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Abstract

Mogami introduced in 1995 a large class of triangulated 3-dimensional pseudomanifolds, henceforth 
called “Mogami pseudomanifolds”. He proved an exponential bound for the size of this class in terms 
of the number of tetrahedra. The question of whether all 3-balls are Mogami has remained open since; 
a positive answer would imply a much-desired exponential upper bound for the total number of 3-balls (and 
3-spheres) with N tetrahedra.

Here we provide a negative answer: many 3-balls are not Mogami. On the way to this result, we char-
acterize the Mogami property in terms of nuclei, in the sense of Collet–Eckmann–Younan: “The only 
three-dimensional Mogami nucleus is the tetrahedron”.
© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A long standing open question in discrete geometry (also highlighted by Gromov, cf. [16, 
pp. 156–157]) is whether there are exponentially many simplicial complexes homeomorphic to 
the 3-sphere, or more than exponentially many. What is counted here is the number of combina-
torial types, in terms of the number N of tetrahedra. This enumeration problem is crucial for the 
convergence of a certain model in discrete quantum gravity, called “dynamical triangulations”; 
see for example the book [2] or the survey [21] for an introduction.
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By deleting one simplex from any (triangulated) 3-sphere, we obtain a (triangulated) 3-ball. 
Conversely, by coning off the boundary of any 3-ball, we get a 3-sphere. This close relation 
between 3-spheres and 3-balls is reflected in the asymptotic enumeration. In fact, it is not hard 
to see that 3-balls are more than exponentially many if and only if 3-spheres are. In other words, 
one can equivalently rephrase our enumeration problem by replacing “3-sphere” with “3-ball”.

To tackle the problem, in 1995 Durhuus and Jónsson introduced the class of Locally Con-
structible (“LC”) manifolds, for which they were able to prove an exponential upper bound 
[14] [9, Theorem 4.4]. The geometric idea is ingeniously simple. Let us agree to call tree of 
d-simplices any triangulated d-ball whose dual graph is a tree. Definitorially, LC manifolds
are those triangulations of manifolds with boundary that can be obtained from some tree of 
d-simplices by repeatedly gluing together two adjacent boundary facets. This adjacency condi-
tion for the matching, together with the fact that trees are exponentially many, results in a global 
exponential upper bound.

Durhuus and Jónsson conjectured that all 3-spheres (and all 3-balls) are LC. This was dis-
proven only recently by the author and Ziegler [9]. The key for the disproval was a characteri-
zation of the LC property in terms of simple homotopy theory: “A 3-sphere is LC if and only if 
it admits a discrete Morse function with exactly two critical faces” [9, Cor. 2.11]. Knot theory 
provides then obstructions to the latter property.

In 1995, Mogami introduced another class of manifolds, henceforth called “Mogami man-
ifolds” [20]. Essentially, these are the triangulations of manifolds with boundary that can be 
obtained from a tree of d-simplices by repeatedly gluing together two incident boundary facets 
(Remark 8). Since “adjacent” implies “incident”, LC obviously implies Mogami. The converse is 
false: here we prove that a cone is Mogami if and only if its basis is strongly-connected (Propo-
sition 14), so many cones are Mogami but not LC.

Building on top of Durhuus–Jónsson’s work, Mogami was able to show an exponential bound 
also for his broader class of manifolds. Mogami’s argument is based on link planarity and is 
specific to dimension 3, whereas Durhuus–Jónsson’s argument can be extended to arbitrary di-
mension [9, Theorem 4.4]. Still, an interesting conjecture arises from Mogami’s work: Perhaps 
all 3-balls or 3-spheres are Mogami, even if not all of them are LC [20, p. 161].

Mogami’s conjecture is weaker than Durhuus–Jónsson’s, but a positive solution would still 
solve the enumeration problem: It would imply that there are only exponentially many 3-balls. 
Mogami’s conjecture is harder to tackle, mainly because we lack a characterization of the 
Mogami property in terms of simple homotopy theory. Hence the methods that allowed to solve 
Durhuus–Jónsson’s conjecture do not extend.

Meanwhile, in 2014 Collet, Eckmann and Younan showed that the total number of 3-spheres 
or 3-balls crucially depends on the number of 3-balls that have all vertices on the boundary. 
More specifically: Let us call nucleus a 3-ball with all vertices on the boundary, and in which 
every interior triangle contains at least two interior edges. (The notion was first introduced by 
Hachimori, under the name “reduced ball” [17, p. 85]; the name “nucleus” appears in [10].) The 
enumeration problem of 3-balls (or 3-spheres) is equivalent to the question of whether nuclei are 
exponentially many, or more [10, Theorem 5.17].

In the present paper, we combine Mogami’s and Collet–Eckmann-Younan’s intuitions, by 
characterizing the Mogami property among 3-balls without interior vertices.

Main Theorem I (Corollary 37 & Theorem 44). The only Mogami nucleus is the tetrahedron. 
Moreover, for 3-balls without interior vertices, the following inclusions hold:

{shellable}� {LC} = {Mogami}� {collapsible}� {all 3-balls without interior vertices}.
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Fig. 1. LEFT: Part of the boundary of a 3-ball B . The identification of the triangles pqv and p′q ′v is a Mogami step. 
Once we perform it, the link inside ∂B of the vertex v “splits” (CENTER): from a circle, it becomes two disjoint circles. 
Topologically, ∂B gets “pinched” at the vertex v (RIGHT).

In particular, Bing’s thickened house with two rooms [18] and all non-trivial nuclei listed 
in [10] yield counterexamples to Mogami’s conjecture. Using knot theory, we can even give a 
coarse estimate for the asymptotic number of non-Mogami balls:

Main Theorem II (Lemma 39 & Propositions 41, 42, 43.). Let B be a 3-ball with a knotted 
spanning edge and with all vertices on the boundary. If the knot is

• a single trefoil, then B can be collapsible but it cannot be Mogami;
• a connected sum of 2 or more trefoils, then B is neither Mogami nor collapsible.

Moreover, the number of non-Mogami 3-balls without interior vertices is asymptotically the same 
as the total number of 3-balls without interior vertices.

With this, the problem of enumerating combinatorial types of 3-balls remains wide open. All 
the known strategies expected to succeed in showing an exponential bound (cf. e.g. [2, 295–296]) 
have currently failed. A combinatorial criterion that divides the entire family of triangulated 
3-manifolds (or d-manifolds, for any fixed d) into nested subfamilies, each of exponential size, 
was introduced in [4]; metric restrictions on triangulations that also give exponential bounds have 
been discovered in [1].

2. Methods

Our proof is technical but the main idea is elementary, and best sketched with an example. In 
Fig. 1, we show a portion of the boundary of some nicely triangulated 3-ball B; specifically, the 
star of a vertex v in ∂B . For brevity throughout the paper we say “boundary-link of v” instead of 
“link of v in the boundary of B”.

