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1. Introduction

In the studies of mathematical physics particularly the integrable systems, it is important to construct the symmetries and identify
their algebraic structure. In these symmetries, the additional symmetry is an interesting and important one. As we know, Kadomtsev-
Petviashvili(KP) hierarchy is an important integrable system which attract more and more attention in mathematical physics. Additional
symmetries of the KP hierarchy were introduced by Orlov and Shulman [1] which contain virasoro symmetries which have Virasoro
constraints on partition functions of matrix models of string theory under the additional non-isospectral symmetries. There are two
important sub-hierarchies of KP hierarchy which are the BKP hierarchy and CKP hierarchy [2-7].

Various supersymmetric extensions [8] of the KP hierarchy particularly the supersymmetric Manin-Radul Kadomtsev-Petviashvili (MR-
SKP) hierarchy [9] contains a lot of integrable super solitary equations. Mulase also supersymmetrize the KP hierarchy by constructing a
hierarchy and they call the hierarchy the Jacobian SKP hierarchy [10] which has strict Jacobian flows and it preserves the super Riemman
surface. The additional symmetries for super hierarchies were constructed in the paper [11] and the additional symmetry of the MR-SKP
hierarchy was studied by Stanciu [12]. Later the ghost symmetries, Hamiltonian structures and extensions of the MR-SKP hierarchy were
studied as well as reductions of the MR-SKP hierarchy [13,14]. Later as a B type reduction on the MR-SKP hierarchy, the supersymmetric
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BKP (SBKP) hierarchy was constructed in [15]. After that this series of super hierarchies attracts more attentions particularly of our group
[16-19] including the studies on their Darboux transformations and symmetries. Bosonic hierarchies and their connection with physical
models is interesting in N =2 conformal field theories.

In [20], we construct the symmetries of the two-component BKP hierarchy and the D type Drinfeld-Sokolov hierarchy to derive a Block
algebra. About the Block algebra, we did a series of works in [21,22]. In [19], we construct the additional symmetries of the supersym-
metric BKP(SBKP) hierarchy which constitute a B type SW1, Lie algebra. Further we generalize the SBKP hierarchy to a supersymmetric
multi-component BKP (SMBKP) hierarchy equipped with a B type SWi4o0o X SW14o Lie algebra. As a Bosonic reduction of the S2BKP
hierarchy, we defined a new constrained system called the supersymmetric Drinfeld-Sokolov hierarchy of type D which admits a su-
persymmetric Block type symmetry. Recently in [23], basing on Darboux transformations for the supersymmetric constrained KP(ScKP)
hierarchy, we construct a supersymmetric constrained B type KP(ScBKP) and supersymmetric constrained C type KP(ScCKP) hierarchies of
Manin-Radul and Jacobian types, and derive Darboux transformations on them. The main topic of this article is the study of additional
symmetries of scalar and multicomponent N = 2 supersymmetric BKP integrable hierarchies. These symmetries are shown to form an
infinite-dimensional non-Abelian superloop superalgebra.

This paper is arranged as follows. In the next section we define the N =2 supersymmetric BKP hierarchy. In Sections 3, we will give
the additional symmetries for the N =2 supersymmetric BKP hierarchy. Further we define the N =2 multicomponent supersymmetric
BKP hierarchy in Sections 4, and in Section 5 we will give the additional symmetries for the N =2 multicomponent supersymmetric BKP
hierarchy.

2. The N = 2 supersymmetric BKP hierarchy

In this section, we will define a N =2 extension on the supersymmetric BKP system. Let A be an algebra of smooth functions of a
spatial coordinate x and super-derivations D4 = dp, + 60+ with grassmann variable 6. This algebra A has the following multiplying rule

Dif=Y" [n " i}(_l)lfl(nfi)fi[i]DfIi’ (2.1)
i=0

0 i<0or (n,i)y=(0,1) (mod 2);

n
[n—i] - <[[2_]]> i>0,(ni)#(0,1) (mod 2). (2.2)

Here the value | f| means the super degree of the operator f which shows the operator f is Fermionic or Bosonic. The supersymmetric
derivatives satisfy the supersymmetric Leibniz rule

