiggs Bosons.

The invisible decays of theHiggs Bosons, characteristic of themodel, turn out to be correlated to the visible
channels, represented in terms of the signal strengths, as shown infigure 5.Note that the upper bound on the
invisible decays of aHiggs Bosonwith amass of 125 GeVhas been found to be HBR Inv 0.22( ) . This limit
is stronger than those provided by theATLAS [52] and theCMS [53] collaborations13.

Infigure 6we depict the correlation between the invisible branching ratios ofH2 with the one of the lightest
scalar bosonH1. And, as can be seen,H1 can decay 100% into the invisible channel (majorons).

Finally, as we havementionedwe obtained that the reduced coupling ofH3 to the StandardModelstates is
~ -C 103

7( ) so that it is basically decoupled. As a result its invisible branching is essentially unconstrained,
 - H10 BR Inv 15

3( ) . On the other handwefind that the constraint coming from the LHCon the
pseudo-scalarAwith amass of 500 GeV is automatically satisfied aswell, since from the LHC,

s tt   -gg A A ZH HBR BR 102 2
2( ) ( ) ( ) while for =m 500 GeVA we

obtain s tt   -gg A A ZH HBR BR 102 2
15( ) ( ) ( ) .

Figure 3.Analysis (i). Themass of the lightest CP-even scalar as a function of the absolute value of its coupling to StandardModel
states. The blue region corresponds to the LEP exclusion region and the green (red) one is the LHC allowed (exclusion) region.

Figure 4.Analysis (i). On the left, we show correlation between mZZ and m gZ . On the right, correlation between mZZ and mgg . The
color code as in figure 3.

13
TheATLAS collaboration has set an upper bound on the BR ( H Inv) at 0.28while theCMS collaboration reported that the observed

(expected) upper limit on the invisible branching ratio is 0.58(0.44), both results at 95%C.L.
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6.2. Analysis (ii)
Wenow turn to the other case of interest, namely

= = =D   m m m m m m125 GeV, 150, 500 GeV, 600 GeV,H H H A H1 2 3[ ]

with = -v 10 GeV3
5 , as before. Nowwe scanned over

a p a d p dÎ Î = -a av 100, 2500 GeV, 0, and 421 12 13,23[ ] [ ] ( ) ( )

where  d <a0 0.1. Aswe alreadymentioned in this casewe only have to take into account the constraints
coming fromRun 1 of the LHCat e8 T V, see table 1.

In practice we assume m = -
+1.0XX 0.2

0.2.We show infigure 7 the correlation between mZZ and mgg (m gZ ) on the
left(right). As before, the allowed region is in greenwhile the forbidden one is in red.We can see that mgg 1.2
for =D m m 600 GeVH .

On the left(right) of figure 8 is depicted the correlation between the signal strength mZZ (mgg) and the
branching ratio of the channel H JJ1 .We can see infigures 8–10 that HBR Inv 0.21( ) . One can see from
figure 9 that HBR Inv 0.11( ) for v 2500 GeV1 .

In this case wefind that equation (32) (for a p~ 013,23 ( ) and v v v,3 1 2) at leading order is given by,
a

~g
v

m
cos

, 43H JJ H
12

1

2
1 1

( )

where =m 125 GeVH1
. HBR Inv1( ) versus theHiggs-majoron coupling gH JJ1

is shown on the right of
figure 9.Note also from the left panel infigure 9 that HBR Inv1( ) is anti-correlated with v1, as expected.

Infigure 10we show the correlation between the invisible branching ratio ofH2 (theHiggs with amass in the
range < <m150 GeV 500 GeVH2

) and the one ofH1.
We have verified that the LHC constraints on the heavy scalars (H2,H3 andA) are all satisfied. As an example,

the reader can convince her/himself by looking at figure 11 thatH2 easily passes the restriction stemming from

Figure 5.Analysis (i). On the left: the signal strength mgg versus HBR Inv2( ). On the right: mZZ versus HBR Inv2( ). The color
code as in figure 3.