The middle triangles pqv and p′q ′v are incident, but not adjacent. Their identification is a 
“Mogami gluing”, but not an “LC gluing” (cf. Definitions 5, 6). As depicted in Fig. 1, the glu-
ing changes the topology of the boundary: v becomes a singularity, in the sense that its link 
is disconnected. Also, the bottom triangles rqv and rq ′v, after the gluing q ≡ q ′, now share 2 
edges out of 3; so the gluing leads us out of the world of simplicial complexes. We call such 
configuration of two boundary triangles sharing exactly 2 edges a wound. Let us now perform a 
second identification, namely, let us glue the bottom triangles together. As we do that, the topol-
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ogy changes back: The boundary-link of v returns to be a single circle, as one of its connected 
components (the digon on vertices r and q ≡ q ′) is sunk into the interior. The step of gluing 
together two boundary triangles with exactly 2 edges in common is called a healing. (The same 
step was called “type-(iv) LC gluing” in [9, Definition 3.17].) The healing makes the wound 
disappear, as the triangle resulting from the identification is sunk into the interior.

Now, let us start back from B and let us perform the same two gluings in inverse order: 
Bottom first, then middle. There are two pleasant novelties with this reshuffling:

(1) When the bottom triangles are glued, they share only 1 edge, so the gluing is not a healing.
(2) When the middle triangles are glued, they share 1 edge, not just one vertex. As a result, their 

gluing is now a legitimate LC gluing.

By postponing the Mogami-non-LC move to after the healing move, topologically these two 
bizarre moves have ‘canceled out’; and we have obtained a sequence in which all triangles that 
we match have exactly 1 edge in common at the moment of the gluing. The final complex is 
obviously the same ball as before.

Using this idea, we will prove that all Mogami 3-ball without interior vertices are LC (Theo-
rem 35). The trick is to systematically rearrange the Mogami sequence to obtain a sequence that 
is also LC. This does not work for all pseudomanifolds; but if we focus on Mogami construc-
tions of 3-balls without interior vertices, we know that the boundary-link of every vertex should 
eventually become a 1-sphere. Hence, all the extra components of a boundary-link created by 
Mogami non-LC gluings have to be suppressed throughout the construction. Now, the only way 
to suppress a component is via a “healing” step. By reshuffling, we will obtain a new sequence 
where the non-LC step and the healing step ‘cancel out’.

3. Notation

Throughout this paper, d is always an integer ≥ 2. For the definitions of simplicial complex, 
regular CW complex, pure, shellable, cone..., we refer the reader to [9]. Following [9], by pseu-
domanifold we mean a finite regular CW complex which is pure d-dimensional, simplicial, and 
such that every (d − 1)-cell belongs to at most two d-cells. The boundary is the smallest sub-
complex of the pseudomanifold containing all the (d − 1)-cells that belong to exactly one d-cell. 
We call “d-ball” (resp. “d-sphere”) any simplicial complex homeomorphic to the unit ball in Rd

(resp. to the unit sphere in Rd+1). A tree of d-simplices is any d-ball whose dual graph is a tree.

Definition 1 (UNITE; SPLIT). Let P1, P2 be two disjoint d-pseudomanifolds, d ≥ 2. The opera-
tion unite consists in identifying a (d − 1)-face �′ in ∂P1 with a (d − 1)-face �′′ in ∂P2. (For 
d = 3, this was called “step of type (i)” in [9, Definition 3.17].) If the Pi do not have interior 
vertices, neither does the obtained pseudomanifold Q; and if both Pi’s are d-balls, so is Q. Note 
also that Q contains in its interior a (d − 1)-face � with ∂� completely contained in ∂Q.

The inverse operation is called “split”. (For d = 3, this goes under the name of “Cut-a-3-face” 
in [10, p. 267] and of “Operation (I)” in [17, p. 85].) It is defined whenever a pseudomanifold Q
has some interior (d − 1)-face � with ∂� ⊂ ∂Q. If Q is simply-connected, the effect of SPLIT

is to divide Q (along the face �) into two disconnected pseudomanifolds. In general, the effect 
of SPLIT on the dual graph of the pseudomanifold is to delete one edge.
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Fig. 2. A SPREAD operation for d = 3. (Picture taken from [17, p. 85].) The inverse move – namely, to identify two 
boundary triangles with exactly one edge in common — is called FOLD.

Trees of N d-simplices are characterized as the d-complexes obtainable from N disjoint 
d-simplices via exactly N − 1 UNITE steps.

Definition 2 (FOLD; SPREAD). Let P be a d-pseudomanifold, d ≥ 2. The operation FOLD con-
sists in identifying two boundary facets �′, �′′ that share exactly one (d − 2)-face e; compare 
Fig. 2. (For d = 3, the operation was called “an LC step of type (ii)” in [9, Definition 3.17].) If 
P is a d-ball, then the obtained pseudomanifold Q is homeomorphic to P . (This is false if P is 
an arbitrary pseudomanifold, cf. Example 31.) Moreover, if d ≥ 3 and P does not have interior 
vertices, neither does Q. The obtained pseudomanifold Q contains in its interior a (d − 1)-face 
� with exactly d − 1 of its facets in ∂Q: in fact, the only facet of � in the interior of Q is the 
(d − 2)-face e.

The inverse operation is called SPREAD; compare Fig. 2. (For d = 3, it goes under the name 
‘Open-a-2-face” in [10, p. 267] and “Operation (II)” in [17, p. 85].) It is defined whenever a 
pseudomanifold Q has some interior (d − 1)-face � that has one of its (d − 2)-faces in the 
interior of Q, and all its other (d − 2)-faces in the boundary of Q.

When SPREAD is applied to a simplicial complex, it outputs a simplicial complex. In contrast, 
it is easy to see that FOLD moves may lead out of the world of simplicial complexes.

Next, we introduce nuclei, which were called “reduced balls” in [17, p. 85]:

Definition 3 (Nucleus). Let d ≥ 2. A nucleus is a d-ball where

(1) every (d − 3)-face belongs to the boundary, and
(2) every interior (d − 1)-face has at least d − 1 of its d facets in the interior of the ball.

The d-simplex (for which condition (2) is void) is called the trivial nucleus.

The only 2-dimensional nucleus is the trivial one. For d ≥ 3, however, many non-trivial 
d-nuclei exist [10]; for example, Hachimori’s triangulation of Bing’s thickened house with 2 
rooms [18].

Lemma 4 (Hachimori [17], Collet–Eckmann–Younan [10]). Every 3-ball without interior ver-
tices can be reduced to a disjoint union of nuclei with some (greedy) sequence of SPLIT and
SPREAD moves. Without loss of generality, one can assume that all SPREAD steps are performed 
before the SPLIT ones.

The next move can be viewed as a variation/expansion of FOLD.
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Definition 5 (LC gluing). Let P be a d-pseudomanifold, d ≥ 2. Identifying two boundary facets 
�′, �′′ whose intersection is (d − 2)-dimensional is an operation called an LC gluing.

