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Abstract Z2-Yukawa-QCD models are a minimalistic
model class with a Yukawa and a QCD-like gauge sector
that exhibits a regime with asymptotic freedom in all its
marginal couplings in standard perturbation theory. We dis-
cover the existence of further asymptotically free trajectories
for these models by exploiting generalized boundary condi-
tions. We construct such trajectories as quasi-fixed points for
the Higgs potential within different approximation schemes.
We substantiate our findings first in an effective-field-theory
approach, and obtain a comprehensive picture using the func-
tional renormalization group. We infer the existence of scal-
ing solutions also by means of a weak-Yukawa-coupling
expansion in the ultraviolet. In the same regime, we discuss
the stability of the quasi-fixed point solutions for large field
amplitudes. We provide further evidence for such asymptoti-
cally free theories by numerical studies using pseudo-spectral
and shooting methods.

1 Introduction

Gauged Yukawa models form the backbone of our descrip-
tion of elementary particle physics: they provide mecha-
nisms for mass generation of gauge bosons as well as for
chiral fermions via the Brout–Englert–Higgs mechanism.
Many suggestions of even more fundamental theories beyond
the standard model, such as grand unification, models of
dark matter, supersymmetric models, etc., also involve the
structures of gauged Yukawa systems. A comprehensive
understanding of such systems is thus clearly indispens-
able.

Despite their fundamental relevance, gauged Yukawa sys-
tems can also exhibit a genuine conceptual deficiency. Many
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generic models develop Landau-pole singularities in their
perturbative renormalization group (RG) flow towards high
energies, indicating that these models may not be ultraviolet
(UV) complete. If so, such models do not constitute quantum
field theories which are fully consistent at any energy scale.
Insisting on UV completeness by enforcing a UV cutoff to
be sent to infinity typically requires to send the renormalized
coupling to zero. This problem is also called triviality.

An important class of UV-complete nontrivial theories
are those featuring asymptotic freedom [1,2] which allow
to send the cutoff to infinity at the expense of a vanishing
bare coupling while keeping the renormalized coupling at a
finite value. In fact, a conventional perturbative analysis [3–
13] is capable of revealing the existence of asymptotically
free gauged Yukawa models, and allows a classification in
terms of their matter content and corresponding represen-
tations. Recent studies of aspects of such models [14–16]
and constructions of phenomenologically acceptable models
[17–21] have been performed; however, a unique route to an
unequivocal model appears not obvious. Phenomenological
constraints on the gauge and matter side typically require
an appropriately designed scalar sector, as UV Landau poles
often show up in the Higgs self-coupling.

The standard model is, in fact, not asymptotically free
because of the perturbative Landau pole singularity in the
U(1) gauge sector. Still, all other gauge couplings as well
as the dominant top-Yukawa coupling and the Higgs self-
coupling decrease towards higher energies. In fact, the value
of the Higgs boson mass and the top quark mass are near-
critical [22] in the sense that the perturbative potential
approaches flatness towards the UV. Whereas a substan-
tial amount of effort has been devoted to clarify whether
the potential is exactly critical or overcritical (metastable
and long-lived) in recent years [22–27], a conclusive answer
depends on the precise value of the strong coupling and the
top Yukawa coupling [28,29] as well as on the details of the
microscopic higher-order interactions [30–38]. In summary,
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we interpret the present data as being compatible with the
critical case of the Higgs interaction potential approaching
flatness towards the UV. This viewpoint is also a common
ground for the search for conformal extensions of the stan-
dard model [39–42].

For the present work, this viewpoint serves as a strong
motivation to study asymptotically free gauged Yukawa sys-
tems. Whereas perturbation theory seems ideally suited for
this, conventionally made implicit assumptions may reduce
the set of asymptotically free RG trajectories visible to per-
turbation theory. In fact, new asymptotically free trajectories
in gauged-Higgs models have been discovered with the aid
of generalized boundary conditions imposed on the renor-
malized action [43,44]. This result has also been aston-
ishing as it was obtained in a class of models which does
not exhibit asymptotic freedom in naive perturbation theory.
Still, the existence of these new trajectories has been con-
firmed by weak-coupling approximations, effective-field-
theory approaches, large-N methods, as well as more com-
prehensively with the functional RG [44].

As such dramatic conclusions about the existence of new
UV-complete theories requires substantiation and confirma-
tion, the purpose of this work is to study the emergence
of these new RG trajectories in a model that also exhibits
asymptotic freedom already in standard perturbation the-
ory. This allows to understand the novel features of the RG
trajectories in greater detail. For this, we use the simplest
gauged Yukawa system that exhibits asymptotic freedom
perturbatively, it consists of a QCD-like matter sector with
nonabelian SU(Nc) gauge symmetry Yukawa-coupled to a
single real scalar field. This Z2-Yukawa-QCD model can
be viewed as a subset of the standard model [34,45], with
the Yukawa sector representing the Higgs boson and the top
quark. In this model, the existence of asymptotically free tra-
jectories has already been known since the seminal work of
Cheng, Eichten, and Li [4] based on standard perturbation
theory.

In the present work, we discover the existence of new
asymptotically free trajectories in addition to the standard
perturbative solution. For this, we follow the strategy of
[43,44] using effective-field-theory methods and the func-
tional RG in order to get a handle on the global properties of
the Higgs potential. We generalize the approach to an inclu-
sion of a fermionic sector and also identify a new approxi-
mation technique (φ4-dominance) that allows to get deeper
analytical insight into the functional flow equations.

While the existence of new asymptotically free trajecto-
ries as well as some of their properties are reminiscent to
the conclusions already found for the gauged-Higgs models
[43,44], we also find some interesting differences. Again,
the class of new solutions has free parameters, such as a
field- or coupling-rescaling exponent and the location of the
(rescaled) minimum of the potential during the approach to

the UV. For the present Z2-Yukawa-QCD model, we find
that the exponent is more tightly constraint by the require-
ment of a globally stable potential. Also the rescaled poten-
tial minimum has to remain nonzero towards the UV, exem-
plifying the fact that the model develops a non-trivial UV
structure which is not visible in the deep Euclidean region
(DER). The present work thus pays special attention to the
difference between working in the DER, as is often implic-
itly done in standard perturbation theory, and a more general
analysis.

As our methods can address the global behavior of the
potential, our work also adds new knowledge to the results
known from standard perturbation theory: for the asymp-
totically free Cheng–Eichten–Li solution, we demonstrate
that the potential is and remains globally stable when run-
ning the RG towards the UV; an analytic approximation of
the potential can be given in terms of hypergeometric func-
tions.

In Sect. 2, we review the standard analysis of asymptotic
freedom for perturbatively renormalizableZ2-Yukawa-QCD
models, for a generic number of colors and fermion flavors.
We then specify our analysis to three colors and six flavors,
to get closer to the standard model and only in Sect. 7, while
summarizing most of our findings, we will generalize them
to an arbitrary number of colors. In Sect. 3, we present the
functional renormalization group (FRG) approach by which
we derive the RG flow equations for our model. In Sect. 4 and
Sect. 5, we generalize the treatment of Sect. 2 and include
perturbatively nonrenormalizable Higgs self-interactions by
polynomially truncating the FRG equations, as in effective
field theory (EFT) approaches, within and beyond the deep
Euclidean region. In the subsequent sections we then address
the task of solving the FRG equation for a generic scalar
potential. In Sect. 6, we construct functional approximations
of asymptotically free solutions by inspecting a regime where
the scalar fluctuations are dominated by a quartic interaction.
Another description is then obtained from the expansion in
powers of the weak Yukawa coupling in Sect. 7. Finally in
Sect. 8, we substantiate our analytical results by using numer-
ical tools, in particular pseudo-spectral and shooting meth-
ods. Conclusions are presented in Sect. 9.

2 Asymptotic freedom within perturbative
renormalizability

In the present work, we focus on a Yukawa model containing
a real scalar field φ and a Dirac fermion ψ which is in the fun-
damental representation of an SU(Nc) gauge group. This can
be viewed as a toy model for the standard-model subsector
retaining only the Higgs, the top quark, and the gluon degrees
of freedom for Nc = 3. Its gauge-fixed classical Euclidean
action reads
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S =
∫
x

[
1

2
∂μφ∂μφ + m̄

2
φ2 + λ̄

8
φ4 + ψ̄ i /Dψ + ih̄√

2
φψ̄ψ

+1

4
Fi

μνF
iμν + 1

2α
(∂μA

μ
i )2 + η̄i∂μ∇ i j

μ η j
]

. (1)

Note that this model exhibits a discrete chiral symmetry
mimicking the electroweak symmetry of the standard-model
Higgs sector such that a mass term for the fermion is for-
bidden. The top quark is coupled to the gluons through the
covariant derivative Dμ = ∂μ + iḡsAi

μτ i , with τ i the gener-
ators of the su(Nc) Lie algebra, and to the Higgs field via
the Yukawa coupling h̄. The field strength tensor for the
SU(Nc) gauge bosons Ai

μ is given by Fi
μν = ∂μAi

ν −∂ν Ai
μ−

ḡs f i jk A
j
μAk

ν and ∇ i j
μ = δi j∂μ + ḡs f i jk Ak

μ is the covariant
derivative in the adjoint representation. We adopt a Lorenz
gauge with an arbitrary parameter α in the computation of the
RG equations. We will take the Landau gauge limit α → 0
as far as the analysis of asymptotically free (AF) solutions
is concerned, also because the Landau gauge is a fixed point
of the RG flow of the gauge-fixing parameter [46,47]. The
gauge fixing is complemented by the use of Faddeev-Popov
ghost fields ηi and η̄i .

Let us first review the standard analysis of this model at
one loop, considering only the perturbatively renormalizable
couplings [4]. The latter are the scalar mass m̄, the Higgs self-
interaction λ̄, the Yukawa coupling h̄ and the strong gauge
coupling ḡs. In particular, we address the UV behavior of this
model, and look for totally AF trajectories. To this end, one
focuses on the RG equations for the renormalized dimen-
sionless couplings gs, h, m, and λ. Their definition in terms
of the bare couplings and wave function renormalizations is
the usual one, which we postpone to Sect. 3 for the moment.

As the scalar field is not charged under the gauge group,
the beta function of gs reads [1]

∂t g
2
s = ηAg

2
s , ηA = − g2

s

8π2

(
11

3
Nc − 2

3
Nf

)
, (2)

where we have allowed for in total Nf Dirac fermions in the
fundamental representation. This slightly generalizes Eq. (1),
where we have displayed only one Dirac field. In fact, we
focus in this work on the case, where only one flavor is
coupled to the scalar field via a Yukawa interaction. This
is motivated by the fact that the top-Yukawa coupling plays
a dominant role in the RG running of the Higgs potential
and all other Yukawa couplings are negligibly small. Allow-
ing for the presence of further Dirac fermions charged under
SU(Nc) as in Eq. (2) does not modify the Yukawa structure.
In the present section, we retain generic Nc and Nf , while
the following sections will specifically address Nc = 3 and
Nf = 6, to mimic the standard model. In the latter case, the
one-loop β function for gs is negative and therefore the strong
coupling is AF, i.e., g2

s → 0 in the UV limit.

The RG flow equation for the Yukawa coupling h2 in this
model is

∂t h
2 = h2

16π2

[
(3 + 2Nc)h

2 − 6
N 2

c − 1

Nc
g2

s

]
. (3)

The latter two equations entail that AF trajectories exist in the
(g2

s , h2) plane, as it is visible in the left panel of Fig. 1, where
the RG flow is represented with arrows pointing towards the
UV. The dashed red line highlights a special AF trajectory,
along which h2 exhibits an asymptotic scaling proportional
to g2

s . This behavior is best characterized in terms of the
rescaled coupling

ĥ2 = h2

g2
s
. (4)

When this ratio at some initialization scale takes the partic-
ular value

ĥ2∗ = 1

3 + 2Nc

{
4

3
(Nf − Nc) − 6

Nc

}
, (5)

it is frozen at any RG time. Indeed the β function of ĥ2 reads

∂t ĥ
2 = 3 + 2Nc

16π2 g2
s ĥ

2
(
ĥ2 − ĥ2∗

)
, (6)

and it has only one nontrivial zero at ĥ2 = ĥ2∗ for g2
s �=

0. We observe that this AF trajectory exists within a finite
window for Nf at fixed Nc. The upper bound of the window
is given by the requirement that the strong coupling constant
stays AF which is essential for the considered mechanism.
Beyond that upper bound, gauged-Yukawa models can still
be UV complete through the mechanism of asymptotic safety,
provided they feature a suitable matter content [20,48–51].
The lower bound can be obtained from Eq. (5) by demanding
ĥ2∗ > 0 such that h2 > 0 to preserve unitarity, or reflection
positivity in Euclidean signature. Thus, we obtain

Nc + 9

2Nc
< Nf <

11

2
Nc. (7)

The standard-model case with Nc = 3 and Nf = 6 is inside
this window, resulting in a fixed point at

ĥ2∗ = 2

9
. (8)

A partial fixed point for a ratio of AF couplings has been
called quasi-fixed point (QFP) in Ref. [44]. It is a defining
condition for AF scaling solutions and a useful tool to search
for such trajectories [3,7,13,14].

The fixed-point nature of Eq. (8) and its stability proper-
ties are best appreciated in the right panel of Fig. 1, where the
QFP corresponds again to the dashed red trajectory. Using
the flow in theory space in terms of ĥ2, this trajectory clas-
sifies as UV unstable. UV-complete trajectories hence have
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Fig. 1 Left Panel the one-loop RG flow of the perturbatively renor-
malizable model projected on the plane of the Yukawa coupling h2 and
the strong gauge coupling g2

s . The color and flavor numbers are fixed
to Nc = 3 and Nf = 6. Right panel the same flow plotted in terms of
the rescaled Yukawa coupling ĥ2 defined in Eq. (4). The UV repulsive
QFP is highlighted by a red dashed line that corresponds to the solution
of Eq. (8)

to emanate from the QFP. In turn, these trajectories are IR
attractive, hence the low-energy behavior is governed by the
QFP, enhancing the predictive power of the model.