D (ab) = D+(@b + (=1)"aD (b). (2.3)
where a is a homogeneous element of 4. Now we will introduce the even and odd time variables (t;, tf , te, t7i, ---) and their flows

a
Daiy = ——, Dj; t
4i—2 8t4,-_2 4i—1 Z_:

(2.4)
41 1 4= ]8t41+4] 2

The supercommutator is defined as [X, Y] = XY — (=1)!XIIYly X, and the bracket has a property as [X,YZ]=[X, Y1Z + (=D XI¥ly[x, 7].
Then D% = %[Di, Di]=0, {Dy,D_}=0. This infinite odd and even flows satisfy a nonabelian Lie superalgebra as

a
at4i+4j72 '
[D4l 1° 4] 1]—0 [D 27D:|:] s [D4l 17D:i:]:O~ (25)

[D4i—2, D4j—2]1=0, [D4i—2,D?fj_1]=0, [D4l 1 4] 1=

For any operator A=)";_» (f,.(o) + fﬁ'DJr +fiD™+ fi(l)DJ“D*)a" € A and homogeneous operators P, Q, the nonnegative projection,
negative projection, adjoint operator are respectively defined as

Av=Y [P+ Dy + 7D+ f'DyD)o', A =A-Ay, (2.6)
i>0
(PQ)* = (=DIPICIQ*p*, (P~1)* = (=)!Fl(P¥)~". (2.7)
Particularly for the operator D¥, the adjoint operator is defined as
(DX)* = (-3 Dk, (28)

and (8%)* = (—=1)*9* and u* = u for any superfield u.
The Lax operator of the N =2 supersymmetric BKP hierarchy has a form as

L=®D_& !, I*=-D_LD"', (2.9)

where
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o=1+) (@” +a/Dy+a;D_+a"DyD_)d", (2.10)
i>1
satisfy
*=D_d 'D-L. (2.11)
The N =2 supersymmetric BKP hierarchy is defined by the following Lax equations
Dag oL =[A*2)4, 11, Dy L=[A* Ny, L1-21%, k=1, (2.12)
DS L=0a*"1, 1], A=®D 07!, k>1. (213)

The eq. (2.11) will be called the B type condition of the N =2 supersymmetric BKP hierarchy. The N =2 supersymmetric BKP hierarchy
(2.12) can also be redefined in a form as the Sato equations as follows

Dy ®=—(1*2)_®, D, ,=—-U*NH_ o, Dj o=-(a%"_0o, (214)

with k > 1.
3. Additional symmetries of the N=2 supersymmetric BKP hierarchy

In this section, we will define additional symmetries for the N=2 supersymmetric BKP hierarchy by using the Orlov-Schulman operators.
The Orlov-Schulman operators Ml.jE with auxiliary operator Q. are constructed in the following dressing structure

Mf=orfo™!, i=01; Qr=0Q:d7 ",

where
1 1
+ _ 4k—4 + 4k—-3 2k—2 2i42j 2
o =x+5 > 4k — 2ty DE + 5 (4k = 1)ty DY Zt4k W0%2Qu 4 Y= Pty 07T (3.1)
k>1 k>] i,j>1
Mf=6s+) ty_ 0% (32)
k>1

where Q4 = dg, — 6+0. Then we can derive the following lemma.

Lemma 3.1. The operators F;‘L, Q. satisfy

[Dsi—z DL ri]_[D41 - DErfl=0; j=0,1, (3.3)
[Dai—p — D¥2,Qel=[Df , - DI, Qil= :
[Qe.T51=-TF, [Qe.T71=1, [8.T5]=1 (3.5)

Proof. The proof is similar as in [18] as follows

. 1 . .
[Dai—z — DI7%, Ig] = - (4i —2)DE™" — [DI7%, 1] =0, (36)
D D41 1 l—wi _ D4i_1, l—wi 3.7
(D31 — 1= [3417 24”8%“]2 g (3.7)
= 5(41' —1)p4—3 - 532i72Q:|: +2) (i — ity 97 (3.8)
j=1

plitdi—4 4i—1 1 4k—3
_Z<zl+zj D DX = DI x— 5y Sk — Dt DY)

k>1
=0, (3.9)
in which we used
. 1 . - 1 .
(DY~ X = @i — DY — ~9% Q.
and
(D41, Z(4k Dig_ D¥ 1= "@j— 15 DIV (3.10)
k>1 j=1
Also we can get
[Q+.T51=1Qx.X]— [Qx. 5 qu 10%72Qul = =01 — Y 0% =-T7,
k>1 k>1

and other identities can be proved similarly. O
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Then one can get the following lemma.