Every fold is an LC gluing. The converse is false: for example, when d = 2, gluing together 
two boundary edges that have both endpoints in common is an LC gluing, but not a fold. The 
difference is topologically remarkable. It was proven in [9] that the only manifolds obtainable 
from a tree of d-simplices with FOLD moves, are d-balls. In contrast, with LC gluings one can 
obtain all polytopal d-spheres, for example. It was proven in [6] that except when d = 4, all 
simply-connected smooth d-manifolds (with or without boundary!) have a triangulation that can 
be obtained from some tree of simplices via LC gluings (cf. Theorem 10).

Here is a further generalization, potentially leading to a broader gauge of complexes:

Definition 6 (Mogami gluing). Let P be a d-pseudomanifold, d ≥ 2. Identifying two boundary 
facets �′, �′′ whose intersection is nonempty is an operation called a Mogami gluing.

Clearly, every LC gluing is a Mogami gluing, while the converse is false (unless d = 2). We 
have arrived to the most important definition of the paper:

Definition 7 (LC manifolds; Mogami manifolds). Let d ≥ 2. Let M be a pure d-dimensional 
simplicial complex with N facets that is also a pseudomanifold. M is called LC (resp. Mogami) if 
it can be obtained from a tree of N d-simplices via some sequence, possibly empty, of LC gluings 
(resp. of Mogami gluings). We refer to the sequence as “the LC construction” (respectively, “the 
Mogami construction”). With abuse of notation, the intermediate pseudomanifolds in the LC 
construction of an LC manifold are also called “LC pseudomanifolds”; same for Mogami.

Remark 8. The original definition of [20], given only for d = 3, was slightly different. Mogami 
considered a class C of 3-pseudomanifolds obtained from a tree of tetrahedra by performing 
either (1) LC gluings, or (2) identifications of incident boundary edges, subject to a certain pla-
narity condition.

Now, identifying 2 boundary edges that share a vertex v creates new adjacencies between 
triangles that before were only incident at v. So it is clear that Mogami 3-pseudomanifolds (with 
our definition) all belong to the class C, since we could realize any Mogami gluing as a “combo” 
of an identification of adjacent boundary edges followed by an LC gluing.

Conversely, we claim that all manifolds in C are Mogami. (This is false for pseudomanifolds.) 
In fact, if we identify two boundary edges that share a vertex v in the boundary of an arbitrary 
pseudomanifold, we create an entire “singular edge”. To get a manifold, we have to get rid of this 
singular edge; the only way to do so is by identifying two triangles �′, �′′ containing that edge, 
at some point in the Mogami construction. But then we can rearrange the sequence of gluings by 
performing the Mogami gluing �′ ≡ �′′ before all other gluings.

4. General aspects of Mogami complexes

Let us start with a topological motivation to study the Mogami class.

Proposition 9. Every Mogami d-pseudomanifold is simply-connected.

Proof. By induction on the number of Mogami gluings. Any tree of simplices is topologically a 
ball, hence simply connected. Consider now the moment in which we glue together two incident 
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boundary facets �′ and �′′ of a simply-connected d-pseudomanifold P ; and suppose a new loop 
arises. This means that we have just identified two endpoints x ′ ∈ �′ and x′′ ∈ �′′ of a path 
whose relative interior lies completely in the interior of P . Let v be a vertex in �′ ∩ �′′. By 
homotoping both x′ and x′′ to v, one sees that the “new loop” is actually homotopy equivalent to 
an “old loop” already contained in P (hence homotopically trivial, by induction.) �

Not all triangulations of simply-connected manifolds are Mogami, as we will prove in Theo-
rem 44. However, a partial converse to Proposition 9 can be derived from [6]:

Theorem 10 (Benedetti [6]). For d �= 4, any PL triangulation of any simply-connected 
d-manifold (with boundary) becomes an LC triangulation after performing a suitable number of 
consecutive barycentric subdivisions.

In particular, every simply-connected smooth d-manifold d �= 4, admits a Mogami triangula-
tion.

Recall that a simplicial complex is called strongly-connected if it pure (i.e. all facets have the 
same dimension) and its dual graph is connected. By induction on the number of Mogami steps, 
one can easily prove:

Proposition 11. Every Mogami d-pseudomanifold is strongly-connected, and all vertex links in 
it are strongly-connected as well.

The converse does not hold: any triangulation of an annulus is strongly-connected and has 
strongly-connected links, but it cannot be Mogami by Proposition 9.

For 2-dimensional pseudomanifolds, the LC property and the Mogami property are equiva-
lent, because two boundary edges are adjacent if and only if they are incident. We show next that 
the two properties diverge from dimension 3 on.

In [9, Lemma 2.23] it is shown that the union of two LC pseudomanifolds with a codimension-
one strongly-connected intersection, is LC. Interestingly, an analogous result holds for the 
Mogami property, basically up to replacing “strongly-connected” with “connected”:

Proposition 12. Let A, B, C be three d-pseudomanifolds such that A ∪B = C. Assume A ∩B is 
pure (d − 1)-dimensional and connected. If A and B are both Mogami, so is C.

Proof. First of all, we observe that A ∩ B is contained in both ∂A and ∂B . In fact, since A ∪ B

is a pseudomanifold, every (d − 1)-face of A ∩ B can be contained in at most two d-faces of 
A ∪ B , so it has to be contained in exactly one d-face of A and in exactly one d-face of B .

Since A ∩ B is connected, we can find a total order F0, . . . , Fs of the facets of A ∩ B such 
that for each i ≥ 1, Fi is incident to some Fj , with j < i. Let us fix a Mogami construction for A
and one for B . Let TA (resp. TB ) be the tree of d-simplices from which A (resp. B) is obtained. 
If we perform a UNITE move and join TA and TB “at F0”, we obtain a unique tree of tetrahedra 
TC containing all facets of C. Each Fi (i ≥ 1) corresponds to two distinct (d − 1)-faces in the 
boundary of TC , one belonging to TA and one to TB ; we will call these two faces “the two copies 
of Fi”. Now C admits a Mogami construction starting from TC , as follows:

(a) first we perform all identifications of boundary facets of TC that belonged to TA, exactly as 
prescribed in the chosen Mogami construction of A from TA;
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Fig. 3. Gluing the simplicial 3-balls along the shaded 2-dimensional subcomplex (which is connected, but not strongly-
connected) gives a Mogami 3-pseudomanifold that is not LC. Note that the resulting 3-pseudomanifold is a cone over an 
annulus (the vertex v is the apex of the cone).

(b) then we perform the identifications given by the Mogami construction of B;
(c) finally, for each i ≥ 1 (and in the same order!), we glue together the two copies of Fi .

Since each Fi is incident to some Fj , with j < i, the gluings of phase (c) are Mogami glu-
ings. �
Corollary 13. Some 3-dimensional pseudomanifolds are Mogami, but not LC.

