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Abstract

The measurements of several lepton flavor universality (LFU) violating observables in the decays induced 
by the quark level transition b → cτ ν̄ provide an inkling of plausible physics beyond the standard model of 
electroweak interactions. Such new physics would also impact other sectors. In this work, we estimate the 
leverage of new physics in b → cτ ν̄ on �b → pτ ν̄ decay in the context of U1 leptoquark model. In this 
model, the new physics couplings in b → uτ ν̄ transition can be written in terms of b → cτ ν̄ couplings and 
hence the extent of allowed new physics in �b → pτ ν̄ would be determined by b → cτ ν̄ transition. Using 
the new physics parameter space obtained by performing a fit to all b → cτ ν̄ data, we obtain predictions 
of several �b → pτ ν̄ observables. We find that the current b → cτ ν̄ data allows two times of magnitude 
enhancement in the branching ratio as well as in the LFU ratio. The other observables such as convexity pa-
rameter, lepton forward-backward asymmetry, longitudinal polarization of final state baryon and tau lepton 
are consistent with the SM value.
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1. Introduction

The standard model (SM) of electroweak interactions can be considered as a baronial theory 
of fundamental interactions of nature. Ever since the discovery of weak neutral currents in 1973 
in a neutrino scattering experiment in the Gargamelle bubble chamber at CERN, SM has been 
substantiated through a fecundity of experimental observations. The discovery of the Higgs Bo-
son marks the culmination of the particle spectrum of the SM. Though SM may flare out to be 
an irrefutable theory, there are several other observations which propel us to clamor for physics 
beyond the SM. These include disappearance of anti-matter, existence of dark matter and dark 
energy. Further, gravity is excluded from the SM. Therefore the nonpareil theory of fundamental 
interactions of nature is still far away from the bay.

The evidence of physics beyond the SM has already started burgeoning at several fronts. 
These include observables related to the decays of B mesons. These anomalous discrepancies 
can be classified into two categories: decays induced by the charged current transition b →
c�ν (� = e, μ, τ ) and neutral current transition b → s�� (� = e, μ). In this work, we rivet on 
decays induced by the b → c�ν transition which occurs at the tree level in the SM. A series of 
measurements by the Belle, BaBar and LHCb collaborations over the last decade have provided 
several enthralling hints of new physics in this sector.

The BaBar [1,2], Belle [3–5] and LHCb [6–8] collaborations measured the following flavor 
ratios

RD(∗) ≡ �(B → D(∗) τ ν̄)

�(B → D(∗) (e, μ) ν̄)
. (1)

The average values of these measurements differ from their respective SM predictions at the 
level of 3.2σ [8]. These deviations are inklings of lepton flavor universality violation. All of 
these experiments were based on methodologies where the τ lepton was identified through kine-
matical information rather than reconstruction. The reconstruction technique was emplaced by 
the LHCb collaboration using the 3π decay mode of the τ lepton [9]. This resulted in a distinct 
measurement of RD∗ . Including this measurement, the incongruence of the RD-RD∗ data with 
SM predictions escalated to 4.1σ [10]. In 2019, Belle collaboration announced a new measure-
ment of RD and RD∗ [11], which is consistent with the SM prediction. Very recently, on March 
21, 2023, the LHCb collaboration updated the value of RD∗ . By including these measurements, 
the discrepancy with SM reduced from 4.1σ to 3.2σ .

Apart from RD(∗) , the LHCb collaboration measured the following ratio in Bc → J/ψ � ν̄
decay modes

RJ/ψ = �(Bc → J/ψ τ ν̄)

�(Bc → J/ψ μ ν̄)
. (2)

They found that the measured value is RJ/
 = 0.71 ± 0.17 ± 0.18 [12]. This decay is also gener-
ated by the same quark level transition which induces RD(∗) . The measured value is 1.8σ higher 
than the latest SM prediction of 0.2582(38) [13]. These dissension with the SM can be imputed 
to new physics in τ , μ or e sectors. However, in [14] it was shown that new physics only in 
μ or e sectors cannot accommodate these measurements. This is mainly due to measurements 
of the ratios Rμ/e