Figure 6.Analysis (i). Correlation between the invible branchings HBR Inv2( ) and HBR Inv1( ). The color code as infigure 3.
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s ttggH HBR2 2( ) ( ) (top left) and/or s ttbbH HBR2 2( ) ( ) (top right). The black continuous lines on those
plots represent the experimental results fromRun 1 of theCMS experiment [30].We also found that the square
of the reduced coupling ofH2 to the StandardModel states is C 0.12

2 for =m 150, 500 GeVH2
[ ] . Then, one

finds that the experimental upper bounds set by the search for a heavyHiggs in the H WW and H ZZ

Figure 7.Analysis (ii). On the left, mZZ versus m gZ . On the right, mZZ versus mgg . The allowed region (in green) is the region inside the
range m = -

+1.0XX 0.2
0.2 while the forbidden one (in red) is the one outside that range.

Figure 8.Analysis (ii). On the left: the signal strength mZZ versus HBr Inv1( ). On the right: mgg versus HBr Inv1( ). The color
code as in figure 7.

Figure 9.Analysis (ii). HBR Inv1( ) versus v1 (on the left) and HBR Inv1( ) versus theHiggs-majoron coupling gH JJ1
(on the

right). The color code as infigure 7.
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decay channels in [3, 29] are automatically fulfilled.However, improved sensitivities expected fromRun 2may
provide ameaningful probe of the theoretically consistent region, depicted in green.

Also in this case,H3 is decoupled, so the restrictions onH3 and themassive pseudoscalarA are automatically
fulfilled.

7. Conclusions

In this paper we have presented themain features of the electroweak symmetry breaking sector of the simplest
type-II seesawmodel with spontaneous violation of lepton number. TheHiggs sector has two characteristic
features: (a) the existence of a (nearly)masslessNambu–Goldstone boson and (b) all neutral CP-even andCP-
odd, aswell as singly and doubly-charged scalar bosons comingmainly from the triplet are very close inmass, as
illustrated infigure 12 of appendix A.However, one extraCP-even state, namelyH2 coming froma doublet-
singletmixture can be light. After reviewing the ‘theoretical’ and experimental restrictions which apply on the
Higgs sector, we have studied the sensitivities of the searches forHiggs Bosons at the ongoing ATLAS/CMS
experiments, including not only the new contributions to StandardModeldecay channels, but also the novel
Higgs decays tomajorons. For these we have considered two cases, when the 125 GeV state found at CERN is
either (i) the second-to-lightest or (ii) the lightest CP-even scalar boson. For case (i), we have enforced the
constraints coming fromLEP-II data on the lightest CP-even scalar coupling to the StandardModelstates and
those coming from the LHCRun-1 on the heavier scalars. In case (ii), only the constraints coming from the LHC
must be taken into account. Such ‘invisible’Higgs Boson decays give rise tomissingmomentum events.We have
found that the experimental results fromRun 1 on the search for a heavyHiggs in the H WW and H ZZ
decay channels are automatically fulfilled.However, improved sensitivities expected fromRun 2may provide a
meaningful probe of this scenario. In short we have discussed how the neutrinomass generation scenario not
only suggests the need to reconsider the physics of electroweak symmetry breaking from anewperspective, but
also provides a new theoretically consistent and experimentally viable paradigm.

Figure 10.Analysis (ii). Correlation between HBR Inv2( ) and HBR Inv1( ). The color code as infigure 7.

Figure 11.Analysis (ii). On the top right (left) s ttggH HBR2 2( ) ( ) (s ttbbH HBR2 2( ) ( )) versus themass ofH2.
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AppendixA.Higgs Bosonmass spectrum

Appendix B. Loop functions

The one-loop function tf ( ) used in equation (37) is given by,
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Figure 12.Type-II seesawHiggs Bosonmass spectrum.
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AppendixC.Higgs Boson couplings
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