Proof. Let C1 and C2 be two shellable simplicial 3-balls consisting of 4 tetrahedra, as indicated 
in Fig. 3. (The 3-balls are cones over the subdivided squares on their front.) Since shellable 
implies LC [9] and LC implies Mogami, both C1 and C2 are Mogami. Glue them together in 
the shaded subcomplex in their boundary (which uses 5 vertices and 2 triangles). Note that such 
subcomplex is connected, but not strongly-connected. Let P be the resulting 3-dimensional pseu-
domanifold. By Proposition 12 the pseudomanifold P is Mogami. It remains to prove that P
cannot be LC. For this we use a topological result by Durhuus and Jónsson [14]: If L is any LC 
3-dimensional pseudomanifold, then any strongly-connected component of ∂L is a 2-sphere; in 
addition, any two strongly-connected components of ∂L intersect in at most one point. Yet our 
∂P has a different topology: It is a “pinched sphere”, i.e. the space obtained by identifying two 
antipodal points of a 2-sphere. Hence, P cannot be LC. (Alternatively, one can also observe that 
P is a cone over an annulus; an annulus is not simply connected and therefore not LC; via [9, 
Proposition 3.25], this implies that P cannot be LC either.) �

We have arrived to another crucial difference between the LC and the Mogami notion, namely, 
the behavior with respect to taking cones. In [9, Proposition 3.25] it is proven that for any pseu-
domanifold P and for any vertex v not in P , the cone v ∗ P is LC if and only if P is LC. It turns 
out that cones tend to be Mogami more often.

Proposition 14. Let A be a d-pseudomanifold. Let v be a new point. The cone v ∗ A is Mogami 
if and only if A is strongly-connected.

Proof. The “only if” part follows from Proposition 11, since the link of v in v ∗ A is A itself. 
As for the “if”: Since the dual graph of A is connected, we may choose a spanning tree, which 
uniquely determines a tree of d-simplices TN inside A. Since every (d − 1)-face of A belongs to 
at most two d-simplices, the complex A can be obtained from TN via identifications of pairs of 
(not necessarily incident!) boundary facets. Now let us take a new vertex v. Clearly v ∗ TN is a 
tree of (d + 1)-simplices. Let us ‘mimic’ the construction of A from TN , to obtain a construction 
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of v ∗ A from v ∗ TN . (By this we mean that if the construction of A from TN started by gluing 
two faces σ ′ and σ ′′ of ∂TN , then we should start the new construction of v ∗ A from taking 
v ∗ TN by gluing v ∗ σ ′ with v ∗ σ ′′; and so on.) Clearly, v ∗ A is obtained from v ∗ TN via 
identifications of pairs of boundary facets that contain v, and therefore are incident. �
Corollary 15. For each d ≥ 3, some d-dimensional pseudomanifold is Mogami, but not LC.

Proof. Let k be any integer such that 2 ≤ k ≤ d − 1. Let A be any k-pseudomanifold that is 
strongly-connected, but not LC. (They exist; for example, for k = 2 one can choose any triangu-
lation of an annulus; compare Fig. 3, which illustrates the case d = 3.) Take d − k consecutive 
cones over C. The resulting d-complex is Mogami by Proposition 14 and not LC by [9, Proposi-
tion 3.25]. �
Corollary 16. Not all Mogami spheres are PL.

Proof. Homology d-spheres exist in each dimension d ≥ 3. Let P be the suspension of a 
homology d-sphere. Let S be the suspension of P . By Edwards’ criterion (cf. e.g. [6] for a 
quick survey), S is a non-PL triangulated (d + 2)-dimensional sphere. By Proposition 14 both 
(v ∗ P) and (w ∗ P) are Mogami, because P is strongly connected. Since S is of the form 
(v ∗ P) ∪ (w ∗ P), by Proposition 12 if follows that S is Mogami. �
5. Intermezzo: planar matchings and extensively-LC manifolds

Here we show that all 2-spheres and 2-balls are Mogami and even LC independently from 
which tree of triangles one starts with. These results are not new; they essentially go back to 
Durhuus, cf. [13] [14, p. 184], but we include them to showcase some proof mechanisms that 
will later be needed in the 3-dimensional case. We also discuss a higher-dimensional extension 
of this phenomenon of “irrelevance of the chosen tree”, called “extensively-LC” property. The 
reader eager for new theorems may skip directly to the next Section.

We need some additional notation. By a cycle we mean from now on a simple cycle; that is, 
any closed path in which all vertices are distinct, except for the first and last one. A graph (resp. a 
multigraph) is for us a 1-dimensional simplicial complex (resp. a 1-dimensional cell complex). In 
other words, graphs are multigraphs that do not have loops or double edges. Given any simplicial 
complex, we call “free” any face that is properly contained in only one other face. The free faces 
in a graph are called leaves; some complexes have no free face. An elementary collapse is the 
deletion of a single free face (and of the other face containing it).

Definition 17 (Extensively collapsible). A complex C is called extensively-collapsible if any 
sequence of elementary collapses reduces C to a complex that is itself collapsible. In other words, 
C is extensively collapsible if and only if by performing elementary collapses, we never get stuck. 
We also say that C is extensively-collapsible onto D if any sequence of elementary collapses that 
does not delete faces of D, reduces C to a complex that is itself collapsible to D.

For example, trees are extensively collapsible; in fact, every tree is extensively collapsible 
onto any of its subtrees. It is well-known that all collapsible 2-complexes are also extensively-
collapsible, cf. e.g. [19]. However, an 8-vertex example of a collapsible but not extensively-
collapsible complex (in fact, a 3-ball) was given in [7].
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Fig. 4. A 12-gon (left) and the (multi)graph obtained from it by identifying two non-adjacent edges (right). Note that this 
graph cannot be obtained from the 12-gon via LC gluings.

Lemma 18. Let C be a cycle. Let M be any planar matching, partial or complete, of the edges 
of C. Let G be the multigraph obtained from C by pairwise identifying the edges according to 
M (preserving orientation). The following are equivalent:

(1) G contains at most one cycle;
(2) G can be obtained from C via some sequence of LC gluings.

Proof. “(2) ⇒ (1)”: Let C be a cycle. Any LC gluing of two edges of C either

– preserves the number of cycles (if the edges share only one vertex), or
– ‘kills’ one cycle (in case the edges have both endpoints in common).

So when we perform local gluings on a multigraph, the total number of cycles can only decrease. 
Since we started with a cycle, G contains at most one cycle.