D = �(B → D μ ν)/�(B → D eν) = 0.995 ± 0.022 (stat.) ± 0.039 (syst.) and 

R
e/μ
D∗ = �(B → D∗ e ν)/�(B → D∗ μ ν) = 1.04 ± 0.05 (stat.) ± 0.01(syst.) [15,16]. The mea-

sured values of these ratios are in agreement with their SM predictions. Hence new physics 
only in b → cμ ν̄ or b → c e ν̄ will blight this agreement. Therefore new physics in b →
2
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cτν is imperative to accommodate the current measurements of flavor ratios in these sec-
tors.1

In May 2022, the LHCb collaboration reported the first observation of the semileptonic b-
baryon decay �b → �+

c τ−ν̄τ with a significance of 6.1σ [17]. This was obtained by collecting 
a data sample corresponding to 3 fb−1 of integrated luminosity at centre-of-mass energies of 7 
and 8 TeV. The LFU ratio R(�c) was measured to be [17]

R(�c) = Br(�b → �+
c τ−ν̄τ )

Br(�b → �+
c μ−ν̄μ)

= 0.242 ± 0.026 (stat.) ± 0.040 (syst.) ± 0.059 . (3)

Here the last error is due to the external branching fraction uncertainty from the channel �b →
�+

c μ−ν̄μ. The measured value is consistent with the SM prediction of 0.324 ± 0.004 [18].
Barring these LFU observables, we also have measurements of few angular observables. The 

Belle collaboration has measured the τ polarization, P D∗
τ , in B → D∗τ ν̄ decay. The measured 

value [5]

P D∗
τ = −0.38 ± 0.51 (stat.)+0.21

−0.16 (syst.), (4)

is consistent with its SM prediction of −0.497 ±0.013 [19]. In 2018, Belle collaboration reported 
the measurement of D∗ longitudinal polarization fraction FD∗

L in the decay B → D∗τ ν̄. The 
measured value [20]

FD∗
L = 0.60 ± 0.08 (stat.) ± 0.04 (syst.) (5)

is 1.6σ higher than the SM prediction of 0.46 ± 0.04 [21].
The possible new physics effects in b → cτ ν̄ decay can be analyzed in a model independent 

way using the language of effective field theory. There are many such analyses, see for e.g.,
[22–35]. These analyses identified Lorentz structure of possible new physics. However, there 
are no unique solutions. Depending upon the adopted methodology and assumptions, there are 
multiple new physics operators with specific values of corresponding WCs which can provide 
a good fit to data. A unique determination of the new Lorentz structure of new physics would 
require measurements of additional observables in b → cτ ν̄ sector [37].

The allowed model independent solutions can be realized in specific new physics models. 
There are a good number of such models. In context of some of these models it would be in-
teresting to see whether some correlations exist between the observables in b → c sector and 
other sectors. In other words, what implications measurement in b → c sector have on other 
sectors. In this work we explore such correlations in b → u sector in the context of U1 lepto-
quark (LQ) model. The U1 leptoquark is extensively discussed in the literature in the context of 
B-anomalies [38–44]. In particular, we study imprints of b → c measurements on several observ-
ables in �b → pτ ν̄ decay mode. The baryonic decay mode �b → pτ ν̄ is studied in the literature
[45,46].

The quark level transition b → uτ ν̄ induces decays such as B+ → τ ν̄, B → πτ ν̄, B → ρτ ν̄, 
B → ωτ ν̄ and �b → pτ ν̄. Out of these decays, currently, the only observed decay chan-
nel is the purely leptonic decay B+ → τ ν̄ [47]. The measured value of its branching ratio is 

1 In [36], it was shown that new physics only in muons can accommodate the entire b → c l ν̄ data using a different set 
of combinations of new physics operators.
3
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(1.09 ± 0.24) × 10−4 which is consistent with the SM value (9.89 ± 0.13) × 10−5 [35]. Fur-
ther, the Belle collaboration provides an upper bound on the branching ratio of the semileptonic 
decay B → πτ ν̄. At 90% C.L., the branching ratio of B → πτ ν̄ can be as high as 2.5 × 10−4

[48]. Thus due to lack of enough measurements, any model independent analysis would allow 
a large new physics effects in some of the observables in b → uτ ν̄ transition. In other words, 
given the current experimental situation in b → uτ ν̄ sector, a model dependent framework will 
engender more meaningful analysis as compared to the model independent analysis in the sense 
that it would allow for additional constraints coming from other sectors. In the context of U1
leptoquark model considered in this work, we show that the necessary couplings in b → uτ ν̄

decay are all related to the couplings in b → cτ ν̄ sector. Given the fact that we have relatively 
accurate measurements of number of observables in this sector, it would be interesting to see 
the extent up to which the new physics effects are allowed in b → uτ ν̄ sector. In particular, 
we study the impact of b → cτ ν̄ measurements on several observables in �b → pτ ν̄ decay 
mode.