From another perspective, the AF trajectory defined by
Eq. (8) can be viewed as an upper bound on the ratio of
the Yukawa coupling and the gauge coupling at some ini-
tializing scale. For ĥ2 > ĥ2∗, asymptotic freedom is lost and
the Yukawa coupling hits a Landau pole at a finite RG time
towards the UV. The Yukawa coupling becomes AF only
for ĥ2 ≤ ĥ2∗. Throughout the main text of this work, we
will concentrate on the implications of the RG flow for the
particular ratio defined by this upper bound where the flow
of the Yukawa coupling is locked to the running of gs. For
ĥ2 < ĥ2∗, the Yukawa coupling is driven faster than the gauge
coupling towards the Gaußian fixed point for high energies.
These scaling solutions are sketched in “Appendix A”.

In order to investigate the implications for the Higgs sec-
tor, we first study the β function for the renormalized quartic
coupling at the one-loop level

∂tλ = 9

16π2 λ2 − Nc

4π2 h
4 + 2ηφλ, (9)

ηφ = Nc

8π2 h
2, (10)

where ηφ is the anomalous dimension of the scalar field.
We would like to emphasize at this point that we restrict the
discussion to the deep Euclidean region (DER) here, where
all the masses are negligible compared to the RG scale. This
implies in particular that any threshold effect given by the
mass parameter m of the scalar field is neglected. In case
the system is in the symmetry-broken regime, effects from

a nonvanishing vacuum expectation value on the properties
of the top quark are also ignored for the moment, as they
would alter the beta functions for the Yukawa coupling and
the gauge coupling as well.

The β function for the quartic coupling is a parabola with
two roots that are proportional to h2. As before, we classify
AF trajectories by a QFP condition for a suitable ratio

λ̂2 = λ

h4P , P > 0, (11)

where the power P is determined by the requirement that λ̂2

achieves a finite positive value in the UV. The flow equation
for this rescaled Higgs coupling then receives contributions
from the β function of h2. As already stated, we focus on the
AF trajectories with ĥ2 = ĥ2∗. In this case it is convenient to
define an anomalous dimension for the Yukawa coupling by

ηh2 ≡ −∂t h2

h2

∣∣∣∣
h2=g2

s ĥ
2∗

= −ηA, (12)

which is related to the anomalous dimension of the gauge
field as h2 ∼ g2

s for this specific trajectory. Moreover, it is
useful to introduce two rescaled anomalous dimensions, by
factoring out the Yukawa coupling

η̂h2 = ηh2

h2 = 1

8π2 ĥ2∗

(
11

3
Nc − 2

3
Nf

)
, (13)

η̂φ = ηφ

h2 = Nc

8π2 . (14)

It turns out that the only possible QFP occurs at P = 1/2, as
suggested by the scaling of the two roots of Eq. (9). In this
case the β function of the rescaled Higgs coupling reads

∂t λ̂2 = h2
(

9

16π2 λ̂2
2 + (

2η̂φ + η̂h2
)
λ̂2 − Nc

4π2

)
. (15)

In fact for P = 1/2 the QFP equation ∂t λ̂2 = 0 admits
two real roots, one positive and one negative. For instance,
choosing Nc = 3 and Nf = 6 results in

λ̂±
2 = 1

6

(
−25 ± √

673
)

. (16)

The β function for λ̂2 is a convex parabola, therefore the pos-
itive (negative) root corresponds to a UV repulsive (attrac-
tive) QFP. The phase diagram is depicted in Fig. 2. Exactly
on top of λ̂+

2 the Yukawa coupling drives the Higgs coupling
to zero towards the UV. For an initial condition such that the
rescaled scalar coupling is smaller than λ̂+

2 , λ̂2 is attracted in
the UV towards the negative root and the perturbative poten-
tial appears to become unstable. For an initial value bigger
than λ̂+

2 , the scalar coupling hits a Landau pole in the UV.
Hence, the requirement of a stable and UV-complete the-
ory enforces λ̂2 = λ̂+

2 . As for the Yukawa coupling, this
trajectory is IR attractive, hence the low-energy behavior is
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Fig. 2 The one-loop RG flow of the perturbatively renormalizable
model projected on the plane of the rescaled Higgs quartic coupling
λ̂2 (for P = 1/2 as defined in Eq. (11)) and the strong gauge coupling
g2

s . The color and flavor numbers are fixed to Nc = 3 and Nf = 6. The
UV repulsive QFP λ̂+

2 in the left panel and the UV attractive QFP λ̂−
2

in the right panel are highlighted by red dashed lines that correspond to
the solutions in Eq. (16)

governed by the QFP λ̂+
2 . Thus, the theory exhibits a higher

degree of predictivity.
In the remaining part of this paper, we restrict ourselves to

an asymptotic UV running of the Yukawa coupling described
by Eqs. (4) and (5). We will refer to the AF solution described
by Eq. (5) and by the positive root in Eq. (16) as the Cheng–
Eichten–Li (CEL) solution, since it was first described in
Ref. [4]. The further AF solutions with ĥ2 < ĥ2∗ have also
already been discussed in Ref. [4] as well as in later analyses
[7,14]; for completeness, we review them in “Appendix A”.
For the remainder of the paper, we consider the asymptotic
UV running of the Yukawa coupling of Eqs. (4) and (5),
because it is most predictive: whereas classically the gauge
coupling gs, the Yukawa coupling h and the scalar self-
interaction λ are independent, our AF trajectory locks the
running of h and λ to that of gs. Physically, this implies that
the mass of the fermion (top quark) as well as that of the Higgs
boson will be determined in terms of the initial conditions for
the gauge sector and the scalar mass-like parameter, i.e., the
Fermi scale. This maximally predictive point in theory space
is also called the Pendleton-Ross point [52]. Let us finally
emphasize that we focus exclusively on the UV behavior of
our model class in the present work. The low-energy behavior
will be characterized by possible top-mass generation from
Z2 symmetry breaking and a QCD-like low-energy sector
for the remaining fermion flavors and gauge degrees of free-
dom. In models with a gauged Higgs field, a distinction of
Higgs- and QCD-like phases as well as details of the particle
spectrum might be much more intricate [53–56].

The question that is left open by the preceding standard
perturbative UV analysis is as to whether the CEL solution is

the only possible AF model with the same field content and
symmetries of Eq. (1). More specifically, can there be more
AF solutions outside the family of perturbatively renormal-
izable models? To address this possibility, we take inspira-
tion from the discovery that new AF trajectories can be con-
structed in nonabelian Higgs models, if functional RG equa-
tions are used to explore the space of theories including also
couplings with negative mass dimension [43,44]. Therefore,
as a first step of our investigation, we now turn to the compu-
tation of such functional RG equations for Z2-Yukawa-QCD
models.

3 Functional renormalization group

Since the work of Wilson, Wegner and Houghton, it is known
that in a generic field theory one can construct functional RG
equations which are exact [57,58]. For many purposes, the
most useful form of these equations is the one, referring to the
one-particle irreducible effective action 
, which descends
from adding a regularization kernel Rk to the quadratic part
of the bare action, in order to keep track of the successive
inclusion of IR modes at a scale k. Then the full (inverse) two-
point function 


(2)
k at this scale enters the one-loop computa-

tion, supplemented by the regulator Rk . Differentiating with
respect to the scale k leads to the Wetterich equation [59–63]

∂t
k[�] = 1

2
STr

{
∂t Rk



(2)
k [�] + Rk

}
, (17)

where t = log(k/kref) is the RG time with kref some refer-
ence scale. Thanks to the derivative ∂t Rk in the numerator, all
UV divergences are regulated as well. The effective average
action 
k interpolates between a microscopic theory defined
at some UV scale �, 
k=� = Scl, and the effective action

k=0 = 
, where all the quantum fluctuations are integrated
out, see [64–68] for reviews.

Equation (17) can be projected onto the RG flow of a
specific coupling constant. In addition, it is also well suited
to study functional parametrizations of the dynamics, such
as a general scalar effective potential. These functional flow
equations can then be used also outside the regime of small
field amplitudes, to address problems such as the existence
of a nontrivial minimum or the global stability of the theory.

As we are interested in the properties of the beta functional
of the scalar potential, we use


k =
∫
x

[
Zφ

2
∂μφ∂μφ+U

(
φ2/2

)
+ Zψψ̄ i /Dψ + ih̄√

2
φψ̄ψ

+ ZA

4
Fi

μνF
μν
i + ZA

2α
(∂μA

μ
i )2 + Zηη̄

i∂μ∇μ
i jη

j
]

,

(18)
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as an approximation scheme for the effective average action.
This derivative expansion has proven useful, especially in
the analysis of the RG flow of the Higgs potential [30,33,34,
38,43,44,69–77]. The effective average potential U which
exhibits a discreteZ2 symmetry and the wave function renor-
malizations Z{φ,ψ,A,η} are scale dependent, as well as the
Yukawa coupling h2 and the strong coupling gs. Let us intro-
duce a dimensionless renormalized scalar field in order to fix
the usual RG invariance of field rescalings

2ρ = Zφk
2−dφ2. (19)

In a similar manner, also renormalized fields for the fermions
and the gauge bosons might be introduced. The dimension-
less renormalized couplings read

h2 = h̄2kd−4

ZφZ2
ψ

, g2
s = ḡ2

s k
d−4

ZA
. (20)

By plugging the ansatz for 
k into Eq. (17), we can extract
the flow equations for the dimensionless potential

u(ρ) = k−dU (Z−1
φ kd−2ρ), (21)

as well as the flow equation for the dimensionless renormal-
ized Yukawa coupling, ∂t h2. Similarly, we obtain the anoma-
lous dimensions of the fields that are defined as

ηφ = −∂t log Zφ, ηψ = −∂t log Zψ, (22)

encoding the running of the wave function renormalizations.
The functional flow equation for the full dimensionless

renormalized potential is given by

∂t u = − du(ρ) + (d − 2 + ηφ)ρu′(ρ) + 2vd l
(B)d
0 (ω, ηφ)

− 2vd Ncdγ l(F)d
0 (ω1, ηψ), (23)

where v−1
d = 2d+1πd/2
(d/2) and ω as well as ω1 are

defined as

ω = u′(ρ) + 2ρu′′(ρ), ω1 = h2ρ. (24)

Moreover, we have ignored field-independent contributions
coming from a pure gluon or ghost loop which are irrelevant
for the following investigations. The threshold functions l(B)d

0

and l(F)d
0 encode the nonuniversal regulator dependence of

loop integrals and describe the decoupling of massive modes.
Their general definitions as well as explicit representations
for a convenient piece-wise linear regulator [78,79] to be
used in the following, are listed, for instance, in Ref. [76].
Of course, it is straightforward to derive flow equations for
particular scalar self-couplings up to an arbitrary order from
this beta functional for the scalar potential. Additionally, it
contains information beyond the RG evolution of polynomial
approximations of the effective potential and keeps track of
all relevant scales, the field amplitude as well as the RG
scale. Thus, it allows to study global properties of the Higgs

potential which we will discuss with regard to AF trajectories
in the following.

The flow equation for the Yukawa coupling extracted from
the Wetterich equation reads

∂t h
2 = (d − 4+ηφ+2ηψ)h2+4vdh

4 l(FB)d
11 (ω1, ω; ηψ, ηφ)

− N 2
c − 1

2Nc
(d + α − 1)8vd h

2g2
s ×

× l(FB)d
11 (ω1, 0; ηψ, ηA)|ρ=κ . (25)

Note, that this flow equation differs in the SSB regime
from the one which was usually adopted in the literature
for Yukawa models, e.g., [30,33]. It has turned out that
the running of h extracted from a projection onto a field-
dependent two-point function 


(2)

ψ̄ψ
(φ) shows better con-

vergence upon the inclusion of higher-dimensional Yukawa
interactions than the projection onto the three-point function



(3)

φψ̄ψ
in case the system is in the SSB regime [76,80]. The

flow equation for the Yukawa coupling extracted from 

(3)

φψ̄ψ

can be obtained from Eq. (25) by taking a derivative with
respect to ρ before evaluating at ρ = κ which coincides with
flow equation ∂t h2 derived in [30].

Finally, the scalar and spinor anomalous dimensions read

ηφ = 8vdρ

d

[
3u′′(ρ) + 2ρu′′′(ρ)

]2
m(B)d

2 (ω, ηφ)

+ 4vd Ncdγ h2

d

[
m(F)d

4 (ω1, ηψ)

− h2ρ m(F)d
2 (ω1, ηψ)

]∣∣∣
ρ=κ

, (26)

and

ηψ = 4vdh2

d
m(FB)d

12 (ω1, ω; ηψ, ηφ)

+ 8vd

d

N 2
c − 1

2Nc
g2

s

[
(d − α − 1)m(FB)d

12 (ω1, 0; ηψ, ηA)

− (d − 1)(1 − α)m̃(FB)d
11 (ω1, 0; ηψ, ηA)

]∣∣
ρ=κ

, (27)

with further threshold functions m...
... and m̃...

.... Their argu-
ments ω and ω1 in Eqs. (26) and (27) are evaluated at the
minimum of the potential κ , which means κ = 0 in the sym-
metric regime and u′(κ) = 0 in the SSB regime. The precise
definitions for all the threshold functions can be found in
[76]. For our quantitative analysis, we use the Landau gauge
α → 0, and a piece-wise linear regulator [78,79] for conve-
nience.

In principle, functional flow equations can also be obtained
for the gauge sector of the model. Nevertheless as we are
interested in the properties of the flow equations far above
the QCD scale where gs is small, it is legitimate to treat the
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running of the gauge sector in a standard way. Therefore we
will use the one-loop beta function for gs as shown in Eq. (2).