“(1) ⇒ (2)”: Fix a planar matching M of C. If M is a complete matching, the resulting multi-
graph G will be a tree; if instead it is partial, G will be a cycle with some trees attached. We 
proceed by induction on the number n of edges of C, the case 3 ≤ n ≤ 6 being easy. Let e′, e′′
be two edges of C that are matched in M. If e′, e′′ are adjacent in C, their identification is an 
LC gluing, and there is nothing to show; so we shall assume they are not adjacent. The effect of 
the gluing e′ ≡ e′′ is to squeeze C into a left cycle L and a right cycle R, bridged by a single 
edge e (as in Fig. 4). Moreover, M restricts to planar matchings on both L and R. Of these two 
“submatchings”, at least one has to be complete, otherwise the final multigraph G would contain 
at least two cycles. We will assume the submatching on L is complete, the other case being sym-
metric. Let GL be the subtree of G corresponding to the edges of L. Let v = e ∩ GL. Choose 
a collapsing sequence of the tree GL onto v. This yields a natural ordering e0, e1, . . . , ek−1
of the k edges of the tree GL, where ei is the i-th edge to be collapsed and ek−1 contains v. 
Observe that e0 must be a leaf of GL; it corresponds therefore to a pair of adjacent edges e′

0 and 
e′′

0 of L matched under M. Recursively, for each i, the edges e′
i and e′′

i become adjacent once 
we have identified e′

j with e′′
j , for all j < i. In other words, the identifications (e′

i ≡ e′′
i )0≤i≤k−1, 

performed in this order, are legitimate LC gluings. Now we are ready to rearrange the sequence, 
by postponing the initial step e′ ≡ e′′. So let us set ek := e, e′

k := e′ and e′′
k := e′′. Starting from 

the initial cycle C, let us perform (e′
k ≡ e′′

k ) after all of the gluings (e′
i ≡ e′′

i )0≤i≤k−1 have been 
carried out. The advantage is that e′

k ≡ e′′
k is now an LC step, because ek−1 and ek both contained 

the vertex v (so after e′
k−1 and e′′

k−1 are identified, the edges e′
k ≡ e′′

k become incident at v).
We are eventually left with the right cycle R. The subgraph GR of G corresponding to the 

edges of R contains at most one cycle. By inductive assumption, GR can be obtained from R via 
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a sequence of LC gluings. The latter sequence, performed after (e′
i ≡ e′′

i )0≤i≤k , forms a longer 
sequence of LC gluings that constructs G from C. �
Remark 19. Topologically, the proof above can be recapped as follows. Initially, we have an 
“unwanted” non-LC gluing e′ ≡ e′′ that increases the number of cycles from 1 to 2. Since in the 
end the graph G produced has at most 1 cycle, at some point the extra cycle has to be suppressed. 
The only way to suppress a cycle with a planar matching, is to identify some pair of edges f ′, 
f ′′ that have both endpoints in common. Our proof strategy was:

• to postpone the gluing e′ ≡ e′′, so that it is becomes an LC gluing; and also
• to anticipate f ′ ≡ f ′′, so that these two edges are glued when they only share one of their 

endpoints, not both.

We did not change the matching; we only changed the order in which the matching is performed. 
But in the rearranged sequence, no step increases the number of cycles by one. (There is also one 
less step that decreases the number of cycles by one; these two steps ‘canceled out’.)

Here is a variation we will need in the next Section. Given a graph G, we say that a vertex v of 
G is active if it belongs to a cycle. For example, every vertex of a cycle C is active. If we perform 
an LC gluing of two adjacent edges of C, the vertex between the two edges gets “de-activated”. 
In a tree, no vertex is active.

Lemma 20. Let C be a cycle. Let M be any complete planar matching of the edges of C. Let G
be the tree obtained from C by pairwise identifying the edges according to M, as in the previous 
Lemma. Given an arbitrary vertex c0 of C, there is a sequence of LC gluings that produced G
from C and in which the vertex c0 is active until the very last gluing.

Proof. Since every tree is simplicially collapsible onto any of its vertices, we may choose a 
collapsing sequence of G onto the vertex corresponding to c0. Now, every pair of adjacent edges 
in C matched by M corresponds to a leaf in the tree G; and elementary collapses in G (which 
are just leaf deletions) correspond to LC gluings on C. Hence, our collapse of G onto c0 induces 
a sequence of LC gluings, the last of which identifies two edges sharing both endpoints (one of 
the endpoints being c0). �
Remark 21. Unlike Lemma 18, Lemma 20 does not extend to partial matchings. For example, let 
us start with a hexagon of vertices {a, b, c, d, e, f }, and let us identify [b, c] and [c, d] (preserving 
orientation). This makes b coincide with d . Let us then glue together the edges [a, b] and [d, e], 
which have just become adjacent. The resulting partial matching M satisfies the condition of 
Lemma 18; however, there is only one possible sequence of LC gluings realizing M, and this 
only possible sequence deactivates the vertex c in the first step.

Definition 22 (Extensively LC). Let P be a d-dimensional pseudomanifold. We say that P is 
extensively LC if, for any spanning tree T of the dual graph of B , (a complex combinatorially 
equivalent to) P can be obtained via LC gluings from the tree of d-simplices TN dual to T .

If we replace “any” with “some” in the definition above, we recover the classical definition of 
LC. Hence, “extensively-LC” trivially implies LC. See Remark 27 below for the difference.
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Proposition 23 (essentially Durhuus [13]). All 2-balls and 2-spheres are extensively LC.

Proof. Let B be an arbitrary 2-sphere or 2-ball. Let T and TN be as in the definition of 
extensively-LC. By construction, we know that B is obtained from TN by some matching M
of the edges of ∂TN , which is a 1-dimensional sphere (or in other words, a cycle). Note that the 
matching is uniquely determined once the tree TN is chosen. If B is a 2-sphere, the matching is 
complete; if B is a ball, ∂B is a cycle, the matching is partial, and the edges left unmatched are 
precisely the edges of ∂B . In both cases, the multigraph obtained from ∂TN via the identifications 
in M contains at most one cycle. Using Lemma 18, we conclude. �

If T is a spanning tree of the dual graph of a (connected) d-manifold, following [9, p. 214]
we denote by KT the (d − 1)-dimensional subcomplex of the manifold determined by all the 
(d − 1)-faces that are not intersected by T . When d = 3, KT is 2-dimensional. Recall that for 
2-complexes collapsibility and extensive-collapsibility are equivalent notions. Using this, it is 
an easy exercise to adapt the original proofs of [9, Corollary 2.11] and of [9, Corollary 3.11], 
respectively, to derive the following results:

Theorem 24. Let S be a triangulated 3-sphere. The following are equivalent:

(i) S is extensively-LC;
(ii) for every spanning tree T of the dual graph of S, the complex KT is collapsible;

(iii) for every tetrahedron � of S, the 3-ball S − � is extensively collapsible;
(iv) for some tetrahedron � of S, the 3-ball S − � is extensively collapsible.

Theorem 25. Let B be a triangulated 3-ball. The following are equivalent:

(i) B is extensively-LC;
(ii) for some tetrahedron �, the 3-ball B − � is extensively collapsible to ∂B;

(iii) for every tetrahedron �, the 3-ball B − � is extensively collapsible to ∂B;
(iv) for every spanning tree T of the dual graph of S, the complex KT collapses to ∂B .