Plan of work is as follows. In Sec. 2, we provide theoretical framework of this work. Starting 
with the effective Hamiltonian, we provide all necessary theoretical expressions in this section. 
This includes various observables in b → c τ ν̄ sector and �b → pτ ν̄ decay. In the next sec-
tion, we first provide constraints on b → c τ ν̄ couplings by performing a fit. Using the allowed 
parameter space of these couplings, we obtain predictions of several observables in �b → pτ ν̄

decay. The conclusions are discussed in Sec. 4.

2. Theoretical framework

2.1. Effective Hamiltonian

Within the SM, the effective Hamiltonian for the quark level transition b → q τ ν̄ with q = u, c
is given by

H SM
eff = 4GF√

2
Vqb OVL

+ h.c., (6)

where OVL
= (q̄γμPLb) (τ̄ γ μPLν). In the presence of new physics, the effective Hamiltonian 

takes the form

Heff = 4GF√
2

Vqb[(1 + CVL
)OVL

+ CVR
OVR

+ CSL
OSL

+ CSR
OSR

+ CT OT ] + h.c., (7)

where

OVR
= (q̄γμPRb) (τ̄γ μPLν) , (8)

OSR
= (q̄PRb) (τ̄PLν) , (9)

OSL
= (q̄PLb) (τ̄PLν) , (10)

OT = (q̄σμνPLb) (τ̄σμνPLν) . (11)

The interactions between the vector singlet U1 LQ and the SM quarks and leptons can be 
written as [49,50]

HU1 = hLQ̄iγμU
μ
PLLj + hR d̄iγμU

μ
PRl

j + h.c., (12)
ij 1 ij 1 R

4
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where Qi and Lj are the SM left-handed quark and lepton doublets and di
R and ljR are right 

handed quarks and leptons. Here hL
ij and hR

ij are the 3× 3 matrices in the flavor space. This LQ 

contributes to b → cτ ν̄ at the tree level. As we only require c̄ ν U1 and b̄ τ U1 couplings to be 
non-zero, we have

hL =
⎛
⎝0 0 0

0 0 hL
23

0 0 hL
33

⎞
⎠ , hR =

⎛
⎝0 0 0

0 0 0
0 0 hR

33

⎞
⎠ (13)

Assuming mixing in the up-type quark sector, the interaction Hamiltonian in the physical quarks 
can be written by rotating them with the CKM matrix and is given as

Heff =
[(

Vush
23
L + Vubh

L
33

)
ūLγμνL +

(
Vcbh

33
L + Vcsh

L
23

)
c̄LγμνL

+h23
L s̄LγμτL + h33

L b̄LγμτL + h33
R b̄RγμτR

]
U

μ
1 + h.c. (14)

It is ostensible from the above Lagrangian that only OVL
and OSR

contribute to b → cτ ν̄ and 
b → uτ ν̄ processes. Also, the same couplings appear in both decay modes. The relevant WCs 
for b → cτ ν̄ decay can be written as

Cb→c
VL

= 1

2
√

2GF Vcb

(
Vcbh

L
33 + Vcsh

L
23

)
hL

33

M2
U1

, (15)

Cb→c
SR

= − 1√
2GF Vcb

(
Vcbh

L
33 + Vcsh

L
23

)
hR

33

M2
U1

. (16)

The WCs for b → uτ ν̄ decay are

Cb→u
VL

= 1

2
√

2GF Vub

(
Vubh

L
33 + Vush

L
23

)
hL

33

M2
U1

, (17)

Cb→u
SR

= − 1√
2GF Vub

(
Vubh

L
33 + Vush

L
23

)
hR

33

M2
U1

. (18)

Thus we see that the b → c couplings can determine the new physics contributions to b →
u. Therefore we need to analyze observables in the b → c τ ν̄ sector. The new physics scalar 
effective Wilson coefficients are affected by the QCD running from the TeV scale down to the 
mb scale and it is considered in our analysis. It should be noted that the considered U1 leptoquark 
model is non-renormalizable and hence it requires a UV completion.

