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In K. Dusling et al. [arXiv:1705.00745.], an initial-state “parton model” of quarks scattering off a dense
nuclear target was shown to qualitatively reproduce the systematics of multiparticle azimuthal anisotropy
cumulants measured in proton/deuteron-nucleus (pA) collisions at the Relativistic Heavy Ion Collider and
the LHC. The systematics included (i) the behavior of the four-particle cumulant c2f4g, which generates a
real four-particle second Fourier harmonic v2f4g; (ii) the ordering v2f2g > v2f4g ≈ v2f6g ≈ v2f8g for
two-, four-, six-, and eight-particle Fourier harmonics; and (iii) the behavior of so-called symmetric
cumulants SC(2,3) and SC(2,4). These features of azimuthal multiparticle cumulants were previously
interpreted as a signature of hydrodynamic flow; our results challenge this interpretation. We expand here
upon our previous study and present further details and novel results on the saturation scale and transverse
momentum (p⊥) dependence of multiparticle azimuthal correlations. We find that the dependence of v2f2g
and v2f4g on the number of color domains in the target varies with the p⊥ window explored. We extend our
prior discussion of symmetric cumulants and compute as yet unmeasured symmetric cumulants. We
investigate the Nc dependence of v2f2g and v2f4g. We contrast our results, which include multiple
scatterings of each quark off the target, to the Glasma graph approximation, where each quark suffers at
most two-gluon exchanges with the target. We find that coherent multiple scattering is essential to obtain a
positive definite v2f4g. We provide an algorithm to compute expectation values of arbitrary products of the
“dipole” lightlike Wilson line correlators.
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I. INTRODUCTION

In Ref. [1], we demonstrated that a simple initial-state
parton model gives rise to many of the features of multi-
particle azimuthal correlations observed experimentally in
small collision systems at both the Relativistic Heavy Ion
Collider at Brookhaven National Lab and the Large Hadron
Collider (LHC) at CERN. In this model, collinear quarks
from the projectile scatter coherently off color sources of
the size of the inverse of the saturation scale Qs in the
nuclear target; the scattered quarks are found to be
collimated in their relative azimuthal angles. We observed
crucially that one obtains a negative value for c2f4g, the
four-particle azimuthal anisotropy cumulant. This results in
a positive definite four-particle Fourier coefficient v2f4g.

We demonstrated further, in a simpler Abelian version of
our model, that one obtains the ordering of m-particle
second Fourier harmonics v2f2g>v2f4g≈v2f6g≈v2f8g.
Both of these features were previously believed to be unique
signatures of collectivity arising from the hydrodynamic
flow of quark-gluon matter. Not least, we demonstrated that
so-called symmetric cumulants (mixed four-particle cumu-
lants of different Fourier harmonics) computed in this parton
model display the same qualitative features as experimental
measurements of symmetric cumulants. We note that sym-
metric cumulants were designed to probe correlations and
fluctuations arising from the hydrodynamic response to
different harmonics of the azimuthal structure of the initial
geometry.
While the hydrodynamic description of the flow of

quark-gluon matter is likely valid in the larger, more
central, collisions of heavy ions (AA), the applicability
of this description to more peripheral AA collisions, and to
pA and proton-proton (pp) collisions, is less clear [2,3].
Our results in Ref. [1] are therefore a strong hint that the
stated measures of hydrodynamic collectivity are not robust
in their own right without further corroboration from other
distinct measures of collectivity. An example of the latter is
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the strong jet quenching that is seen in central heavy-ion
collisions at the RHIC and the LHC [4–7]. In contrast, jet
quenching is either small or absent in peripheral AA
collisions and in pA collisions [4,8,9].
We will elaborate in this paper on the parton model

description introduced in Ref. [1], which extends previous
work on two-particle azimuthal correlations discussed in
Refs. [10,11]. A novel feature is the development of a general
algorithm (based on the framework in Ref. [12]) to compute
expectation values of multidipole correlators. These objects
encode the physics of multiple eikonal scattering of quarks
on a colored target. In particular, the dipole operator is the
trace over the product of a lightlike Wilson line appearing
in the quark production amplitude at a given transverse
position, with its conjugate transpose appearing in the
complex-conjugate amplitude at a different spatial location,
normalized by the number of colors Nc. We will present a
systematic study of azimuthal cumulants and Fourier har-
monics as a function of the target saturation scaleQs and the
transverse momentum. Additionally, we will perform a
systematic study of the Nc dependence of observables. In
particular, we will point to key similarities and differences
between the non-Abelian and Abelian versions of the model.
We will also make predictions of yet to be measured
symmetric cumulants for higher order Fourier harmonics.
Expectation values over the dipole correlators are com-

puted in the McLerran-Venugopalan (MV) model [13,14].
This model includes coherent multiple scattering of the
quarks in the projectile off the nuclear target. If we include
at most two scatterings of the quarks, corresponding to the
expansion of the Wilson lines to lowest nontrivial order, the
expectation values correspond to the Glasma graph appro-
ximation. This approximation is applicable for p⊥ > Qs. A
model including quantum evolution of the Glasma graphs
in the color glass condensate (CGC) framework [15,16]
was previously applied to successfully describe key fea-
tures of azimuthal correlations for p⊥ ≥ Qs [17–23]. We
show that the Glasma graph correlators only produce
positive values of the four-particle cumulant c2f4g and
therefore do not correspond to a real v2f4g. This result
demonstrates that coherent multiple scattering, which is
significant for p⊥ ≤ Qs, is an essential ingredient for the
collectivity seen in our initial-state framework.
The organization of the paper is as follow. We begin with

the setup of our model in Sec. II. In Sec. III, we discuss the
algorithm for the computation of multidipole correlators.
Results of our computations are presented in Sec. IV. In
Sec. V, we discuss the dependence of these results on the
relative separations of the quarks in the projectile, on the
number of color domains for varying p⊥ windows and on
the number of colors Nc. We contrast our results to those in
the Glasma graph approximation. We briefly discuss the
rapidity dependence on correlations in our model. In
Sec. VI, we conclude and discuss possible future directions
of research. Details of the Glasma graph computations are
presented in the Appendix.

II. EIKONAL QUARK SCATTERING
FROM A NUCLEAR TARGET

We will discuss in this section a simple parton model
description of proton-nucleus collisions. The incoming
projectile consists of a collection of independent, nearly
collinear, quarks that scatter off a dense nuclear target.
Spatial correlations within the classical field of the nucleus
imprint themselves on the quarks as they scatter, resulting
in nontrivial momentum space correlations between the
originally uncorrelated quarks. These include correlations
in their relative azimuthal angles.
We begin by considering the scattering of a fermion off a

classical background field in the high energy limit [24,25].
The forward scattering amplitude for a fixed background
field A− can be expressed as [26]

hqðqÞoutjqðpÞiniA−

¼
Z

d2x⊥½Uðx⊥Þ − 1�eiðq−pÞ·x⊥ ∼Mðp; qÞ; ð1Þ

where

Uðx⊥Þ ¼ P exp

�
−ig

Z
dzþAa−ðx⊥; zþÞta

�
ð2Þ

is the Wilson line in the fundamental representation at a
transverse position x⊥ and P denotes path ordering in the
light cone variable xþ. The −1 in (1) removes the “no
scattering” contribution wherein a quark passes through the
target nucleus without having its color rotated by an Eikonal
phase. As the incoming partons all have transverse momen-
tum of orderΛQCD, and we are interested in jpj ≫ ΛQCD, we
will ignore this contribution in what follows.
The transverse spatial distribution of collinear quarks

with transverse momenta k in the projectile is represented
by the Wigner function Wqðb;kÞ [10,11]. The single
inclusive distribution within this model can be expressed as
�
dN
d2p

�
¼ 1

4πBp

Z
d2r

Z
d2b

Z
d2k
ð2πÞ2Wqðb;kÞeiðp−kÞ·r

×

�
D

�
bþ r

2
;b −

r
2

��
; ð3Þ

where the expectation value denotes an average over fields
A− in the target, as for instance given by the MV model.
For simplicity, we assume the Wigner function has the
Gaussian form

Wqðb;kÞ ¼
1

π2
e−jbj2=Bpe−jkj2Bp; ð4Þ

where both the transverse momentum and spatial location
of the quarks is determined by a single nonperturbative
scale Bp. Unless otherwise mentioned, we will fix Bp ¼
4 GeV−2 [27], obtained from dipole model fits to HERA
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deep inelastic scattering data. We will discuss later how our
results are affected by variations in the value of Bp.
In (6), the function

Dðx; yÞ ¼ 1

Nc
Tr½UðxÞU†ðyÞ� ð5Þ

denotes the dipole operator. This operator encodes all
orders in multiple-gluon exchanges, as we will explicitly
see in the calculations in Sec. III. Performing the integra-
tion over the incoming quark momenta k, Eq. (6) can be
simplified to read

�
dN
d2p

�
¼ 1

4π3Bp

Z
d2b

Z
d2re−jbj2=Bpe−jrj2=4Bpeip·r

×

�
D

�
bþ r

2
;b −

r
2

��
: ð6Þ

The above framework can be extended to multiparticle
production. For m incoming quarks in the projectile, the
m-particle inclusive spectrum can be expressed as

�
dmN

d2p1…d2pm

�
≡

�
dN
d2p1

…
dN
d2pm

�
; ð7Þ

where the expectation value denotes an average over
classical configurations of the target in a single event
and over all events. Since each of the single-particle
distributions inside the average here is a gauge-dependent
functional of the classical field, we caution the reader
that these distributions are qualitatively different from the
gauge invariant single-particle distributions employed in
hydrodynamic computations. No such simple product of
gauge invariant distributions can be written in our case;
indeed, as discussed at length in the Appendix, the
Feynman diagrams corresponding to (7) are quantum
interference diagrams.
On the other hand, the quarks comprising the projectile

are uncorrelated, with the m-quark Wigner function of the
projectile factorizing into a product of single-quark Wigner
functions,