Corollary 26. Every triangulated d-ball or d-sphere with less than 8 vertices is extensively-LC.

Proof. By a result of Bagchi and Datta [3], all acyclic 2-complexes with less than 8 vertices are 
collapsible; it follows that all collapsible 2-complexes with less than 8 vertices are extensively 
collapsible [7]. �
Remark 27. Some 3-sphere with 8 vertices that is LC, but not extensively, is presented in [7]. 
After we remove a tetrahedron from such sphere, we obtain a collapsible ball B; but there is also 
a sequence of elementary collapses that from B gets us stuck in an 8-vertex triangulation of the 
Dunce Hat [7]. (See also [5, pp. 107–109] for a similar example with 12 vertices.) Moreover, the 
boundary of the 7-simplex is not extensively-LC, since (after the removal of an arbitrary 6-face) 
there is a sequence that gets us stuck in a 8-vertex Dunce Hat: This was first shown by Crowley 
et al., cf. [11] [8, Section 5.3].
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6. The only Mogami nucleus is the simplex

Let us now focus on d = 3. We wish to study how LC or Mogami steps in a construction of 
a 3-manifold affect the boundary-link of a single vertex. The four examples we present will be 
crucial in the proof of our Main Theorems. First we need one additional notation.

Definition 28 (Merging). Let C, D be two cycles with an edge e in common. The merging oper-
ation produces a new cycle as follows: we take the union C ∪ D, and we delete the edge e.

Example 29. Let B be a 3-ball. Let e be an edge in ∂B . Let v and w be the two vertices in 
link (e, ∂B). If we identify the two triangles v ∗ e and w ∗ e, this is a legitimate LC gluing – 
in fact, a FOLD. Let Q be the pseudomanifold obtained. Topologically, Q is also a 3-ball. With 
slight abuse of notation, let us keep calling v be the vertex of Q resulting from the identification 
of v and w. It is easy to see that link (v, ∂Q) is the cycle obtained by merging link (v, ∂B) and 
link (w, ∂B).

Example 30. Let B be a 3-ball. Let x be a vertex in ∂B . Let e1, e2 be two edges in link (x, ∂B). 
If we identify the two triangles x ∗ e1 and x ∗ e2, this is a legitimate Mogami gluing. Let v1, w1
be the two endpoints of e1. Similarly, let v2, w2 be the two endpoint of e2, labeled so that the 
vertex that is identified to v1 is v2. Let Q be the obtained pseudomanifold (which is not a ball, 
this time). Let us call v the vertex of Q resulting from the identification of the two vertices v1
and v2. It is easy to see that link (v, ∂Q) is a cycle. It is obtained from C1 = link (v1, ∂B) and 
C2 = link (v2, ∂B) with an operation that is an LC gluing plus a merging. More precisely, C1 and 
C2 do not have an edge in common; they share only the vertex x. However, the cycle link(v, ∂Q)

can be obtained from C1 and C2 by first identifying [x, w1] (which is in C1) and [x, w2] (which 
is in C2), and then by performing a merging at the resulting edge [x, w].

Example 31. Let P be a pseudomanifold obtained from a 3-ball by performing one Mogami 
gluing of 2 triangles sharing only a vertex v, and then another Mogami gluing of 2 triangles 
sharing only a vertex w �= v, such that v and w belong to adjacent triangles in P . Then:

• link (v, ∂P ) is the disjoint union of two cycles, Av and Bv ;
• link (w, ∂P ) is also the disjoint union of two cycles, Aw and Bw;
• link (v, ∂P ) ∩ link (w, ∂P ) consists of an edge e, which (up to relabeling) belongs to 

Av ∩ Aw .

Let us identify the two triangles v ∗ e and w ∗ e, and let Q be the resulting pseudomanifold. With 
the usual abuse of notation, let us call v be the vertex of Q obtained from the identification of v
and w. It is easy to see that link (v, ∂Q) is a disjoint union of three cycles, namely Bv , Bw , and a 
third cycle obtained by merging Av and Aw . In particular, ∂Q is not homeomorphic to ∂P . (This 
pathology is due to the presence of two different singularities in P , which are identified in the 
gluing; on LC pseudomanifolds, FOLD does preserve the homeomorphism type.)

Example 32. Let us start with an annulus of 4 squares, and let us subdivide each square into four 
triangles by inserting the two diagonals (Fig. 5). Let w be one of the four square barycenters. 
Let a, b, c, d be the four corners of the square containing w, labeled so that ab and cd are free 
edges (i.e. edges that belong to one triangle only). Let A be the obtained simplicial complex. 
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Fig. 5. The triangulated annulus A (in purple). The cone v ∗A is a Mogami pseudomanifold, with a singularity at v. With 
a couple of LC gluings (on the four top triangles), from v ∗ A it is possible to get a 3-ball without interior vertices. But 
if from v ∗ A we glue together the triangles [v, c, d] and [c, d, w], this is a faux pas (Remark 33). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Let us take a cone v ∗ A from a vertex v outside A. This v ∗ A is a Mogami pseudomanifold by 
Proposition 14. The boundary-link of v consists of 2 squares. Note that from v ∗A one can easily 
obtain a Mogami 3-ball without interior vertices by pairwise identifying the top four triangles. 
Instead, from v ∗ A, let us perform a FOLD step by gluing [c, d, v] with [c, d, w]. Let P be the 
obtained pseudomanifold. Since v ∗ A contained triangles [a, b, v] and [a, b, w], now that v is 
carried onto w we have in P two distinct triangles �1 and �2 that share one edge and also the 
opposite vertex. Hence P (which topologically is homeomorphic to v ∗A, cf. Example 29) is not 
a simplicial complex.

Remark 33. No 3-ball without interior vertices can be obtained via Mogami gluings from the 
pseudomanifold P of Example 32. In fact, assume by contradiction that R is a ball without inte-
rior vertices obtained with a Mogami construction from P . Because R is a simplicial complex, 
in R the two triangles �1 and �2 that share the vertices v, a, b must be identified at some point; 
so we might as well glue them immediately. Let us call Q be the pseudomanifold obtained from 
P by gluing �1 ≡ �2. We may assume that R is obtained via Mogami gluings from Q. Since R
is a ball without interior vertices, the link of v in R must be a disk. Since Q is not a simplicial 
complex the notion of “link of v in Q” is not well-defined; but we can look at the spherical link
L of v in Q, which is what we would get by intersecting Q with a sphere of small radius centered 
at v. (In simplicial complexes, this is isomorphic to the vertex link.) Up to homeomorphism, we 
can think of L as a 2-dimensional simplicial complex obtained from a finely triangulated annu-
lus by identifying (coherently, without twists) two parallel edges in different components of the 
boundary. Note that L is not planar, in the sense that no simplicial complex homeomorphic to L
can be drawn in R2 without self-intersections. Now, any further Mogami step performed on Q
will possibly modify L only via identifications in its boundary. Topologically, these steps may 
transform the spherical link of v into a torus, but not into a 2-ball (or a 2-sphere). A contradiction.