In the next section we provide theoretical expressions for b → c τ ν̄ observables used in our 
analysis to constrain the new physics parameter space.

2.2. Observables in b → c τ ν̄ sector

We consider following observables in our analysis:

• the flavor ratios RD , RD∗ , RJ/
 and R(�c),
• tau polarization in B → D∗τ ν̄ decays,
5
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• D∗ longitudinal polarization fraction in B → D∗τ ν̄ decay,
• branching ratio of Bc → τ ν̄.

The theoretical expressions for RD , RD∗ and R�c in terms of WCs are given as [51]

Rth
D � RSM

D

{|1 + CVL
|2 + 1.54 Re [(1 + CVL

)CSR
] + 1.09|CSR

|2} , (19)

Rth
D∗ � RSM

D∗
{|1 + CVL

|2 + 0.13 Re [(1 + CVL
)CSR

] + 0.05|CSR
|2} , (20)

Rth
�c

� RSM
�c

{|1 + CVL
|2 + 0.50 Re [(1 + CVL

)CSR
] + 0.33|CSR

|2}. (21)

We used the form factors computed in the full q2 range using Lattice QCD [52] and obtained
the theoretical expression for RJ/
 in terms of the NP WCs which is given by

Rth
J/
 � 0.2581|1 + CVL

|2 + 0.027 Re [(1 + CVL
)CSR

] + 0.01|CSR
|2 . (22)

Tau polarization in B → D∗τ ν̄ decay, P D∗
τ , in the U1 LQ model is given as [51]

P D∗ th
τ �

(
Rth

D∗

RSM
D∗

)−1 {
− 0.49|1 + CVL

|2 + 0.05|CSR
|2 + 0.13 Re [(1 + CVL

)CSR
]
}

. (23)

The expression for D∗ longitudinal polarization fraction, f D∗
L , in B → D∗τ ν̄ decay is [51]

f D∗ th
L �

(
Rth

D∗

RSM
D∗

)−1 {
0.46|1 + CVL

|2 + 0.05|CSR
|2 + 0.13 Re [(1 + CVL

)CSR
]
}
. (24)

We also consider the constraints coming from the purely leptonic decay Bc → τ ν̄. The 
branching ratio of Bc is used to check the consistency of the fit results. This decay mode is not 
affected by the helicity suppression provided the transition is induced through the pseudo-scalar 
operators. The branching ratio of Bc → τ ν̄ in the U1 LQ model can be written as

B(Bc → τ ν̄) � 0.02

(
fBc

0.43 GeV

)2∣∣∣1 + CVL
+ 4.3CSR

∣∣∣2
. (25)

2.3. Observables in �b → pτ ν̄ decay mode

In this section, we provide theoretical expressions for various �b → pτ ν̄ observables used 
in our analysis. These observables can be defined with the help of angular differential decay 
distribution of this mode. The two-fold angular differential distribution for �b → plν̄ can be 
written in terms of q2 and cos θl where q2 is the momentum transfer squared and θl is the angle 
between the daughter baryon and the lepton in the di-lepton rest frame. The two-fold angular 
differential distribution can be written as

d2�(�b → plν̄)

dq2 d cos θl

= N
(

1 − m2
l

q2

)2[
A + m2

l

q2 B + 2C + 4ml√
q2

D
]
, (26)

where

A = 2 sin2 θl

(
H 2

1
2 ,0

+ H 2
− 1

2 ,0

)
+

(
1 − cos θl

)2
H 2

1
2 ,1

+
(

1 + cos θl

)2
H 2

− 1
2 ,−1

, (27)

B = 2 cos2 θl

(
H 2

1 + H 2
1

)
+ sin2 θl

(
H 2

1 + H 2
1

)
+ 2

(
H 2

1 + H 2
1

)

2 ,0 − 2 ,0 2 ,1 − 2 ,−1 2 ,t − 2 ,t

6
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−4 cos θl

(
H 1

2 ,t
H 1

2 ,0 + H− 1
2 ,t

H− 1
2 ,0

)
(28)