Wðb1;k1;…;bm;kmÞ ¼ Wqðb1;k1Þ……Wqðbm;kmÞ:
ð8Þ

Diagrammatically, this can be represented, as shown in
Fig. 1, as the multiple scattering between different quarks in
the amplitude and complex conjugate amplitude and the
target nucleus. In the strict dilute-dense limit in which we
work, these Wigner functions are gauge invariant distribu-
tions of which the product form is assumed to survive color
averaging. From (7) and (8), we arrive at the following
compact form for the m-particle inclusive spectra:

�
dmN

d2p1 � � � d2pm

�
¼ 1

ð4π3BpÞm
Ym
i¼1

Z
d2bi

Z
d2rie−jbij2=Bp

× e−jrij2=4Bpeipi·ri

×

�Ym
j¼1

D

�
bj þ

rj
2
;bj −

rj
2

��
: ð9Þ

Even though the above expression has a factorized form,
it is highly nontrivial. Multiparticle correlations are gen-
erated via the expectation value over the classical fields of
the target. A primary focus of this work will be computing
the correlation between four particles. In this case, the
expectation value is over a product of four-dipole operators,
each of which, as noted, is a trace of two lightlike Wilson
lines. The resulting expectation value is a function of eight
transverse coordinates: four coordinates in the amplitude
and four in the complex-conjugate amplitude. This expect-
ation value will be evaluated without approximation in the
MV model. We will see that large Nc approximations and
perturbative expansions (such as the Glasma graph approxi-
mation) to such correlators are insufficient to capture the
systematics of pA data.
A shortcomingof ourmodel is the oversimplified nature of

the projectile. At high energies, gluon radiation dominates
the small-x component of the proton’s wave function. These
high parton densities become apparent when Qs;T=pT ≳ 1;
saturation model fits to HERA data conservatively suggest
that these effects become non-negligible around x ¼ 0.01
[28]. However, depending on the transverse momentum
range studied, the qualitative features we observe could
persist to smaller values of x. Furthermore, as the rapidity
separation between quarks becomes larger than Δy≳ 1=αS,
quantum corrections will result in a decorrelation between
partons. A more quantitative discussion of the rapidity
dependence is discussed in Sec. V E.
Quantum evolution will clearly break the factorized form

of the Wigner function used in (8). Furthermore, since
gluons would dominate the scattering process, their inter-
actions with the target would be represented as adjoint

FIG. 1. Diagrammatic representation of gluon exchanges be-
tween quarks in the amplitude (left) and complex-conjugate
amplitude (right) and the target nucleus. The light-gray gluons
show possible exchanges between quarks that would break the
factorization used in (8). Correlations such as these might be
generated via quantum evolution of the projectile and are not
included in this work. All allowed gluon exchanges between the
quarks and the target are fully resummed.
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Wilson lines. Multiparticle production, in this dense-dense
limit, has been addressed in previous work [29–34].
Multiparticle distributions can be obtained by solving
the classical Yang-Mills equations in the presence of
lightlike color sources corresponding to the projectile
and the target. These source densities are each drawn from
functional distributions of color charges, the evolution with
energy of which is described by the JIMWLK equations.
[35,36]. However, due to the numerical complexity of the
simulations, this has been restricted thus far to two-particle
correlations [31,32]. The success of our simple model in
explaining many of the collective signatures seen in light–
heavy-ion collisions should stimulate further development
of classical Yang-Mills simulations.
One may note that (9) has the structure of an expectation

value of a product of functions. If one interpreted these
functions as “single-particle” distributions the form of (9)
would be markedly similar to a hydrodynamic framework
[37]. One may then conjecture that the results we show for
v2f4g are simply a consequence of the functional formof (9).
This turns out not to be the case. In our discussion of coherent
multiple scattering versus Glasma graphs, we will observe
that, while both can be expressed in single-particle product
form, one obtains negative four-particle azimuthal cumulants
in the former case and positivevalued cumulants in the latter.1

III. EXPECTATION VALUES OF MULTIDIPOLE
CORRELATORS IN THE MV MODEL

In this section, we will compute the expectation value of
four-dipole operators in the MV model [13,14] of a nucleus
at high energies. Although we will only make use of dipole
operators, the results also generate all allowed expectation
values of eight Wilson lines at no additional computational
cost. The algorithm presented here to compute expectation
values of lightlike Wilson line correlators can in principle
be extended to higher-point functions.
In the MV model, classical gauge fields are described by

solutions of the classical Yang-Mills equations,

½Dμ; Fμν� ¼ δν−ρðx; xþÞ; ð10Þ

where ρ denotes the classical color charge density in the
nucleus. It is determined from the random Gaussian
distribution satisfying

hρaðx⊥; xþÞρbðy⊥; yþÞi
¼ δabδðxþ − yþÞδð2Þðx⊥ − y⊥Þμ2ðxþÞ; ð11Þ

where μ2 is the squared color charge density per unit area.
The above two-point function can also be recast in terms of
the gauge fields A−

a using

A−
a ðx⊥; xþÞ ¼ g

Z
d2z⊥Gðx⊥ − z⊥Þρaðz⊥; xþÞ;

Gðx⊥Þ ¼
Z

d2k⊥
ð2πÞ2

eik⊥·x⊥

jk⊥j2
; ð12Þ

where Gðx⊥Þ is the free gluon propagator in two dimen-
sions [38]. One then obtains

g2hA−
a ðx⊥; xþÞA−

b ðy⊥; yþÞi
¼ g4μ2ðxþÞδðxþ − yþÞδab

×
Z

d2z⊥Gðx⊥ − z⊥ÞGðy⊥ − z⊥Þ

≡ δðxþ − yþÞδabLðx⊥; y⊥Þ: ð13Þ

The integral over the two-dimensional propagator is for-
mally divergent and must be regulated at the nonperturba-
tive scale ΛQCD with the result

Lðx⊥; y⊥Þ ¼ ðg2μÞ2
Z

d2z⊥Gðx⊥ − z⊥ÞGðx⊥ − y⊥Þ

∼ −
ðg2μÞ2
16π

jx⊥ − y⊥j2 log
�

1

jx⊥ − y⊥jΛQCD

�
:

ð14Þ

Expectation values of multiple dipoles can be computed
by expanding the path ordered exponential within the
Wilson line to second order in the gauge field. All possible
pairwise contractions of the gauge fields are evaluated
using (13). The result can be reexponentiated, resulting in
an expression valid to all orders in the gauge field [39,40].
There is also a formally equivalent graphical method
[12,41], to which we will refer when helpful.
When expanding out the path ordered exponential in the

Wilson line, each gauge field represents a single-gluon
exchange with the target. Each hAAi contraction is there-
fore equivalent to considering two-gluon exchanges
between two quarks (represented as Wilson lines) and
the target nucleus. Gluon exchanges can occur twice on the
same quark, or on different quarks, and can also act on
antiquarks in the conjugate amplitude.
Following Ref. [12], we will denote as T contributions

arising from two-gluon exchanges with the same quark and
N as two-gluon exchange among different quarks. Since
exchanges between the same Wilson line in T are color
singlets, these contributions can be considered separately
from the N contributions. The final result for the expect-
ation value of m-dipole operators can be expressed as a
product of the two contributions,

hD…Di ¼ T N : ð15Þ
1We thank Jean-Yves Ollitrault for a useful discussion on this

point.
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A. Tadpole contribution

Gluon exchanges between the same Wilson line com-
prise the tadpole contribution T . We take as our starting
point eight Wilson lines having transverse positions
x1; x̄1;…;x4; x̄4, where the x positions refer to quarks
and the x̄ positions refer to antiquarks. These dipoles must
be connected in such a way as to preserve the flow of color.
Namely, quarks can only be connected to antiquarks and
vice versa. Without loss in generality, we connect at xþ ¼
−∞ quarks at xi with antiquarks at x̄i, as shown in Fig. 2.
This allows us to unambiguously define what we mean

as a four-dipole configuration for the given positions,2 as
shown in Fig. 4(a). However, we can consider the xþ ¼
þ∞ ends to be initially open ended. To evaluate the tadpole
contribution, we draw a gluon connecting at two arbitrary
xþ points on the sameWilson line of Fig. 2. We then invoke
the Fierz identity,

taijt
a
kl ¼

1

2
δilδjk −

1

2Nc
δijδkl; ð16Þ

which is given graphically by Fig. 3.
Performing this Fierzing, we see that the first term gives

us a closed loop, which just is the trace of the identity
matrix. This gives a factor of Nc and the dipole again.
The second term is just the original dipole. The result is
then the original dipole multiplied with the Casimir

factor CF ¼ N2
c−1
2Nc

.
For the rest of the result, we must calculate pairwise

contractions of the gauge field A−
a . As noted, for the MV

model, these satisfy Eq. (13). Every gluon exchange
between the same (anti)quark (same transverse position
Wilson line) results in a factor of − CF

2
Lxixi , where L was

defined in (14), and the 1=2 is on account of the fact that the
two ends of the correlator are ordered in xþ because they
belong to the same Wilson line. The negative sign is from
connecting a(n) (anti)quark with a(n) (anti)quark.

Summing n such exchanges to the Wilson lines, the
tadpole contribution can be expressed as

T ¼ exp

�
−
CF

2

X4
i¼1

ðLxixi þ Lx̄ix̄iÞ
�
; ð17Þ

where we now denote the transverse position arguments as
subscripts for readability and differentiate between quarks
in the amplitude (xi) and antiquarks in the complex-
conjugate amplitude with an overbar (x̄i). This tadpole
term is a color singlet and commutes with the terms we will
derive next.

