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1 Introduction

Even though potential models and sum rules have suggested that charmonia resonances

(J/ψ, ηc) have dissolved by the time that the temperature of a QCD plasma reaches

300MeV or so (cf. e.g. refs. [1–4] for overviews), it has been difficult to consolidate this

picture with direct lattice measurements of thermal 2-point correlators corresponding to

vector and pseudoscalar operators. A part of the problem is that spectral information is well

hidden in an imaginary-time measurement. For instance, in the vector channel (J/ψ), the

imaginary-time correlator gets a substantial contribution from a “transport peak” located

at small frequencies |ω| ≪ T 2/M [5, 6], where T is the temperature and M is a heavy-

quark mass. This reflects interesting physics of heavy quark diffusion (cf. refs. [7, 8] and

references therein), but has little to do with the fate of quarkonium resonances at ω ∼ 2M ,

even though it severely hampers the corresponding imaginary-time measurement [6].1

1A way to avoid the problem is to make use of NRQCD or pNRQCD (cf. refs. [9–13] and references

therein), however their applicability to the charm quark case is questionable and no strict continuum limit

can be taken.
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In contrast to the vector channel, no transport peak is expected to be present in the

pseudoscalar channel (ηc) [14, 15]. The inertness of the pseudoscalar correlator then led

ref. [16] to conclude that there is no sign of melting of the corresponding charmonium

resonances (another recent analysis can be found in ref. [17]). However, another lattice

study [18] did find small changes in the pseudoscalar case (in contrast to ref. [16], ref. [18]

made use of the quenched approximation; we return to this in section 7). Moreover, for

the vector channel, it was subsequently shown [19] that within statistical and systematic

uncertainties the results of ref. [18] are compatible with perturbative predictions involving

no charmonium resonances (only a modest threshold enhancement). This demonstrates

that J/ψ and ηc dissociation is a possibility and that a very fine resolution is necessary for

constraining this physics.

The purpose of the current study is to carry out considerations such as those in

refs. [18, 19] but for the pseudoscalar correlator and with improved resolution.2 The pseu-

doscalar correlator reflects the physics of the ηc but couples to the same non-relativistic

operators as the vector channel as far as spin-independent terms are concerned.

Our presentation is organized as follows. After defining the basic setup in section 2, the

vacuum asymptotics of the pseudoscalar spectral function is reviewed in section 3, whereas

section 4 contains a discussion of thermal effects around the quark-antiquark threshold. The

lattice setup, quark-mass interpolation, renormalization, and continuum extrapolation are

summarized in section 5. The perturbative and lattice results are compared in section 6,

and conclusions and an outlook are offered in section 7. Two appendices detail the thermal

correlator at strict next-to-leading order (NLO), as a function of imaginary time and real

frequency, respectively.

2 Basic setup

We consider QCD with one heavy quark, of bare massMB and MS massm(µ̄), andNf essen-

tially massless dynamical quarks (later on we setNf = 0). The pseudoscalar imaginary-time

correlator is defined as

GP(τ) ≡ M2
B

∫

x

〈

(ψ̄iγ5ψ)(τ,x) (ψ̄iγ5ψ)(0,0)
〉

c
, 0 < τ <

1

T
, (2.1)

where ψ denotes the heavy quark Dirac spinor, and 〈. . .〉c indicates that only the connected

(i.e. flavour non-singlet) contraction is included in the thermal average. Defined this way,

the correlator is believed to be finite after mass and gauge coupling renormalization, even

though care needs to be taken with the regularization of γ5 (see below).

In the presence of a spatial ultraviolet regulator, the correlator can be Fourier-

transformed. Denoting by ωn a bosonic Matsubara frequency, the Fourier transform is

given by G̃P(ωn) ≡
∫ 1/T
0 dτ eiωnτGP(τ). The corresponding spectral function is formally

2The scalar correlator has also been considered [18, 20]. It couples to p-wave states around the threshold

and therefore addresses different physics, however on the formal side there are many similarities with

the pseudoscalar correlator, such as an extreme sensitivity to quark mass definitions and the threshold

location [21].
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given by the cut

ρP(ω) = Im G̃P(−i[ω + i0+]) , (2.2)

and the correlator of eq. (2.1) is reproduced through

GP(τ) =

∫ ∞

0

dω

π
ρP(ω)

cosh
((

1
2T − τ

)

ω
)

sinh
(

ω
2T

) . (2.3)

If present, a narrow “transport peak”, ρP/ω ∝ δ(ω), would yield a constant (τ -

independent) contribution to GP(τ). However, we have checked by an explicit compu-

tation (cf. appendix A) that GP contains no τ -independent contribution at NLO. This can

be partly understood from the partially conserved axial current (PCAC) relation

∂µ
[

ψ̄γµγ5T
aψ

]

= 2MBψ̄ γ5T
aψ , (2.4)

where T a is a traceless matrix in flavour space. According to eq. (2.4) the pseudoscalar

correlator can be obtained from a corresponding axial charge correlator through derivatives,

∂2
τGA0

= 4GP, so that constant parts appearing in GA0
get deleted. However, at finite

temperature the argument is not rigorous, since in principle GA0
could contain ∼ τ( 1

T − τ)

which would yield a constant GP after the second derivative. As mentioned, up to NLO no

such term is found. A physical reason for the absence of a constant part is that they only

appear in cases in which the operators are related to a conserved current in some limit (for

example, the scalar density equals the fermionic part of the “trace anomaly” Tµ
µ).