C =
(
HSP

1
2 ,0

)2 +
(
HSP

− 1
2 ,0

)2
, (29)

D = − cos θl

(
H 1

2 ,0H
SP
1
2 ,0

+ H− 1
2 ,0H

SP

− 1
2 ,0

)
+

(
H 1

2 ,t
HSP

1
2 ,0

+ H− 1
2 ,t

HSP

− 1
2 ,0

)
. (30)

The differential decay rate for �b → plν̄ can be obtained after integrating out equation (26)
over the cos θl variable [53]

d�(�b → plν̄)

dq2 = 8N

3

(
1 − m2

l

q2

)2[
E + m2

l

2q2 F + 3

2
G + 3ml√

q2
H

]
. (31)

Here N = G2
F |Vub|2q2| �pp |
512π3m2

�b

, | �pp| =
√

λ(m2
�b

,m2
p, q2)/(2m�b

) with λ(a, b, c) = a2 + b2 + c2 −
2(ab + bc + ca). Further,

E = H 2
1
2 0

+ H 2
− 1

2 0
+ H 2

1
2 1

+ H 2
− 1

2 −1
, (32)

F = H 2
1
2 0

+ H 2
− 1

2 0
+ H 2

1
2 1

+ H 2
− 1

2 −1
+ 3(H 2

1
2 t

+ H 2
− 1

2 t
), (33)

G = (HSP
1
2 0

)2 + (HSP

− 1
2 0

)2, (34)

H = H 1
2 t

HSP
1
2 0

+ H− 1
2 t

HSP

− 1
2 0

. (35)

The differential branching fraction can then be written as

dB(�b → plν̄)

dq2 = τ�b

d�

dq2 . (36)

One can also define the following LFU ratios of the differential branching fractions as

Rp(q2) = d�(�b → pτ ν̄)/dq2

d�(�b → pμν̄)/dq2 , (37)

The lepton forward-backward asymmetry is defined as

AFB =
∫ 1

0 (d2�/dq2 d cos θ)d cos θ − ∫ 0
−1(d

2�/dq2 d cos θ)d cos θ∫ 1
0 (d2�/dq2 d cos θ)d cos θ + ∫ 0

−1(d
2�/dq2 d cos θ)d cos θ

. (38)

Moreover, the longitudinal polarization of final state baryon and τ lepton is given by

P L
p = d�λp=1/2/dq2 − d�λp=−1/2/dq2

d�λp=1/2/dq2 + d�λp=−1/2/dq2
(39)

P L
τ = d�λτ =1/2/dq2 − d�λτ =−1/2/dq2

d�λτ =1/2/dq2 + d�λτ =−1/2/dq2 (40)

The convexity parameter, which is the measure of curvature of the cosθ distribution, is defined 
as

Cl
F (q2) = 1∫

d cos θ W(θ)

d2W(θ)

d(cos θ)2 (41)

with
7
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Table 1
Experimental values of observables used in the fit. The third error in R�c is due 
to the external branching fractions measurements.

Observable Experimental Values

RD 0.356 ± 0.029 [8]
RD∗ 0.284 ± 0.013 [8]
RJ/
 0.71 ± 0.17 ± 0.18 [12]
R�c 0.242 ± 0.026 (stat.) ± 0.040 (syst.) ± 0.059 [17]

PD∗
τ −0.38 ± 0.51+0.21

−0.16 [5]

f D∗
L

0.60 ± 0.08 (stat.) ± 0.04 (syst.) [54,20]

W(θ) = 3

8

[
A + m2

l

q2 B + 2C + 4ml√
q2

D
]
.

The helicity amplitudes defined in terms of the form factors are given in Appendix A.1.

3. Results and discussions

3.1. Fit results

From Sec 2.1, it is apparent that in the context of U1 LQ model, the WCs in b → u transition 
can be written in terms of b → c couplings. Therefore the observables in b → u sector are 
expected to have strong correlations with b → c observables. In other words, the extent up to 
which the new physics effects can be generated in b → u observables would be determined by 
the allowed parameter space of couplings by the current b → c data. Given the fact that we 
have relatively large number of measured observables in this sector and moreover, some of them 
are accurately measured and predicted fairly well within the SM, it would be interesting to see 
possible deviation in �b → pτ ν̄ observables allowed by the b → c data.