In fact, the topological argument of Remark 33 above proves the following:

Lemma 34. Let M be a Mogami pseudomanifold obtained from a 3-ball via a single Mogami 
gluing that is not an LC gluing. Let v be the singular vertex of M . Let C1 and C2 be the two 
disjoint components of the boundary-link of v. Suppose there is a vertex w �= v in ∂M such 
that link (v, ∂M) ∩ link (w, ∂M) consists of 2 edges, one in C1 (say, [a, b]) and one in C2 (say, 
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[c, d]). Let P be the pseudomanifold obtained from M via the LC gluing that identifies the trian-
gles [v, c, d] and [c, d, w]. There is no 3-ball without interior vertices that can be obtained via 
Mogami gluings from the pseudomanifold P .

We are now ready to prove our main result.

Theorem 35. Let B be a Mogami 3-ball without interior vertices. Let TN be the tree of tetra-
hedra from which B is constructed, via some sequence of Mogami gluings. Then, B can also be 
constructed from TN via some sequence of LC gluings. In particular, all Mogami 3-ball without 
interior vertices are LC.

Proof. If all Mogami gluings are LC gluings, there is nothing to prove. Otherwise, let us consider 
the first Mogami gluing �′

0 ≡ �′′
0 that is not LC. Let v = �′

0 ∩�′′
0. By definition there are disjoint 

edges δ′
0, δ

′′
0 such that �′

0 = v ∗ δ′
0 and �′′

0 = v ∗ δ′′
0 . Let P be the pseudomanifold obtained after 

the gluing �′
0 ≡ �′′

0; the vertex v is in the boundary of P , while the triangle �0 obtained from the 
identification is in the interior of P . We denote by δ0 the edge opposite to v in �0. As we saw in 
Fig. 1, the gluing creates a singularity at v: namely, link (v, ∂P ) consists of two cycles. Since B
is a 3-ball with all vertices on the boundary, the subsequent Mogami gluings in the construction 
of B from P will

• keep the vertex v in the boundary, and
• eventually “kill” one of the two connected components of link(v, ∂P ).

Let us call C the “doomed” component, that is, the cycle of link (v, ∂P ) none of whose edges 
will eventually appear in link (v, ∂B). Let us denote by c0 the vertex of δ0 that belongs to C.

Our strategy is to consider this cycle C and rearrange the sequence of gluings according to 
Lemma 20, so that after the rearrangement, all gluings in the sequence are LC gluings, and the 
last pair of edges glued is a pair adjacent to the edge δ0. Before doing this, though, we need a 
delicate preliminary argument. In fact, while constructing B from P , all triangles of star (v, ∂P )

are going to be matched and sunk into the interior; but what we do not know for sure, is whether 
they are going to be matched to one another. A priori, there are other two possibilities that we 
should consider (both of which could occur multiple times):

(a) for some edge e of C, it could happen that v ∗ e is matched in an LC gluing with some 
triangle w ∗ e outside star (v, ∂P );

(a) or it could also happen that v ∗ e is matched in a Mogami gluing to another triangle that does 
not contain v, but contains exactly one of the two endpoints (let us call it x) of e.

The steps above affect the boundary-link of v as follows.

I) The cycle C is “expanded” via a merging operation. For example, in case (a) the boundary-
link of v gets merged with the boundary-link of w, as explained in Example 29. Case (b) is 
similar: The vertex v is identified with a vertex v2 of the other triangle, and essentially the 
boundary-link of v gets merged with the boundary-link of v2 (after an LC gluing; compare 
Example 30).

II) Possibly, the link of P might acquire further connected components. This happens when the 
vertex w identified with v is also a singularity, a case we saw in Example 31.
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These cases, however, do not ruin our proof strategy — they just delay it. Our remedy in fact is 
to anticipate all matchings of the type (a) and (b) described above, in a “first round” of identi-
fications. For example, if a single triangle v ∗ e is later matched in a FOLD with some triangle 
w ∗ e outside star (v, ∂P ), then we can rearrange the sequence by performing such LC gluing 
immediately. After all identifications of type (a) and (b) have been carried out, if P1 is the re-
sulting pseudomanifold, we ask ourselves again: are all triangles of star (v, ∂P1) going to be 
matched exclusively with one another? If not, we repeat the procedure above, in a second round 
of identifications, and we call the obtained pseudomanifold P2. And so on.

The effect of these rounds on the boundary-link of v is to expand it by inglobating new edges. 
We make a crucial claim: in these rounds of identifications, the components of the boundary-link 
of v remain separate. The proof of this claim relies on Lemma 34. In fact, suppose by contra-
diction that passing from P1 to P2, say, we have included into C an edge [a, b] that belongs 
to another component of the boundary-link of v (which is what we have done in Example 32).
This means that in P2 we have a singularity v, and two distinct triangles containing v and the 
edge [a, b]. So if we want to obtain a simplicial complex, we are forced to glue the two trian-
gles together; and with the same proof of Remark 33, no matter how we continue this Mogami 
construction, we are never going to achieve a 3-ball without interior vertices. A contradiction. 
(This shows that the components of the boundary-link of v never have an edge in common; in 
analogous way, adapting Lemma 34, one proves they cannot have vertices in common, either.)

Eventually, after a finite number of rounds, we will reach a pseudomanifold P ′ such that:

• link (v, ∂P ′) consists of k ≥ 2 connected components,
• B is obtained with a list of Mogami gluings from P ′, a process in which exactly k − 1 of the 

components of link (v, ∂P ′) are going to be “killed”,
• if C′ is the connected component of link (v, ∂P ′) obtained from C via merging operations, 

then for any edge e of C′ there exists an edge f of C′ such that, in one of the Mogami 
gluings that leads from P ′ to B , the triangle v ∗ e is identified with v ∗ f .

In fact, we can repeat the reasoning above until the last property holds for all the k −1 “doomed” 
connected components of link (v, ∂P ′).

Note that C′ contains all vertices of C. This is because the merging operation does not delete 
any vertex. In particular, the vertex c0 = δ0 ∩ C of C will be present in C′ as well.