As a matter of course, the universal one-loop coefficients
of the beta function for the Yukawa as well as the quartic
Higgs coupling and the one-loop expressions for the anoma-
lous dimensions can be extracted from the flow Eqs. (23)–
(27). For this purpose, one has to set all the anomalous dimen-
sions occurring in the threshold functions to zero, but keep the
anomalous dimensions entering the dimensional scaling of
the renormalized couplings. The latter contribute to the per-
turbative one-loop flow equation via one-particle reducible
graphs. Furthermore, one has to take the limit toward the
DER, by setting the mass parameter as well as the scalar vac-
uum expectation value to zero to neglect threshold effects.
Then, the anomalous dimension of the scalar field reduces to
Eq. (10), and we obtain

ηψ = h2

32π2 ≡ h2η̂ψ , (28)

for the Dirac spinor (i.e. dγ = 4) anomalous dimension in the
Landau gauge at one-loop order in d = 4. The flow equation
for the Yukawa model reads in this limit

∂t h
2 = (ηφ + 2ηψ)h2 + h4

8π2 − 3

8π2

N 2
c − 1

Nc
h2g2

s . (29)

Using the one-loop expressions for the anomalous dimen-
sions, we obtain Eq. (3). In the rest of this paper we will drop
the index d from the threshold functions, as we work with
d = 4 and dγ = 4 from now on.

The freedom to choose different regularization schemes
is parametrized by the threshold functions l,m, . . . . This
includes general mass-dependent schemes as well as mass-
independent schemes as a particular limiting case. Using an
EFT-like analysis, we investigate in the following whether
the results in the more general mass-dependent schemes are
sensitive to the assumption of working in the DER as a spe-
cial case. It turns out below that the restriction to the DER
is severe and legitimate only for the CEL solution. A more
general class of asymptotically free solutions requires to take
threshold effects into account.

4 Effective field theory analysis in the deep Euclidean
region

In the present section and Sect. 5, we discuss a general-
ization of the construction outlined in Sect. 2, by includ-
ing perturbatively nonrenormalizable interactions. In adding
higher-dimensional operators to Eq. (1), we follow the EFT
paradigm, but we do so only for momentum-independent
scalar self-interactions. In fact, as will be explained in the
next sections, a justification of the consistency of the new AF

solutions we construct requires an infinite number of higher-
dimensional operators, which cannot be generally dealt with,
unless further restrictions are imposed. The focus on point-
like scalar self-interactions is one such additional specifica-
tion, and it will be extensively discussed in the following.

Regardless of our choice to depart from a standard EFT
setup, the AF solutions can be studied also within the latter.
The goal of the present section and of Sect. 5 is precisely to
explain how to reveal these solutions and to properly account
for some of their properties in a parameterization where a
finite number of couplings with higher dimension is included.
These steps can be followed also when all interactions up
to some given dimensionality are included in the effective
Lagrangian. Still, the crucial ingredient in the construction is
a treatment of the β functions of these operators that slightly
differs from the standard EFT one. Namely, one has to treat
the scale dependence of one coupling or Wilson coefficient
in the EFT expansion as free. Finally, we will show in the
next sections that this additional freedom has to be present in
any rigorous definition of the RG flow of the model, due to
the infinite dimensionality of the theory space, and plays the
role of a boundary condition in a functional representation
of the quantum dynamics.

Let us start detailing the EFT-like analysis of the RG flow
for the dimensionless potential. To this end, we consider a
systematic polynomial expansion of u(ρ) around the actual
scale-dependent flowing minimum κ , which can be either at
vanishing field amplitude (SYM regime) or at some nontrivial
value (SSB regime). Assuming that the system is in the SSB
regime, the potential is parametrized as

u(ρ) =
Np∑
n=2

λn

n! (ρ − κ)n . (30)

Generically, we expect all couplings to be generated by fluc-
tuations, i.e., Np → ∞, whereas truncating the sum at some
finite Np corresponds to a polynomial approximation of the
potential.

As we said above, in the present section we first study the
DER where all mass parameters are neglected. To implement
this regime we restrict our analysis to the limit κ → 0. This
ansatz is then plugged into Eq. (23) such that, by setting
the anomalous dimensions inside the threshold functions to
zero, we recover the set of one-loop β functions ∂tλn for n =
2, . . . , Np in the DER. As we are interested in constructing
AF trajectories, we allow for any arbitrary scaling of the
quartic coupling λ2 with respect to the AF Yukawa coupling
h2, and introduce the finite ratio λ̂2 defined in Eq. (11) for
λ = λ2. Any QFP for λ̂2 at a finite nonvanishing value of h2

has the interpretation of an AF scaling solution for λ2. Similar
arguments can be applied to the higher-order couplings λn ,
suggesting to define
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λ̂n = λn

h2Pn
, (31)

with P2 = 2P , cf. Eq. (11).
Concerning the scaling of the Higgs coupling, namely the

power P of Eq. (11), it will become clear soon that the only
possibility in the DER is P = 1/2. In fact, since λ̂3 and λ̂4

contribute to the β function of λ̂2, P cannot be fixed without
fixing simultaneously all the other powers Pn with n > 2.
To simplify the discussion, we already start with the ansatz
P = 1/2 and look for the corresponding values of Pn and
λ̂n . The flow equation for λ̂3 then reads

∂t λ̂3 = − 81

16π2 λ̂3
2h

2(3−P3) + 9

4π2 h
2(3−P3) + 2λ̂3 + O(h2),

thus a QFP solution with finite λ̂2 and λ̂3 is possible only for
P3 = 3. In the same way it is possible to fix the scaling of
all the higher order couplings, and to conclude that

P = 1

2
and Pn>2 = n. (32)

The truncation of the polynomial expansion in Eq. (30)
up to some integer value for Np and for κ = 0, provides a
system of Np equations in Np variables when one looks at
the QFP condition. To give an example, the first four beta
functions are shown here to leading order in h2:

∂t λ̂2 = h2
(

9

16π2 λ̂2
2 + 75

16π2 λ̂2 − 3

4π2

)
+ O(h4)

∂t λ̂3 = 2λ̂3 − 81

16π2 λ̂3
2 + 9

4π2 + O(h2)

∂t λ̂4 = 4λ̂4 + 243

4π2 λ̂4
2 − 9

π2 + O(h2)

∂t λ̂5 = 6λ̂5 − 3645

4π2 λ̂5
2 + 45

π2 + O(h2). (33)

By neglecting the subleading contributions, we have that the
QFP solution for the scalar quartic coupling is λ̂2 = λ̂±

2
as in Eq. (16), and all the other higher-order couplings are
functions of λ̂2 only. For the positive root λ̂+

2 the sign of
λ̂n with n > 2 is alternating, whereas for the negative root
λ̂−

2 all the higher order couplings stay negative. Furthermore,
by solving numerically the system of QFP equations at the
next-to-leading order in h2, it is possible to see that only
the positive root of λ̂2 leads to a fully real solution for all
2 < n ≤ Np.

It is interesting to investigate the stability of the potential
for the QFP solution λ̂2 = λ̂+

2 , once we sum the expansion
in Eq. (30) for Np → ∞. To address this task let us consider
the leading h2 contribution for the βn function with n ≥ 2.
Its structure is

βn = 2(n − 2)λ̂n + (−3)nn!
32π2 λ̂n2 + 3(−1)n+1n!

8π2 (34)

where 2(2 − n) is the canonical dimension of λ̂n , while the
second and third terms are the contribution of a scalar loop
with n quartic self-interaction vertices and of a fermion loop
with 2n Yukawa vertices, respectively. This can be drawn
diagrammatically as in Fig. 3. Thus, among all possible scalar
self-interactions, the λ̂2 coupling plays a dominant role in the
UV. This φ4-dominance regime can be studied by specifying
a pure φ4 interaction in the bosonic threshold function that
appears in the RG flow equation for u(ρ). This means

ω = 3λ2ρ, (35)

in Eq. (23), where ηφ is given by Eq. (10). Thanks to Eq. (32),
it is possible to encode all the rescalings from λn for n > 2
to λ̂n in a suitable redefinition of the field invariant ρ. This
can be achieved by defining

z = h2ρ, (36)

dz = 2 + ηφ + ηh2 ≡ 2 + ηz . (37)

By projecting the left-hand side of the above RG flow for
u(ρ), where Eq. (35) is substituted inside Eq. (23), onto the
ansatz in Eq. (30) with κ = 0 and Np → ∞, it is possible to
solve the QFP condition for all λ̂n . The solution is indeed

λ̂2 = λ̂±
2 , (38)

λ̂n>2 = (−1)nn!
32π2

(3λ̂2)
n − 12

4 − n(2 + ηz)
, (39)

and the resummation of the series has an analytic expression
in terms of the hypergeometric function 2F1(a, b, c, z). In
fact the effective potential reads

u(ρ) =
[
λ̂2

z2

2h2

+ 1

32π2

(3λ̂2z)3

2 + 3ηz
2F1

(
1,

2 + 3ηz

2 + ηz
,

4 + 4ηz

2 + ηz
,−3λ̂2z

)

− 3

8π2

z3

2 + 3ηz

× 2F1

(
1,

2 + 3ηz

2 + ηz
,

4 + 4ηz

2 + ηz
,−z

) ]
z=h2ρ

(40)

which has the property

lim
z→0

u′′(z) = λ̂2

h2 , (41)

as it is clear from the chosen polynomial ansatz.
Since this solution is constructed by resummation of a

local expansion for small field amplitudes, it might depart
from the actual fixed-point potential at large values of ρ

due to nonanalytic terms. We are interested mainly in the
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Fig. 3 Diagrammatic representation for the two contributions to the
RG flow Eq. (33) of λ̂n in the DER and in the UV limit, where the
rescaled Higgs quartic coupling λ̂2 plays a dominant role

asymptotic region ρ → ∞ in the UV where h2 → 0. How-
ever, because the QFP solution u(ρ) is a function of both
variables ρ and h2, there might be several such asymptotic
regions, corresponding to different ways of taking the com-
bined limit ρ → ∞ and h2 → 0. To classify these possible
limits, we address the dependence of loop effects on h2 and
ρ. By inputting the asymptotic UV scaling of λ2, the thresh-
old functions for the bosonic and fermionic loops in Eq. (23)
are functions of ω = 3λ̂2z and ω1 = z respectively. Thus,
the variable entering the threshold functions is z as defined
in Eq. (36). Therefore we can identify an outer region where
z 
 1 and an inner region where z � 1. In “Appendix B”
we address in more detail this combined limit and show that
it exists and is the same in both asymptotic regions, such that
Eq. (40) does give a definite answer concerning the stability
of the potential u(ρ) for an arbitrarily small value of h2. In
fact

u(ρ) ∼
ρ→∞

1

2
λ̂2

z2

h2 . (42)

This proves that the CEL solution corresponds to a bounded
potential in the DER.

5 Effective field theory analysis including thresholds

In this section we relax the restriction adopted in Sect. 4
to the DER, and we account for the running of the scalar
mass term. In other words, we include the possibility for a
nontrivial minimum, by choosing a polynomial expansion of
the scalar potential around ρ = κ �= 0 as in Eq. (30). By
projecting the left-hand side of the Eq. (23) onto this ansatz,
we can derive the flow equations for the rescaled couplings λ̂n
as defined in Eqs. (11) and (31). Similarly, also the coupling
κ may scale asymptotically as a definite power of h2. We
define

κ̂ = h2Qκ, (43)

where the real power Q is a priori arbitrary.
Let us denote by βn the beta function of λ̂n , βn = ∂t λ̂n . In

order to construct polynomial solutions of the QFP equations
for the couplings λ̂n and κ̂ , we set up the following recursive
problem: we solve the equation βκ̂ = 0 for λ̂2, and βn = 0
for λ̂n+1. Upon truncating the series of equations at some
βNp , this can be achieved only if one more coupling λ̂Np+1

is retained. The result of this construction is a set of QFPs
for λ̂n as functions of the couplings h2 and κ̂ . Also, some of
the parameters P , Pn and Q might remain unconstrained. A
defining requirement for a viable QFP solution to represent
an AF trajectory is that the couplings λ̂n and κ̂ approach
constants for h2 → 0.

Clearly, there is some freedom in the search for scaling
solutions and particularly in the recursive procedure we have
described. Of course, it is likewise possible to treat another
scalar coupling as a “free” parameter and to solve for κ̂ in
terms of some λ̂n . The question which coupling should mean-
ingfully be treated as free parameter cannot be answered a
priori and depends again on the precise details of the model.
We choose λ̂Np+1 here to start with. For definiteness, we con-
centrate in this work on solutions exhibiting the property that
λ̂2 �= 0 at the QFP (though this might be a scheme-dependent
statement).

We now illustrate this process by considering Np =
2; the analysis can straightforwardly be extended to any
higher order. Again we adopt the approximation of setting
the anomalous dimension inside the threshold functions in
Eqs. (23)–(27) to zero.

5.1 P ∈ (0, 1/2)

Because of the qualitative similarity between the flow equa-
tions of the present model and those analyzed in Refs. [43,
44], we know that the finite ratio κ̂ defined in Eq. (43) is
actually κ itself for P being equal or smaller then 1/2. Thus,
we immediately make the ansatz Q = 0, which turns out to
be the correct solution. Indeed the leading orders in h2 in the
flow equations of the rescaled couplings are

∂t λ̂2 = − λ̂3 h2P3−4P

16π2 + 9λ̂2
2 h

4P

16π2 + κλ̂2
3 h

4P3−8P

16π2λ̂2
, (44)

∂tκ = −2κ + 3

32π2 + κλ̂3 h2P3−4P

16π2λ̂2
. (45)

The QFP condition admits two solutions, each of them is a
one parameter family of solutions. One solution corresponds
to the case where the contribution coming from λ̂3 is sub-
leading in Eq. (45), i.e., P3 > 2P , and it reads
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Fig. 4 Effective field theory analysis including thresholds for the case
P = 1/4. We plot the full numerical solutions κ

(
h2

)
(upper panel) and

λ̂2
(
h2

)
(lower panel) as a function of h2 for the fixed value λ̂3 = 1

as blue solid line. The red dashed lines correspond to the leading-order
constant solutions highlighted in Eqs. (46) and (47)

κ = 3

64π2 , Q = 0, (46)

λ̂2
2 = λ̂3

9
, P3 = 4P, (47)

thus λ̂3 must be positive, but is otherwise arbitrary. In Fig. 4
it is shown how the numerical solutions for the full h2-
dependent flow equations (in the approximation detailed at
the beginning of the present section) are in agreement with
the leading order approximation and approach the constant
values in Eqs. (46) and (47) in the h2 → 0 limit.