The theoretical expressions of observables RD , RD∗ , R�c , P D∗
τ and f D∗

L as functions of the 
relevant WCs are given in Sec. 2.2. By fitting these expressions to the measured values of the 
observables, we obtain the values of WCs which are consistent with the data. The corresponding 
χ2 is defined as

χ2(Ceff
i ) =

∑
m,n=RD,RD∗

(
Oth(Ci) − Oexp

)
m

(V )−1
mn

(
Oth(Ci) − Oexp

)
n

+ (Rth
J/
(Ci) − R

exp
J/
)2

σ 2
RJ/


+ (Rth
�c

(Ci) − R
exp
�c

)2

σ 2
R�c

+ (P D∗ th
τ (Ci) − P

D∗ exp
τ )2

σ 2
Pτ

+ (f D∗ th
L (Ci) − f

D∗ exp
L )2

σ 2
fL

, (42)

where V = V exp +V SM . Here Oth(Ceff
i ) are the theoretical predictions for RD and RD∗ whereas 

Rth
J/
, Rth

�c
, P D∗ th

τ and f D∗ th
L are theoretical expressions for RJ/
, R�c , P D∗

τ and f D∗
L , respec-

tively. These expressions depend upon the new physics WCs CVL
and CSR

which in turn are 
functions of hL

23, hL
33 and hR

33 couplings. Oexp are the corresponding experimental measurements. 
V exp and V SM are the experimental and SM covariance matrices in the RD, RD∗ space, respec-
tively. The matrix V exp includes the correlation in the combined experimental determination of 
8



S. Khan, N.R.S. Chundawat and D. Kumar Nuclear Physics B 991 (2023) 116211
Fig. 1. The 1σ and 2σ allowed parameter space are shown in orange and blue color. The region with cyan color is the 
excluded region by imposing the constraint from B(Bc → τ ν̄) < 30%.

Table 2
Best fit values of new physics couplings by making use of data of RD , RD∗ , RJ/
, R�c , 
PD∗

τ and f D∗
L

in the fit.

Best fit value(s) χ2
min

SM Ci = 0 28.14
S1 hL

23 = 0.42 ± 0.18, hR
33 = −0.06 ± 0.18 8.93

S2 hL
33 = 0.43 ± 0.17, hR

33 = −0.06 ± 0.14 8.93

S3 hL
33 = 0.15 ± 0.03, hL

23 = 2.64 ± 0.10 11.55

RD and RD∗ . In eq. (42), σRJ/

, σR�c

, σPτ and, σfL
are the uncertainties in the measurements 

and theory (added in quadrature) of RJ/
, R�c , P D∗
τ and f D∗

L , respectively. The measured values 
are given in Table 1.

We now consider three different scenarios by fixing one of the couplings and varying the 
remaining two. These scenarios are as follows:

• S1: h33
L = 0.5, MU1 = 1.5 TeV and varying h23

L & h33
R .

• S2: h23
L = 0.5, MU1 = 1.5 TeV and varying h33

L & h33
R .

• S3: h33
R = 0.5, MU1 = 1.5 TeV and varying h33

L & h23
L .

The best fit values for these three scenarios are shown in Table 2. It is evident that the SM 
doesn’t provide a good fit to the data as χ2

min ∼ 28.14 whereas for the U1 LQ model, the fit is 
significantly improved as indicated by the χ2

min value which is ∼ 8.93 for S1 & S2 and ∼11.55 
for S3. The 1σ and 2σ allowed regions of the new physics couplings are portrayed in Fig. 1. 
The region in cyan color is the parameter space which is excluded by imposing the additional 
constraint of B(Bc → τ ν̄) < 0.3 [55]. One can see that the entire parameter space is excluded 
from B(Bc → τ ν̄) constraint for the S3 scenario.

Using the allowed values of the new physics couplings obtained in this section, in the next 
subsection, we predict several observables in the decay of �b → plν̄ for benchmark scenarios 
NP(S1) with h23

L = 0.69, h33
R = 0.09 and NP(S2) with h33

L = 0.67, h33
R = 0.12 which correspond 

to the maximum deviation from the SM predictions in the 1σ favored new physics parameter 
space.
9
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Fig. 2. Predictions for various observables in �b → plν̄ decay. The band corresponds to the SM uncertainties. The 
lines in blue and green correspond to the maximum deviation from the SM predictions in the 1σ favored new physics 
parameter space.