In order to estimate ρP, it is useful to have a physical picture in mind. As a cut,

the spectral function describes a hadronic decay width of a pseudoscalar meson. The

spatial average in eq. (2.1) implies that the meson is at rest with respect to the heat

bath. The energies of the decay products are of the order ω/2. For ω ≫ 2M ≫ πT ,

where M denotes a pole mass, all thermal effects are small (exponentially suppressed

at leading order, power-suppressed in general [22]), because thermal motion represents a

minor correction to the kinematics of the decay products. In this regime, the spectral

function can be extracted from vacuum computations. Decreasing the energy to ω ∼ 2M ,

we are entering the threshold region. In this situation even the vacuum computations

become less precise, because the decay products move slowly and have much time for final-

state interactions, leading to the so-called Sommerfeld effect (cf. ref. [23] and references

therein). Once the momenta of the decay products are of the same order as the Debye

mass, Mv ∼ mD ∼ gT where g ≡
√
4παs, thermal corrections are of order unity [24]. Below

the threshold, thermal corrections represent the dominant physics: the real-time static

potential develops an imaginary part [25–27] which leads to the dissociation of quarkonium

resonances if T ≫ αsM [28–30].

This rich physics implies that a number of different techniques are needed for a rea-

sonably precise estimate of the pseudoscalar spectral function. The vacuum computations

are discussed in section 3 and the thermal ones in section 4.
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3 Vacuum contribution above the threshold

We start with a brief non-expert review of vacuum results for the pseudoscalar spectral

function, relevant for Mv ≫ mD. In this regime thermal effects are power-suppressed [22].

Many computations have been carried out in the “on-shell” (i.e. “pole-mass”) scheme, keep-

ing the gauge coupling in the MS scheme. Like above, we may then define the pseudoscalar

operator as P = MBψ̄iγ5ψ,
3 and re-expand then MB in terms of the pole mass M [33–35].

The vacuum ρP has been estimated for a general ω/M up to O(α2
s ) [36, 37], and

for the asymptotics at ω ≫ M and for certain moments of the spectral function up to

O(α3
s ) [38–40]. The relation of the QCD spectral function to the corresponding NRQCD

one, needed for near-threshold resummation, is known up to O(α2
s ) [41]. Unfortunately

these results show poor convergence, even for the bottom quark case [42].

To illustrate the problem, we write the spectral function in the form

ρP(ω)

ω2M2

∣

∣

∣

∣

vac

≡ Nc

8π
Rp

c(ω) . (3.1)

The subscript c refers to a connected quark contraction. The R-function is expanded as

Rp
c(ω) =Rp(0)(ω) +

αs(µ̄)

π
CFR

p(1)(ω)

+

(

αs(µ̄)

π

)2
[

C2
F R

p(2)
A (ω) + CFNcR

p(2)
NA (ω) + CFTFNf R

p(2)
l (ω)

]

+O(α3
s ) , (3.2)

where CF ≡ (N2
c − 1)/(2Nc) and TF ≡ 1/2.

The asymptotics of the different contributions read (cf. e.g. refs. [43, 44]; ζn ≡ ζ(n))

Rp(0) ω≫M≈ 1 , (3.3)

Rp(1) ω≫M≈ −3

2
ln

(

ω2

M2

)

+
9

4
, (3.4)

R
p(2)
A

ω≫M≈ 9

8
ln2

(

ω2

M2

)

− 57

16
ln

(

ω2

M2

)

+
109

32
+ 6(ln 2− 1)ζ2 −

15ζ3
4

, (3.5)

R
p(2)
NA

ω≫M≈ −11

16
ln2

(

ω2

M2

)

− 185

48
ln

(

ω2

M2

)

− 11

8
ln

(

µ̄2

ω2

)

ln

(

ω2

M2

)

+
33

16
ln

(

µ̄2

ω2

)

+
49

6
− 3

(

ln 2 +
1

8

)

ζ2 −
25ζ3
8

, (3.6)

R
p(2)
l

ω≫M≈ 1

4
ln2

(

ω2

M2

)

+
13

12
ln

(

ω2

M2

)

+
1

2
ln

(

µ̄2

ω2

)

ln

(

ω2

M2

)

− 3

4
ln

(

µ̄2

ω2

)

− 31

12
+

3ζ2
2

+ ζ3 . (3.7)

3For the ’t Hooft-Veltman definition of γ5, an additional finite renormalization factor needs to be inserted

in this relation [32], however for the “flavour non-singlet” correlators that we are interested in, “naive

dimensional regularization” has been used in the higher-order literature referred to below, and then no

additional factor is needed at the present order. We return to a discussion of this point below eq. (3.15)

and around eq. (5.3).
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Order by order these describe the full ω-dependence [36, 37] well already at modest ω>∼ 4M ,

however as a whole the expression does not converge. Indeed, even if we choose

µ̄ ≡ max(πT, ω) (3.8)

for evaluating αs(µ̄), so that it is small at ω ≫ M , its decrease ∼ 1/ ln(ω2/Λ2
MS

) is not fast

enough to kill the growing ln(ω2/M2) appearing in the coefficients in eqs. (3.4)–(3.7).