By contrast, the second solution corresponds to the case
where the λ̂3 term contributes to the flow equation for κ in
the UV limit, i.e., P3 = 2P . Indeed, we have that

κ = 5

64π2 , Q = 0, (48)

λ̂2 = 5λ̂3

64π2 , P3 = 2P, (49)

where again the rescaled cubic scalar coupling remains a free
parameter.

While the first class of solutions in Eqs. (46) and (47)
had already been discovered in Refs. [43,44], the second one
given by Eqs. (48) and (49) is new. These solutions were not
observed in Refs. [43,44] because of simplifying approxima-
tions in the analysis of the RG equations. In particular, only
linear insertions of the coupling λ3 into the beta functions of
lower-dimensional parameters were considered.

5.2 P = 1/2

For the following P ≥ 1/2 cases we confine the discussion
to analytical approximations to leading order in the h2 → 0
limit. Plots analogous to Fig. 4 with the numerical solutions
capturing the full h2 dependence of the QFP solutions would
show a similar agreement between the two descriptions.

For P = 1/2, the analysis is less straightforward and there
are several possibilities. The leading h2-contributions to the
RG flow of λ̂2 and κ are

∂t λ̂2 = h2

(
9λ̂2

2

16π2 + 75λ̂2

16π2 − 3

4π2

)
+ κλ̂2

3 h
4P3−4

16π2λ̂2

− h2P3−2

(
λ̂3

16π2 − 3λ̂3

8π2λ̂2

)
, (50)

∂tκ = −2κ + 3

32π2 − 3

8π2λ̂2
+ κλ̂3 h2P3−2

16π2λ̂2
. (51)

If P3 > 2 the contributions due to λ̂3 are negligible in the
h2 → 0 limit and we recover the CEL solution of Eq. (16).
Moreover a positive (negative) solution for λ̂2 leads to a neg-
ative (positive) solution for κ , suggesting that the stable CEL
potential possesses only the trivial minimum.

If 1 < P3 < 2, the contribution coming from λ̂3 plays
the dominant role in the RG flow of λ̂2 but is subleading
for κ . The solution of the corresponding QFP equations is
κ = 5/(64π2) and λ̂2 = −6, implying that the expansion
point is a nontrivial maximum. As we have assumed in our
analysis that the expansion point of the Taylor series is a
minimum of the potential, we reject this solution albeit it
might lead to further interesting solutions if an appropriate
expansion scheme is used. Thus, the only two new solutions
correspond to P3 = 1 and P3 = 2.

In the first case, P3 = 1, the solution of ∂t λ̂2 = 0 is
determined only by the h0-terms. Together with Eq. (51),
this leads to a λ̂2 which depends linearly on λ̂3. The solution
is indeed

κ = 5

64π2 , Q = 0, (52)

λ̂2 = 5λ̂3

64π2 − 6, P3 = 1. (53)
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Fig. 5 Effective field theory analysis including thresholds for P =
1/2. We show the QFP solutions λ̂3(λ̂2) (left) and κ(λ̂2) (right) for the
case P3 = 2 to leading order in the h2 → 0 limit, as expressed in
Eqs. (55) and (54). The left panel illustrates that for every λ̂2 �= −6

there is only one associated value for the free parameter λ̂3; the mag-
nified inset near the origin highlights the CEL solution λ̂2 = λ̂+

2 as in
Eq. (16). The right panel shows that there are solutions with a positive
nontrivial minimum and scalar quartic coupling only for λ̂2 > 4

In the second case where P3 = 2, the contribution given
by λ̂3 in Eq. (51) is subleading and the corresponding QFP
equation provides us κ(λ̂2). This solution can be substituted
into Eq. (50) and the latter one can be solved in term of
λ̂3(λ̂2). The corresponding solution reads

κ = 3

64π2

λ̂2 − 4

λ̂2
, Q = 0, (54)

λ̂3 = 3λ̂2
3λ̂2

2 + 25λ̂2 − 4

λ̂2 + 6
, P3 = 2. (55)

We plot this solution for P3 = 2 in Fig. 5. The three black
dots in the left panel highlight the three roots corresponding
to λ̂3 = 0. For one of these roots, we find λ̂2 = 0 which can
be discarded as the QFP value for κ is singular in this case.
The other two roots are the λ̂±

2 of Eq. (16). Moreover, it is
clear from Eq. (54) that the condition λ̂2 > 4 has to hold to
obtain a positive nontrivial minimum and at the same time a
positive quadratic scalar coupling. This can also be seen in
the right panel of Fig. 5.

5.3 P ∈ (1/2, 1)

By following again the gauged-Higgs model discussed in
Refs. [43,44] we can assume that for P > 1/2 the nontrivial
minimum goes to infinity according to some power of h2

such that its scaling Q is positive. Choosing Q = 2P − 1
as in the gauged-Higgs model turns out to be the correct
scaling also for the present system. However, we prefer to
be more general and consider Q as an undetermined positive
power in the first place. It is possible to verify that, under the
assumptions that Q > 0, P3 > 0, and P > 1/2, the only
terms that can contribute to the leading parts in the RG flow
for λ̂2 and κ̂ are

∂t λ̂2 = λ̂2
3κ̂ h4P3−8P−2Q

16π2λ̂2(1 + 2λ̂2κ̂h4P−2Q)2
− 3 h4−4P

4π2(1 + h2−2Q κ̂)3

− 3λ̂3h2−8P+2γ

8π2ξ2(1 + h2−2Q κ̂)2 + κ̂2λ̂2
3 h

4P3−4Q−4P

4π2(1 + 2h4P−2Q λ̂2κ̂)3

+ κ̂3λ̂2
3 h

4P3−6Q

2π2(1 + 2h4P−2Q λ̂2κ̂)4
λ̂2(1 − P), (56)

∂t κ̂ = −2κ̂ + (Q − 1)
κ̂4λ̂2

3 h
4P3−6Q

4π2(1 + 2h4P−2Q λ̂2κ̂)4

− 3 h2−4P+2Q

8π2λ̂2(1 + h2−2Q κ̂)2
. (57)

By analyzing all the possible combinations among the three
powers Q, P3 and P , one has to take care that the two powers
of h2 in the denominators, i.e., 2P − Q and 1 − Q, give dif-
ferent contributions to the β functions depending on whether
they are positive or negative. Moreover, we have to keep in
mind that – by definition of the finite ratios – λ̂2 and κ̂ have to
approach their QFP values in the UV limit up to subleading
corrections in some positive power of h2. Among the set of
all possible configurations there are only two QFP solutions.
One of these corresponds to the case where the contribution
arising from λ̂3 is subleading in Eq. (57):

κ̂ = 3

8π2λ̂3
, Q = 2P − 1, (58)

λ̂2 = − λ̂3

2
, P3 = 2P + 1, (59)

where λ̂3 is a free parameter.
By contrast, the second solution is the one where λ̂3 pro-

vides a leading contribution to the flow equation for κ̂ . By
solving the QFP condition in terms of the nontrivial mini-
mum this solution reads
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λ̂2 = −2 ± √
2P − 1

2(5 − 2P)κ̂
, Q = 2P, (60)

λ̂2
3 = 8π2(1 + 2κ̂ λ̂2)

4

(2P − 1)κ̂3 , P3 = 3P. (61)

We can therefore deduce that there are no reliable solutions
that fulfill our assumptions for P ∈ (1/2, 1) because it is not
possible to simultaneously satisfy the condition that both the
Higgs quartic coupling and the nontrivial expansion point κ

are positive.

5.4 P = 1

Starting from Eqs. (56) and (57), it is possible to prove that
for P = 1 there are again two QFP solutions corresponding
to different combinations for the two left powers P3 and Q.
One solution is

λ̂3 = 3

8π2κ̂(1 + κ̂)3 , P3 = 3, (62)

λ̂2 = − 3

16π2κ̂(1 + κ̂)2 , Q = 1, (63)

whereas the second one reads

λ̂2
3 = 128π2

81κ̂3 , P3 = 3, (64)

λ̂2 = − 1

6κ̂
, Q = 2. (65)

We observe once more that there are no solutions with pos-
itive κ and a positive scalar quartic coupling such that we
expand the potential around a nonvanishing vacuum expec-
tation value of the scalar field.

In “Appendix C” we complete the EFT analysis of the
present section, by discussing P > 1. Also in this case we
conclude that all the QFP solutions we observe have either
λ̂2 or κ̂ negative.

6 Full effective potential in the φ4-dominance
approximation

So far, we have projected the RG flow of the potential onto a
polynomial basis and studied only the running of the various
coefficients. Here and in the following sections, we investi-
gate the functional RG flow of an arbitrary scalar potential
which also includes nonpolynomial structures [81,82]. The
latter is obtained by performing a one-loop computation with
field-dependent thresholds. In other words, we use Eq. (23)
where the loop integrals are evaluated by using the piece-
wise linear regulator [78,79]. We pursue the identification of
AF trajectories in the space of all flows described by integra-
tion of Eq. (23) for generic boundary conditions. We already

know from the previous sections that AF solutions can in
fact be constructed by simply looking for QFPs of the flow
of h2-rescaled interactions. To implement this condition in
a functional set-up, we define a new field variable and its
potential

x = h2Pρ, f (x) = u(ρ). (66)

We denote the minimum by x0 and the couplings by ξn ,

f ′(x0) = 0, f (n)(x0) = ξn . (67)

The arbitrary rescaling power P is chosen to be that of
Eq. (11) so that ξ2 = λ̂2, because we specifically look for
QFPs where λ̂2 �= 0. It might happen that at a QFP x0 �= κ̂ ,
and ξn �= λ̂n for n > 2, such that solutions of the equation
∂t f (x) = 0 might differ from the actual scaling solutions.
Thus, the rescaling of Eq. (66) is expected to be useful as
long as the quartic scalar coupling is the leading term in the
approach of the scalar potential towards flatness.

As a first-level approximation, we consider here an inter-
mediate step between the polynomial and the fully func-
tional approaches, which is based on the expectation that the
marginal quartic coupling plays a dominant role in the UV.
Therefore, we assume that the contribution coming from the
scalar fluctuations is dominated by a plain quartic interac-
tion. More precisely, we use ω = 3λ2ρ on the right-hand
side of Eq. (23), but we consider the scalar potential as an
unknown arbitrary function in the scaling term and on the
left-hand side of the flow equation itself. This leads to the
following flow equation

∂t f (x) = −4 f (x) + dx x f
′(x) + 1

32π2

1

1 + 3ξ2h2P x

− 3

8π2

1

1 + h2−2P x
. (68)

where

dx = 2 + ηφ + Pηh2 ≡ 2 + ηx . (69)

The anomalous dimension ηx of the rescaled field invari-
ant x includes also the anomalous dimension of the Yukawa
coupling ηh2 defined in Eq. (12). All anomalous dimensions
are also evaluated by neglecting the possible appearance of
higher-dimensional couplings, as well as contributions from
the scalar mass term. Thus, in the following, we use Eqs. (2),
(3), and the one-loop value for the anomalous dimension of
the scalar field given in Eq. (10).

By setting the left-hand side to zero, we get a first-order
linear ordinary differential equation that can be solved ana-
lytically for generic P and its QFP solution is
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f (x) = 1

128π2 2F1

(
1,− 4

2 + ηx
,
−2 + ηx

2 + ηx
,−3ξ2h

2P x

)

− 3

32π2 2F1

(
1,− 4

2 + ηx
,
−2 + ηx

2 + ηx
,−h2−2P x

)

+ Cf x
4

2+ηx , (70)

where the term proportional to the free integration constant
Cf is the homogeneous solution of Eq. (68) while the Gauß
hypergeometric functions are particular solutions obtained
by integrating the non-homogeneous part.

For Cf = 0 we can straightforwardly impose the consis-
tency condition f ′′(0) = ξ2. Instead, for any nonvanishing
Cf , the QFP potential behaves as a nonrational power of x
at the origin. Its second order derivative is not defined at the
origin as long as ηx > 0 which is generically the case for
a potential in the symmetric regime. This problem might be
avoided if there is at least one nontrivial minimum x0, in the
spirit of the Coleman-Weinberg mechanism [81]. In fact, we
can impose f ′′(x0) = ξ2 for this xcase.

As a first analysis, we want to understand the asymptotic
properties of the full h2-dependent solution f (x). Specifi-
cally, we want to identify parameter ranges for Cf and ξ2 for
which the potential is bounded from below. To this end, we
focus on the asymptotic behavior of the solution, x → +∞.
In particular, we are interested in the UV regime where
h2 → 0. Since the QFP potential f (x) for given Cf , which
might also depend on h2, is a function of the two variables x
and h2, we have to take the limit process with care to inves-
tigate the asymptotic behavior of f in the deep UV.

In order to address the asymptotic behavior of the QFP
potential in a systematic way, we analyze the flow for fixed
arguments,

zB = 3ξ2h
2P x, zF = h2(1−P)x, (71)

of the hypergeometric functions. For small enough h2 and
P ≷ 1/2, we have zF ≷ zB. Thus, one can divide the interval
x ∈ [0,∞) into three distinct domains. Suppose zF < zB,
then we define the h-dependent boundary x1(h) of an inner
interval x ∈ [0, x1) by requiring zB = 1 and the boundary
x2(h) of an outer interval (x2,∞) by zF = 1 for fixed P
and ξ2. For zF > zB, the requirement zB = 1 and zF = 1
will define x2 and x1, respectively. In case P < 1, the two
boundaries x1 and x2 grow towards larger values and always
fulfill x2 > x1 when we send h → 0.