Lemma 3.2. The operators Mf, Qvu, L satisfy the following identities
[Qs.M71=-M7, [Qu Mfl=1, [ MF]=1,
Dai—aM5 = (L"), M7], Dai2Qu =[L*)4,Qql,
Dy My =[L¥"y, M7], D;, Qe =1L H1, Qxl,

Df_ M} =[(A*"") M1, Df_Qi=[(A"""1, Q4] icZy.

Proof. We will use the following dressing structure

@Dy , - DI Ifleo ! =0;

which further lead to
[®Df_, &' —aDi o ! MF]=0
Here we will consider

o0
[Dfi_; — (Df_ @)+ 17 Pairaj 2@ — A* MT]=0
j=0

Then we can derive

[Df_, —(Df &)@ ' — A% M1=0

4i—1 4i—1

and
[DF_; — ¥ Dy, Mf1=0
Similarly we can get

[Dy;

w— IH MT1=0

The other identities can be proved similarly. O

Now we will introduce the following additional flow operator BE, defined as

mklp

B:l:

iy = M(:)tkMiHQiLzm _ (_1)pl+m+p+lL2m—1 (Qi)MiHME)H(L,

where k,m > 0;1, p =0, 1. This operator will generate the additional symmetry of the N =2 SBKP hierarchy.

Then the following proposition can be derived.

Proposition 3.3. The operator BE | satisfies the following flow equations

mnlp
4k—2 B k-1
Dk 2anlp =—[(L )= mnlp] Dy 1anlp —[(L )= mnlp]
+ + _ 4k—1
D4k 1 anlp (N )— mnlp]

Proof. The identities can be proved by dressing the following identities by ®

[D4k 5 — D4k -2 Fi”FﬂQia’”] — [D4k Dik_], Foinrileiam] -0 0O

One need the following lemma to prove that anlp

+ . . . . .
Lemma 3.4. The operators M;" satisfy the following conjugate identities,

& = (~1)'D_L7MFLDZ!, Q1 =-D_L7'Q4LDZ".
Proof. We can get

®*=D_o 'D!, I = (-1'TF, Qi =-0Qu,

and do the following calculations

M = o* 11 ¢* = (-1)'D_eD-'TFD_@ ' = (-1)'D_@D 'd~ 'MFeD_0o~ DT,

to lead to the first identity of this lemma. The other identities can be proved similarly. O

4

satisfies the B type condition.
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We can further get the following proposition basing on the Lemma 3.4 above.

Proposition 3.5. The operator Bik,p satisfies a B type condition, namely

+x +
Bmklp - D*Bmklp

p_l. (3.27)
Proof. Using the Proposition 3.4, the following calculation

B:I:*

i — (Mal:kmlilQiLZm _ (_1)p1+m+P+lL2m—1 (Qi)M]ilMg:kL)*

_ (_1)p’L2m*(Qi)*MT’*M§Lk* + (_-l)m+p+IL*M(:J|:k*M;|:l*(Qi)*LZm—l*

_ (_l)pl+m+p+lD_L2m—1QiMithatkLDzl _ D_Mg["MleiLsz:]

_ _D_(M(:)tkM?:IQiLZm _ (—l)pl+m+p+1L2m_lQiMT'MSE"L)D:],
will lead to the proof of this proposition. O

Basing on the above proposition, it is time to define additional flows of the N =2 supersymmetric BKP hierarchy as follows

Di

mpl == Br)—, L1, k,m>0;1,p=0,1. (3.28)

mklp
Proposition 3.6. The flows (3.28) commute with the original flows of the N = 2 supersymmetric BKP hierarchy as
+ + + .
D%,y Dai-2] =Dy, D5 | =0, mnz0:p=0.1, ieZs, (3.29)
which holds in the sense of acting on ®.