However, it is not necessary to stick to the on-shell scheme. The reason for using a pole

mass is that it is formally necessary for defining a perturbative series around the threshold

(cf. appendix B). However, the pole mass may be re-expanded as an MS mass [33–35]:

m(µ̄)

M
= 1 +

αs(µ̄)CF

π

[

−1− 3

4
ln

(

µ̄2

M2

)]

+

(

αs(µ̄)

π

)2{

C2
F

[

9

32
ln2

(

µ̄2

M2

)

+
21

32
ln

(

µ̄2

M2

)

+
7

128
− 15ζ2

8
− 3ζ3

4
+ 3ζ2 ln(2)

]

+CFNc

[

−11

32
ln2

(

µ̄2

M2

)

− 185

96
ln

(

µ̄2

M2

)

− 1111

384
+

ζ2
2

+
3ζ3
8

− 3ζ2
2

ln(2)

]

+CFTFNf

[

1

8
ln2

(

µ̄2

M2

)

+
13

24
ln

(

µ̄2

M2

)

+
71

96
+

ζ2
2

]}

+O(α3
s ) . (3.9)

Changing the normalization from eq. (3.1) to

ρP(ω)

ω2m2(µ̄)

∣

∣

∣

∣

vac

≡ Nc

8π
R̃p

c(ω, µ̄) (3.10)

and writing R̃p
c as in eq. (3.2), mass dependence drops out from the asymptotics:

R̃p(0) ω≫m(µ̄)
≈ 1 , (3.11)

R̃p(1) ω≫m(µ̄)
≈ 3

2
ln

(

µ̄2

ω2

)

+
17

4
, (3.12)

R̃
p(2)
A

ω≫m(µ̄)
≈ 9

8
ln2

(

µ̄2

ω2

)

+
105

16
ln

(

µ̄2

ω2

)

+
691

64
− 9ζ2

4
− 9ζ3

4
, (3.13)

R̃
p(2)
NA

ω≫m(µ̄)
≈ 11

16
ln2

(

µ̄2

ω2

)

+
71

12
ln

(

µ̄2

ω2

)

+
893

64
− 11ζ2

8
− 31ζ3

8
, (3.14)

R̃
p(2)
l

ω≫m(µ̄)
≈ −1

4
ln2

(

µ̄2

ω2

)

− 11

6
ln

(

µ̄2

ω2

)

− 65

16
+

ζ2
2

+ ζ3 . (3.15)

We now see that the choice in eq. (3.8) removes large logarithms and leads to increasingly

small corrections as ω grows. Therefore eq. (3.10) yields a reliable prediction for large ω.

We note in passing that the asymptotics in eqs. (3.11)–(3.15) is identical to what is

obtained for the connected part of the scalar density correlator [43, 44]. This demonstrates

that the scalar and pseudoscalar densities have the same anomalous dimension, which in

turn is related to the quark mass anomalous dimension, so that m2(µ̄)R̃p
c(ω, µ̄) is indepen-

dent of µ̄.

Given the poor convergence of eq. (3.9), the question arises how we should relate M

and m(µ̄) to each other. Following old tradition, we parametrize quark masses through

– 5 –
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m(µ̄ref ≡ 2GeV)

GeV

m(µ̄ = m)

GeV

Mx

GeV
αs(m(µ̄ = m))

1.0 1.14 1.19(2) 0.280

2.0 2.00 2.11(2) 0.208

3.0 2.83 2.99(2) 0.181

4.0 3.64 3.84(2) 0.166

5.0 4.43 4.67(3) 0.155

Table 1. The quark masses used on the perturbative side of this study (Nf = 0). We have used

5-loop running for the MS mass m [45, 46] and for αs [47, 48]. The pole-like mass Mx has been

defined through eq. (3.16), with x = 4 . . . 8 yielding the variation shown. For scale setting we use

r0ΛMS = 0.602(48) [49] and r0 = 0.47(1)fm [50], whereby ΛMS ≃ 253MeV (a recent analysis yields

r0ΛMS = 0.593(17) [51]). A potential model suggests that m(µ̄ref) = 1GeV is close to the value

relevant for the charmonium case, M1S ≡ Mηc

/2 ≈ 1.49GeV, whereas m(µ̄ref) = 5GeV is close

to the value relevant for the bottomonium case, M1S ≈ 4.66GeV, however these expectations are

subject to large uncertainties.

their MS values at the scale µ̄ref ≡ 2GeV. The corresponding running mass is obtained

from 5-loop running [45, 46]. One way to fix the value of M is to require that eqs. (3.1)

and (3.10) agree at a value ω = xM where we assume both representations to be reliable,

say x = 4 . . . 8:

M2
x ≡ m2(µ̄)

R̃p
c(ω, µ̄)

Rp
c(ω)

∣

∣

∣

∣

∣

µ̄=ω, ω=xMx

. (3.16)

The results obtained at O(α2
s ) are shown in table 1. (There are many other pole mass

definitions, however none of them are quite satisfactory for our purposes.)