B. Gluon exchange contribution

We shall now consider gluon exchanges between differ-
ent Wilson lines. Our starting point is again the configu-
ration shown in Fig. 2. Closing the ends of the dipoles
while preserving the color flow, we find that there are five
distinct topologies. Using Fierz ordering as we did pre-
viously for the tadpole contribution, a gluon exchange
between different Wilson lines in one topology can trans-
form it into a different topology.
We now show how one obtains the five distinct topol-

ogies shown in Fig. 4. For a concrete example, we start with
the four closed dipoles in Fig. 4(a). Consider a gluon
exchange between x̄3 and x4. From the two terms that result
from Fierz ordering, as shown in Fig. 3, the first term gives
two dipoles and a quadrupole, as depicted in Fig. 4(b), with
a factor of 1

2
. A quadrupole, as depicted, is a distinct

topological configuration corresponding to the trace over
the product of Wilson lines at two distinct transverse spatial
positions in the amplitude and at two such positions in the
complex-conjugate amplitude. The second term from
Fierzing just returns the original four-dipole configuration
shown in Fig. 4(a), but now with the Fierz factor 1

2Nc
. Now,

taking this dipole-dipole-quadrupole configuration, con-
sider further an exchange between x̄1 and x2. This creates a
quadrupole-quadrupole topology from the first term in the
Fierzing, as depicted in Fig. 4(c), and likewise the structure
Fig. 4(b) from the second Fierz term, both terms with the
appropriate Fierz prefactors.
If instead we had started with the dipole-dipole-

quadrupole configuration and considered a gluon exchange
between x̄2 and x3, the first Fierz termwould have resulted in
a dipole-sextupole configuration, as depicted in Fig. 4(d).
A sextupole, as depicted in Fig. 4(d), corresponds to a trace
over the product of Wilson lines at three spatial positions in
the amplitude and three in the complex-conjugate amplitude.

FIG. 2. Eight fundamental Wilson lines, pairwise connected.
Coordinates denote transverse positions.

FIG. 3. The Fierz identity (16).

2Physically, however, these positions are completely arbitrary.
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An exchange between x̄1 and x2 in this dipole-sextupole
topology results in an octupole (trace of eightWilson lines—
four in the amplitude and the other four in the complex-
conjugate amplitude), depicted in Fig. 4(e), for the first
Fierz term. The second term, as for the previous cases, gives
back the original configuration, the dipole-sextupole one,
with the appropriate Fierz prefactor. Thus, we see that
multiple-gluon exchanges continually generate, with each
additional exchange, transitions between five topologically
distinct configurations: (a) four dipole, (b) dipole dipole
quadrupole, (c) quadrupole quadrupole, (d) dipole sextupole,
and (e) octupole.
There is a transverse coordinate permutation degeneracy

to these diagrams as well. The four-dipole topology is the
only topology without this permutation degeneracy. For the
dipole-dipole-quadrupole topology, there are ð4

2
Þ ¼ 6 pos-

sible permutations to close the xþ ¼ þ∞ side of the eight
pairwise connected Wilson lines we introduced previously.
Similarly, there are 1

2
ð4
2
Þ ¼ 3 quadrupole-quadrupole per-

mutations, 2ð4
3
Þ ¼ 8 dipole-sextupole permutations, and

3! ¼ 6 octopole permutations. As a sanity check, since
we have considered eight Wilson lines connected pairwise
at one end (xþ ¼ −∞), the sum of these permutations
degeneracies agrees with the total 4! ¼ 24 possible differ-
ent contractions of the xþ ¼ þ∞ side, which is dictated
from the fact that quark (antiquark) Wilson lines can only
connect with antiquark (quark) Wilson lines.
It should be clear from our discussion that we have a

closed system of 24 configurations, whereby each of
these is transformed, through gluon exchanges and
Fierzing, into other configurations in this system. We
can express the 24 possible configurations as elements of
a basis characterizing the four-dipole system. Starting
with this initial condition, where all other configurations
are set to zero, one can construct a 24 by 24 trans-
formation matrix M that transforms one set of basis
elements to another with each gluon exchange and
subsequent Fierzing. We can then deduce, either ana-
lytically [39,40,42] or diagramatically [12,41], what
factors (via Fierz) are picked up in going from a basis

element α to basis element β, which then define the
elements Mαβ of the matrix.
To understand how one fills in the arrays of this matrix,

consider a path ordered exponential for the Wilson line

Uðx⊥Þ ¼ P exp

�
ig
Z

ξ
dzþA−ðzþ;x⊥Þ

�

≃ Vðx⊥Þð1þ igA−
a ðξ;x⊥Þta þ � � �Þ; ð18Þ

wherewe expanded out the last infinitesimal slice in rapidity
and Vðx⊥Þ is a redefinition of the original Wilson line
excluding this last infinitesimal slice. Substituting this last
expression in the dipole operator, we obtain

hDðx⊥; x̄⊥ÞUi ¼
1

Nc
htrðUðx⊥ÞU†ðx̄⊥Þi

¼ hDðx⊥; x̄⊥ÞVi þ g2hA−
a ðx⊥ÞA−

b ðx̄⊥Þi

×
1

Nc
htrðVðx⊥ÞtatbV†ðx̄⊥ÞÞi: ð19Þ

Here, we have made use of the locality in rapidity of
correlators in the MV model.
Using Eq. (13), we can express hDUi in the lhs in terms

of hDVi alone on the rhs. Iterating this expression for each
slice in rapidity, one obtains the exponentiated expression

hDðx⊥; x̄⊥ÞUi ¼ eCfLðx⊥;x̄⊥ÞhDðx⊥; x̄⊥ÞVi: ð20Þ
While this is a simple example, an identical procedure can
be followed for multiple dipoles, or any higher order
configuration, resulting from an initial four-dipole con-
figuration. Another example is the well-known two-dipole
result [12,39–41]. In this case, following the procedure
outlined above, it is straightforward to show that

hDx1x̄1Dx2x̄2iU ≃ αx1x̄1x2x̄2hDx1x̄1Dx2x̄2iV
þ βx1x̄2x2x̄1hQx1x̄2x2x̄1iV; ð21Þ

where Q ¼ TrðVðx1ÞV†ðx̄2ÞVðx2ÞV†ðx̄1ÞÞ=Nc is the quad-
rupole configuration. Since the only two configurations for

(a) (b) (c) (d) (e)

FIG. 4. The five different topologies possible for eight Wilson lines. All possible permutations with respect to the given transverse
coordinates are possible.
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two dipoles are the dipole-dipole and quadrupole, we can
then write this as a matrix equation,

�hDx1x̄1Dx2x̄2i
hQx1x̄2x2x̄1i

�
U

¼
�
αx1x̄1x2x̄2 βx1x̄2x2x̄1
βx1x̄1x2x̄2 αx1x̄2x2x̄1

�
U

�hDx1x̄1Dx2x̄2i
hQx1x̄2x2x̄1i

�
V

;

ð22Þ

where α and β are simple functions of Lðx⊥; y⊥Þ given
in Ref. [12].
For a further example, if we consider four dipoles,

then it is only possible via one-gluon exchange to
get to the six possible dipole-dipole-quadrupole configu-
rations or stay in the four-dipole configuration. One
obtains

hDx1x̄1Dx2x̄2Dx3x̄3Dx4x̄4iU ≃ αx1x̄1x2x̄2x3x̄3x4x̄4hDx1x̄1Dx2x̄2Dx3x̄3Dx4x̄4iV þ βx1x̄2x2x̄1hQx1x̄2x2x̄1Dx3x̄3Dx4x̄4iV
þ βx1x̄2x2x̄1hQx1x̄3x3x̄1Dx2x̄2Dx4x̄4iV þ βx1x̄4x4x̄1hQx1x̄4x4x̄1Dx2x̄2Dx3x̄3iV
þ βx2x̄3x3x̄2hQx2x̄3x3x̄2Dx1x̄1Dx4x̄4iV þ βx2x̄4x4x̄2hQx2x̄4x4x̄2Dx1x̄1Dx3x̄3iV
þ βx3x̄4x4x̄3hQx3x̄4x4x̄3Dx1x̄1Dx2x̄2iV: ð23Þ

We can repeat this for all topologies to obtain a similar
matrix as for the two-dipole case.
For a small number of dipoles, this procedure can be

carried out efficiently by hand, and the eigenvalues of the
matrix can be even computed analytically. However, for
larger numbers of dipoles, this becomes cumbersome.
For example, for the four dipoles we have been consider-
ing, we must compute 7!-gluon exchanges for each of
the 24 basis elements, totalling 120 960 computations.
Fortunately, since the algorithm suggested by our exercises
is quite straightforward, it is very tractable to determine
the elements of the 24 by 24 matrix and compute their
eigenvalues on a computer. This work made extensive use
of the GNU Scientific Library [43] and the EXPOKIT

software package [44]. The matrix is illustrated schemati-
cally by Fig. 5; as it indicates, the elements of the matrix are
relatively sparse but must nevertheless be diagonalized
numerically. Our algorithm can be generalized to a larger

number of dipoles of more complex topologies. It is
therefore potentially useful for computations of many-body
final states in high energy QCDwhere n-tupoles of lightlike
Wilson lines are ubiquitous.
As a final remark on this matrix computation, we note

that in the large Nc limit this problem becomes more
tractable [45,46]. In Ref. [45], it was shown that for large
Nc only dipoles and quadrupoles contribute to high energy
QCD processes. However the azimuthal cumulants them-
selves vanish at large Nc, so in order to compute these
quantities a finite Nc calculation is necessary.