Proof. The part of the proposition can be checked as

+ + S (+p@i-Dkpt nt
[Dmnlp’D4i—1]¢_DmnlpD4i—1cD_(_1) P <D41’—1D @

mnlp
= (=D HPEEDAA (B )19 + [(Bopy)— LY@ (330)
+ ()HPEDA B T (3.31)
=0.

The case [Di

mnlp D4,-_2] =0 can be proved in a similar way. O

That tells us that the additional flows of the N =2 supersymmetric BKP hierarchy are symmetries of the original flows and their
algebraic structure can be shown in the following proposition.

Proposition 3.7. The algebra of additional symmetries of the N = 2 SBKP hierarchy given by eq. (3.28) is isomorphic to the N = 2 super Lie algebra
SWH—oo-

Proof. The isomorphism is given by

zZ >3, & > Qi+ITd, neQ_+T79, (3.32)

9> TE, 0> T, ay T, (3.33)
which further lead to

z =12, & > Qi+MI% Qo+ ML (3.34)

d > ME, 3+ M, dy > M. (3.35)

The above construction keeps &, n commuting with z, £ anti-commute with n. O
4. The N = 2 multicomponent supersymmetric BKP hierarchy

Basing on the above construction of single component N = 2 supersymmetric BKP hierarchy, we will define a N = 2 multicomponent
supersymmetric BKP system in this section. Let A be assumed as an algebra of smooth matrix-valued functions of a spatial coordi-
nate x, grassmann variables 6+ and their super-derivation denoted as D4 = dp, + 6+9. We introduce the even and odd time variables
(t2.a, t;a, 6. t%a, ---) with 1 <« < s and the following definition of even and odd flows

e ¢}

ad n ad n ]
Dgji2o9=——, DI =—+ t _ 41
=2 0t4i—2 4i-la 8%_]‘“ ; 4j-la 0t4it4j-2.a (+1)
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This family of infinite odd and even flows satisfy a nonabelian Lie superalgebra whose commutation relations are

a
. . _ . + _ + + _
[D4172,a’ D4]72,ﬂ] =0, [D41—2,a, D4j—1,f}] =0, [D4i—1,a’ D4j_],ﬂ] =-2 8t4i+4j72,ot 8017/3 ’

DT

+
(D 4j-1p

4i-1,a° Di]=0. (4.2)

1=0, [D4i—24,D+]1=0, [DF;

The rules of conjugation u* = uT holds true for any superfield. Here uT means the transpose of the matrix-valued superfield u. The
Lax operator of the N =2 multicomponent supersymmetric BKP hierarchy has a form as

L=®D_ &', [*=-D_LD_!, Ry=PE,d ", (43)
where
o=1+Y @’ +a Dy +a;D_+a"D,D )o~", (4.4)
i>1
satisfy
®*=D_o "D, (4.5)

and E, is the matrix with element at the position of «-th row and «-th column being 1 and other ones being zeroes. The N =2
multicomponent supersymmetric BKP hierarchy can be defined by the following Lax equations

Dag—2.aL =[(L* ?Re) 4. Ll Dy y o L=[L*"Re)y, L] —2L*Ry, (4.6)
D 1oL =[A*"Re)y, L], A=®D 7", k>1. (4.7)

We can call the eq. (4.5) the B type condition of the N = 2 multicomponent supersymmetric BKP hierarchy. The N = 2 multicomponent
supersymmetric BKP hierarchy (4.6) can also be redefined as the following Sato equations

Dag—2.4®=—(L*?Re)_®, Dy, ,=—(L%"Ry) 0, (4.8)
D 1o®=—(A%"Ry) 0, (4.9)
with k > 1.

With the above preparation, it is time to construct additional symmetries for the N = 2 multicomponent supersymmetric BKP hierarchy
in the next section.