4 Thermal contributions around the threshold

Just above the threshold (i.e. for ω − 2M ≪ M), the frequency ω can be parametrized

through a relative velocity as Mv2 ≡ ω − 2M . If Mv<∼ gT , thermal effects are of order

unity [24]. Because the heat bath breaks Lorentz invariance, their technical treatment is

much harder than that of vacuum contributions: within strict perturbation theory, only the

NLO level has been reached (cf. appendix B). Unfortunately the NLO expression turns out

to be rather useless in practice; it indicates that thermal corrections are power-suppressed

as ∼ αsT
2/M2, whereas in reality there are also thermal corrections only suppressed by

(non-integer) powers of αs. These originate from soft-gluon mediated effects (thermal

heavy quark mass correction, Debye screening, real 2 → 2 scatterings of heavy quarks off

plasma particles), and require a resummed treatment. We follow here the implementation

of ref. [28].

Before proceeding let us stress that, as is characteristic of resummed treatments, the

approach can be justified theoretically only in a certain parametric range (see below). In

practice it is also used somewhat outside of this range, and for this purpose it is “enhanced”

– 6 –
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by a number of phenomenological ingredients (see below), in order to avoid a drastic

breakdown in the latter situations.

Within the non-relativistic regime v ≪ 1, the pseudoscalar spectral function is related

to the vector channel one:

ρNRQCD
P =

M2

3
ρNRQCD
V , ω ≈ 2M . (4.1)

For the vector channel, the spectral function is obtained from a Wightman function C> as

ρNRQCD
V (ω) =

1

2

(

1− e−
ω
T

)

∫ ∞

−∞
dt eiωt C>(t;0,0) , (4.2)

where C> is solved from

{

i∂t −
[

2M + VT (r)−
∇2

r

M

]}

CV
> (t; r, r′) = 0 , t 6= 0 , (4.3)

CV
> (0; r, r′) = 6Nc δ

(3)(r− r′) . (4.4)

For t > 0 the potential is of the form [25–27]

VT (r) = −αsCF

[

mD +
exp(−mDr)

r

]

− iαsCFT φ(mDr) +O(α2
s ) , (4.5)

where the function

φ(x) ≡ 2

∫ ∞

0

dz z

(z2 + 1)2

[

1− sin(zx)

zx

]

(4.6)

represents the effects of real 2 → 2 scatterings of the quark and antiquark off medium

particles. For t < 0 the sign of ImVT is reversed. For numerical estimates we insert 2-

loop values of mD and a thermal αs from ref. [52] (for mD the 3-loop level has also been

reached [53]).

At short separations, r ≪ 1/mD, we replace the thermal potential by a vacuum one.

At 2-loop level,

V0(r) = −
∫

d3k

(2π)3

(

4πCFαse
ik·r

k2

){

1 +
αs

4π

[

a1 + β0 ln

(

µ̄2

k2

)]

+

(

αs

4π

)2[

a2 +
(

β1 + 2a1β0
)

ln

(

µ̄2

k2

)

+ β2
0 ln

2

(

µ̄2

k2

)]}

+O(α4
s ) (4.7)

= −CFαs(
e−γ

r )

r

{

1 +
αs(

e−γ

r )

4π
a1 +

α2
s (

e−γ

r )

(4π)2

[

a2 +
π2β2

0

3

]}

+O(α4
s ) , (4.8)

where γ is the Euler constant and, for Nf = 0 [54],

a1 =
31Nc

9
, a2 =

(

4343

162
+ 4π2 − π4

4
+

22ζ3
3

)

N2
c , β0 =

11Nc

3
, β1 =

34N2
c

3
. (4.9)

The 3-loop potential is also known in analytic form by now [55]. At rmD ≪ 1 the potential

of eq. (4.8) is less binding than that of eq. (4.5) because the coupling runs towards zero;

at rmD ≫ 1 eq. (4.5) is less binding because of Debye screening. For our numerics,

– 7 –
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Figure 1. Spectral functions interpolating between a thermal contribution around the threshold

(section 4) and MS asymptotics above the threshold (eq. (3.10)). The normalization of the near-

threshold contribution (cf. eq. (4.10)) and the matching point have been treated as free parameters;

we find A ≈ 1.2 . . . 1.3 and ωmatch ≈ 2.3 . . . 2.6M . The other parameters correspond to table 1,

with M ≡ Mx=6.

we employ max{V0,Re[VT (r) − VT (∞)]} as the r-dependent real part of the potential,

whereby V0 applies at short separations and ReVT at large ones. This regulates the infrared

sensitivity of the potential that has been widely discussed in the context of heavy-quark

mass definitions.

In order to combine the threshold behaviour from eqs. (4.1)–(4.5) with the asymptotics

from eq. (3.10), we normalize ρNRQCD
P by a multiplicative factor. Given that the perturbative

value of this factor is poorly determined, we rather choose a free coefficient, denoted by A:

ρQCD
P = A× ρNRQCD

P . (4.10)

The value of A is chosen so that ρQCD
P attaches to the MS asymptotics from eq. (3.10)

continuously and with a continuous first derivative at some 2M < ω < 3M , cf. figure 1.