C. Result for product of four-dipole correlators

Now that we have explained how to calculate the
matrix for one-gluon exchange at a single slice in rapidity,
we can compute how the basis vector space of configura-
tions evolves after an infinite number of gluon exchanges.
More generally, after n-gluon exchanges, we have the vector

FIG. 5. The basis of configurations resulting for eight Wilson lines, pairwise connected, resulting in dipoles, quadrupole, sextupoles,
and octupoles. Coordinates denote transverse positions.
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N⃗ n ¼ anN⃗
ðaÞ þ bnN⃗

ðbÞ þ � � � þ xnN⃗
ðxÞ
; ð24Þ

where N⃗
ðaÞ

through N⃗
ðxÞ

refer to individual basis vectors
in the 24-dimensional basis space. This then evolves
according to

N⃗ nþ1 ¼ MN⃗ n: ð25Þ
One can rewrite this expression as the matrix equation

0
BBB@

anþ1

bnþ1

…

xnþ1

1
CCCA ¼ M

0
BBB@

an
bn
…

xn

1
CCCA: ð26Þ

The setup of the computation thus far is general. However,
as previously stated, we wish to begin with an initial
condition that is the closed four-dipole configuration. This

is done by setting the initial condition N⃗ 0 ¼ N⃗
ðaÞ

(the
four-dipole configuration). Since we know how to compute
additional gluon exchanges from Eq. (26), we need to

multiply our initial condition N⃗ 0 ¼ N⃗
ðaÞ

by M n times.
This is, however, just a compact way to write all possible
configurations with appropriate factors after n-gluon
exchanges from the starting point of four closed dipoles.
The result, after all orders in gluon exchanges, is simply

N⃗ ¼
X∞
n¼0

1

n!
N⃗ n ¼

X∞
n¼0

1

n!
MnN⃗ 0 ¼ eMN⃗ 0: ð27Þ

Lastly, to compute the expectation value over the product of
four-dipole operators, we need to sum over each of the
elements of the 24-dimensional column vector with the
respective Nc weights of each of the n-tupoles. The four-
dipole configuration in this formulation has weight unity.
The dipole-dipole-quadrupole configuration comes with
1=Nc, both quadrupole-quadrupole and dipole-sextupole
configurations with 1=N2

c and octupoles with 1=N3
c. The

sum over the 24-dimensional basis can then be written as
the scalar product of the corresponding row vector and the

column vector N⃗ :

N ¼ ð1; 1=Nc;…; 1=Nc; 1=N2
c;…;

1=N2
c; 1=N3

c;…; 1=N3
cÞN⃗ : ð28Þ

Here, the � � � denote the different permutations of each of
the five configurations in Fig. 4. With this expression for

N , the combined gluon exchange and tadpole contributions
in Eq. (17) can be written as

hDDDDi ¼ T N : ð29Þ

As we noted, analytical expressions for these quantities are
too cumbersome to compute. However, with the procedure
outlined, they can be computed numerically and utilized to
compute the four-particle correlation functions we shall
discuss further in the next section.

D. Abelian limit

We will consider here the computation of the m-dipole
expectation value in an Abelianized version of the MV
model. In the Uð1Þ theory, the Wilson line again represents
the multiple scattering of a charged particle off a classical
field [25]:

Uðx⊥Þ ¼ P exp

�
−ie

Z
dzþA−ðx⊥; zþÞ

�
: ð30Þ

However, here, the Wilson line is a scalar valued function,
not an SUðNcÞ valued matrix as in the non-Abelian case;
this simplifies computations enormously. Expectation val-
ues of multiple Wilson lines can be evaluated analogously
to the non-Abelian case by first expanding each exponential
to second order in the gauge field, followed by replacing all
pairwise contractions of the gauge field with the Gaussian
expectation value, as in (13):

e2hA−ðx⊥; xþÞA−ðy⊥; yþÞi

¼ e4μ2δðxþ − yþÞ
Z

d2z⊥Gðx⊥ − z⊥ÞGðy⊥ − z⊥Þ

≡ δðxþ − yþÞLðx⊥; y⊥Þ: ð31Þ

The dipole expectation value is then

hDðx⊥; x̄⊥Þi¼ hUðx⊥ÞU�ðx̄⊥Þi¼ exp ½Lðx⊥; x̄⊥Þ�; ð32Þ

and the correlator of two dipoles can be expressed as

hDðx⊥; x̄⊥ÞDðy⊥; ȳ⊥Þi
¼ hUðx⊥ÞU�ðx̄⊥ÞUðy⊥ÞU�ðȳ⊥Þi
¼ exp ðLx;x̄ þ Ly;ȳ þ Lx;ȳ þ Ly;x̄ − Lx;y − Lx̄;ȳÞ: ð33Þ

Similarly, for four dipoles, one obtains

hDðx⊥; x̄⊥ÞDðy⊥; ȳ⊥ÞDðz⊥; z̄⊥ÞDðw⊥; w̄⊥Þi ¼ expðLx;x̄ þ Ly;ȳ þ Lz;z̄ þ Lw;w̄ þ Lx;ȳ þ Lx;z̄ þ Lx;w̄ þ Ly;x̄ þ Ly;z̄ þ Ly;w̄

þ Lz;x̄ þ Lz;ȳ þ Lz;w̄ þ Lw;x̄ þ Lw;ȳ þ Lw;z̄ − Lx;y − Lx;z − Lx;w

− Ly;z − Ly;w − Lz;w − Lx̄;ȳ − Lx̄;z̄ − Lx̄;w̄ − Lȳ;z̄ − Lȳ;w̄ − Lz̄;w̄Þ: ð34Þ
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Higher-point correlators can be found similarly by sum-
ming over all combinations of two-point functions; a
negative sign is introduced for combinations of two quarks
or two antiquarks.

IV. RESULTS

We will now discuss the calculation ofm-particle produc-
tion using the expression in (9). The inputs into this
expression include the parameter Bp representing the trans-
verse area of the projectile and the function Lðx⊥; y⊥Þ that
represents the correlationof gauge field configurations arising
from a Gaussian distribution of color sources. In the MV
model, the quantity Lðx⊥; y⊥Þ is related to the expectation
value of the dipole operator through the expression

hDðx⊥; y⊥Þi ¼ eCFLðx⊥;y⊥Þ: ð35Þ
In this work, we will use the functional form

Lðx⊥; y⊥Þ ¼ −
ðg2μÞ2
16π

jx⊥ − y⊥j2 log
�

1

jx⊥ − y⊥jΛ
þ e

�
:

ð36Þ
For the infrared cutoff in the model, we will use the value
Λ ¼ 0.241 GeV. This value is obtained from parametriza-
tions of the dipole amplitude used in dipole model compu-
tations of structure functions that are fit to the HERA deep
inelastic scattering ep data [47,48].We have checked that the
results are qualitatively unchanged within a physically
reasonable range of values of Λ.
Following Ref. [48], a model independent saturation

scale is defined through the relation

hDðjx⊥ − y⊥j2 ¼ 2=Q2
sÞi ¼ e−1=2: ð37Þ

For the remainder of this work, we will specify values ofQ2
s

rather than ðg2μÞ2. We should point out that the mapping
between ðg2μÞ2 and Q2

s contains an explicit dependence on
CF, as is transparent from (35). When we compare results at
various Nc, this scaling with CF is taken into account. The
exception is the Uð1Þ case, where we take CF ¼ 4=3 when
relating Q2

s to ðg2μÞ2.
We stress that the saturation scale Qs here is that of the

target nucleus. There is no analogous saturation scale of the
projectile in the model we are considering. This is a
consequence of the simplicity of our treatment of the
projectile’s constituents, which are comprised of nearly
collinear uncorrelated quarks alone. The corresponding
average multiplicity per interaction is unity. This can be seen
by explicit integration of (9) and can be contrasted with the
expression for the multiplicity found in k⊥-factorization [49]

Nmult ∼Q2
s;pS⊥ log

�
Q2

s;T

Q2
s;p

�
; ð38Þ

whereQs;p andQs;T are the saturation scales of the projectile
and target respectively. The transverse overlap area S⊥ can

be identified with the projectile area Bp in our model.
The absence of a projectile saturation momentum is the
biggest shortcoming of the above framework. The equivalent
scale controlling the momenta of the incoming quarks is
1=Bp, which is held fixed. While the fact that our model
and the experimental data seem to both be independent of
the multiplicity (at least qualitatively) may be suggestive of
a common physical origin, it is far from clear that this will
hold for a more realistic model of the projectile.
In what follows, we will primarily plot quantities as a

function of the target saturation scale Qs. The target
saturation scale is a function of both Bjorken x and the
impact parameter. As discussed above, the multiplicity is a
logarithmic function of Qs. Instead, Qs is better thought of
as a proxy for the energy of the collision. In the CGC
picture of high energy QCD, Qs grows with the center-of-
mass energy.
As a final remark, we stress that we only expect to make

a qualitative comparison with data. In addition to the
shortcomings of the model addressed above, our final-state
distributions are for quarks and not for hadrons. Any
correlations computed in this model will be reduced
through a variety of effects, such as fragmentation, and
quantum evolution of parton distributions. They therefore
provide an upper limit for azimuthal correlations in initial-
state frameworks.

A. Multiparticle azimuthal cumulants and harmonics

Multiparticle correlations carry a wealth of information
on the dynamics of the colliding system. For reviews, see
for instance, Refs. [50,51]. Azimuthal correlations, in
particular, are sensitive measures of collective dynamics
in heavy-ion collisions. For systems undergoing collective
flow, one can define the nth-Fourier harmonic coefficients

vn ¼ heinðϕ−ΨRÞi; ð39Þ
where ϕ is the azimuthal angle of a produced particle and
ΨR is the angle of a reaction plane determined by the
collective geometry of particles produced in the collision.
The determination of a suitable reaction plane may be
sensitive to a variety of so-called nonflow contributions
such as resonance decays, to give one example. The effect
of these nonflow correlations can be minimized using the
cumulant method [52], which is now widely used in
experimental studies of multiparticle correlations. Two-
and four-particle cumulants are defined as

cnf2g ¼ heinðϕ1−ϕ2Þi ð40Þ
cnf4g ¼ heinðϕ1þϕ2−ϕ3−ϕ4Þi − 2heinðϕ1−ϕ2Þi2; ð41Þ

where the average h� � �i in cnfmg is the average of all
possible combinations of m particles in an event, followed
by an averaging over all events [52–54].
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The cumulants above can be expressed in terms of the
m-particle inclusive distribution by first defining a quantity
κnfmg as

κnfmg≡
Z Ym

i¼1

d2pieinðϕ1þ���þϕm=2−1−ϕm=2−���−ϕmÞ
�

dmNQ
m
i¼1d

2pi

�
;