Approximating the hypergeometric functions for small but
fixed arguments zB/F � 1, we obtain a valid approximation
of the potential in the first interval as this also implies x � x1.
Thus, we are able to reliably check the asymptotic behavior
by first performing the limit h → 0 and afterwards x → ∞
in this region. In case the hypergeometric functions shall be
investigated for large arguments, we have to perform first

the limit x → ∞ before sending h → 0 to investigate the
asymptotic behavior such that one stays in the outer interval
as only there the results can be trusted for the used approxi-
mations. Further details can be found in “Appendix B2”. The
rescaled potential f (x) turns out to be stable in the deep UV
for both regimes, and the two asymptotic behaviors are in
agreement.

6.1 Large-field behavior

For finite values of h2, we can investigate the asymptotic
behavior in the interval (x2,∞) by expanding the QFP poten-
tial in Eq. (70) around x = ∞. The analytic expansion yields

f (x) = Cf,∞ x
4

2+ηx + O(x−1), (72)

where the asymptotic coefficient in front of the scaling
term depends on the different parameters characterizing the
RG trajectory Cf,∞(Cf , ξ2, h2, P). The full expression is
given in “Appendix B2”, cf. Eq. (B9). We investigate its h2

dependence in the deep UV by an expansion at vanishing
Yukawa coupling. This yields a scaling Cf,∞ ∼ h−2(1−2P)

for P ∈ (0, 1/2) and Cf,∞ ∼ h−2(2P−1) for P ∈ (1/2, 1) for
fixed Cf . We call Ĉf,∞ the corresponding finite ratio. For the
sake of clarity, it is therefore useful to define a new variable

Ĉf =

⎧⎪⎨
⎪⎩
h2(1−2P)Cf if P ∈ (0, 1/2),

Cf if P = 1/2,

h2(2P−1)Cf if P ∈ (1/2, 1).

(73)

From this rescaling, we obtain that the asymptotic coefficient
has to be

Ĉf,∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ĉf − 9

64π2η̂x
ξ2

2 if P ∈ (0, 1/2),

Cf − 9ξ2
2 − 12

64π2η̂x
if P = 1/2,

Ĉf + 3

16π2η̂x
if P ∈ (1/2, 1),

(74)

in leading order inh2, where η̂x = ηx/h2 is evaluated accord-
ing to Eqs. (69), (13) and (14). The locus of points that sat-
isfies the condition Ĉf,∞ = 0 for P ≤ 1/2 are plotted in
Fig. 6 by black lines. They characterize the transition from
the region in the (Ĉf , ξ2) plane where the potential is bounded
from below (right side) to the region where the potential is
unbounded (left side).

6.2 Small-field behavior and the CEL solution

Next, we study the properties of the solution f (x) for small
arguments x � 1. This is relevant to address both the x → 0
limit at fixed h2, and also to inspect the large field asymptotics
for P < 1 in the limit where h2 → 0 and x → +∞ at
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Fig. 6 Stability properties of the effective potential f (x), see Eq. (70),
for P ∈ (0, 1/2) (upper left) and P = 1/2 (upper right). The two
black lines separate the left-hand side regions where the potential is
unbounded from below from the right-hand side regions where it is
bounded, and in the h2 → 0 limit. Their equations are obtained impos-
ing the condition Ĉf,∞ = 0 in Eq. (74). Sketches of the potential shapes
in the different regions are given in the lower panels. Upper right: the
blue dashed line ξ2 = 4 identifies the locus of points where f ′(0) = 0.

For ξ2 < 4, the potential has an unstable minimum in region IV. It is
monotonically increasing to +∞ in region I. For ξ2 > 4, f (x) has
a stable minimum in region II. It is monotonically decreasing to −∞
in region III. The green point {0, λ̂+

2 } highlights the CEL solution, see
Eq. (16), being regular at x = 0. The red dashed line in region II shows
the one parameter family of new solutions satisfying the consistency
condition f ′′(x0) = ξ2, as expressed in Eq. (85). Upper left: only the
regions of type II and III are present

zB/F � 1. For this purpose, we start from the expansion
of the QFP potential f (x) for small x , which can be found
in “Appendix B2”, cf. Eq. (B13). The Gauß hypergeometric
functions are analytical for small x , but the scaling term is
not, due to the nonrational power of x . The first derivative at
the origin is

f ′(0) = 12 − 3h2(2P−1)ξ2

32π2(2 − ηx )
h2(1−P), (75)

thus by keeping the leading order in h2 we have

f ′(0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 3 ξ2

64π2 h
2P if P ∈ (0, 1/2),

12 − 3ξ2

64π2 h if P = 1/2,

3

16π2 h2(1−P) if P ∈ (1/2, 1).

(76)

Thus, we observe that f ′(0) is negative for P < 1/2 and
ξ2 > 0 while it is always positive for P > 1/2.

For P = 1/2, the first derivative at the origin changes sign
at ξ2 = 4. In this case, we find that the two lines Cf,∞ = 0
and ξ2 = 4 divide the (Cf,∞, ξ2) plane in four regions with
different qualitative behavior for f (x), as represented in the
right panel of Fig. 6 with solid black line and dashed blue
line respectively. In region II the QFP potential is bounded
from below and has a nontrivial stable minimum. In region
IV the potential has a nontrivial maximum but is unbounded
from below. Instead in regions I and III the function f (x)
is monotonically increasing towards +∞ and decreasing to

−∞, respectively. For P < 1/2, there are only regions of
type II and III.

In region I, where the potential is bounded from below
and its minimum is located at the origin, we have to check as
to whether it is possible to impose the consistency condition
f ′′(0) = ξ2. The answer is positive if we remove the log-type
singularity in the second derivative at the origin by requiring
Cf = 0. With this choice, we obtain

ξ2 = 3h2(1−2P) 4 − 3h4(2P−1)ξ2
2

32π2η̂x
if Cf = 0 (77)

where the rescaled quartic scalar coupling ξ2, by definition,
must be finite in theh2 → 0 limit. Therefore the only possible
solution is

ξ2 = λ̂±
2 , P = 1

2
, (78)

that is precisely the CEL solution described in Sect. 2. The
positive root λ̂+

2 is highlighted by a a green dot in the right
panel of Fig. 6.

Having constructed a full effective potential for the CEL
solution, we can ask whether this is stable for large field
amplitudes and how it is related to the u(ρ) of Eq. (40). As
shown in “Appendix B3”, we have

lim
dx→dz

f (x) = u(ρ) + 12 − 3ξ2

32π2(2 − ηz)
hx, (79)
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where an irrelevant additive constant has been neglected.
Therefore the full solution f (x) includes all the information
about u(ρ) plus a linear term that was discarded in Sect. 4 by
the definition of the DER. Furthermore, Eqs. (72) and (74)
apply to all values of Cf , thus by choosing P = 1/2 and
Cf = 0 in these equations, and specifying the QFP value
of ξ2, we deduce that the asymptotic behavior for the CEL
potential is

f (x) ∼
x→∞

ξ2

2
x2. (80)

Thus, we conclude that the CEL solution is stable for arbitrary
small values of the Yukawa coupling.

6.3 New solutions with a nontrivial minimum

Within region II, the potential is stable and has a nontriv-
ial minimum. Here, we demand the consistency condition
to hold at the minimum, f ′′(x0) = ξ2. To simplify the dis-
cussion we adopt the same small-field expansion discussed
above, which corresponds to neglecting subleading powers
of x0, for small values of the vacuum expectation value. The
defining condition for the minimum, f ′(x0) = 0, provides
an expression for Cf as a function of x0, h2 and ξ2 which is

Cf = x
ηx−2
2+ηx
0

h2(1−P)(2 + ηx )

128π2(2 − ηx )

[
3ξ2h

2(2P−1) − 12
]
. (81)

The second derivative of the potential in x0 is thus

f ′′(x0) = 3ξ2h2(2P−1) − 12

32π2(2 + ηx )x0
h2(1−P), (82)

which, together with f ′′(x0) = ξ2, provides us with an
expression for the nontrivial minimum as a function of h2

and ξ2

x0 = 3ξ2h2(2P−1) − 12

32π2ξ2(2 + ηx )
h2(1−P). (83)

Different powers of P lead to different leading behaviors in
h2 for the latter expression. These can be summarized in the
following way

x0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3

64π2 h
2P if P ∈ (0, 1/2),

3ξ2 − 12

64π2ξ2
h if P = 1/2,

− 3

16π2ξ2
h2(1−P) if P ∈ (1/2, 1).

(84)

These results are in agreement with the EFT analysis includ-
ing thresholds presented in Sect. 5. In fact Eqs. (46), (54),

and (58) are identical to those in Eq. (84), recalling that
x0 = h2Pκ .

Moreover, we can substitute the expression for the mini-
mum x0(ξ2, h2) inside the parametrization for Cf in Eq. (81)
for P = 1/2. Considering the leading order in h2, we find

Cf = 9ξ2
2 − 12

64π2η̂x
+ ξ2

2
for P = 1

2
, (85)

that describes a one-parameter family of QFP solutions sat-
isfying the consistency condition at the nontrivial minimum,
i.e., f ′′(x0) = ξ2. These solutions are represented in the
right panel of Fig. 6 as a red dashed line laying in Reg. II.
The asymptotic behavior for the latter solutions is obtained
by plugging Eq. (85) into Eq. (74). It turns out that these solu-
tions obey the same asymptotic behavior as the CEL solution
which is given by a quadratic function in x ,

f (x) ∼
x→∞

ξ2

2
x2 for P = 1

2
. (86)

Also for P < 1/2 it is possible to find a parametriza-
tion Cf(ξ2) for the QFP solutions with a nontrivial minimum
satisfying the consistency condition in x0. Its leading order
contribution in h2 reads

Ĉf = 9 ξ2
2

64π2 η̂x
for P ∈ (0, 1/2), (87)

and coincides exactly with the solution to the condition
Ĉf,∞ = 0. Thus, we find the asymptotic behavior

f (x) ∼
x→∞ 0 for P ∈ (0, 1/2). (88)

Therefore, the QFP solutions for P < 1/2 are asymptotically
flat.

Along these two families of QFP solutions for P ≤ 1/2,
it is interesting to evaluate the rescaled cubic coupling at x0.
It is given by the third derivative of the homogenous scaling
part with respect to x which reads

f ′′′(x0) = −Cf
8ηx (2 − ηx )

(2 + ηx )3 x
− 2+3ηx

2+ηx
0 . (89)

By inserting x0(ξ2, h2) and Cf(ξ2), the leading contribution
in h2 is given by

ξ3 =

⎧⎪⎨
⎪⎩

− 6ξ2
2 h

2P if P ∈ (0, 1/2),

− 2ξ2h
9ξ2

2 + 32π2η̂xξ2 − 12

3ξ2 − 12
if P = 1/2.

(90)

From the definitions (31) and (67), we deduce that the trans-
formation between the rescaled cubic coupling for f (x) and
the finite ratio λ̂3 is
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ξ3 = λ̂3h
2(P3−3P). (91)

From Eq. (90) we can conclude that P3 = 2 for P = 1/2
and P3 = 4P for P ∈ (0, 1/2). This h2-dependent behavior
is in agreement with the EFT analysis including thresholds
described in Sect. 5. However, the expression for the finite
ratio λ̂3 is different, since we are treating the threshold func-
tions in the φ4-dominance approximation in this section.

Finally, let us summarize once more the results of the
fixed-point potential analysis for f (x) and for general P < 1.
Starting from a pure quartic scalar interaction for the potential
given by λ2ρ

2/2 = ξ2x2/2 with a trivial minimum at the
origin, we obtain a QFP potential of the same type and with
the required property f ′′(0) = ξ2 only for the particular
choice for the parameters {P,Cf , ξ2} = {1/2, 0, λ̂±

2 }. This
is the CEL solution. We argued that it is stable with a well
defined asymptotic behavior in the combined limit x → ∞
and h2 → 0. In addition for P ≤ 1/2, we discovered in
the (Ĉf , ξ2) plane the existence of a one-parameter family of
new solutions. Despite the presence of a log-type singularity
at the origin, these solutions have a nontrivial minimum x0

which satisfies the consistency condition f ′′(x0) = ξ2. For
P = 1/2 these new solutions are stable and present the same
quadratic asymptotic behavior as for the CEL solution. For
P < 1/2, the QFP potential becomes asymptotically flat in
the combined limit x → ∞ and h2 → 0, because Ĉf,∞ = 0.

7 Full effective potential in the weak-coupling
expansion

Let us discuss yet another analytic functional approximation,
obtained by expanding the full functional equation for the
rescaled potential f (x) in powers of h2. The one-loop flow
equation for f (x) takes the form

∂t f =−4 f + dx x f
′ + 1

32π2

1

1 + ω f
− Ncdγ

32π2

1

1 + ω1 f
,

(92)

where we have chosen again the piecewise linear regula-
tor for the evaluation of the threshold functions l(B/F)

0 , as in
Eq. (23), which parametrize the result of the boson/fermion
loop integrals. Here, dx is the same as in Eq. (69) and rep-
resents the quantum dimension of x . The arguments ω f and
ω1 f , defined as

ω f = h2P (
f ′ + 2x f ′′) , ω1 f = h2−2P x, (93)

are related to the scalar and Yukawa vertices, respectively.
The Taylor expansion of Eq. (92) for small Yukawa coupling,
at fixed x and f , yields the following expression

β f = [
β f

]
h2→0 + δβ f , (94)

where the first term on the right-hand-side is just the β-
function in the limit h2 → 0 and the second term is the
leading-order contribution in terms of the Yukawa coupling.
A solution of the corresponding weak-coupling QFP equa-
tion in general depends on h2, whereas f (x), its derivatives,
and its minimum x0 are assumed to be h2-independent in the
expansion of Eq. (94). Therefore, a consistency check of the
validity of the expansion has to be performed after the ana-
lytic QFP solution for f (x) is computed. This applies, for
instance, to the contributions coming from the anomalous
dimensions which, according to Eqs. (25), (26) and (27),
depend on the properties of the potential at its minimum.