Once we are sufficiently below the threshold, 2M − ω ≫ α2
sM , the description of the

spectral function through eqs. (4.1)–(4.5) is no longer applicable. In fact the Schrödinger

description overestimates the spectral function in this regime: the correct result is non-zero

at finite temperature, but exponentially suppressed, as discussed below eq. (B.6). In order

to model this suppression, we multiply φ of eq. (4.5) by θ(2M − ω)e−|ω−2M |/T . In the

parametric range |ω − 2M | ∼ α2
sM ≪ gT, αsM,πT ≪ M for which an approach based

on eqs. (4.1)–(4.5) can be justified [27–29], this amounts to a higher-order effect. The

range ω ≤ 1.0M , which has very little effect after adopting this recipe, is cut off from

the numerical evaluation of eq. (2.3). These choices are purely phenomenological; formally

they amount to effects which are of higher order in αs than our computation.
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For small frequencies, the prefactor in eq. (4.2) results in an additional suppression of

the spectral function. However other exponentially small (when ω ∼ 2M ≫ πT ) effects

have been omitted in the non-relativistic solution of C>. We “reconstruct” the exponential

factor by taking it over from the tree-level computation in which, as indicated by eq. (5.2),

it is given by tanh( ω
4T ) = 1 − 2nF(ω/2). For m(µ̄ref) = 1GeV, when the non-relativistic

expansion is at most marginally viable, this leads to a ∼ 10% reduction of the threshold en-

hancement obtained from the Schrödinger equation. Of course, this reduction is partly com-

pensated for by the matching in eq. (4.10). In any case, our “best estimates” for the thermal

spectral function at different m(µ̄ref), obtained as outlined above, are shown in figure 1.

We note in passing that, in accordance with the original findings of ref. [28], a small

resonance peak can be observed at the largest quark masses at this temperature. We return

to a discussion of this point in section 6.

5 Lattice simulations

5.1 Ensemble and statistics

We have carried out lattice simulations in quenched SU(3) gauge theory withO(a) improved

Wilson quarks as valence quarks, in order to measure the connected pseudoscalar correlator

and take the continuum limit. At each lattice spacing, this involves an interpolation to

a bare quark mass that reproduces the physical J/ψ or Υ mass at a low temperature.

The basic techniques (action, simulation algorithm), as well as tests suggesting that finite-

volume effects are reasonably small, are described in ref. [18]. The progress in the past

5 years amounts to simulating several fine lattice spacings, and on each of them several

values of the bare quark mass. Details concerning the ensemble are collected in table 2.

There is a well-known problem with simulations close to the continuum limit with

periodic boundary conditions, namely the “freezing” of topological degrees of freedom [56].

At low temperatures, this effect is unphysical. Our measurements were separated by 500

sweeps, each consisting of 1 heatbath and 4 overrelaxation updates. The initial thermal-

ization consisted of 2000 sweeps at β = 7.192 and of 5000 sweeps at β = 7.793. With

this setup we do observe some evolution between the topological sectors up to β ≃ 6.8,

however at the values β >∼ 7.2 that play a role in our analysis, no evolution takes place.

Even though the resulting uncertainties should be minor at high temperatures, where the

physical topological susceptibility is small, the freezing does affect our low-temperature

runs as well, particularly our scale setting [57]4 though the parameter r0 [62]. In some

sense, the values of r0/a in our study should be interpreted as “r0/a at fixed trivial topol-

ogy”. It is not known how much these differ from the corresponding r0/a in the physical

θ-vacuum, however in principle the differences are suppressed by the inverse volume and

therefore perhaps moderate.

4We take the opportunity to note that the values of (t0/a
2)Clover cited in ref. [57] were marred by a

bug, and are too large by a few %. This does not affect any of the conclusions of ref. [57], because the

clover results were excluded due to their peculiar volume dependence. We thank Lukas Mazur for locating

the bug.
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β Ns Nτ confs r0/a T/Tc cSW κc κ m2(1/a)
m2(µ̄

ref
)

7.192 96 48 237 26.6 0.74 1.367261 0.13442 0.12257, 0.12800, 0.13000,

0.13100, 0.13150, 0.13194
0.6442

32 476 1.12

28 336 1.27

24 336 1.49

16 237 2.23

7.394 120 60 171 33.8 0.76 1.345109 0.13408 0.124772, 0.12900, 0.13100,

0.13150, 0.132008, 0.132245
0.6172

40 141 1.13

30 247 1.51

20 226 2.27

7.544 144 72 221 40.4 0.75 1.330868 0.13384 0.12641, 0.12950, 0.13100,

0.13180, 0.13220, 0.13236
0.5988

48 462 1.13

42 660 1.29

36 288 1.51

24 237 2.26

7.793 192 96 224 54.1 0.76 1.310381 0.13347 0.12798, 0.13019, 0.13125,

0.13181, 0.13209, 0.13221
0.5715

64 249 1.13

56 190 1.30

48 210 1.51

32 235 2.27

Table 2. The lattices (of geometry N3
s ×Nτ ) included in the current analysis. The measurements

of r0/a at low temperatures are based on our own measurements of large Wilson loop expectation

values, and correspond to a sector of fixed trivial topology, due to the freezing of topological degrees

of freedom [56]; we refrain from estimating systematic uncertainties. When citing physical units, we

make use of r0 = 0.47(1) fm from ref. [50]. Conversions to units of Tc are based on r0Tc = 0.7457(45)

from ref. [57]. Our new data for r0/a, together with the older one summarized in table 2 of ref. [57],

which include classic results from refs. [58, 59], can be well represented (χ2/d.o.f. = 1.43) by eq. (4)

of ref. [57], with the modified couplings c1 = −8.9664, c2 = 19.21, c3 = −5.25217, c4 = 0.606828.

