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Families of JP ¼ 1
2
þ nucleons (Nð939Þ, Nð1440Þ, Nð1710Þ, Nð1880Þ, Nð2100Þ, Nð2300Þ) and JP ¼ 3

2
−

nucleons (Nð1520Þ, Nð1700Þ, Nð1875Þ, and Nð2120Þ) are scrutinized from the point of view of the
configurational entropy (CE). The mass spectra of higher JP resonances in each one of these families are
then obtained when configurational-entropic Regge trajectories, that relate the CE of nucleon families to
both their JP spin and also to their experimental mass spectra, are interpolated. The mass spectra of the next
generation of nucleon resonances are then compared to already established baryonic states in particle data
group (PDG). Besides the zero temperature case, the finite temperature analysis is also implemented.
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I. INTRODUCTION

The configurational entropy (CE) represents a measure
of spatial correlations, in the very same sense of the
pioneering Shannon’s information entropy. The fundamen-
tal interpretation of the CE consists of the limit to a lossless
compression rate of information that is inherent to any
physical system. The CE regards the minimum amount
of bits necessary to encode a message [1]. There is no
code that takes less number of bits per symbol, on average,
than the information entropy source. Codes closer to the
information entropy are called optimal codes (or compres-
sion algorithms, in the case of noiseless sources), whose
limit is the information entropy. This is the Shannon’s
coding-source theorem. A physical system has maximal
entropy when the distribution of probability is uniform,
since this is the highest unpredictable case. The CE is a
measure of information concerning the spatial complexity
of a system [2,3], meaning the possible correlations among
its parts along the spatial domain. The CE has been applied
to nonlinear scalar field models with spatially localized
energy density [4,5]. Modes in a system corresponding
to physical states with lower CE have been shown to be
more dominant and configurationally stable, being more
detectable and observable, from the experimental point of
view [6].

In what concerns quantum chromodynamics (QCD) as a
reliable description of gluons and quarks (and their inter-
actions), and other elementary particles as well, their
intrinsic dynamical features make a difficult task of great
complexity to investigate hadronic nuclear states and
resonances. A particular approach to study nonperturbative
aspects of QCD is the AdS/QCD model. It has been very
successful to provide general properties of hadronic states,
hadronic mass spectra, and chiral symmetry breaking.
These bottom-up models are implemented by considering
deformations in the anti–de Sitter (AdS) space. For in-
stance, the hard wall model consists in introducing an
infrared (IR) cutoff corresponding to the confinement scale
[7]. On the other hand, in the case of the soft wall model is
included a dilaton field acting as a smooth IR cutoff.
In both these regimes, the CE provides new procedures

to figure out and unravel distinct physical phenomena. The
CE also consists of a powerful tool to probe, predict, and
corroborate to physical observables, including experimen-
tal and theoretical aspects. In fact, the CE has been playing
important roles in scrutinizing AdS/QCD (both hard wall
and soft wall) models, studying relevant properties in QCD
and its phenomenology. The CE and the newly introduced
concept of entropic Regge trajectories were used to inves-
tigate and predict the mass spectra of the next generation of
higher spin particles of four light-flavor meson families
[8,9], whereas an analog method was implemented in
Ref. [10], to predict the mass spectra of higher spin tensor
meson resonances, matching possible candidates in PDG
[11]. Previously, other aspects of the CE and mesonic states
have been already studied in Ref. [6]. In addition, the
interplay between CE and the stability of scalar glueballs in
AdS/QCD was implemented in Ref. [12]. Reference [13]
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paved the scrutiny of the bottomonium and charmonium
production in the context of the CE in AdS/QCD.
Phenomenological data show relative abundance and
dominance of certain quarkonium states, whose intrinsic
information is more compressed in Shannon’s sense. Also,
in the finite temperature case, it identifies higher phenom-
enological prevalence of lower S-wave resonances and
lower masses quarkonia in nature [14]. References [15,16]
utilized the CE to probe the dependence on the impact
parameter of resonances production in qq̄ scattering, inside
the color-glass condensate (CGC) model. Besides, the
production of diffractive mesonic resonances in AdS/
QCD was proposed in Ref. [17], also in the CGC context.
The CE was also employed to compute the pion cross
section, in the holographic light-front wave function setup
[18], whereas energy correlations in electron-positron
annihilation were studied in [19,20]. The anomalous
dimension of the target gluon distribution and the nuclear
CE were also shown to drive points of stability in particle
collisions in LHC [21]. The CE setup to heavy-ion
collisions was deployed in Ref. [22]. Baryons were inves-
tigated under the CE apparatus, where pentaquarks were
shown to have higher CE when compared to standard
baryons [23]. Reference [24] studied quarkonium in finite
density plasmas via the CE.
Not only the AdS/QCD regime of AdS=CFT has been