ð42Þ

corresponding to the nth harmonic of the m-particle
distribution. The averages can be written as a ratio
of the nth azimuthal angle moment of the m-particle
inclusive distribution normalized by the zeroth moment
(the m-particle inclusive multiplicity):

heinðϕ1þ���þϕm=2−1−ϕm=2−���ϕmÞi ¼ κnfmg
κ0fmg : ð43Þ

Fourier coefficients are then defined from the above
cumulants as

vnf2g ¼ ðcnf2gÞ1=2; ð44Þ

vnf4g ¼ −cnf4gÞ1=4: ð45Þ

The motivation for the above definitions becomes trans-
parent under the assumption that the m-particle distribution
factorizes into a product of single-inclusive distributions
correlated with each other only through the event plane
angle. This is indeed what one would expect if the system
undergoes hydrodynamic flow. In such a framework, the
two-particle Fourier harmonic vnf2g would, as above, be
the square root of the corresponding two-particle azimuthal
angle cumulant, the four-particle Fourier harmonic vnf4g,
the fourth root of the four-particle azimuthal angle cumu-
lant, and so on. The negative sign in the latter case is
appropriate because one anticipates intrinsic four-particle
angular correlations to be subdominant relative to the
square of the two-particle cumulant in (41). While the
observation of m-particle Fourier harmonics is suggestive
of some form of collective behavior, we will argue instead
that it can result from any physical mechanism where
higher cumulants are suppressed relative to the mean and
variance of the distribution.
In Fig. 6, we show vnf2g as a function of Q2

s for Fourier
harmonics n ¼ 2, 3, 4, 5. For each harmonic, we studied
the sensitivity of the result for multiple values of the
maximum integrated transverse momentum (pmax⊥ ). We
observe that, even for pmax⊥ ¼ 2 GeV, the result is insensi-
tive to the high momentum cutoff. Due to the small x
evolution of partons in the target, its saturation momentum
Qs will increase with the increasing center-of-mass energy
of the collision. Since this is the only energy dependent
variable in our framework, our result indicates that the
vnf2g are only weakly dependent on the energy. We also

observe that the vnf2g have a clear hierarchy with n,
similar to what is seen in experiment [55].
The four-particle cumulant c2f4g is shown as a function

ofQ2
s in Fig. 7. We clearly see byQ2

s ¼ 0.3 GeV2 that there
is a change in the sign of the signal, from positive to
negative values, resulting in a real v2f4g ¼ ð−c2f4gÞ1=4.
The magnitude of the signal only weakly depends on the
maximum integrated momentum pmax⊥ . The relatively weak
variation in the signal above Q2

s ∼ 1 GeV2 is in qualitative
agreement with the experimental findings on the center-
of-mass energy dependence of the four-particle cumulant
[54,56–59].
As we noted previously, a positive definite value for

v2f4g is natural in hydrodynamic models. However, we
know of only two 3þ 1-dimensional numerical hydro-
dynamic computations of v2f4g in pA collisions [60,61].
In the case of Ref. [61], while some of the systematics of
pA collisions is reproduced, the model is unable to
reproduce similar event-by-event systematics of flow in
AA collisions.

FIG. 6. Integrated v2f2g as a function of the maximum
integrated momenta, pmax⊥ , for various Fourier harmonic n, as
a function of Q2

s .

FIG. 7. c2f4g integrated to pmax⊥ ¼ 2, 3 GeV as a function
of Q2

s .

DUSLING, MACE, and VENUGOPALAN PHYS. REV. D 97, 016014 (2018)

016014-10



There also exist qualitative arguments for positive
definite v2f4g [53] in an initial-state “color domain”model
[62–66]. Though this model provides an intuitive picture
of how multiparticle azimuthal cumulants may be gener-
ated in an initial-state framework, it is unclear how the
oriented background color-electric fields are created from
first principles [11].
In Fig. 8, we plot the ratio of the four to two-particle

integrated v2fmg. For both values of pmax⊥ , this ratio rises
with Q2

s and saturates above Q2
s ∼ 1 GeV2. The values

obtained v2f4g=v2f2g ∼ 0.5–0.6 are remarkably close to
those measured by the CMS Collaboration that shows this
quantity increasing with centrality from ∼0.675 to 0.775
[56,67]. A detailed study of this ratio, and other such ratios,
and their centrality dependence, in various models of initial-
state spatial eccentricities, can be found in Ref. [67].
We now study the multiparticle cumulants differentially

in transverse momentum. If we keep the transverse
momentum of one particle in Eq. (42) fixed and integrate
over the momenta of the remaining m − 1 particles, the
two- and four-particle differential Fourier harmonics are
defined as [56]

v2f2gðp⊥Þ ¼
d2f2gðp⊥Þ
ðc2f2gÞ1=2

;

v2f4gðp⊥Þ ¼
−d2f4gðp⊥Þ
ð−c2f4gÞ3=4

; ð46Þ

where dnfmg are the differential analogs of cnfmg. Figure 9
shows v2f2g (left) and v2f4g (right) as a function of p⊥ for
two representative values of the saturation scaleQ2

s ¼ 1 and
2 GeV2. Note that, while the results are differential inp⊥ for
one of the particles, the remaining particles are integrated up
to a pmax⊥ ¼ 3 GeV. We note that for Q2

s ¼ 2 GeV2 our
results exhibit behavior similar to that seen in the exper-
imental p-Pb data [56,68]. We know of one other theory
computation of v2f4gðp⊥Þ in small systems [69].
Event-by-event fluctuations of vn with vn0 for n ≠ n0 can

be captured by symmetric cumulants [70] defined as

SCðn;n0Þ ¼ heiðnϕ1þn0ϕ2−nϕ3−n0ϕ4Þi− heinðϕ1−ϕ3Þihein0ðϕ2−ϕ4Þi:
ð47Þ

These mixed harmonic angular expectation values are
defined analogously to those in (42) and (43). They were
originally introduced in hydrodynamic frameworks as a
measure of the nonlinear response of the initial geometry of
the system [70]. These have been studied mainly in the
context of heavy-ion collisions [71]. In these heavy-ion
systems, the symmetric cumulants describe how correla-
tions between the initial moments of the eccentricities,
which are driven by the overlap geometry and thus the
centrality of the collision, are carried to the final state. An
example of symmetric cumulants are the correlations
between the v2 and v3 azimuthal harmonics, denoted by
SC(2,3). From geometrical considerations, there should be
an anticorrelation between the initial ellipticity and the
triangularity. When converted to correlations of final-state
momentum anisotropies, this results in a negative SC(2,3).
Studies of the symmetric cumulants SC(2,3) and SC(2,4) for
heavy-ion collisions have been carried out in hydrodynamic
simulations [72,73] and in a hadronic transport model [74].

FIG. 8. The ratio of v2f4g=v2f2g as a function of Q2
s , for two

values for p⊥.

FIG. 9. The Fourier harmonics v2f2g and v2f4g as a function of p⊥ for two values of Q2
s .
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However, in small systems, this picture should not hold.
The initial eccentricities are not believed to be strongly
centrality driven but instead are most likely in response to
subnucleonic fluctuations [75]. We will touch on the topic
of subnucleon fluctuations in the next section. In our
model, we include subnucleon scale fluctuations in sam-
pling the positions of the quarks in the projectile given
through our Gaussian Wigner function, (4). We reported
in Ref. [1] that our model produces the correct sign for
SC(2,3) and SC(2,4) and is in qualitative agreement with
the data [76]. In Fig. 10, we show predictions for the
behavior of SC(2,5), SC(3,4), and SC(3,5). Results for
these symmetric cumulants, for heavy-ion collisions alone,
were shown at the Quark Matter 2017 conference [77]. Our
results for these cumulants agree qualitatively with the
results presented. We are unaware of any other theory
predictions for these cumulants in light-heavy ion colli-
sions. While not their designated purpose, symmetric
cumulants in small systems may be an effective way to
access information on initial-state subnucleon fluctuations.

V. DETAILED SYSTEMATICS OF THE RESULTS

A. Role of the projectile

It is expected that subnucleon scale fluctuations play an
important role in small systems; hydrodynamic computa-
tions including such fluctuations have been performed for
pA collisions [78]. Thus, it is also interesting to ask what
similarities our model bears to a constituent quark model
based picture. To mock up this effect, we introduce a hard
distance cutoff (either minimum or maximum) between all
quarks in the amplitude and similarly between all anti-
quarks in the complex-conjugate amplitude. This is in
addition to the Gaussian sampling of the quark positions
from the Wigner function introduced in (4).
The effect of such a cutoff on v2f2g is shown in Fig. 11.

Starting with the standard Wigner function in (4) as a
reference, we see that by introducing a minimum distance

criteria (separating the quarks by at least a distance of
dmin ¼ Bp=8 or Bp=4) the correlations decrease. This is to
be expected because forcing the transverse positions of the
quarks to be farther away from each other ensures that they
are less likely to interact with the same color domain in the
target. We would then expect, on the same grounds, that if
we confined the quarks to be at most a distance dmax ¼
Bp=4 or Bp=2 apart, we would see an increase in the
strength of the correlation. This expectation is confirmed by
the results shown in Fig. 11.

B. Q2
sBp dependence

In our model, the parameter Bp controls the mean
transverse area of the projectile, and therefore the trans-
verse overlap area of the scattering off the target. The scale
1=Q2

s sets the scale for the size of color domains in the
target. Therefore, the dimensionless product Q2

sBp can be
interpreted as the number of domains in the target that
overlap the projectile. In fact, this dimensionless parameter
controls the strength of all correlations. Fig. 12 shows
c2f2g for three values of Bp for pmax⊥ ¼ 3 GeV; note that
Bp ¼ 4 GeV−2 is used elsewhere in this work. The inset in
Fig. 12 shows the same quantity plotted as a function of the
dimensionless scaleQ2

sBp demonstrating that all results fall
onto a universal curve, as they must.
One might expect that the strength of the correlation

should fall with the number of domains 1=ðQ2
sBpÞ, which is

a feature of independent cluster models. However, a falloff
that goes like 1=ðQ2

sBpÞ is not seen in the results presented
above. The reason is that another scale pmax⊥ controls
the maximal momentum kick from the target to the probe.
The inverse of pmax⊥ is therefore the smallest distance in the
target resolved by the probe. One can therefore construct

FIG. 10. Four-particle symmetric cumulants defined in (47) as a
function of Q2

s .