An h2-independent contribution from the quantum fluc-
tuations is present only for P = 1, and equals the fermion
loop. Therefore in d = 4 one has

[
β f

]
h2→0 =

{
−4 f + 2x f ′, P < 1,

−4 f + 2x f ′ − Ncdγ

32π2
1

1+x , P = 1.
(95)

For P < 1 the zeroth order in h2 is trivial since no quantum
fluctuations are retained. On the other hand for P = 1, the
properties of the QFP solutions depend on the current choice
of the regulator. Let us now discuss all interesting cases, for
P ≤ 1. For the case P > 1, we demonstrate in “Appendix C”
that no reliable solution can be constructed which is compat-
ible with our assumptions and approximations.

7.1 P ∈ (0, 1/2)

In this case only the scalar loop contributes to the first order
correction to β f . The scalar vertices scale like h2P . There-
fore δβ f can be approximated by the linear term of a Taylor
expansion of the scalar threshold function at vanishing argu-
ment, reading

δβ f = − 1

32π2 h2P ( f ′ + 2x f ′′). (96)

Upon inclusion of this leading order correction, the flow
equation now becomes a second order ODE that can be solved
analytically. We find two linearly independent solutions. The
first is given by the following polynomial

f (x) = c

(
x2 − 3

32π2 h
2P x

)
. (97)

where c is an integration constant. The second solution grows
exponentially for large field amplitudes. However, we are
only interested in solutions that obey power-like scaling for
x → ∞, since in this case a scalar product can be defined on
the space of eigenperturbations of these solutions [83–85].
Thus, we set the second integration constant to zero.
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Clearly, the solution in Eq. (97) is easily translated into
the polynomial language of Sect. 5, by identifying

ξ2 = 2c,

x0 = 3

64π2 h
2P .

(98)

which agrees with Eqs. (46) and (47).

7.2 P = 1/2

For P = 1/2, both the scalar and the fermion loops contribute
to the first correction of β f that is

δβ f = − 1

32π2 h( f ′ + 2x f ′′) + 1

32π2 Ncdγ hx . (99)

The QFP equation is again a second order ODE whose ana-
lytic solution will have two integration constants. Again, we
discard the solution which scales exponentially for large x
by setting the corresponding integration constant to zero. The
remaining solution is a quadratic polynomial

f (x) = ξ2

2
x2 − 3ξ2 − Ncdγ

64π2 hx, (100)

which has a free quartic coupling ξ2 and a minimum at

x0 = h
3ξ2 − Ncdγ

64π2ξ2
. (101)

By setting Nc = 3 and working with an irreducible repre-
sentation of the Clifford algebra in d = 4, i.e., dγ = 4, one
recovers the result of Sect. 5.2 for P3 > 1. As in that case,
the nontrivial minimum only exists if ξ2 > 4. The straight-
forward generalization of this requirement reads

ξ2 >
Ncdγ

3
(102)

for a generic field content.

7.3 P ∈ (1/2, 1)

In this case only the fermion loop contributes to the first
correction of β f and is given by

δβ f = 1

32π2 Ncdγ h
2(1−P)x . (103)

The differential equation remains a first order ODE and its
analytical solution is

f (x) = ξ2

2
x2 + 1

64π2 Ncdγ h
2(1−P)x, (104)

where ξ2 is an arbitrary integration constant. For any color
number or representation of the Clifford algebra, the potential
exhibits only the trivial minimum at vanishing field amplitude
and thus the QFP solution is in the symmetric regime. In fact
the corresponding nontrivial minimum

x0 = − Ncdγ

64π2ξ2
h2(1−P), (105)

would be negative for any positive ξ2. This is again in agree-
ment with the EFT analysis, cf. Eqs. (58) and (59).

For all values of P < 1 in the present approximation,
we have obtained QFP solutions which are analytic in x .
In Sect. 5, this was implemented by construction, since we
have projected the functional flow equation onto a polyno-
mial ansatz. In the present analysis, this happens because the
contributions to β f producing non-analyticities are accom-
panied by subleading powers of h2 for P < 1. Indeed, both
the anomalous dimension of x and contributions from the
loops proportional to x2 would produce a logarithmic sin-
gularity of f ′′(x) at x = 0 for any h2 �= 0, as discussed in
Sect. 6.3, see also below. Knowing about the presence of this
singularity for any P for h2 �= 0, we can accept the previous
solutions only if x0 > 0, which appears to be impossible for
P ∈ (1/2, 1).

7.4 P = 1

As shown in Eq. (95), already the zeroth order in h2 accounts
for nontrivial dynamical effects for P = 1. The correspond-
ing QFP solution for the piecewise linear regulator is

f (x) = c x2 + Ncdγ

64π2

(
x + x2 log

x

1 + x

)
. (106)

The second derivative of this potential has a log-type singu-
larity at the origin. We expect that this feature survives also
in the full h2-dependent solution, as addressed in the next
section.

The freedom in the choice of the parameter c allows to
construct physical QFP solutions, that avoid the divergence at
small fields by developing a nontrivial minimum. The defin-
ing equation f ′(x0) = 0 for this minimum, where f is given
by Eq. (106), can straightforwardly be solved for c in terms
of x0. From the point of view where the latter is the free
parameter labeling the QFP solutions, the natural question
then is as to whether it can be chosen such that f ′′(x0) = ξ2

is positive and finite for h2 → 0. The answer is negative,
since the piecewise linear regulator gives

ξ2 = − Ncdγ

64π2x0(1 + x0)2 , (107)

which is in agreement with Eq. (63).

8 Numerical solutions

In this section, we test our previous analytical results by inte-
grating numerically the full one-loop nonlinear flow equation
for f (x) as in Eq. (92), where we have computed the thresh-
old functions lB/F

0 in Eq. (23) by choosing the piece-wise
linear regulator. We make a further approximation evaluat-
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Fig. 7 CEL solution: first derivative of the potential f ′(x) for h2 =
10−4, P = 1/2 and ξ2 = λ̂+

2 as in Eq. (16). The numerical solution
of the full one-loop flow equation obtained from the pseudo-spectral
method (solid blue line) lies exactly on top of the analytic solution in
Eq. (70) for Cf = 0 (red dashed line)

ing the anomalous dimensions ηφ , ηψ and ηh2 in the DER,
leading to the expressions in Eqs. (10), (13) and (28). We are
moreover interested in the P = 1/2 case characterized by
the existence of the CEL solution, regular at the origin, and
a family of new QFP potentials, singular in x = 0 but featur-
ing a nontrivial minimum x0 �= 0. To address this numerical
issue we exploit two different methods. First, we study the
global behavior of the CEL solution using pseudo-spectral
methods. And second, we corroborate the existence of the
new QFP family of solutions using the shooting method. s

8.1 Pseudo-spectral methods

Pesudo-spectral methods provide for a powerful tool to
numerically solve functional RG equations, provided the
desired solution can be spanned by a suitable set of basis
functions. Here, we are interested in a numerical construction
of global properties of the QFP function f (x). We follow the
method presented in [86], as this approach has proven to be
suited for this purpose, see [74,87–89] for a variety of appli-
cations, and [90] for earlier FRG implementations; a more
general account of pseudo-spectral methods can be found in
[91–94].

In order to solve the differential equation given by Eq. (92)
globally on R+, the strategy is to decompose the potential
f (x) into two series of Chebyshev polynomials. The first
series is defined over some domain [0, xM] and is spanned in
terms of Chebyshev polynomials of the first kind Ti (z). The
second series is defined over the remaining infinite domain
[xM,+∞) and expressed in terms of rational Chebyshev
polynomials Ri (z). Moreover, to capture the correct asymp-
totic behavior of f (x), the latter series is multiplied by the
leading asymptotic term xd/dx , which is in fact the solution of
the homogeneous scaling part of Eq. (92). Finally the ansatz
reads

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Na∑
i=0

ai Ti

(
2x

xM
− 1

)
, x ≤ xM,

x
d
dx

Nb∑
i=0

bi Ri
(
x − xM), x ≥ xM.

(108)

We thus convert the initial equation into an algebraic set
of Na + Nb + 2 equations that can be solved applying the
collocation method, for example by choosing the roots of
TNa+1 and RNb+1. At the matching point xM, the continuity
of f (x) and f ′(x) must be taken into account. The solutions
presented in the following are obtained by choosing xM = 2.
We have further examined that the results do not change once
xM is varied.

In Fig. 7, we compare the first derivative f ′(x) obtained
from this pseudo-spectral method and the analytical solu-
tion derived from the φ4-dominance EFT approximation, see
Eq. (70), for a fixed value of h2 = 10−4 and ξ2 = λ̂+

2 .
The two solutions lie perfectly on top of each other within
the numerical error. Moreover, the coefficients ai and bi
exhibit an exponential decay with increasing Na and Nb

– and thus indicate an exponentially small error of the
numerical solution – until the algorithm hits machine pre-
cision.

The pseudo-spectral method thus allows us to provide
clear numerical evidence for the global existence of the CEL
solution within the full non-linear flow equation in the one-
loop approximation. To our knowledge, this is the first time
that results about global stability have been obtained for the
scalar potential of this model.

We emphasize that the expansion around the origin in
Chebyshev polynomials is an expansion over a set of basis
functions that are in C∞. Unfortunately, they do not form
a suitable basis for the new QFP solutions parametrized by
Cf(ξ2) as in Eq. (85), because of the presence of the log-type
singularity at the origin. Naively applying the same pseudo-
spectral methods to this case does, in fact, not lead to numer-
ically stable results.

8.2 Shooting method

Let us therefore use the shooting method that allows to deal
with the presence of the log-singularity to some extent. For
this, we integrate Eq. (92) starting from the minimum x0

towards both the origin and infinity. The boundary conditions
that have to be fulfilled are

f ′(x0) = 0, f ′′(x0) = ξ2, (109)

which are just the definitions of the minimum and the quar-
tic coupling. The set of parameters is x0, ξ2, and h2. For
the present type of equations, it is well known that the inte-
gration outwards x → +∞ is spoiled by the presence of
a movable singularity xs+ [73,83,95–98]. Here, the solu-
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Fig. 8 The ratio x2
0/h2 as a function of h2 for P = 1/2 and ξ2 = 10.

The solid line represents the numerical solution from the shooting from
the minimum whereas the dashed line represents the analytic solution,
which can be found in Eq. (84)

Fig. 9 Log ( f ′′) as a function of x/x0 for P = 1/2 and fixed value of
ξ2 = 10. Comparison between the numerical solutions from the shoot-
ing from the minimum (solid lines) and the analytic ones (dashed lines)
for different values of the Yukawa coupling: h2 ∈ {10−8, 10−7, 10−6, 3·
10−5, 10−4, 6·10−4, 3·10−3} from the darker (left) to the lighter (right)
curve

tions from shooting develop a peak of maximum value of
xs+ only for a particular choice of initial parameters. In the
latter 3-dimemsional space, we therefore have a surface that
can be parametrized, for example, by x0(ξ2, h2). In the φ4-
dominance EFT, we have seen that the leading contribution
in h2 to the nontrivial minimum x0 is given by Eq. (84) for
P = 1/2. Fig. 8 shows how the full numerical solution con-
verges to the analytical one in the limit h2 → 0 for the fixed
value of ξ2 = 10. Repeating the numerical analysis for dif-
ferent values of ξ2 > 4, we find a similar agreement with the
analytic solution in all studied cases.

Additionally, we have also seen in the φ4-dominance EFT
approximation that the family of solutions with a nontrivial
minimum are singular at the origin from the second derivative
on. Very close to the origin this fixed singularity in f ′′(x) may
spoil standard integration algorithms and the numerical inte-
gration stops at some xs− value. This kind of feature has been

Fig. 10 Measure of the singular region due to the presence of the fixed
singularity in x = 0 as a function of h2. The with is estimated by
the criteria f ′′(xs−) = 4. For fixed ξ2 = 10 we have found that the
numerical points are well approximated by the power law (dashed line)
xs− ∼ h2a where a � 1.084

studied also in the non-abelian Higgs model [44]. In princi-
ple, these singularities in higher derivatives could contradict
asymptotic freedom if they persisted in the h2 → 0 limit. To
verify that this is not the case, we first analyze the behavior
of f ′′(x) close to the origin and compare it to the analytic
one. From Eq. (70), we know that the term responsible for the
fixed singularity is the scaling term Cf xd/dx = Cf x4/(2+ηx ).
Indeed, taking the log of the second derivative gives

log f ′′(x) ∼ − 2ηx

2 + ηx
log x for x → 0. (110)

In Fig. 9, we depict how the numerical solutions (green lines)
deviate from this analytic one (dashed line) close to the origin
and for different values of h2 at fixed ξ2 = 10. This plot
shows that the region of discrepancy progressively shrinks
as h2 gets smaller and smaller: indeed for smaller values
of h2 the point where the numerical solution deviates from
the analytic one moves towards smaller values. To measure
this region, we have determined the onset of the singularity
close to the origin as a function of h2. Following the same
idea as in [44], the criteria is to compute the position of
xs− where f ′′(xs−) assumes a sufficiently large value, let
us say log f ′′(xs−) = 4. An estimate of xs− is shown in
Fig. 10 where a fit of the data confirms that the singular
region shrinks to zero for h2 → 0. In fact we have found
numerically a power law xs− ∼ h2a with a � 1.084 for the
present model.

We conclude that the existence of the new solutions is
confirmed with the shooting method. We find satisfactory
qualitative agreement with the solutions identified in the φ4-
dominance effective field theory approximation, which are
singular at the origin and show a nontrivial minimum.
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9 Conclusions

Models that feature the existence of asymptotically free
RG trajectories represent “perfect” quantum field theories
in the sense that they could be valid and consistent mod-
els at any energy and distance scale. Identifying such RG
trajectories hence provides information that can be crucial
for our attempt at constructing fundamental models of par-
ticle physics. Based on the observation that part of the stan-
dard model including the Higgs-top sector exhibits a behav-
ior reminiscent to an asymptotically free trajectory, we have
taken a fresh look at asymptotic freedom in a gauged-Yukawa
model from a perspective that supersedes conventional stud-
ies within standard perturbation theory.