5. Additional symmetries of the N=2 supersymmetric BKP hierarchy

The additional symmetries for the N =2 s-component supersymmetric BKP hierarchy can be defined by using the Orlov-Schulman
operators. The Orlov-Schulman operators MI-i and auxiliary operator Q4 can be constructed in the following dressing structure

Mi, =@rf, o', i=011<a<s Qr=0Qsd "

where

1 41 _
TE, =xEq + 5 > 4k — 2)tg_z. 0 Ea DY + 5 (4k — Dige_; oEaD¥ >

k>1

1 _ o i
=5 D takraEad® Qe+ Y0 (= D olhjg o Fad” T (51)
k>1 i,j>1
Fli,ot =0+Eq + Ztézltl<f1,a5“82k71’ (5-2)

k>1

where Q.+ = dp, — 6+0.
Then one can get the following lemma.

Lemma 5.1. The operators Ff «» Q= can be proved to satisfy
[Dai-2.a — DY ?Eq, T7 41 =Dy o — DI 'Eq, Tj,1=0; j=0,1, (53)
[Dai—2.4 — DY ?Eq, Qe =[D5i_; o — DX "Ea, Q1 =0, (54)
[Q+.Tg)=-TTy [Qe.TT,l=Ea. [0.T5,]=Eq. (5.5)
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Proof. The proof can be proved as follows

1 . . i
—(41 —2)DY " Eg8u.p — (D42, X]Eq 84 5 =0,

Z 4j— 10!3&“+

[Dagi—2.0 — DY ?Eq, T 4=

a

4j—-2,a

(D3 14— DY "Ea. Ty 41 =1 FYEa— — D§ 'Eq, Tg 41

4i—1,a

. i 1,9 .
=5(41—1)D1' 3*“5053“,,3—532’ 2QuEabup+2) (= N3 g o4Eadap

j=1
o0
= Qi+2j = Dit5;_; yEade, gD
:O’
in which we used
. 1 . - 1 .
(DY X = @i — DY — ~9%2Qu,
and
- 1 .
[D4 1,52(4k—1)4k D¥F 3= 2(41—1)@_1@4’*41 -4
k>1 j>1
Also we do get
1 _
[Qa, T 4] =[Qs, XEg] —[Qx, 5thfk_wf,ga% 2Qul=-T,.
k>1

For Flia, Q4, and other identities can be proved similarly. O
Then one can get the following lemma using dressing structures.

=+ A .
Lemma 5.2. The operators M; i Q. £ satisfy

[Qs. M3, 1=—-M7,. [Qi.M{,1=Eq [ M5, ]=Eq,

Dai—2aMjy =[E" *Ra)+, M7yl Dai20Qus =[E¥?Ra)+, Qul,
Dji_1.aM7p=[E""Ra) 1, M7, D;, 1eQs = [E R4, Q.

D 4 oM =1A" "R, M1, Di Qi =[(A*"Ra)4, Qul, i€Zy.

Proof. The following dressing structure

W[DF_; o — DY 'Ee. T 410" =0;

will lead to the identity

(wDL _, W' —wDiE, w7l M

4i—1,a ,/3]:

Here we focus on

o0
-1 n 1 Adi-1 n
(D4 1La —(Dyi_ 1PV +Zt4j71,a‘p4i+4f*2‘p — A" R, M 4] =
i=0

Then we can derive

[Df_,,—(Df_ ¥ —A%TR,, M

4i—1,a 4i—1,x ,}3]:0

and

(D4 la ™ (A% 'Ra)+, MT,B] =0
Similarly we can get

[Dyi—1.4 — A Ra)+, M; 41=0.

and the other identities can be proved similarly. O

— Eq8q gD
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1
1
’X_E E (4k — 1

k>1

g2i+2j-2

) 4k—

D4I<

]

(5.9)

(5.16)

(5.17)

(5.18)
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To define the additional flows with B type condition, we need to introduce the following operator Bif’ﬁ ¥ defined as
+aBy _ pptk potl AP 2 I+m-+p+l 2m—1,AP \ppEl ptk
Bmklp _Mo’aMl,ﬂQiL MR, — (=PFMFPHR oM (Qi)MLﬂMO‘aL, (5.19)

where k,m>0;l,p=0,1;1 <, B, y, p <s. This operator can be the generator of the additional flows of the N =2 multicomponent
SBKP hierarchy.
Then we can get the following proposition.