FIG. 11. v2f2g with minimal and maximal separations between
quarks from the projectile. The “standard Wigner” curve imposes
no such constraint. The orange and green curves show what
happens when the quarks in the projectile are required to be
separated by at least dmin. The red and purple curves show the
result when the quarks are required to be confined to a distance of
dmax from each other.
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two dimensionless combinations Q2
sBp and Q2

s=ðpmax⊥ Þ2;
the dependence of our results on the number of color
domains also depends on what Q2

s=ðpmax⊥ Þ2 is.
For ðpmax⊥ Þ2 ≳Q2

s, the probe resolves a transverse area in
the target that is on the order or smaller than the size of a
color domain. Because the probe can resolve the structure
within individual domains, we expect to see a falloff in
correlations to go approximately as 1=ðQ2

sBpÞ. Fig. 13
shows c2f2g for pmax⊥ ¼ 10, 20, 40 GeV, all of which
satisfy the scaling form ðQ2

sBpÞ−0.95 at large Q2
s . On the

other hand, for ðpmax⊥ Þ2 ≤ Q2
s, the probe only resolves

transverse sizes larger than the typical domain size. For
these smaller values of pmax⊥ , increasing Q2

sBp, and there-
fore the number of color domains, does not change the
signal since the probe cannot resolve the change in the
number of color domains. Fig. 13 shows that for pmax⊥ ¼ 3,

5 GeV we see a rather modest falloff with the number of
domains ðQ2

sBpÞ−0.18.
Our results in Fig. 13 suggestmore generally that for small

values of pmax⊥ relative to the saturation scale Qs azimuthal
cumulants in initial-state models are weakly dependent on
the number of clusters. This independence of Fourier
harmonics on the number of clusters has been interpreted
previously as occurring due to the collective response of the
system [79]. While coherent multiple scattering may be
collective, it is not a final-state effect in pA collisions; the
interaction with the target is instantaneous, and the scattered
quarks do not subsequently rescatter.

C. Nc dependence

In Ref. [1], we showed that an Abelianized version of our
model demonstrates the systematics often attributed to
collective behavior, v2f4g ≈ v2f6g ≈ v2f8g. Given this
finding, it is natural (and of intrinsic interest) to determine
the Nc dependence of the two- and four-particle azimuthal
correlations. The dependence of v2f2gðp⊥Þ for Nc ¼ 2, 3
was discussed previously in Ref. [11]. In the left panel of
Fig. 14, we plot the dependence of integrated v2f2g (up to a
pmax⊥ ¼ 2 GeV) as a function of Q2

s for the Abelian
(Nc ¼ 1) case and for Nc ¼ 2–5. For large Q2

s , we observe
a convergence of the results forNc ≥ 3. In the right panel of
Fig. 14, we plot the Nc dependence of v2f4g as a function
of Q2

s . When v2f4g is real and large, we expect the second
term in (41) for the four-particle cumulant to dominate.
This should then give v2f4g ∼ 1=Nc. We see from Fig. 14
that Ncv2f4g begins to converge for Nc ≥ 3; however, due
to limited statistics, the error bars are large.
We previously reported in Ref. [1] on results for the

symmetric cumulants for SCð2; 3Þ and SCð2; 4Þ which
were in qualitative agreement with experimental results
[76]. In Fig. 15, we show the Nc dependence of the
symmetric cumulants. We find that these symmetric cumu-
lants are extremely sensitive to Nc. (We have chosen here
pmax⊥ ¼ 2 GeV.) For the Abelian case, the result is an order
of magnitude larger than the finite Nc results. Further,
SCð2; 3Þ is positive in the Abelian case, which is not
observed in any experimental observations. Interestingly,
within the limited number of observables that we have
studied, this appears to be the only place where the Abelian
version of our model qualitatively differs from the non-
Abelian results.
One may infer that there is something specific to the non-

Abelian nature of coherent scattering that drives SC(2,3) to
become negative. Going to Nc ¼ 2, we find that SC(2,3) is
identically zero. This is not surprising, as for Nc ¼ 2 all
odd harmonics are identically zero. This is analogous to the
absence of odd harmonics for gluons scattering off a target
[32]. The underlying reason is that SUð2Þ representations
are real, regardless of whether they are in the fundamental
or the in adjoint. For SUð3Þ, only the adjoint representation

FIG. 12. The two-particle cumulant c2f2g plotted as a function
of Q2

s for different values of Bp, the mean transverse area of the
projectile. Inset: Same data plotted as a function of the dimen-
sionless ratio Q2

sBp, showing the independence of Q2
sBp.

FIG. 13. Two-particle cumulant c2f2g for various pmax⊥ for
large values of Q2

s for fixed Bp ¼ 4 GeV−2. For pmax⊥ ≤ Qs, only
a weak dependence on Q2

sBp is seen. For larger pmax⊥ , we can see
a falloff in the value of the cumulant that scales approximately
with the number of color domains, as ∼1=Q2

sBp.
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is real. Thus, one expects qualitatively different results
for even-odd cumulants for Nc ≥ 3 relative to the Abelian
model and for Nc ¼ 2.

D. Comparison to Glasma graphs

To elucidate the mechanism responsible for the observed
negativity of c2f4g for our model, we compare this result to
that from the Glasma graph approximation. In this Glasma
graph approximation, which is applicable for p⊥ > Qs, the
Wilson lines are expanded out to lowest nontrivial order
in the gauge fields. The Glasma graph approximation is
reviewed in the Appendix, where we also compute the
four-dipole correlation function in this approximation.
This approximation was used previously to successfully
describe two-particle correlations [17–23], especially near
side “ridge” correlations.
Fig. 16 shows a comparison of c2f4g in the Glasma

graph approximation to our result, which includes all order
contributions from the Wilson lines. It is clear that coherent
multiple scattering in the MVmodel computation for c2f4g
drives it to become negative. In contrast, the Glasma graph
approximation to this full result is always positive.

It is interesting to explore further the physics underlying
this striking result. Intrinsic n-particle correlations in the
Glasma graph approximation are large. Indeed, the strength
of the correlated piece in this distribution relative to the
disconnected product of n single-particle distributions is
the same for all n; this is close to that of an n-particle Bose
distribution [80]. Our results suggest that coherent multiple
scattering depletes these higher-point intrinsic correlations.
In (41) for instance, this would lead the second term (the
square of c2f2g) to dominate over the first term, which
comes from intrinsic four-particle correlations.

E. Rapidity dependence

Before we conclude our discussion of features of the
model, it is appropriate to discuss how rapidity correla-
tions manifest themselves in this framework. Since long
range rapidity correlations are an essential feature of the
experimentally observed ridgelike correlations, it is impor-
tant to determine whether such correlations are present
in this framework. This is particularly so since the hybrid

FIG. 14. The Nc dependence of v2f2g (left panel) and v2f4g (right panel).

FIG. 15. Nc dependence of the symmetric cumulants SC(2,3)
and SC(2,4) for Q2

s ¼ 1 GeV2.

FIG. 16. Comparison of c2f4g in the model introduced in
Sec. III, for coherent multiple scattering compared to the result,
given in (A10) from the Glasma graph approximation.
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formalism employed in analytical studies of such multi-
particle correlations [26,81,82] is valid in the forward
rapidity region. More precisely, x in the projectile should
be relatively large, with typical values for large x taken to
be x ≥ 0.01. However, this does not imply that the resulting
correlations are short range in rapidity. We will show this
explicitly by reintroducing rapidity dependence into the
single-particle and multiparticle distributions.
We consider an eikonal quark in the projectile traveling

in the zþ direction with initial momentum kμ ¼ ðkþ; 0;
k⊥ ¼ 0Þ and final momentum pμ ¼ ðpþ; 0;p⊥Þ after its
scattering off the target. In the hybrid framework, the
differential multiplicity of the scattered quark with the
final state of momentum p≡ ðpþ;p⊥Þ is given as

dNqA→qþX

d3p
≡ dNqA→qþX

dpþd2p⊥
¼ δðpþ − kþÞ dN

qA→qþX

d2p⊥
: ð48Þ

The above result can be worked out following the formal-
ism of Ref. [26]. (Note though that in Ref. [26] the quark is
traveling in the z− direction.) The expression for dN=d2p⊥
is given by (6) where averaging over the target we
previously defined is implicitly assumed. Therefore, for
single-quark scattering, the distribution is a delta function
in δðpþ − kþÞ, which is simply a consequence of the
eikonal approximation.
The single inclusive distribution of quarks produced in

pA collisions is obtained by convoluting the above expres-
sion with the quark parton distribution, which represents
the probability of finding a quark in the proton wave
function:

dNpA→qþX

d3p
¼

Z
dxqfðxqÞ

dNqA→qþX

d3p
: ð49Þ

To obtain the single inclusive distribution of hadrons, this
expression has to further convoluted with a fragmentation

function. This will quantitatively modify the rapidity
dependence but will not modify it qualitatively. We will
therefore not further consider this point.
The longitudinal momentum carried by the initial quark

is kþ ¼
ffiffi
s

pffiffi
2

p xq, where xq is the quark’s momentum fraction.

Likewise, the longitudinal momentum of the final-state
quark can be written in terms of its rapidity as pþ ¼ p⊥ffiffi

2
p ey.