The Sheikholeslami-Wohlert coefficient cSW [60] and the critical Wilson hopping parameter κc are

in accordance with ref. [61]; the bare lattice mass is amL = 1
2κ − 1

2κc
. The evolution of the

MS renormalized quark mass squared given in the last column, which affects the renormalized

pseudoscalar correlator as described in section 5.4, was determined with 5-loop running [45–48],

with µ̄ref ≡ 2GeV.

5.2 Tuning of quark mass

For any given lattice spacing, the first step is to interpolate results to the physical bare

quark mass. We have determined quark propagators at six different bare quark masses (or

hopping parameters; cf. table 2), roughly speaking between the charm and bottom masses,

with a denser grid around the former. As the corresponding observable we measure the

screening mass corresponding to the spatial components of the vector current (including

only transverse components with respect to the measurement direction). The measurement

is carried out deep in the confined phase (T ∼ 0.75Tc in table 2), and is interpreted as being

a good approximation for a measurement at zero temperature. Thus, the screening mass

is identified as the J/ψ or Υ mass (we use J/ψ rather than ηc for scale setting because it is
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Figure 2. Left: The vector meson (physically J/ψ,Υ) masses in lattice units, amV, measured from

spatial correlators deep in the confined phase. Dashed lines show quadratic fits, meant to guide the

eye. Solid lines show “lines of constant physics”, with the conversion of a to physical units being

based on r0, cf. table 2 (r0mV = 20 corresponds to mV ≃ 8GeV, r0mV = 10 to mV ≃ 4GeV).

Right: An example of an interpolation of the thermal correlator to a physical mass value (in this

case mJ/ψ ≈ 3.1GeV, indicated by a dotted line). Units are again converted via r0 ≈ 0.47 fm [50].

a narrower resonance, however in practice this difference is inessential on our resolution).

The screening mass is extracted from a two-exponential fit, with an ensemble of fit ranges

chosen by hand close to where a minimal χ2/d.o.f. ∼ 1 can be found. The result is denoted

by mV; the corresponding values are plotted in figure 2(left) in lattice units.

Proceeding now to the thermal runs in the temporal direction (τ), the correlators were

measured at the same values of the bare quark masses. Therefore each measurement can

be assigned to a specific value of the zero temperature (screening) mass mV. The data is

subsequently interpolated quadratically in mV,

ln

{

Glatt
P (τT )

Gfree
P (τT )

}

= α2(τT )

(

mV

T

)2

+ α1(τT )
mV

T
+ α0(τT ) , (5.1)

where Gfree
P is defined in eq. (5.2). The four κ-values closest to the desired point are

used for this interpolation (or, in some cases, mild extrapolation). Having determined the

coefficients αi(τT ), we finally set mV → mJ/ψ or mV → mΥ, in order to get the physical

result at the given τ and T . The procedure is illustrated in figure 2(right) for four values of

τT . The interpolated correlator for the physical mass can be read off from the dotted line.

5.3 Normalization of imaginary-time correlators

With the data interpolated to a physical quark mass, the next task is to extrapolate to

the continuum limit. This is facilitated by normalizing the lattice data to a function which

captures most of the rapid τ -dependence at small τ ≪ 1/T .
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Because of a non-zero anomalous dimension, there is no exact “free result” for the pseu-

doscalar correlator like, say, for the vector channel correlator in the chiral limit. However,

we can define

Gfree
P (τ)

m2(µ̄ref)
≡

∫ ∞

2M1S

dω

π

{

Ncω
2

8π
tanh

( ω

4T

)

√

1− 4M2
1S

ω2

}

cosh
((

1
2T − τ

)

ω
)

sinh
(

ω
2T

) , (5.2)

where the expression in curly brackets is the tree-level spectral function, and the remaining

factors amount to those in eq. (2.3). Because of the anomalous dimension, a result normal-

ized through eq. (5.2) does not go to a constant value at τ ≪ 1/T , though we expect it to

be slowly varying. By definition we set M1S ≡ 1.5GeV in eq. (5.2) for the charmonium case,

and M1S ≡ 5.0GeV for the bottomonium case (the physical value being M1S ≈ 4.7GeV).

5.4 Renormalization and continuum extrapolation

In the absence of non-perturbative renormalization factors for quenched massive pseu-

doscalar densities, we have made use of massless perturbative results [63, 64], supplemented

by a 1-loop correction for the mass dependence [65, 66]. A tadpole-improved coupling was

inserted in these formulae, along the lines discussed in ref. [67]. The difference of the

1-loop and 2-loop expressions from ref. [64] was employed for getting a feeling about the

systematic uncertainties of perturbative renormalization.