Gauged-Yukawa models form the backbone not only of
the standard model, but also of many models of new physics.
Our study concentrates on the simplest model, aZ2-Yukawa-
QCD model, that features asymptotically free trajectories
already in standard perturbation theory as first found in
Ref. [4]. Using effective-field-theory methods as well as vari-
ous approximations based on the functional RG, we discover
additional asymptotically free trajectories. One key ingredi-
ent for this discovery is a careful analysis of boundary con-
ditions on the correlation functions of the theory, manifested
by the asymptotic behavior of the Higgs potential in field
space in our study. Whereas standard perturbation theory
corresponds to an implicit choice of these boundary con-
ditions, generalizing this choice explicitly yields a further
two-parameter family of asymptotically free trajectories.

Our findings in this work generalize the strategy devel-
oped in Refs. [43,44] for gauged-Higgs models to systems
including a fermionic matter sector. The new solutions also
share the property that the quasi-fixed-point potentials, i.e.,
the solution to the fixed-point equation for a given small
value of the gauge coupling, exhibit a logarithmic singular-
ity at the origin in field space. Nevertheless, standard cri-
teria (polynomial boundedness of perturbations, finiteness
of the potential and its first derivative, global stability) are
still satisfied. Moreover, since the quasi-fixed-point potential
exhibits a nonzero minimum at any scale, correlation func-
tions defined in terms of derivatives at this minimum remain
well-defined to any order. Hence, we conclude that our solu-
tions satisfy all standard criteria that are known to be crucial
for selecting physical solutions in statistical-physics models
[83–85].

The occurrence of a nontrivial minimum in the quasi-
fixed-point solutions also indicates that standard arguments
based on asymptotic symmetry [99] are sidestepped: con-
ventional perturbation theory often focuses on the deep
Euclidean region (DER), thereby implicitly assuming the
irrelevance of nonzero minima or running masses for the

RG analysis. In fact, all our new solutions demonstrate that
the inclusion of a nonzero minimum is mandatory to reveal
their existence. In this sense, the CEL solution found in stan-
dard perturbation theory is just a special case that features
the additional property of asymptotic symmetry.

Our analysis is capable of extracting information about
the global shape of the quasi-fixed-point potential. In fact,
the requirement of global stability leads to constraints in the
two-parameter family of solutions. The scaling exponent is
confined to the values P ≤ 1/2. This constraint is new in the
present model in comparison with gauged-Higgs models [43,
44], and may be indicative for the fact that further structures
in the matter sector may lead to further constraints. The CEL
solution is a special solution with P = 1/2, such that our
results provide direct evidence for the first time that the CEL
solution indeed features a globally stable potential.

In our work, we so far concentrated on the flow of the
effective potential u(ρ) (or f (x)). This does, of course,
not exhaust all possible structures that may be relevant for
identifying asymptotically free trajectories. A natural further
step would be a study of a full Yukawa coupling potential
h(ρ). This would generalize the single Yukawa coupling h
which corresponds to the coupling defined at the minimum
h(ρ = κ). In fact, the functional RG methods are readily
available to also deal with this additional layer of complex-
ity [72,73,76,80,100–103]. As further boundary conditions
have to be specified, it is an interesting open question as to
whether the set of asymptotically free trajectories becomes
more diverse or even more constrained.

In view of the standard model with its triviality problem
arising from the U(1) hypercharge sector, it also remains to
be seen if our construction principle can be applied to this
U(1) sector. We believe that the construction of UV complete
quantum field theories with a U(1) factor as part of the funda-
mental gauge-group structure should be a valuable ingredient
in contemporary model building.
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Appendix A: More perturbatively renormalizable asymp-
totically free solutions

In this Appendix, we complete the review of perturbatively
renormalizable AF solutions allowed at one loop for the Z2-
Yukawa-QCD model defined in Eq. (1). Our analysis is partly
similar to that of Ref. [14], but generalizes it with the notion
of QFPs. The flow in the (g2

s , h2) plane, provided by Eq. (2)
and Eq. (3), is best understood by direct analytic integration
of the RG equations, and adopting g2

s as an (inverse) RG
time. The solution of the flow reads

h2(g2
s ) = g2

s

c g2(1−γ )
s + 1/ĥ2∗

, (A1)

where

γ = 9

11Nc − 2Nf

N 2
c − 1

Nc
. (A2)

The QFP ĥ2∗ is defined in Eq. (5) and c is an integration
constant. Notice that γ as defined in Eq. (A2) is positive as
long as g2

s is AF, according to Eq. (2). Also, the condition
ĥ2∗ > 0, which further restricts the viable field content as in
Eq. (7), is equivalent to γ > 1, as follows from Eq. (A2).
In fact, the standard-model case, Nc = 3 and Nf = 6, leads
to γ = 8/7. If one initializes the flow at some arbitrary RG
scale �, with a gauge coupling g2

s� and a Yukawa coupling
h2

�, then c is given by

c g2(1−γ )
s� =

(
g2

s

h2

)
�

− 1/ĥ2∗. (A3)

There is only one trajectory along which h2 exhibits an
asymptotic scaling proportional to g2

s , and it corresponds to
h2

� = g2
s� ĥ2∗ and c = 0. If the initial condition is chosen

in this way, the strong coupling drives the Yukawa coupling
to zero in the UV. If instead the initial condition is different,
then c �= 0 in Eq. (A1) and the fate of the system depends
on the sign of c. For c < 0, which corresponds to ĥ2

� > ĥ2∗
according to Eq. (A3), either h2 < 0 for all g2

s < 1, or
h2

� > 0 and the Yukawa coupling hits a Landau pole in the
UV, i.e., it diverges at a finite RG time. For c > 0, namely
ĥ2

� < ĥ2∗, there is no Landau pole and the trajectories are
also AF, but with an asymptotic scaling that differs from the
one defined by Eqs. (4) and (5). In fact, in this case

h2(g2
s ) ∼

gs→0

1

c
g2γ

s , (A4)

for any c �= 0, thanks to the assumption that Eq. (7) holds,
such that γ > 1. Also this scaling solution should be
amenable to an interpretation as a QFP for the flow of a
suitable ratio. Indeed, we could define

ĥ′ 2 = h2

g2γ
s

. (A5)

For this ratio we would find the following β function

∂t ĥ
′ 2 = 9g2γ

s

16π2 ĥ
′ 4. (A6)

Here the second term in Eq. (3) has been canceled by the
contribution −γ ηAĥ′ 2 coming from the rescaling, due to the
value of γ given in Eq. (A2). While Eq. (A6) does not vanish
for any finite value of the strong coupling constant g2

s �= 0,
the fact that the would-be-leading contribution proportional
to g2

s vanishes for any ĥ′ 2 signals the presence of a QFP with
arbitrary value of ĥ′ 2. This is only approximately realized at
finite g2

s �= 0 and becomes exact in the g2
s → 0 limit.

Let us now address the stability properties of the AF tra-
jectories plotted in Fig. 1. From the previous discussion it is
clear that an infinitesimal perturbation of a trajectory charac-
terized by c �= 0, along a direction which changes the value
of the Yukawa coupling, i.e., c itself, results in a new trajec-
tory which is still a scaling solution. Thus, one moves from
a given ĥ′ 2 to another ĥ′ 2 + δĥ′ 2, and the distance between
the two trajectories stays constant in RG time in the UV limit
if measured in terms of the rescaled coupling ĥ′ 2. Hence, we
can call this a marginal perturbation. These QFP solutions
are neither stable nor unstable. Yet, as it is clear from the
left panel of Fig. 1, quantification of the distance between
trajectories in terms of the unrescaled h2 would lead to a
different conclusion, since such a distance would decrease
as g2 → 0. The unique trajectory with c = 0 has a rather
different behavior, as already discussed in Sect. 2.

The AF solutions of Eq. (A4) in the Yukawa sector, trans-
late into corresponding AF trajectories in the Higgs sector.
As we did for the CEL solution, we inspect the running of
the finite ratio λ̂2 defined in Eq. (11), and P still to be deter-
mined. We restrict h2 such that the ratio in Eq. (A5) attains
an arbitrary finite value in the UV. In this case, the reduced
anomalous dimension enters the β function of λ̂2 of Eq. (15),

η′
h2 =

[
−∂t h2

h2

]
h2=g2γ

s ĥ′ 2
∼
gs→0

3

8π2

N 2
c − 1

Nc
g2

s , (A7)

where we have neglected a second contribution which is pro-
portional to g2γ

s , since γ > 1. Inserting this into the flow
equation for λ̂2 and replacing g2

s = (c h2)1/γ , where c−1 > 0
is the QFP value of ĥ′ 2, one gets four terms. Each of these
terms scales with a different power of h2. In order to have
a QFP solution with a positive λ̂2, it is necessary that the
contributions from the fermions be the leading ones, which
requires

P = 1 − 1

2γ
, (A8)

and results in

λ̂2 = N 2
c

3(N 2
c − 1)

1(
1 − 1

2γ

)
c1/γ

. (A9)

123



101 Page 22 of 27 Eur. Phys. J. C (2019) 79 :101

Notice that these QFPs do not correspond to any trajectory
plotted in Fig. 2, because they lie on a different hypersurface
in the {g2

s , h2, λ} space, with a scaling defined by Eq. (A5)
rather then Eq. (4). Still, one can produce similar plots on
the hypersurface corresponding to Eq. (A5), and they would
look very similar to those shown in Fig. 2. In fact, due to the
positive sign of ηh2 , also the QFP in Eq. (A9) is UV repulsive,
meaning that for a chosen initialization value of h2, i.e., one
c, there is only one AF trajectory for λ2 approaching the
Gaußian fixed point from positive values, and it corresponds
to Eq. (A9). Larger values of λ̂2 would result in a Landau
pole, while smaller values would lead to negative λ2 at high
energy.

Appendix B: Large field behavior of the asymptotically
free potentials

B.1 EFT resummation of the effective potential in the DER

For a study of the stability of the potential u(ρ) (see Eq. (40))
in the UV, it is necessary to address the combined limit
ρ → ∞ and h2 → 0. However, a meaningful and con-
sistent result requires to take these limites in an appropriate
order while remaining in the outer or inner asymptotic region,
defined respectively as the region where the variable z = h2ρ

appearing in the bosonic and fermionic threshold functions
is z 
 1 or z � 1 as introduced in Sect. 6.

Let us start with the outer region. If h2 is small and finite
we can address the asymptotic behavior by expanding the
potential of Eq. (40) for z → ∞. This gives the following
result

u(ρ) = λ̂2z2

2h2 + 


(
4 + 4ηz

2 + ηz

)
1

32π2(2 + 3ηz)
×

×
{ 


(
2ηz

2+ηz

)



(

2+3ηz
2+ηz

)2 3z2(3λ̂2
2 − 4)

+ 


( −2ηz

2 + ηz

)
z

4
2+ηz

[
(3λ̂2)

4
2+ηz − 12

]}

+ O(z)
∣∣∣
z=h2ρ

≡
[

λ̂2

2h2 + c1(h
2)

]
z2 + c2(h

2) z
4

2+ηz + O(z)
∣∣∣
z=h2ρ

(B1)

where ηz is the anomalous dimension of z as given in Eq. (37).
Now we can safely perform the limit h2 → 0 in the outer
asymptotic region where z 
 1. We find that the leading
order behavior is given only by the first term, as in Eq. (42).
Indeed the noninteger power scaling z4/(2+ηz) behaves as z2

for h2 → 0 and the two coefficients c1 and c2 have simple
poles in h2 that cancel each other in the limit h2 → 0.

Let us further consider the inner interval. Expanding the
potential of Eq. (40) for small h2, we obtain the following
expression:

u(ρ) = λ̂2

h2

z2

h2 + 3z2

32π2(2 + 3ηz)

[
3λ̂2

2 log(1 + 3λ̂2z)

− 4 log(1 + z)
]

+ b2(z)
ηz z2

2 + 3ηz
+ O(h4z2). (B2)

The function b2(z) goes to zero with z, as is also true for the
second term. This expansion is valid only for those values
of ρ such that h2ρ � 1. Therefore for addressing the limit
ρ → ∞, it is necessary to take the limit h2 → 0 while keep-
ing z � 1, in such a way that the expansion in Eq. (B2) still
holds. Doing so, we find that the leading term for the poten-
tial is again the one in Eq. (42) also in the inner asymptotic
region. The same conclusion can be deduced by expanding
the potential for small z and keeping h2 fixed. Indeed the
function u(ρ) is analytic in z and its expansion reads

u(ρ) = λ̂2

2

z2

h2 + 27λ̂3
2 − 12

32π2(2 + 3ηz)
z3 + O(z4), (B3)

where again the h2 → 0 limit with fixed z � 1 gives us the
result in Eq. (42).

Let us emphasize once more that a consistent answer about
the full stability of the potential u(ρ) requires to take the
two limits ρ → ∞ and h2 → 0 in such a way that the
variable z = h2ρ entering the bosonic and fermionic loops
controllably satisfies z 
 1 (outer region) or z � 1 (inner
region). In these two asymptotic regions, the potential has the
same positive asymptotic coefficient in front of the leading
quadratic term. Therefore, we conclude that it is stable for
arbitrarily small values of the Yukawa coupling.

B.2 f (x) in the φ4-dominance approximation

In Sect. 6, the same reasoning for taking the asymptotic limits
as in the preceding section applies to the two loop-variables
zB and zF, defined in Eq. (71). Let us start by inspecting the
potential f (x) in the φ4-dominance approximation first in
the outer region. For finite values of h2, we can assume that
the loop contributions are negligible for large field amplitudes
and therefore expand the scalar and fermionic loops in powers
of x−1. Setting the left-hand side of Eq. (68) to zero, the QFP
potential can then be expressed in terms of an infinite series
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fas(x) = − 1

32π2

∞∑
n=1

(−)n
1 − 12 (3h2(2P−1)ξ2)

n(
3ξ2h2P x

)n
(4 + 2n + nηx )

+ Cas x
4

2+ηx , (B4)

which can be resummed analytically

fas(x) =Casx
4

2+ηx + 1

32π2(6 + ηx )
×

×
[

1

3ξ2h2P x
2F1

(
1,

6 + ηx

2 + ηx
,

8 + 2ηx

2 + ηx
,− 1

3ξ2h2P x

)

− 12

h2(1−P)x
2F1

(
1,

6 + ηx

2 + ηx
,

8 + 2ηx

2 + ηx
,− 1

h2(1−P)x

)]
.