Substituting (48) into (49), we then obtain

dNpA→qþX

dyd2p⊥
¼ x0qfðx0qÞ

dNqA→qþX

d2p⊥
; ð50Þ

where x0q has been set by the δ-function to be

x0q ¼
p⊥ffiffiffi
s

p ey: ð51Þ

In Fig. 17(a), we show the single-particle inclusive quark
distribution using the NNPDF NLO singlet parton distri-
bution function at Q2 ¼ 9 GeV2 [83]. For p⊥ ¼ 3 GeV
and

ffiffiffi
s

p ¼ 5.02 TeV, a value of xq ¼ 0.01 corresponds to a
rapidity of y≃ 2.8. Thus, while, strictly speaking, our
approach is valid for y ≥ 2.8, we can see that the particle
production does extend over a wide range in rapidity and is
not peaked in the forward direction.
This can be extended to multiparticle production in the

same fashion. For instance, for two particles, we would
obtain

d2NpA→qþX

dy1d2p1;⊥dy2d2p2;⊥
¼ x0q1fðx0q1Þx0q2fðx0q2Þ

d2NqA→qþX

d2p1;⊥d2p2;⊥
:

ð52Þ

This two-particle distribution is shown in Fig. 17(b).
The rapidity of the first quark is fixed at the edge of where

(a) (b)

[a
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ni
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]
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ts
]

FIG. 17. (a) Single particle distribution dN=dy in arbitrary units as a function of rapidity for p⊥ ¼ 3 GeV and
ffiffiffi
s

p ¼ 5.02 TeV.
(b) Two-particle distribution d2N=dy1dy2 in arbitrary units as a function of Δy ¼ jy1–y2j for y1 ≃ 2.8, which corresponds to x0q1 ¼ 0.01
in the projectile.
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the hybrid approach works. We see that the correlation
persists out to a Δy of 3 to 4 units as the rapidity of the
second quark is varied.
We conclude by pointing out that when computing

vnfmg we are taking ratios of the momentum integrated
m-particle distributions, where the numerator is also con-
voluted with a cosine function. The factorized form of the
rapidity dependence in Eq. (52) is then suggestive that the
resulting vnfmg will be weakly dependent, or perhaps even
constant, as a function of rapidity.

VI. CONCLUSIONS

In this work, we elaborated significantly on a parton
model framework for multiparticle correlations that was
first presented in Ref. [1]. In this model, collinear partons
that are localized in a transverse area Bp in the projectile
scatter off color domains of size 1=Q2

s in the target. The
building blocks in this framework are dipole correlators.
For a quark projectile, these correspond to a color trace over
a path ordered lightlike Wilson line of target fields at a
given transverse spatial position in the amplitude multiplied
by its adjoint in the complex-conjugate amplitude, nor-
malized by the number of colors, Nc. The azimuthal
cumulants of n-particles are proportional to the expectation
value over the product of n-dipole correlators. We dis-
cussed at length the procedure to compute the expectation
value of four-dipole correlators. Gluon exchanges among
the dipoles generate distinct quadrupole, sextupole, and
octupole topologies and the permutations of their spatial
positions, generating a 24 by 24 matrix, that can be
exponentiated to determine the expectation value of four-
dipole correlators. Our procedure can be extended straight-
forwardly to compute expectation values of products of an
arbitrary number of dipole operators.
We presented results for vnf2g as a function of Q2

s ,
demonstrating a clear hierarchy in the n ¼ 2, 3, 4, 5
harmonics. These results are only weakly dependent on
pmax⊥ upper limit in the integrals. All the harmonics show
only a weak dependence on Q2

s . Since Q2
s in the CGC

framework increases with increasing energy, and centrality,
our results are only weakly dependent on these. Note
further that our results, by construction, are independent of
the multiplicity. These results for vnf2g exhibit the
qualitative features of the data seen in light-heavy ion
collisions at RHIC and the LHC.
We next presented results for c2f4g as a function of Q2

s
for two different values of pmax⊥ . For both these values,
c2f4g changes sign around Q2

s ¼ 0.3 GeV2 and becomes
increasingly negative before appearing to saturate. For large
Q2

s , the results are sensitive to pmax⊥ . The negative value of
c2f4g corresponds to a real v2f4g. We computed the ratio
of v2f4g=v2f2g. In hydrodynamic models, such ratios are
sensitive to the initial geometry in the system, motivating
experimental extractions of the same. The values we

obtained are about 10% lower than the data, which at
present have significant error bars.
The dependence of v2f2g and v2f4g as a function of p⊥

increases with p⊥ before saturating and turning over. For
both quantities, this saturation occurs later with increasing
Q2

s . In particular, for v2f4g, we observed for Q2
s ¼ 2 GeV2

that it is quite flat for the p⊥ range between 1 and 2 GeV.
These features of our results are also qualitatively similar to
data on small-particle systems. To the best of our knowl-
edge, no computations exist in other models for v2f4gðp⊥Þ.
Symmetric cumulants SCðn; n0Þ, which measure the

correlation of nth Fourier harmonics with n0 Fourier
harmonics, were constructed to understand the nonlinear
hydrodynamic response of the system to correlations in the
initial spatial geometry. We studied these in our initial-state
framework as a function of Q2

s . We showed in Ref. [1] that
SC(2,3) and SC(2,4) computed are in qualitative agreement
with the data presented for heavy-ion collisions and in
light-heavy ion collisions. Here, we make predictions for
the SC(3,4), SC(2,5), and SC(3,5) cumulants.
We examined closely the dependence of our results on

Q2
sBp and Q2

s=ðpmax⊥ Þ2, the two dimensionless parameters
in our model. The former corresponds to the number of
color domains in the target that are encountered by the
projectile. The latter corresponds to the resolution of the
partons in the projectile to the structure of the color
domains. Interestingly, we find that for larger values of
Q2

s=ðpmax⊥ Þ2 the two-particle cumulants are only weakly
dependent on the number of color domains. In contrast, for
smaller values of Q2

s=ðpmax⊥ Þ2, we find that the cumulant
behaves approximately as 1=ðQ2

sBpÞ, as would be antici-
pated in an independent cluster model. Our results suggest
therefore that the pmax⊥ considered is important in any
interpretation of the data that may be construed as satisfy-
ing or violating an independent cluster model.
We studied next the dependence of our results on Nc.

In Ref. [1], we showed that the Abelianized treatment of
our model reproduced the pattern of v2f2g > v2f4g ≈
v2f6g ≈ v2f8g seen in the data on pA collisions at the
LHC. We studied further the Nc dependence of v2f2g and
v2f4g and demonstrated that both behave as 1=Nc for
Nc ≥ 3. There is therefore no ordering in Nc among
m-particle cumulants. Practically, it means that Nc sup-
pressed topologies in products of lightlike Wilson lines
must be included in such computations.
Unlike the azimuthal cumulants c2f4g, the symmetric

cumulants SCðn; n0Þ (where n and n0 denote distinct Fourier
harmonics) have a qualitatively different behavior in the
Abelian formulation of the model relative to those for the
Nc ¼ 3 case we studied previously in Ref. [1]. This
qualitative difference is not unique to Nc ¼ 1. It is also
seen for Nc ¼ 2. In this latter case, the odd harmonics
are strictly zero; hence, the corresponding symmetric
cumulants are also zero. As we discussed, the underlying
reason is that for SUð2Þ both fundamental and adjoint
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representations are real. This is responsible for two-particle
correlations being symmetric about relative azimuthal
angles of zero and π.
To obtain deeper insight into our results, we examined

our results within the Glasma graph approximation to our
framework. This approximation corresponds to expanding
out the Wilson lines in the dipole correlators to lowest
nontrivial order. Physically, it corresponds to each quark
line interacting at most with two gluons, either in the
amplitude or the complex-conjugate amplitude or across
the cut separating the two. It is justified when Q2

s ≪ p2⊥.
Remarkably, we find that our results for c2f4g are
qualitatively different when we include coherent multiple
scattering (Q2

s=p2⊥ to all orders) as opposed to the Glasma
graph approximation. In the former case, one obtains a real
and positive v2f4g; in the latter case, one does not.
Therefore, the absence of vnfmg multiparticle correlations
in previous Glasma graph treatments is an artifact of the
approximation and not a genuine feature of initial-state
frameworks.
We noted that multiparticle correlations are quite strong

in the Glasma graph approximation and are close to those
of an m-particle Bose distribution. Indeed, this may be the
reason why one does not see signatures of “collectivity,” as
defined by the vnfmg Fourier harmonics. These assume
that the mean and variance dominate the cumulant dis-
tribution. Our results suggest that coherent multiple scat-
tering dilutes the contributions from the higher cumulants
relative to the mean and the variance, thereby generating
the aforementioned signatures of collectivity. In our model,
however, the coherent scattering is virtually instantaneous.
It takes place on a time scale corresponding to the time it
takes partons to cross a Lorentz contracted nucleus.
Further, the partons that scatter off the common color field
do not rescatter.
The origin of this putative signature of collectivity

therefore has little to do with hydrodynamics per se.
However, our results do not exclude the possible presence
of final-state interactions, or even hydrodynamics, in the
data on light-heavy ion systems. They do provide a clear
and simple counterexample to interpretations of these
signatures as being of unique origin. Such signatures of
collectivity must also be consistent with other signatures of
collectivity. In the larger heavy-ion collision systems, jet
quenching is seen very clearly and is an independently
robust measure of final-state interactions.
It is interesting to consider how this model can be

developed further. Gluon degrees of freedom, which are not
apparent at lower energies, become important when
hadrons are boosted to higher energies. As is well known,
a bremsstrahlung cascade develops, which then has a shock
wave interaction with the nucleus. The partons in the
cascade subsequently fragment to hadrons. This picture
is implicit in the CGCþPYTHIA model of so-called
dense-dense collisions of small systems [84] that combines

Yang-Mills dynamics of gluons [32] with Lund fragmen-
tation [85]. Because event-by-event simulations are essen-
tial to compute multiparticle cumulants, such computations
are computationally intensive. Our work suggests the need
for further developments in this direction.

ACKNOWLEDGMENTS

We would like to thank Jiangyong Jia, Tuomas Lappi,
Aleksas Mazeliauskas, Larry McLerran, Jean-Yves
Ollitrault, Jean-François Paquet, Björn Schenke, Sören
Schlichting, Juergen Schukraft, Chun Shen, Vladimir
Skokov, and Prithwish Tribedy for useful discussions.
This material is based on work supported by the U.S.
Department of Energy, Office of Science, Office of
Nuclear Physics, under Grants No. DE-SC0012704
(M.M. and R. V.) and No. DE-FG02-88ER40388
(M.M.). M.M. would also like to thank the BEST
Collaboration for support. This research used resources
of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of
Energy under Grant No. DE-AC02-05CH11231 and the
LIRED computing system at the Institute for Advanced
Computational Science at Stony Brook University.