3.2. Predictions

We consider following �b → plν̄ observables in our analysis:

• differential branching ratio dB/dq2, defined in eq. (36)
• LFU ratio Rp , defined in eq. (37)
• longitudinal polarization of final state baryon, defined in eq. (40)
• longitudinal polarization of τ , defined in eq. (40)
• lepton forward-backward asymmetry AFB , defined in eq. (38)
• convexity parameter Cl

F , defined in eq. (41).

The SM prediction of these observables along with new physics benchmark scenarios NP(S1) 
and NP(S2) are illustrated in Fig. 2. From the left panel of the top figure, it is luculent that the 
10
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new physics can ameliorate the branching ratio by ∼ 2 times the SM prediction. Thus the current 
b → c data does allows an enhancement in the branching ratio of �b → plν̄. This roseate feature 
is also toted to the LFU ratio R(�p) as can be seen from the right panel of the top figure where 
about 2 times of magnitude enhancement is allowed. Therefore �b → plν̄ decay mode can serve 
as an important channel to probe LFU violation in the b → u sector.

The predictions of the longitudinal polarization of the final state baryon as well as the τ
lepton in �b → plν̄ decay are shown in the left and right panels of Fig. 2. For q2 < 8 GeV2 & >

17 GeV2, P L
p (q2) is consistent with the SM prediction whereas for 8 GeV2 < q2 < 17 GeV2, 

there is marginal deviation from the SM. On the other hand, the predictions of tau polarization 
are consistent with the SM value in the entire q2 region. The same is true for lepton forward 
backward asymmetry and convexity parameter as can be seen from the left and right panels of 
bottom figure, respectively.

4. Conclusions

In this work we anatomize new physics effects in �b → pτ ν̄ decay in U1 leptoquark model. 
This decay mode is induced by the quark level transition b → uτ ν̄. A model independent analysis 
of new physics in b → uτ ν̄ can lead to large effects due to the fact that, as of now, we only have 
one measurement in this sector. However, in the context of U1 leptoquark model considered 
in this work, the new physics couplings in b → uτ ν̄ transition can be expressed in terms of 
couplings in b → cτ ν̄ decay along with a suitable combinations of elements of the CKM matrix. 
Therefore, one expects a strong correlations between these two sectors. Given the fact that, unlike 
b → uτ ν̄ sector, there are measurements of a number of observables in decays induced by b →
cτ ν̄ transition, one expects that meaningful constraints on new physics parameter space can 
be obtained. It would then be interesting to see whether such constraints can allow for large 
enhancements in some of the observables in �b → pτ ν̄ decay.

In order to obtain constraints on new physics couplings, we perform a fit to all b → cτ ν̄ data. 
For allowed parameter space of the couplings, we obtain predictions of the branching ratio, LFU 
ratio, the longitudinal polarization of final state baryon and τ lepton, lepton forward-backward 
asymmetry and in the decay of �b → pτ ν̄. We find that

• The branching ratio as well as the LFU ratio can be enhanced by about 2 times over the SM 
value.

• There can be a marginal deviation from the SM in the longitudinal polarization of final state 
baryon for 8 GeV2 < q2 < 17 GeV2.

• The longitudinal polarization of τ , lepton forward-backward asymmetry as well as the con-
vexity parameter is consistent with the SM.
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Appendix A

A.1. �b → p transition form factors and helicity amplitudes

The q2 dependence of the helicity form factors in the lattice QCD calculations are defined 
as [56]:

fi(q
2) = 1

1 − q2/(m
f
pole)

2
[af

0 + a
f

1 z(q2)] , (43)

where i = +, ⊥, 0 and the expansion parameter is defined as

z(q2) =
√

t+ − q2 − √
t+ − t0√

t+ − q2 + √
t+ − t0

. (44)

Here t+ = (mB1 +mB2)
2 and t0 = (mB1 −mB2)

2. The nominal form factor parameters af (g)
0,1 and 

m
f
pole for �b → p are taken from [56].
The decay �b → plν̄ is considered to be through �b → pW ∗ and the off-shell W ∗ decays to 

lν̄. The helicity amplitudes for vector and axial-vector type current are defined by