We are now in the position to use Lemma 20. The Mogami construction that leads from P ′ to 
B yields a complete matching of the edges of C′. Clearly, ordering the edges in link (v, ∂P ′) is 
the same as ordering the triangles in star (v, ∂P ′); also, two edges e, f are adjacent in the link 
of v if and only if v ∗ e and v ∗ f are adjacent in the star of v. Let us thus reorder the gluings 
involving triangles in star (v, ∂P ′), according to Lemma 20, so that the vertex c0 is deactivated 
last. In this order, the identifications “killing” the component C′ are all LC gluings. Furthermore, 
it is easy to see that all gluings mentioned above (those leading from P to P ′, plus all LC gluings 
that kill C′) can be performed before the identification �′

0 ≡ �′′
0. With this postponement the step 

�′
0 ≡ �′′

0 becomes an LC gluing: In fact, after all other identifications have been carried out, �′
0

and �′′
0 share the edge [v, c0]. In conclusion, by reshuffling the Mogami sequence we got rid of 

the first non-LC step. By induction, we reach our claim. �
Corollary 36. Let B be a 3-ball without interior vertices. The following are equivalent:

(1) B is Mogami;
(2) B is LC;
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(3) some (possibly empty) sequence of SPREAD operations reduces B to a tree of tetrahedra;
(4) B has trivial nuclei (that is, some sequence of SPREAD and SPLIT operations reduces B to 

disjoint tetrahedra).

Proof. “(1) ⇔ (2)” follows from Theorem 35.
“(2) ⇔ (3)”: In [9, Lemma 3.18] it is shown that a 3-ball B without interior vertices is LC if 

and only if it can be obtained from a tree of tetrahedra via FOLD steps. The conclusion follows 
by reversing the construction.

“(3) ⇔ (4)”: It follows from the characterization of tree of N tetrahedra as the complexes that 
can be reduced to N disjoint tetrahedra using N − 1 SPLIT operations. �
Corollary 37. The only Mogami nucleus is the tetrahedron.

Proof. Clearly a tetrahedron is Mogami. On any other nucleus, neither SPREAD nor SPLIT steps 
are possible, because every interior triangle has at most one edge on the boundary. �
Corollary 38. Some 3-balls are not Mogami.

For example, Hachimori’s triangulation of Bing’s (thickened) house with two rooms, de-
scribed in [18] [17, p. 89], is a non-trivial nucleus with 1554 tetrahedra. The smallest non-trivial 
nucleus found so far with computer tools has only 37 tetrahedra [10, p. 260].

6.1. Relation with knots and collapsibility

A spanning edge in a 3-ball B is an interior edge with both endpoints on the boundary. A 
spanning edge [x, y] is called knotted if some (or equivalently, any) path in ∂B from x to y, 
together with the edge [x, y], forms a non-trivial knot. For brevity, we call a 3-ball B knotted if 
it contains a knotted spanning edge.

Using the same exact proof of [9, Proposition 3.19], one can obtain the following consequence 
of Corollary 36:

Lemma 39. Mogami 3-balls without interior vertices do not contain knotted spanning edges.

Compare the result above with the following Lemma (which is known, but we include a proof 
for completeness):

Lemma 40. Every (tame, non-trivial) knot can be realized as knotted spanning edge in some 
3-ball without interior vertices.

Proof. The following classical construction goes back to Furch [15]: Let us dig a hole, shaped 
like the chosen knot, inside a suitably fine pile of cubes, stopping one step before destroying the 
property of having a 3-ball. Let us then triangulate every cube according to a standard pulling 
triangulation. This construction is carried out in detail for the trefoil knot by Hachimori [18, 
model “Furch’s knotted hole ball”]; compare also [9, Example 2.14 & Figure 3]. Observe that the 
3-ball obtained with such construction typically contains plenty of interior vertices. However, we 
can progressively “shell out” all cubes that are far away from the knot, until we reach a thinner 
triangulation without interior vertices. (Another way to reach such triangulation is to simply 
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apply the spread and the split operations greedily. It is an easy topological exercise, essentially 
analogous to the proof of Lemma 39, to check that none of these operations can delete or modify 
the existing knot.) �

From Lemma 39 and Lemma 40, we can find infinitely many examples of 3-balls that are not 
Mogami. In fact, we can prove an asymptotic enumeration result:

Proposition 41. In terms of the number N of facets, the number of non-Mogami 3-balls with-
out interior vertices is asymptotically the same of the total number of 3-balls without interior 
vertices.

Proof. Let us fix a 3-ball A with some knotted spanning edge and with all vertices on ∂A

(cf. Lemma 40). Let FA be the number of facets of A. Let us also fix a triangle �A ⊂ ∂A. 
Now, let B be an arbitrary 3-ball with N tetrahedra, without interior vertices, and with a dis-
tinguished triangle �B ⊂ ∂B . From B we can obtain a 3-ball B ′ with N + FA tetrahedra via a
UNITE step that consolidates the 3-balls A and B by identifying �A ≡ �B . (Ignore the fact that 
there are multiple ways to do this, according to rotation, as this amounts to an asymptotically 
neglectable factor.) No matter how we choose B , the union B ′ = A ∪ B is going to contain the 
same knotted spanning edge of A. But since all its vertices are on the boundary, by Lemma 39
the ball B ′ cannot be Mogami. Now note that B ′ determines B: In fact, for any interior triangle 
� of B ′ with all three edges on ∂B ′, we could split B ′ at � and check if one of the two 3-balls 
obtained is combinatorially equivalent to A (if it is, the other 3-ball is B). Hence the transition 
from B to B ′ yields an injective map{

3-balls with N tetrahedra
and with 0 interior vertices

}
↪−→

{
non-Mogami 3-balls with N + FA tetrahedra
and with 0 interior vertices

}

If we pass to the cardinalities and let N tend to infinity, FA being constant, we conclude. �
Finally, we recall the connection of knot theory with simplicial collapsibility:

Proposition 42 (essentially Goodrick, cf. [4, Corollary 4.25]). Let K be any knot whose group 
admits no presentation with 2 generators. (For example, the double trefoil.) Any 3-ball with a 
knotted spanning edge isotopic to K , cannot be collapsible.

Proposition 43 ([9, Theorem 3.23]). For any 2-bridge knot K (for example, the trefoil), there is 
a collapsible 3-ball without interior vertices with a knotted spanning edge isotopic to K .

Summing up, we have the following hierarchy:

Theorem 44. For 3-balls without interior vertices, the following inclusions hold:

{shellable}� {LC} = {Mogami}� {collapsible}� {all 3-balls without interior vertices}.

Proof. Any linear subdivision of a (convex) 3-dimensional polytope (with or without interior 
vertices) is collapsible [12] and even LC [9, Theorem 3.27]. However, Rudin proved in 1958 
that not all these linear subdivisions are shellable [22]; her counterexample, known as “Rudin’s 
ball”, is a subdivision of a tetrahedron with all 14 vertices on the boundary. The equivalence of 
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LC and Mogami is discussed in Corollary 36. Any knotted 3-ball described in Proposition 43
is collapsible, but cannot be Mogami by Lemma 39. Finally, 3-balls without interior vertices 
that are not collapsible can be produced by pairing together Lemma 40 and Proposition 42: For 
example, any 3-ball without interior vertices and with a knotted spanning edge isotopic to the 
double trefoil would do. �
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