(B5)

Using the following linear transformation among the hyper-
geometric functions

sin (π(b − a))

π
(c)
2F1(a, b, c, z)

= 1

(−z)a
2F1

(
a, a − c + 1, a − b + 1, z−1

)

(b)
(c − a)
(a − b + 1)

− 1

(−z)b
2F1

(
b, b − c + 1, b − a + 1, z−1

)

(a)
(c − b)
(b − a + 1)

, (B6)

it is possible to rewrite the solution f (x) into fas(x). Indeed,
this becomes clear from the relation between the two inte-
gration constants Cf and Cas which is

Cas =Cf + π

2 + ηx

[
sin

(
4π

2 + ηx

)]−1

h
8(1−P)
2+ηx ×

× 1

32π2

[(
3ξ2h

2(2P−1)
) 4

2+ηx − 12

]
. (B7)

This mapping from fas(x) to f (x) tells us that the asymp-
totic behavior of the QFP solution is determined in the outer
asymptotic region, where zB/F 
 1, only by the scaling terms
in ∂t f (x) = 0. In fact, this property can be inferred also by
expanding the solution f (x), instead of its beta function, for
large zB/F

f (x) = Cf,∞ x
4

2+ηx +



(
− 6+ηx

2+ηx

)



(−2+ηx
2+ηx

)

128π2 

(
− 4

2+ηx

)2

×
[
−12

zF
+ 1

zB
+ O

(
z−2

B

)
+ O

(
z−2

F

)]
. (B8)

The coefficient in front of the scaling term is a function of
Cf , ξ2, h2, and P

Cf,∞ = Cf + 1

128π2 


(−2 + ηx

2 + ηx

)



(
6 + ηx

2 + ηx

)

×
[(

3ξ2h
2P

) 4
2+ηx − 12 h

8(1−P)
2+ηx

]
. (B9)

It is not surprising that this scaling factor is exactly the
asymptotic coefficientCas. By using one of the defining prop-
erties of the Gamma function, 
(1 + z) = z
(z) as well as
the following identity


(z)
(1 − z) = π

sin(π z)
, (B10)

we recover precisely the expression in Eq. (B7), therefore

Cf,∞ = Cas. (B11)

As we are interested in the asymptotic behavior in the UV, it
is convenient to expand Eq. (B9) for small h2 and keep only
the leading terms,

Cf,∞ ∼
h2→0

Cf − 9ξ2
2 h

2(2P−1) − 12 h2(1−2P)

64π2η̂x
. (B12)

Moreover, all the subleading terms in Eq. (B8) of order
O(z−1

B ) and O(z−1
F ) are regular in the h2 → 0 limit. We

can thus conclude that the asymptotic property of the QFP
potential is correctly described by Eq. (B12) both in the outer
region, i.e., for large field amplitudes, and in the UV limit.

Let us address now the situation in the inner region, where
we can expand the potential f (x) either for zB/F � 1 or for
x � 1 while keeping h2 finite. In both cases the result is the
same, and reads

f (x) = − 11

128π2 + Cf x
4

2+ηx − zB − 12zF

32π2(2 − ηx )

− z2
B − 12z2

F

64π2h2η̂x
+ O(z3

B) + O(z3
F). (B13)

In the UV limit, the inner region increases and thus allows
to address the asymptotic behavior of the potential. Indeed
this combined limit can be taken as long as zB/F � 1 holds.
From Eq. (B13), we can deduce that

f (x) ∼
x→∞

[
Cf − 9ξ2

2 h
2(2P−1) − 12h2(1−2P)

64π2η̂x

]
x2, (B14)

where the coefficient in front of the quadratic term coin-
cides with Eq. (B12). The same information is obtained by
expanding the hypergeometric functions in Eq. (70) for small
Yukawa coupling,

f (x) = Cf x
4

2+ηx − z2
B − 12 z2

F

64π2h2η̂x
+ O(h0). (B15)
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This is in agreement with Eq. (B14) for the asymptotic behav-
ior within the inner region.

We finally conclude that it is possible to simultaneously
take the x → ∞ limit and the h2 → 0 limit in both the inner
and outer asymptotic regions. This combined limit gives the
same result in both regions, and can be summarized as

f (x)∼
x→∞
h2→0

h±2(2P−1) Ĉf,∞ x2, (B16)

where the ± sign is for P ≶ 1/2. The expression for Ĉf,∞
can be found in the main text in Eq. (74).

B.3 Comparison between u(ρ) and f (x)

The potential u(ρ) in Eq. (40), obtained within the DER,
and the effective potential f (x) in Eq. (70), derived in the
φ4-dominance approximation, can be related to each other by
exploiting a general identity among the Gauß hypergeometric
functions

zb

c
2F1(a + 1, b + 1, c + 1, z)

= 2F1(a + 1, b, c, z) − 2F1(a, b, c, z). (B17)

By setting a = 0 in the latter expression, we get the following
relationship

2F1(1, b, c, z) = 1 + zb

c
2F1(1, b + 1, c + 1, z). (B18)

Iterating this twice, we can rewrite the solution f (x) as

f (x) = 1

32π2

[
−11

4
+ 4 − ξ2

2 − ηx
3hx + 4 − ξ2

2

2ηx
3h2x2

+ (3ξ2hx)3

2 + 3ηx
2F1

(
1,

2 + 3ηx

2 + ηx
,

4 + 4ηx

2 + ηx
,−3ξ2hx

)

− 12(hx)3

2 + 3ηx
2F1

(
1,

2 + 3ηx

2 + ηx
,

4 + 4ηx

2 + ηx
,−hx

)]

+ Cf x
4

2+ηx . (B19)

Let us consider the CEL potential corresponding to P = 1/2,
Cf = 0, and ξ2 = λ̂+

2 . Working in the limit h2 → 0 where
we can take ηx → ηz , cf. Eqs. (69) and (37), (B19) becomes

lim
ηx→ηz

f (x) = u(ρ)

∣∣∣
x=hρ

− 11

128π2 + 3hx(4 − ξ2)

32π2(2 − ηz)
.

(B20)

We conclude that the solution f (x) becomes the solution
u(ρ) in the UV limit – apart from a linear term in the field
variable that is, in fact, discarded by the definition of the deep
euclidean approximation.

Appendix C: The unphysical P > 1 case

C.1 Effective-field-theory analysis

In Sect. 5, we have encountered an example in the RG equa-
tions for λ̂2 and κ̂ (cf. Eqs. (56) and (57)) that for P > 1/2
there are only few terms which may contribute to the leading
part in the h2 → 0 limit. This is a consequence of the remain-
ing legitimate configuration for the scaling powers P , Q, and
P3. The situation is very similar also for P > 1, where there
are only two consistent solutions,

κ̂ = ∓
(

3

8π2λ̂3

) 1
4

, Q = 2P + 1

3
, (C1)

λ̂2 = ±1

2

(
3λ̂3

3

8π2

) 1
4

, P3 = 8P + 1

3
, (C2)

and

λ̂2 = −2 ± √
2P − 1

2(5 − 2P)κ̂
, Q = 2P, (C3)

λ̂2
3 = 8π2(1 + 2κ̂ λ̂2)

4

(2P − 1)κ̂3 , P3 = 3P, (C4)

where λ̂3 is a free parameter. Moreover we notice that the
scaling powers Q and P3 in Eq. (C1) and Eq. (C2) are the
same as in the model discussed in Refs. [43,44]. These ana-
lytical solutions are however unphysical due to the fact that
positive κ̂ correspond to negative λ̂2 and vice versa.

C.2 Weak-h2 expansion

For P > 1 the argument of the fermionic loop ω1 f , defined
in Eq. (93), diverges in the limit h2 → 0 at fixed x . There-
fore, in order to capture the correct UV behavior, one has
to Taylor expand the threshold function l(F)

0 (ω1 f ) in powers
of ω−1

1 f . The same consideration also holds for the threshold
functions encoding the fermion contribution to the anoma-
lous dimensions ηφ and ηh2 . Performing this expansion, it
is straightforward to verify that the anomalous dimension
of the scalar field scales according to ηφ ∼ h4P−2/x2

0 . Thus,
the contribution from the anomalous scaling is always sub-
leading with respect to the one-particle-irreducible fermion
loop for P > 1, as long as the h2-dependence of x0 is the
one observed in the effective-field theory analysis. By con-
trast, the anomalous scaling includes ηh2 ∼ h(4P+2)/3 and
thus becomes the leading contribution for P > 4. Let us
start the investigation addressing the interval 1 < P < 4,
where the leading h2-dependent contribution to β f is

δβ f = − Ncdγ

32π2x
h2(P−1) for 1 < P < 4, (C5)
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and the integration of the QFP condition β f = 0 gives us the
potential

f (x) = c x2 − Ncdγ

192π2x
h2(P−1), (C6)

where c is the integration constant of the first-order ODE.
The defining equation f ′(x0) = 0 for the minimum fixes an
expression for this integration constant c(h2, x0), while the
definition of the quartic coupling f ′′(x0) = ξ2 provides how
x0 is related to the parameters ξ2 and h2. Indeed

x3
0 = − Ncdγ

64π2ξ2
h2(P−1). (C7)

By setting Nc = 3 and dγ = 4, the latter equation becomes

x3
0 = − 3

16π2ξ2
h2(P−1), (C8)

showing an agreement with the EFT analysis including
thresholds. Indeed, by taking Eqs. (C1), (C2) and recalling
that x0 = h2Pκ = h2(P−1)/3κ̂ , one gets exactly Eq. (C8).
Thus, there are no solutions with a nontrivial minimum for
ξ2 > 0.

It is worth to point out that the potential and all its deriva-
tives are singular at the origin due to the Taylor expansion
of l(F)

0 (ω1 f ) for small ω−1
1 f , producing a term in δβ f propor-

tional to x−1. This expansion is valid only for x 
 h2(P−1), a
condition which is not fulfilled in the x → 0 limit at fixed h2.
Yet, the fermionic loop is finite at the origin and this suggests
to retain its whole x-dependence.

Accounting for the full fermionic loop still allows for an
analytic solution of the QFP, which leads, for the piecewise
linear cutoff regulator, to a Coleman-Weinberg-like potential

f (x) = c x2 + Ncdγ

64π2

[
x

h2(P−1)

+ x2

h4(P−1)
log

( x

x + h2(P−1)

)]
. (C9)

The corresponding quadratic rescaled scalar coupling, as a
function of h2 and x0, reads

ξ2 = −Ncdγ

64π2

h2(P−1)

x0
(
x0 + h2(P−1)

)2 , (C10)

which yields Eq. (C8) in the h2 → 0 limit for Nc = 3 and
dγ = 4.

The situation is different for P ≥ 4 due to the contribution
coming from the anomalous dimension ηh2 in the scaling part
of β f . Since we a priori do not know whether the potential
exhibits a nonvanishing x0 which changes the running of ηh2 ,

Fig. 11 The rescaled quadratic coupling ξ2 as a function of h2 for
P = 2 and fixed value for the nontrivial minimum x0 = 10−3. Dashed
line: EFT approximation including thresholds, see Eqs. (C1), (C2). Solid
line: weak-h2 expansion, see Eq. (C10)

we keep it as a parameter of the differential equation. Let us
first expand the threshold function l(F)

0 (ω1 f ) in powers of
ω−1

1 f such that the leading correction to the beta function is

δβ f = P ηh2 x f ′ − Ncdγ

32π2x
h2(P−1), for P ≥ 4. (C11)

Due to the presence of a singular term at the origin, we expect
that this survives also in the corresponding QFP solution
which is in fact

f (x) = c x
4

2+Pη
h2 − Ncdγ

(6 + Pηh2)

h2(P−1)

32π2x
. (C12)

Additionally there is also a log-type singularity in the sec-
ond derivative. Indeed by Taylor expanding the scaling term
for small h2, we get a contribution proportional to x2 log x .
This potential has a nontrivial minimum x0 whose analytical
expression in terms of h2 and ξ2 is

x3
0 = − Ncdγ

32π2ξ2(2 + Pηh2)
h2(P−1). (C13)

If instead we consider the full fermionic loop, the general
QFP solution reads

f (x) = c x
4

2+Pη
h2

− Ncdγ

128π2 2F1

(
1,− 4

2 + Pηh2
,
−2 + Pηh2

2 + Pηh2
,− x

h2(P−1)

)

(C14)

where the Gauß hypergeometric function comes from the
integration of the fermionic threshold function and it is ana-
lytic around the origin. The corresponding quadratic rescaled
scalar coupling reads
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ξ2 = − Ncdγ

32π2(2 + Pηh2)

h2(P−1)

x0
(
x0 + h2(P−1)

)2 , (C15)

which is a generalization of Eq. (C10) due to the anomalous
dimension.

For all these cases, described with the piecewise linear
regulator, we can thus conclude that the weak-h2 expansion
for P > 1 agrees with the EFT approximation including
thresholds analyzed in Sec. C1. In fact Eqs. (C8), (C10),
(C13), and (C15) are all in agreement with Eqs. (C1) and
(C2) in the h2 → 0 limit and by fixing Nc = 3 and dγ = 4.
In Fig. 11 we show indeed the rescaled quartic coupling ξ2,
i.e., the curvature of the potential at the nontrivial minimum
x0, as a function of the Yukawa coupling for fixed value of
x0 = 10−3. The dashed line represents the EFT analysis,
see Eqs. (C1) and (C2), whereas the solid line represents the
weak-h2 approximation in the case where the full fermion
loop is taken into account see Eq. (C10).

So we summarize this section by emphasizing once more
that for P > 1 it is not possible to have a solution with a
nontrivial minimum and at the same time a positive ξ2.
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