Hλp,λW
= HV

λp,λW
− HA

λp,λW
, (45)

HV
λp,λW

= ε†μ(λW )〈p,λp|c̄γμb|�b,λ�b
〉 , (46)

HA
λp,λW

= ε†μ(λW )〈p,λp|c̄γμγ5b|�b,λ�b
〉 . (47)

Also, the helicity amplitudes for scalar and pseudo-scalar current are given by

HS
λp

= 〈p,λp|c̄b|�b,λ�b
〉 , (48)

HP
λp

= 〈p,λp|c̄γ5b|�b,λ�b
〉 . (49)

One can show from the parity argument or explicit calculation that HV−λp,−λW
= HV

λp,λW
, 

HA = −HA , HS = HS and HP = −HP .
−λp,−λW λp,λW λp,λNP −λp,−λNP λp,λNP −λp,−λNP

12
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The helicity amplitudes can be defined in terms of the helicity form factors as [53]:

HV
1
2 ,0

= (1 + CVL
+ CVR

)

√
Q−√
q2

(mB1 + mB2)f+(q2) , (50)

HA
1
2 ,0

= (1 + CVL
− CVR

)

√
Q+√
q2

(mB1 − mB2)g+(q2) , (51)

HV
1
2 ,1

= −(1 + CVL
+ CVR

)
√

2Q−f⊥(q2) , (52)

HA
1
2 ,1

= −(1 + CVL
− CVR

)
√

2Q+g⊥(q2) , (53)

HV
1
2 ,t

= (1 + CVL
+ CVR

)

√
Q+√
q2

(mB1 − mB2)f0(q
2) , (54)

HA
1
2 ,t

= (1 + CVL
− CVR

)

√
Q−√
q2

(mB1 + mB2)g0(q
2) , (55)

where

Q± = (mB1 ± mB2)
2 − q2 . (56)

The scalar and pseudo-scalar helicity amplitudes are defined as:

HSP
1
2 ,0

= HS
1
2 0

− HP
1
2 0

, (57)

HS
1
2 ,0

= (CSL
+ CSR

)

√
Q+

mb − mu

(mB1 − mB2)f0(q
2) , (58)

HP
1
2 ,0

= (CSL
− CSR

)

√
Q−

mb + mu

(mB1 + mB2)g0(q
2) . (59)

The helicity-dependent differential decay rates are required to compute the longitudinal po-
larization asymmetry of final state baryon and τ and these decay rates are defined as

d�λp= 1
2

dq2 = m2
l

q2

[4

3

(
H 2

1
2 ,1

+ H 2
1
2 0

+ 3H 2
1
2 ,t

)]
+ 8

3

(
H 2

1
2 ,0

+ H 2
1
2 ,1

)
+ 4HSP 2

1
2 ,0

+ 8ml√
q2

H 1
2 ,t

HSP
1
2 ,0

(60)

d�λp=− 1
2

dq2 = m2
l

q2

[4

3

(
H 2

− 1
2 ,1

+ H 2
− 1

2 ,0
+ 3H 2

− 1
2 ,t

)]
+ 8

3

(
H 2

− 1
2 ,0

+ H 2
− 1

2 ,−1

)
+ 4HSP 2

− 1
2 ,0

+ 8ml√
q2

H− 1
2 ,t

HSP

− 1
2 ,0

(61)

d�λτ = 1
2

dq2 = m2
l

q2

[4

3

(
H 2

1
2 ,1

+ H 2
1
2 ,0

+ H 2
− 1

2 ,−1
+ H 2

− 1
2 ,0

)
+ 4(H 2

1
2 ,t

+ H 2
− 1

2 ,t

)]
+ 4

(
HSP 2

1
2 ,0

+ HSP 2

− 1
2 ,0

)
+ 8ml√

2

(
H 1

2 ,t
HSP

1
2 ,0

+ H− 1
2 ,t

HSP

− 1
2 ,0

)
(62)
q
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d�λτ =− 1
2

dq2 = 8

3

(
H 2

1
2 ,1

+ H 2
1
2 ,0

+ H 2
− 1

2 ,−1
+ H 2

− 1
2 ,0

)
(63)
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