Proposition 5.3. The operator Bi;flﬁ ¥ satisfies the following flow equations
taBy _ 4k—2 +aBy - taBy _ 4k—1 +a By
D4k*2u03mklp i (2 Rp)-, Bmklp I, D4k71,meklp =—[E"""Rp)-, Bmklp I, (5.20)
+ Tapy _ 4k—1 Tapy
D4k—1,meklp =—[(A™ RP)—’Bmklp I (5.21)

Proof. The lemma can be proved by dressing the following identities using W

[Dak—2,p — DE2Ep, Tga T3 QEE, 0™ =Dy, , — DE¥E, E, g T, QE0™M =0. O (5.22)

We need the following lemma to prove that Bizﬁ ¥ satisfies the B type condition.

Lemma 5.4. The operators Mii satisfy the following conjugate property

ME = (~1)'D_t7'ME, LD, Qh=-D_t7'QuLD". (5.23)
Proof. Using
W=D W'D T = (-D'TE,. Qi=-0Qs. (5.24)

the following calculations
M = o ITE* = (-1)'D_wDZ'TF, D_w 'D-! = (-1)'D_wDZ "W 'M;F, wD_w DTl
will lead to the first identity of this lemma. The other identities can be proved in a similar way. O

One can check the following proposition holds basing on the Lemma 5.4 above.

Proposition 5.5. The operator B:;zpﬁ ¥ satisfies a B type condition, namely
TaBy* _ +afy ~n—1
Brf" = —p_BE D1, (5.25)

Proof. The following calculation

Fapyx

Bmklp

_ (Méfﬁ,MflﬂQitszy _ (—1)pl+m+p+lRyL2m_1(@i)Mfl,gM(:fﬁL)*
_ (_l)le;Lzm*(@pi)*Mngﬁlg + (_1)m+p+lL*M(:)ifl(;*Mflék(Qi)*LZm—l*R;
= (~)PHmPHp R E2mQE M MK LDZT — DM, My, QR R, D!
= —D_ (Mg ML QEEP™R,, — (—1)PHMmHPH R, 2m1QE ML MG LD,

will lead to this proposition. O

Basing on above proposition, it is reasonable to define additional flows of the N=2 supersymmetric BKP hierarchy as

+ +
Diin! L=1=Bpah ), LI, km>0;1,p=0,1;1<a, B,y <s. (5.26)

Proposition 5.6. The flows (5.26) commute with the original flows of the N = 2 multicomponent supersymmetric BKP hierarchy as

+ + . . .
[D? Dai-2,p | = [Diit? D3y, | =0, mn=z0:Lp=0.1, k=4i-2,4i~1, ieZs, (5.27)

by acting on .
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Proof. The proposition can be checked as when k =4i — 1

tafy =+ _ pTaBy p=+ (+pkpt pEaby
[ Do D, | W=Dt DE W — (1) 2D Db? w

mnlp mnlp ,p~ mnlp
+ +
= () HPKEER,) . (B ?) 10 + (B ) - £*R ] W (5.28)
+
+ (D) PR ERR,) . Bt ] W (5.29)
=0.

The case when k =4i — 2 can be proved similarly. O

That shows that the additional flows of the N =2 multicomponent supersymmetric BKP hierarchy are symmetries of the original flows
whose algebraic structure can be shown in the following proposition.

Proposition 5.7. The algebra of additional symmetries of the N = 2 multicomponent SBKP hierarchy given by eq. (5.26) is isomorphic to the Lie algebra
N=2Q SWiico.

Proof. The isomorphism can be given by

z >0, EEg > QuEg+T7,9, nEg> Q-Eg+T7 49, (5.30)
0Ep > TG,  0Eg> T, OnEp>T7 4, (531)
which further lead to
z 1% EEg > QuRp+ M 4% nEg > Q_Rp+ My 4, (5.32)
0Ep > Mg g, 0cEg > My, nEp > My 4, (5.33)

where keeps &, n commuting with z, & anti-commute with n. O
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