There is an important subtlety related to the pseudoscalar renormalization factor, de-

noted by ZP. Since ZP is supposed to bring us from the lattice to the MS scheme, it depends

on how γ5 is defined on the latter side. With the ’t Hooft-Veltman choice [31], the strict

MS pseudoscalar density needs to be multiplied with an additional finite renormalization

factor in order for it to have the same anomalous dimension as the scalar density [32],

Z5 = 1− g2CF

2π2
+

g4CF

128π4

Nc + 2Nf

9
+O(g6) . (5.3)

In so-called naive dimensional regularization, no additional factor is needed at low per-

turbative orders. The 1-loop pseudoscalar renormalization factor computed in ref. [63] is

smaller than that in ref. [64], the reason being that it is multiplied by Z5 in comparison

with ref. [64]. We are interested in a pseudoscalar density which corresponds to the pertur-

bative result presented in section 3 and has the same anomalous dimension as the scalar

density (cf. comments below eq. (3.15)). Then the normalization of ref. [63] is appropriate,

i.e. we need Z5Z
L,MS
P in the notation of ref. [64]. For reference we note that numerically

Z5Z
L,MS
P ∼ 0.8 in the range of our β’s and masses.

The perturbative renormalization factors bring us to the MS scheme at the scale µ̄ =

1/a. For scale-independent results the pseudoscalar correlator should then be multiplied

by a quark mass in the same scheme and at the same renormalization scale, i.e. m2(1/a).

Subsequently the mass can be evolved to the scale µ̄ref so that it drops out if the correlator is

normalized according to eq. (5.2): m2(a−1) = m2(µ̄ref) [m(a−1)/m(µ̄ref)]
2. In other words,

lattice results multiplied by Z5Z
L,MS
P need to be further multiplied by [m(a−1)/m(µ̄ref)]

2;

the numerical value of this ratio is presented in table 2.
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Figure 3. Left: Examples of continuum extrapolations at T ∼ 1.5Tc (filled symbols), based

on 1-loop and 2-loop renormalization factors and a fit ansatz linear in 1/N2
τ (cf. section 5.4).

We have also carried out fits quadratic in 1/N2
τ , or linear in 1/N2

τ but restricted to the three

finest lattices; the variations are of the same order as the differences from using 1-loop and 2-loop

renormalization factors, which we then adopt as our estimate of systematic uncertainties. Right:

Continuum-extrapolated correlators. The uncertainties have been obtained by adding together, in

quadrature, statistical errors and systematic uncertainties from the difference of using 1-loop and

2-loop renormalization factors.

After multiplication by the renormalization factors, piecewise polynomial interpola-

tions (b-splines) are used for estimating all correlators at the distances available on the

finest lattice. The continuum extrapolation is then carried out independently at all

these distances. An ansatz linear in 1/N2
τ describes the data well, even though effects

of O(α2
samL) are thereby omitted [66] (here amL is the bare lattice mass defined in the

caption of table 2). Representative examples of continuum extrapolations are shown in

figure 3(left). All four lattice spacings, as listed in table 2, are included in the fit, except

for the temperature T ∼ 1.3Tc at which only three lattice spacings are available. Other fit

forms (quadratic in 1/N2
τ , or linear in 1/N2

τ but restricted to the three finest lattices) have

also been successfully tested, cf. caption of figure 3.

The whole procedure is implemented in the form of a bootstrap analysis. The final

continuum-extrapolated results are shown in the right panels of figures 3 and 4 for char-

monium, and in the right panel of figure 5 for bottomonium.

6 Modelling and comparison

The purpose of this section is to compare the predictions originating from the spectral

functions in figure 1, shown as the corresponding imaginary-time correlators for the char-

monium case in figure 4(left) and for the bottomonium case in figure 5(left), with the lattice
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Figure 4. Left: Imaginary-time correlators corresponding to spectral functions such as those

shown in figure 1, for m(µ̄ref) = 1GeV, plotted by expressing τ in fixed units, chosen as Tc. The

uncertainty bands have been obtained by varying the central value of m(µ̄ref) by 10% in both

directions. Right: Lattice data from figure 3(right) in the same units, including now also the lowest

temperature at T < Tc.

Figure 5. Like figure 4 but for the bottomonium case. Here the perturbative uncertainty bands

have been obtained by varying the central value m(µ̄ref) = 5GeV by 2% in both directions.

data shown in figures 4(right) and 5(right). We restrict ourselves to a rather qualitative

discussion here, identifying two main issues which help to explain the differences observed.

Let us start by noting that one striking feature of the lattice data is its apparent

inertness: if plotted in units of τTc, all curves more or less fall on top of each other, cf.
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Figure 6. Imaginary-time correlators corresponding to spectral functions modelled according to

eq. (6.1) (narrow bands delineated by solid curves), compared with resummed perturbative pre-

dictions from figure 4(left) (broad bands) and lattice data from figure 4(right) (open symbols).

figure 4(right). Such an inertness, however, does not indicate the persistence of bound

states; indeed a similar inertness is seen on the perturbative side where no bound states

are present, cf. figure 4(left).