explored from the point of view of the CE. Stellar
configurations and black holes were also explored via
the CE [25]. References [26,27], besides showing that
Hawking-Page phase transitions can be driven by the CE,
demonstrated that the bigger the black holes, the more
stable they are [28,29]. The CE plays an important role on
studying graviton Bose-Einstein condensates, as quantum
portrait models of black holes. In fact, the Chandrasekhar
collapse critical density does correspond to a CE critical
point [30,31]. Besides, the CE was shown to be an
appropriate paradigm to study phase transitions as CE
critical points [4,5,25,32,33]. Topological defects were also
studied in Refs. [34–36]. The CE was also employed to
derive the Higgs boson and the axion masses in effective
theories [37,38].
This paper is organized as follows: Sec. II briefly

introduces the soft wall AdS/QCD model, presenting the
nucleon resonances and the obtention of their mass spectra.
In Sec. III, the CE is then computed for the JP ¼ 1

2
þ and

JP ¼ 3
2
− nucleon families. Hence, two types of configura-

tional-entropic Regge trajectories are interpolated, relating
the CE of the nucleon resonances to both their radial
excitation and their mass spectra. Therefore, the mass
spectra of the next generation of higher spin nucleon
resonances, for both JP ¼ 1

2
þ and JP ¼ 3

2
− nucleon fami-

lies, are derived, from interpolation methods based on the
already detected nucleon resonances in LHC. The results
are still compared to potential candidates in PDG [11]. The
finite temperature case is also investigated. Section IV is

devoted to a further analysis, discussion, and compilation
of the main results and their physical consequences.

II. HOLOGRAPHIC ADS/QCD MODEL
AND BARYONS

The description of N baryons with spin JP ¼ 1
2
þ in the

AdS/QCD soft wall model can be accomplished by using
different approaches [39–47]. We choose the method
employed in Refs. [47,48] to describe fermions, both at
zero and finite temperature, in the AdS/QCD soft wall
model. Due the fact that the solutions in Refs. [47,48] are
degenerate, for any value of half-integer JP, and hold for
hadrons composed of angular orbital momentum l and
radial quantum number n, these solutions will be also
applied for the N baryon family with JP ¼ 3

2
−.

To start, one considers the AdS-Schwarzschild metric in
conformal coordinates,

ds2 ¼ R2

z2

�
fTðzÞdt2 − dx⃗2 −

dz2

fTðzÞ
�
; ð1Þ

with fTðzÞ ¼ 1 − z4=z4h, where zh is proportional to the
inverse of the AdS-Schwarzschild black brane temperature
as T ¼ 1=ðπzhÞ. Besides the quadratic dilaton field ϕðzÞ ¼
k2z2 usually employed in the AdS-QCD soft wall model, a
thermal prefactor, e−λTðzÞ, is also introduced, where

λTðzÞ ¼ α
z2

z2h
þ γ

z4

z4h
þ ξ

z6

z6h
; ð2Þ

where the dimensionless parameters γ and ξ have been
fixed in Ref. [48] to guarantee gauge invariance and
massless ground-state pseudoscalar mesons (π, K, η) in
the chiral limit, as well as to suppress the sixth power of the
radial coordinate in the holographic potential. Precisely,
γ ¼ JðJ−3Þþ3