APPENDIX: GLASMA GRAPH APPROXIMATION

In this section, we show how our present calculation
fundamentally differs from the so-called Glasma graph
result [17–23,86,87]. The Glasma graph approximation
is constructed by considering all possible two-gluon
exchanges between quarks comprising the projectile and
the target nucleus under the assumption of Gaussian
statistics. The expectation value of n-Wilson lines in the
Glasma graph approximation can be evaluated by expand-
ing the path ordered exponential of the Wilson line to
order n in the coupling constant. The resulting expectation
values of gauge fields are then evaluated by reexpressing
higher order expectation values as a product of two-point
functions. This procedure was followed in Ref. [11] in
order to evaluate the dipole-dipole correlator in the Glasma
graph approximation. Here, we extend the derivation and
results of Ref. [11] to higher order correlators but take a
more diagrammatic approach.
Diagrammatically, the Glasma graph approximation

amounts to replacing each two-gluon exchange with the
expectation value of a single dipole operator. For example,
for single-quark scattering, we find the relation of Fig. 18.
While the tadpole terms are explicitly shown in the single
scattering case in Fig. 18, for higher-point functions,
diagrams containing two gluons on the same quark are
power suppressed by either k⊥=Qs ≪ 1 or 1=ðBQ2

sÞ ≪ 1.
(A line containing two quarks on opposite sides of the
cut—corresponding to a gluon connecting a quark with
its conjugate amplitude at a different coordinate—is not
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suppressed and therefore included in what follows.) While
these additional terms are formally higher order and will be
ignored in the discussion to follow, we should point out that
they were found to be important in obtaining a quantitative
agreement with experiment [20].
One can generate all possible Glasma graphs by starting

with the completely disconnected diagram whereby each
quark multiple scatters independently off the target. We
show an example of this completely disconnected contri-
bution for two-quark scattering as the leftmost diagram
of Fig. 19.
Further diagrams are generated by finding unique

exchanges of coordinates (exchanging two-gluon end
points) along with an accompanying ðN2

c − 1Þ suppression
for each exchange. There are two unique topologies for
two-quark scattering as shown in Fig. 19. The resulting
expression for the Glasma graph approximation to the
expectation value of two-dipole operators is therefore

hDðx; x̄ÞDðy; ȳÞi

¼ Dðx; x̄ÞDðy; ȳÞ þ 1

ðN2
c − 1Þ

× ½Dðx̄ − yÞDðx − ȳÞ þDðx̄ − ȳÞDðx − yÞ�: ðA1Þ

Higher-point correlators can be found in a similar
fashion. For n quarks, there are ðn−1Þ!!≡nðn−2Þ…3 ·1
diagrams resulting from all possible unique contractions
between quark lines. For a correlation among six Wilson
lines, there are 5 · 3 · 1 ¼ 15 pairwise contractions, while
for a correlator among eight Wilson lines, there are
7 · 5 · 3 · 1 ¼ 105 pairwise contractions.
As an aside, we remind the reader that the combinatorics

discussed above are relevant for a dilute-dense framework.
A Glasma graph approximation has also been employed in
the dense-dense limit which was shown to have ðn − 1Þ!!2
diagrams for n-gluon production. In the dense-dense limit,
there would be 152 ¼ 225 and 1052 ¼ 11 025 diagrams for
the six- and eight-point functions respectively as shown
previously in Refs. [80,88].

We now come to the expectation value of four dipoles in
the Glasma graph calculation following the procedure
outlined above. The starting point is the completely
disconnected contribution in which each of the four quarks
scatters independently as shown in the left diagram in
Fig. 20.
Starting from the disconnected diagram, there are 12

unique coordinate exchanges that can be made. One
example is shown in the right diagram of Fig. 20 where
the coordinates x̄ and w̄ have been swapped. These 12
diagrams resulting from a single coordinate exchange result
in a contribution of ðN2

c − 1Þ−1T 1 where

T 1 ¼ Dðw; x̄ÞDðx; w̄ÞDðy; ȳÞDðz; z̄Þ þ � � � : ðA2Þ

We next consider diagrams resulting from unique and
nontrivial two-coordinate exchanges. There are two classes
of diagrams which enter at this order. The first is shown in
the left diagram of Fig. 21. The diagram factorizes into two
subgraphs, one being a completely connected three-quark
scattering and the other being a single independent quark
scattering. There are 32 such diagrams which will contrib-
ute with a factor of ðN2

c − 1Þ−2T 2a where

FIG. 18. Single-quark multiple scattering off the target nucleus.

FIG. 19. The three diagrams for two quarks scattering in the
Glasma graph approximation. The leftmost diagram is a dis-
connected contribution and equivalent to the square of single-
quark scattering.

FIG. 20. Left: Completely disconnected Glasma graph for
four-quark scattering. Right: Example of one of the 12 diagrams
contained within T 1 obtained from an exchange of one pair of
coordinates—in this case x̄ and w̄.

FIG. 21. The diagram on the left is an example of one of 32
diagrams where three quarks are completely connected and one
scatters independently—in this case the quark at x. The diagram
on the right shows one of 12 diagrams which factorizes into two
two-dipole connected subgraphs.
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T 2a ¼ Dðw; ȳÞDðx; w̄ÞDðy; x̄ÞDðz; z̄Þ þ � � � : ðA3Þ

The second class of diagrams is shown in the right of
Fig. 21. It again factorizes into two subgraphs, but in this
case, each subgraph is a completely connected two-quark
scattering event (i.e. one of the two connected graphs
shown in Fig. 19). There are 12 such diagrams which will
contribute as ðN2

c − 1Þ−2T 2b where

T 2b ¼ Dðw; z̄ÞDðz; w̄ÞDðx; ȳÞDðy; x̄Þ þ � � � ðA4Þ

The last set of diagrams corresponds to those obtained by
three unique and nontrivial coordinate exchanges. An
example of such a diagram is shown in Fig. 22. There are
48 such diagrams which contribute as ðN2

c − 1Þ−3T 3 where

T 3 ¼ Dðw; ȳÞDðz; w̄ÞDðx; z̄ÞDðy; x̄Þ þ � � � ðA5Þ

Putting all of the diagrams together, we arrive at the final
expression for the expectation value of four dipoles in the
Glasma graph approximation,

hDðw; w̄ÞDðx; x̄ÞDðy; ȳÞDðz; z̄Þi ¼ Dðw; w̄ÞDðx; x̄ÞDðy; ȳÞDðz; z̄Þ þ 1

ðN2
c − 1Þ T 1ðw; w̄;x; x̄; y; ȳ; z; z̄Þ

þ 1

ðN2
c − 1Þ2 T 2aðw; w̄;x; x̄; y; ȳ; z; z̄Þ þ

1

ðN2
c − 1Þ2 T 2bðw; w̄;x; x̄; y; ȳ; z; z̄Þ

þ 1

ðN2
c − 1Þ3 T 3ðw; w̄;x; x̄; y; ȳ; z; z̄Þ: ðA6Þ

We now come to the evaluation of the four-particle
cumulant using the above Glasma graph approximation in
the four-particle inclusive distribution, where the four-
particle cumulant is defined in (41). The Glasma graph
approximation implicitly assumes that ðBQ2

sÞ ≫ 1, and one
must take this power counting into consideration when
taking the ratios in the above expression for the cumulants.
In order to see this more clearly, let us start with the
expression for the double inclusive distribution,

d2N
d2p1d2p2

¼ 1

ðπBpÞ2
1

ð2πÞ4
Z
r1r2R1R2

�
D

�
R1þ

r1
2
;R1−

r1
2

�

×D

�
R2þ

r2
2
;R2−

r2
2

��

·eip1·r1eip2·r2e−r
2
1
4Bpe−R

2
1
Bpe−r

2
2
4Bpe−R

2
2
Bp: ðA7Þ

We can evaluate the single inclusive multiplicity by
integrating over d2p1 and d2p2 resulting in

N ¼ 1

ðπBpÞ2
Z
R1R2

hDðR1; R1ÞDðR2; R2Þie−R2
1
Bpe−R

2
2
Bp:

ðA8Þ
In the full nonlinear theory (without approximation),

we know that hDðR1; R1ÞDðR2; R2Þi ¼ 1 and therefore
N ¼ 1. However, in the Glasma graph approximation,
the dipole-dipole correlator is replaced by (A1) resulting
in the following expression for the total multiplicity,

N ¼ 1þ 2

ðN2
c − 1ÞðπBpÞ2

Z
R1R2

DðR1 − R2Þ2e−R2
1
Bpe−R

2
2
Bp

¼ 1þ 2

ðN2
c − 1Þ

1

BpQ2 þ 1
; ðA9Þ

violating unitarity by a term of order 1=ðBQ2
sÞ ≪ 1. When

evaluating the cumulant in (41), one should formally only
keep the leading order terms in 1=ðBQ2

sÞ. In practice, this
means retaining only the leading disconnected contribution
in the two terms κ0f4g and κ0f2g appearing in the
denominators; these terms were defined in (42). For
consistency within the Glasma graph approximation, we
should therefore take κ0f4g ¼ ðκ0f2gÞ2 ¼ ðκ0f1gÞ4 where
κ0f1g is just the single-inclusive distribution.
Now, coming to the numerator, due to rotational invari-

ance, T 1 and T 2a do not contribute to κ2f4g. Out of the 12
diagrams in T 2b, four vanish by rotational invariance, and
the remaining eight cancel with the term 2ðκ2f2g=κ0f2gÞ2.
So, within the Glasma graph approximation, the cumulant
can be evaluated using

c2f4g ¼ κ2f4g½T 3�
κ0f1g4

; ðA10Þ

where κ2f4g is evaluated using the 48 diagrams contained
within T 3. With this, we compare this Glasma graph result
with the full nonlinear result introduced in Sec. III in
Fig. 15 in the main text, with accompanying discussion in
Sec. V D.

FIG. 22. One of the 48 diagrams completely connected four-
quark diagrams included in T 3.
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