5
and ξ ¼ 2

5
. The term αz2=z2h is a small

perturbative correction to the dilaton ϕ, where the param-
eter α is related with the restoration of chiral symmetry at
critical temperature. It is useful to relate the Regge-Wheeler
tortoise coordinate, r, to the holographic coordinate, z, via
the substitution

r ¼
Z

dz
fðzÞ ¼

zh
2

�
1

2
log

�
1 − z=zh
1þ z=zh

�
− arctan

�
z
zh

��
: ð3Þ

One expands the r coordinate at low temperature (zh → ∞)
and restrict, to the leading order and to the next leading
order, terms in the expansion of z in powers of r [47,48],

z ¼ r

�
1 −

t4r
5
þOðt8rÞ

�
; tr ¼

r
zh

: ð4Þ

Hence, using the expansion in Eq. (4), the metric (1) can be
replaced by
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ds2 ¼ e2AðrÞf3=5T ðrÞ
�
dt2 − dr2 −

dx⃗2

fTðrÞ
�
; ð5Þ

where the warp factor reads AðzÞ ¼ log ðR=rÞ and fTðrÞ ¼
1 − r4=z4h. Considering the small correction to the dilaton,
one defines a thermal dilaton as

ϕTðrÞ ¼ k2Tr
2 ¼ k2r2ð1þ ρTÞ; ð6Þ

where

ρT ¼
�
9απ2

16
þ δT1

�
T2

12F2
þ δT2

�
T2

12F2

�
þOðT6Þ; ð7Þ

with parameters, matching phenomenological data, fixed as
in α ¼ 0, δT1

¼ − 8
3
, δT2

¼ − 4
9
, and F ¼ 87 MeV [48].

The action for fermionic fieldΨ takes the following form
at finite temperature:

SB ¼
Z

d4xdr
ffiffiffi
g

p
Ψ̄ðx; r; TÞD̂�ðrÞΨðx; r; TÞ; ð8Þ

where the Dirac operator reads

D̂�ðrÞ ¼
i
2
γM½∂M − ωab

M ½γa; γb�� − ½m5ðr; TÞ þ VΨðr; TÞ�;
ð9Þ

for γa ¼ ðγμ;−iγ5Þ denoting the Dirac matrices, γ5 ¼
iγ0γ1γ2γ3 is the volume element, ϵaM ¼ RδaM=z denotes

the tetrad, and ωab
M ¼ 1

4rf1=5ðrÞ ðδ
½a
r δ

b�
MÞ denotes the spin

connection. The quantity m5ðr; TÞ ¼ m5=f3=10ðrÞ is the
temperature associated with the bulk fermion mass in AdS
space. Here one considers m5 ¼ τ̄ − 2 [42], with τ̄ corre-
sponding to the twist dimension of the baryon operator at
the boundary, which is related with the orbital angular
momentum [40,49,50] as τ̄ ¼ lþ 3. For instance, the
JP ¼ 1

2
þ states are related with l ¼ 0 and JP ¼ 1

2
− states

with l ¼ 1. The dilaton temperature potential reads [47]

VΨðrÞ ¼
ϕTðr; TÞ
f3=10ðrÞ : ð10Þ

The baryon field can be split into left-handed, L, and right-
handed, R, components,

Ψðx; zÞ ¼ ΨLðx; zÞ þ ΨRðx; zÞ; ð11Þ

where the chiral spinor components are given by

ΨL=Rðx; zÞ ¼
1 ∓ γ5

2
Ψðx; zÞ: ð12Þ

One can perform a Kaluza-Klein expansion of the four-
dimensional transverse components of the field,

ΨL=Rðx; r; TÞ ¼
X
n

ΨL=RðxÞτL=Rn=2 ðr; TÞ; ð13Þ

with ΨL=RðxÞ denoting the tower of Kaluza-Klein modes
and n is the radial quantum number. Therefore, replacing

τL=Rðr; TÞ ¼ e−
3
2
AðrÞχL=Rðr; TÞ ð14Þ

in the equation of motion obtained from the action (8)
yields a Schrödinger-type equation of motion for χðr; TÞ,
given by

½−∂2
r þ UL=Rðr; TÞ�χL=Rðr; TÞ ¼ M2

nχ
L=Rðr; TÞ: ð15Þ

The effective potential UL=Rðr; TÞ at finite temperature can
be split into two parts,

UL=Rðr; TÞ ¼ ΛL=RðrÞ þ ΩL=Rðr; TÞ; ð16Þ

where

ΛL=RðrÞ ¼ k4r2 þ 2k2
�
lþ 1 ∓ 1

2

�

þ ðlþ 1Þðlþ 1� 1Þ
r2

;

ΩL=Rðr; TÞ ¼ 2ρTk2ðk2r2Þ: ð17Þ

The normalizable solutions of Eq. (15), for the baryons at
finite temperature, read

χLn ðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!

Γðnþlþ 5
2
Þ

s
e−k

2
Tr

2=2k
lþ5

2

T rlþ2L
lþ3

2
n ðk2Tr2Þ; ð18Þ

χRn ðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
Γðnþlþ 3

2
Þ

s
e−k

2
Tr

2=2k
lþ3

2

T rlþ1L
lþ1

2
n ðk2Tr2Þ; ð19Þ

where ΓðpÞ is the gamma function, Ln is the Laguerre
function, and the mass spectrum is specified by

M2
n ¼ 4k2T

�
nþ lþ 3

2

�
: ð20Þ

The eigenfunctions (18), (19) are normalized according
to Z

∞

0

dzχL=Rm ðr; TÞχL=Rn ðr; TÞ ¼ δmn: ð21Þ

In the zero temperature limit, T → 0, the solution of
Eq. (15) reads
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χLn ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!

Γðnþ lþ 5
2
Þ

s
e−k

2r2=2klþ5
2rlþ2L

lþ3
2

n ðk2r2Þ; ð22Þ

χRn ðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
Γðnþlþ 3

2
Þ

s
e−k

2r2=2klþ3
2rlþ1L

lþ1
2

n ðk2r2Þ; ð23Þ

which correspond to the mass spectrum

M2
n ¼ 4k2

�
nþ lþ 3

2

�
: ð24Þ

It is worth to emphasize that in the infrared regime of the r
coordinate, the tau functions in Eq. (14) scale as τLðr; TÞ ∼
r
9
2
þl and τRðr; TÞ ∼ r

7
2
þl, whereas at the ultraviolet regime

these functions vanish, exhibiting confinement [43].
First, the nucleon family with JP ¼ 1

2
þ will be

approached. To obtain the best fit with the experimental
data at zero temperature, one fixes the parameter k ¼
0.45 GeV for the JP ¼ 1

2
þ nucleon resonances. For com-

parison, the experimental data from [11] are presented in
the third column and the soft wall result (20) in the fourth
column of Table I. This makes possible to illustrate the
mass spectra (20) of nucleon resonances with JP ¼ 1

2
þ and

realize that they match experimental values [11]. This is
accomplished in Fig. 1.
Now, nucleon resonances with JP ¼ 3

2
− will be inves-

tigated. They consist of excited states of nucleon particles,
often corresponding to one of the quarks having a flipped
spin state, or with different orbital angular momentum
when the particle decays. The parameter of the dilaton is
fixed as k ¼ 0.47 GeV, having the best fit with the
experimental results as one can see in Fig. 2. Table II
shows the mass spectra in the soft wall model for baryons
with JP ¼ 3

2
− and their experimental results [11].

III. CONFIGURATIONAL ENTROPY AND
SHANNON INFORMATION ENTROPY

When one takes into account some distribution of
probability pa, the CE is defined, for discrete systems,
by (minus) the sum

P
i pi logðpiÞ [3,5]. When N modes,

constituting a discrete physical system, are described
by a uniform distribution of probability, namely,
pi ¼ 1=N, the CE has a maximal value equal to logN.
The differential CE regards the continuous limit of the CE
[6,32]. The CE, underlying any physical system, has
the main pillar on the spatial correlations among the parts
of the system. More precisely, the central structure of the
CE resides on the correlation of the fluctuations of some
ρðxÞ scalar field, which is a localized and Lebesgue
integrable function describing the system. Given a vector
r ∈ Rd, the two-point correlation function is given by

TABLE I. Mass spectra of the JP ¼ 1
2
þ nucleon family reso-

nances. The particle with an asterisk is left out the summary table
in PDG [11].

n Nucleon (JP ¼ 1
2
þ) Experimental AdS/QCD (soft wall)

JP ¼ 1
2
þ nucleon mass spectra (MeV)

0 Nð939Þ 939.49� 0.05 1102.27
1 Nð1440Þ 1370� 10 1423.02
2 Nð1710Þ 1700� 20 1683.75
3 Nð1880Þ 1860� 40 1909.19
4 Nð2100Þ 2100� 50 2110.69
5 Nð2300Þ� 2300þ40þ109

−30−0 2294.56

Experimental, JP=1/2+

AdS/QCD model, JP=1/2+

0 1 2 3 4 5
0

1 ×106

2 ×106

3 ×106

4 ×106

5 ×106

6 ×106

n

m
2
(M

eV
2
)

FIG. 1. Mass spectra of nucleon resonances with JP ¼ 1
2
þ

obtained from the AdS/QCD model and experimental values [11].

Experimental, JP=3/2–

AdS/QCD model, JP=3/2–

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1 ×106

2 ×106

3 ×106

4 ×106

5 ×106

6 ×106

n

m
2
(M

eV
2
)

FIG. 2. Mass spectra for nucleon resonances with JP ¼ 3
2
−

obtained from the AdS/QCD model and the experimental
values [11].

TABLE II. Mass spectra of JP ¼ 3
2
− nucleon family resonances.

n Nucleon (JP ¼ 3
2
−) Experimental AdS/QCD (soft wall)

JP ¼ 3
2
− nucleon mass spectra (MeV)

0 Nð1520Þ 1510� 5 1486.27
1 Nð1700Þ 1700� 50 1758.57
2 Nð1875Þ 1900� 50 1994.04
3 Nð2120Þ 2100� 50 2204.49
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GðrÞ ¼ R
Rd ρðr̃Þρðrþ r̃Þdr̃. The CE is nothing else than

the Shannon’s information theory involving correlations, if
one establishes a distribution of probability using the two-
point correlation function. To accomplish it, the so-called
power spectrum, PðkÞ, where k is the wave vector, is
defined to be the Fourier transform of the two-point
correlation function [14]. The convolution and the
Plancherel theorems yield PðkÞ ∼ k RRd ρðrÞeik·rdrk2.
When one takes the Fourier transform

ρðkÞ ¼ 1

ð2πÞp=2
Z
Rd

ρðrÞe−ik·rdr; ð25Þ

then the correlation distribution of probability, called as the
modal fraction, reads [3]

ϱðkÞ ¼ jρðkÞj2R
Rd jρðkÞj2ddk : ð26Þ

Therefore, the CE reads

CEρ ¼ −
Z
Rd

ϱ⋆ðkÞ log ϱ⋆ðkÞddk; ð27Þ

where ϱ⋆ðkÞ ¼ ϱðkÞ=ϱmaxðkÞ. The expression of the CE
is similar to the Gibbs entropy, which is defined for
some statistical ensemble, of microstates having each
one probability pi ¼ e−Ei=kbT=

P
i e

−Ei=kbT, where Ei
stands for the energy of the ith microstate and kb represents
the Boltzmann constant. The interplay between the CE and
statistical mechanics was paved in [6].
Both for the JP ¼ 1

2
þ and the JP ¼ 3

2
− nucleon families,

given the Lagrangian L ruling the system in Eq. (8), the
energy-momentum tensor is, in general, given by

Tμν ¼ 2ffiffiffi
g

p
�∂ð ffiffiffi

g
p

LÞ
∂gμν − ∂xα

∂ð ffiffiffi
g

p
LÞ

∂ð∂gμν∂xα Þ

�
: ð28Þ

The ρðzÞ energy density corresponds to the T00ðzÞ com-
ponent of (28), emulating Eq. (47) of Ref. [23] for our
specific case, as

ρðrÞ ¼ T00ðrÞ ¼
M2

n

r
½ðχLn ðrÞÞ2 þ ðχRn ðrÞÞ2�: ð29Þ

Hence, the energy density (25) in momentum space, the
modal fraction (26), and the CE (27) can be numerically
computed.
The CE of the JP ¼ 1

2
þ nucleons Nð939Þ, Nð1440Þ,

Nð1710Þ, Nð1880Þ, Nð2100Þ, Nð2300Þ as a function of the
n quantum number is displayed in the third column of
Table III, for n ¼ 0; 1;…; 5. For higher values of n, the CE
will be computed through the interpolation method, to be
described in what follows.

For the JP ¼ 1
2
þ nucleon family, the configurational-

entropic Regge trajectory, relating log(CE) to the n quan-
tum number, is the interpolation dashed line in Fig. 3. It has
the explicit expression

CEðnÞ ¼ 1.06283 × 10−3n3 − 0.01712n2

0.13025nþ 0.94983: ð30Þ

We choose to use the third power in the interpolation,
as it is sufficient to delimit within ∼0.17% the standard
deviation.
A second type of configurational-entropic Regge trajec-

tory, interpolating and relating the CE to (squared) mass
spectra of the nucleon family JP ¼ 1

2
þ, is shown as the

dashed curve in Fig. 4.
The dashed curve in Figs. 3 and 4, respectively,

correspond to Eqs. (30) and (31). For the plot in Fig. 4,
the configurational-entropic Regge trajectory has the fol-
lowing form:

TABLE III. The CE for the nucleon family as a function of their
radial excitation n in the soft wall model. The second column
displays the nucleon family with spin JP ¼ 1

2
þ (and the higher

spin resonances N7, N8, N9), whereas the third column shows
their respective CE; the fourth column shows the nucleon family
with spin JP ¼ 3

2
− (and the higher spin resonances X5, X6, X7)

and the fifth column illustrates their respective CE.

n N (JP ¼ 1
2
þ) CE N (JP ¼ 3

2
−) CE

0 Nð939Þ 0.94981 Nð1520Þ 0.99604
1 Nð1440Þ 1.06402 Nð1700Þ 1.14581
2 Nð1710Þ 1.15043 Nð1875Þ 1.22903
3 Nð1880Þ 1.21481 Nð2120Þ 1.28816
4 Nð2100Þ 1.26504 X5 1.38194
5 Nð2300Þ 1.30562 X6 1.59038
6 N7 1.35258 X7 2.05683
7 N8 1.41702
8 N9 1.51519

0 1 2 3 4 5
–0.1

0.0

0.1

0.2

0.3

0.4

n

lo
g(

C
E

( n
))

FIG. 3. log(CE) of the JP ¼ 1
2
þ nucleons as a function of the n

quantum number.
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log CEðmÞ ¼ 3.09873 × 10−50m14 − 1.16011 × 10−14m6

1.42784 × 10−7m2 − 0.167903; ð31Þ

within 1.5% standard deviation. It is worth to emphasize
that in Eq. (36) m refers to the nucleon mass.
The mass spectra for the N7, N8, and N9 elements can be

easily inferred by employing Eqs. (30), (31). In fact, for
n ¼ 6, Eq. (30) yields CE ¼ 1.35258. Then substituting
this value in the CE Regge trajectory (31), after solving the
subsequent equation yields the mass

mN7
¼ 2880� 43 MeV: ð32Þ

It is worth to mention that this value of mass complies with
the order of the one for the Λcð2940Þþ baryon, also with
JP ¼ 3

2
−, with mass 2939.6þ1.3

−1.5 , detected in LHC [11].
Similarly, for the next member N8 of the JP ¼ 1

2
þ

nucleon family, substituting n ¼ 7 into Eq. (30) implies
that the corresponding CE has value 1.41702. Hence,
replacing this value into the CE Regge trajectory (31) yields

mN8
¼ 3062� 47 MeV: ð33Þ

The N8 nucleon resonance matches the mass 3055.9� 0.4
of the Ξcð3055Þ baryon [11]. As other properties, like JP

and the isospin are still undetermined for Ξcð3055Þ, where
only 894 events have been detected in LHC, the Ξcð3055Þ
baryon might emulate a potential candidate to describe the
N8 nucleon resonance with mass (33), just in the case where
JP ¼ 3

2
− and the isospin 1

2
match the ones for Ξcð3055Þ.

Besides, the same can be accomplished for N9, JP ¼ 1
2
þ

nucleon, when Eq. (30) implies that CEN9
¼ 1.51519.

When replaced into Eq. (30), it produces the mass

mN9
¼ 3169� 51 MeV: ð34Þ

Once the N9 nucleon resonance mass (34) has agreement to
the mass 3122.9� 1.6 of the Ξcð3123Þ baryon [11], with
JP and the isospin still undetermined, the Ξcð3123Þ baryon
might consist of a candidate to describe the N9 nucleon
resonance with mass (34). In the same way, the Ωcð3120Þ0,
with mass 3119.1� 1.5 might also be described by the N9

nucleon, if JP and the isospin will be shown to match,
indeed.
Now, using the Nð1520Þ, Nð1700Þ, Nð1875Þ, and

Nð2120Þ nucleon family, the CE of each one of these
nucleons with JP ¼ 3

2
− is computed. Therefore, when the

CE is interpolated as a function of the n quantum numbers,
a CE Regge trajectory is derived, for the JP ¼ 3

2
− nucleon

family resonances, as a dashed curve in Fig. 5. The data in
the fourth and fifth columns in Table III, for n ¼ 0, 1, 2, 3,
are better represented by the points in Fig. 5 as a function
of n.
The explicit expression of the CE Regge trajectory,

represented by the interpolation dashed curve in Fig. 5,
reads

CEðnÞ ¼ 0.007780n3 − 0.058302n2 þ 0.190589n

− 0.003969: ð35Þ

We opted to use a cubic interpolation, as it is sufficient to
delimit within ∼0.19% the standard deviation.
A second type of configurational-entropic Regge trajec-

tory, relating the CE to (squared) mass spectra of the
nucleon family JP ¼ 3

2
−, is shown in Fig. 6.

The dashed curves in Figs. 5 and 6, respectively,
correspond to Eqs. (35) and (36). For the plot in Fig. 6,
the configurational-entropic Regge trajectory has the fol-
lowing form:

logCEðmÞ ¼ 3.4700 × 10−20m6 − 4.0410 × 10−13m4

1.18206 × 10−7m2 þ 0.84686; ð36Þ

within 0.18% standard deviation.
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FIG. 4. The CE for the nucleon family JP ¼ 1
2
þ information-

entropic Regge trajectory, with respect to the squared mass
spectra of the nucleon family JP ¼ 1

2
þ.
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FIG. 5. CE of the JP ¼ 3
2
− nucleons as a function of the n

quantum number.
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The mass spectra of the X5, X6, and X7 elements can be
easily inferred, by employing Eqs. (35), (36). In fact, for
n ¼ 4, Eq. (35) yields CE ¼ 1.3819. Then substituting this
value in the CE Regge trajectory (36), and solving the
resulting equation, the solution is the mass

mX5
¼ 2232� 11 MeV: ð37Þ

This nucleon resonance matches the mass and other
properties of the Ξð2250Þ isospin 1

2
xi baryon, whose JP

still needs confirmation [11]. However, the Ξð2250Þ baryon
is a potential candidate to represent the X5 nucleon
resonance with mass (37).
Similarly, for the next member X6 of the spin 1

2
þ nucleon

family, substituting n ¼ 5 into Eq. (35) implies that the
corresponding CE has value 1.5903. Hence, replacing this
value into the CE Regge trajectory (36) yields

mX6
¼ 2354� 15 MeV: ð38Þ

Analogous to the previously analyzed case consisting of the
X5 nucleon resonance with Jd ¼ 1

2
þ, also the X6 nucleon

resonance does match the mass and other properties, like
the isospin of the Ξð2370Þ xi baryon [11]. The Ξð2370Þ
baryon can be a potential candidate to describe the X6

nucleon resonance with mass (38).
Besides, the same can be accomplished for the X7 JP ¼

1
2
þ nucleon, when Eq. (35) implies that CEX7

¼ 2.0568.
When replaced into Eq. (35), it yields the mass

mX7
¼ 2473� 26 MeV: ð39Þ

Again, the derived mass (39) for the X7 nucleon resonance
with JP ¼ 3

2
− matches the mass and other properties, like

the isospin of the Ξð2500Þ xi baryon [11], which may
consist of a potential candidate to emulate the X7 nucleon
resonance with mass (39).

A. Finite temperature case

Applying the same procedure to compute the CE at
zero temperature, we evaluate the CE for lightest state of
baryons, as a function the temperature. The solutions of the
fields at finite temperature (22) and (23) are used. Thebaryons
are dissociated at same temperature as can be seen in Fig. 7
using the relation (20). The same result is evidenced employ-
ing theCE. The results of CE for the ground states of JP ¼ 1

2
þ

and JP ¼ 3
2
− nucleon resonances at finite temperature are

presented in Fig. 8 as a function of the temperature T. From
Fig. 8, one can note that in the range between 0 and 36 MeV,
theCE is constant. In this range, for JP ¼ 1

2
þ, CE ≈ 0.95, and

for JP ¼ 3
2
−, the CE equals 1.0. For higher temperatures, the

CE increases monotonically as a function of the temperature.
It suggests a decrement in the configurational stability of the
nucleon resonances. The baryons are dissociated at same
temperature as can be seen in Fig. 7 using the relation (20).
The same result is evidenced employing the CE.
For both the JP ¼ 1

2
þ and JP ¼ 3

2
− nucleon families, a

scaling law dependence can be implemented. First, Fig. 9
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FIG. 6. The CE for the nucleon family JP ¼ 3
2
− information-

entropic Regge trajectory, with respect to the squared mass
spectra
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displays the numerical interpolation for nucleon resonances
of JP ¼ 1

2
þ, given by

CE1
2
þðTÞ ¼ 1.6289 × 10−14T7 − 1.4016 × 10−11T6

þ 4.7050 × 10−9T5 − 7.7737 × 10−7T4

þ 6.42109 × 10−5T3 − 2.27622 × 10−3T2

þ 0.0296115T þ 0.858299: ð40Þ

Similarly, numerical interpolation for baryon resonances of
JP ¼ 3

2
− yields

CE3
2
−ðTÞ ¼ 3.21436 × 10−14T7 − 2.46643 × 10−11T6

þ 7.5303 × 10−9T5 − 1.1490 × 10−6T4

þ 8.8859 × 10−5T3 − 3.00518 × 10−3T2

þ 0.0377408T þ 0.88293; ð41Þ

also evincing a scaling law for the CE as a function of
the temperature. As the CE is constant in the range,
T ≲ 36 MeV, the scaling laws (40), (41) hold for T ≳
60 MeV within less than 2% of accuracy.

IV. CONCLUDING REMARKS

In this paper, we computed the CE for the JP ¼ 1=2þ

and JP ¼ 3=2− nucleon families, in the soft wall model for

both the zero temperature and finite temperature case. First,
we analyzed the zero temperature case using the CE
obtained in the holographic model described in Sec. II.
Two types of configurational-entropic Regge trajectories
were derived for each nucleon family, where the CE for
nucleon resonances was related to their quantum number n
and their mass spectra as well. Through this relation, the
next generation of nucleon families was inferred. In the
case of the JP ¼ 1

2
þ nucleon family, the derived mass

spectra, for the next generation of resonances in this
nucleon family corresponding to quantum numbers
n ¼ 6, 7, 8, were, respectively, mN7

¼ 2880� 43 MeV,
mN8

¼ 3062� 47 MeV. and mN9
¼ 3169� 51 MeV. On

the other hand, for the JP ¼ 3=2− nucleon family, the
derived mass spectra, for the next generation of resonances,
corresponding to quantum numbers n ¼ 4, 5, 6, were
mX5

¼ 2232� 11 MeV, mX6
¼ 2354� 15 MeV, and

mX7
¼ 2473� 26 MeV.

The soft wall AdS/QCD model at small temperatures
proposed in Refs. [47,48] for the description of fermionic
hadrons was employed to study the dissociation of nucleon
families in the context of CE. The CE of the ground state
for the JP ¼ 1

2
þ and JP ¼ 3

2
− nucleon families was analyzed

as a function of the temperature, as shown in Fig. (9). For
both cases, the CE monotonically increases with the
temperature. It illustrates a decrement in the configurational
stability of the system. The result obtained for the CE is
consistent with the result analyzing the spectrum masses
at finite temperature plotted in Fig. 7. One notices that
the mass decreases with increments in the temperature.
Besides, configurational-entropic Regge trajectories were
implemented, relating the CE with the temperature, for both
the JP ¼ 1

2
þ and JP ¼ 3

2
− nucleon families.
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