There is one clear difference between the lattice and perturbative sets in figure 4: the

perturbative data display a larger positive “curvature” as a function of τTc, overshooting

the lattice data at τTc>∼ 0.2.

This difference may have a relatively simple explanation. In order to demonstrate this,

we introduce a “model” spectral function, which is obtained from the perturbative one by
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Figure 7. Perturbative spectral functions (dash-dotted curves) and their modifications according

to eq. (6.1) (continuous curves), for charmonium (left) and bottomonium (right). The continuous

curves on the left yield the imaginary-time correlators labelled by “model” in figure 6, which agree

well with lattice data at all distances. These results are elaborated upon in the paragraphs following

eq. (6.1).

adjusting its overall normalization as well as the threshold location:5

ρmodel
P (ω) ≡ AρpertP (ω −B) . (6.1)

The overall magnitude is adjusted because of uncertainties related to the perturbative

renormalization factors on which we rely on the lattice side (cf. section 5.4), and the

threshold location because pole-type masses are poorly estimated in perturbation theory

(cf. section 3). Results from simple χ2 fits to the lattice data, with A and B treated as

fit parameters, are shown in figure 6. An excellent representation of the lattice data can

be found in all cases. The same is true, by and large, for the bottomonium case. The fit

parameters are collected in table 3.

The model spectral functions corresponding to figure 6 are shown in figure 7(left),

where they are compared with the unmodified perturbative ones. The first essential feature

is that some additional spectral weight is needed at very large ω. This accounts for the

small difference observed at τT <∼ 0.15 between the lattice and perturbative results. This

discrepancy may originate from the perturbative renormalization factors that we have used

(cf. section 5.4). Non-perturbative renormalization would help to clarify this issue.

The second feature observed in figure 7(left) is that the thresholds shift to larger

masses. This is perfectly admissible, given that the procedure we adopted for estimating a

vacuum “pole mass” in section 3 is subject to large uncertainties, and that thermal mass

corrections beyond the perturbative ones included through eq. (4.5) could be substantial.

5Functional forms which induce a shift only at moderate ω lead to similar results, e.g. Aρ
pert
P (ω −

B
(ω

0
+ω)n

).
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charmonium bottomonium

T/Tc A B/T χ2/d.o.f. A B/T χ2/d.o.f.

1.1 1.04 0.52 0.01 0.85 -0.11 0.02

1.3 1.04 0.37 0.01 0.87 -0.13 0.04

1.5 1.02 0.33 0.02 0.87 -0.11 0.10

2.25 1.06 0.16 0.08 0.93 -0.04 0.28

Table 3. Best fit parameters according to eq. (6.1). The left set corresponds to charmonium,

the right to bottomonium. In these fits the errors of the lattice results at different values of τT ,

which are dominated by systematic uncertainties, have been treated as independent of each other.

Therefore the results are somewhat qualitative in nature, and we refrain from citing errors.

In fact, it is known from lattice studies of renormalized Polyakov loop expectation values

that close to Tc thermal mass corrections are positive, whereas eq. (4.5) predicts a neg-

ative thermal mass correction, which in Polyakov loop measurements is observed only at

T >∼ 3Tc [68].

For the bottomonium case, the model spectral functions are shown in 7(right). The

perturbative input originates from figure 1 and contains a resonance peak at T <∼ 1.5Tc.

At these larger frequencies non-perturbative mass shifts are barely visible. In contrast

the overall normalization is corrected by a larger amount than for the charmonium case,

and downwards. This difference is not surprising, given that because of the larger mass,

discretization effects, including corrections of O(α2
samL), imply that our renormalization

factors and continuum extrapolation are likely to contain larger systematic uncertainties.

We stress that, as figure 7(left) shows, no resonance peaks are needed for representing

the lattice data for the charmonium correlator even at the lowest temperatures in the

deconfined phase; a modest threshold enhancement is perfectly sufficient. In contrast a

thermally broadened resonance peak, as predicted by resummed perturbation theory, may

well be present in the bottomonium case at T <∼ 1.5Tc, cf. figure 7(right). Even though

perturbation theory contains inherent uncertainties, such features have been consistently

observed in previous computations, however the quantitative properties of the peaks depend

on the precise approximation under which the thermal potential and the gauge coupling

have been estimated.

7 Conclusions and outlook

We have presented a resummed perturbative estimate of the thermal quarkonium pseu-

doscalar spectral function on one hand (sections 3 and 4), and a continuum-extrapolated

quenched lattice measurement of the corresponding imaginary-time correlator on the other

(section 5). Our main conclusions originate from a comparison of these two computations

(figure 6). Unambiguous but not overwhelming differences are observed, which call for an

interpretation.

Two possible culprits have been put forward in section 6. First, it is plausible that

the perturbative renormalization that we have used for the lattice correlators, and other
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uncertainties related to the continuum extrapolation at the very large β-values that we have

used, could result in inaccuracies on a ∼ 5− 10% level for the overall normalization of the

imaginary-time correlators. This problem is expected to be more severe in the bottomonium

case, given that O(α2
samL) corrections could affect the continuum extrapolation. Second,

the thermal quark-antiquark threshold location is not accessible to perturbation theory on

a quantitative level; treating it rather as a fit parameter significantly improves upon the

agreement. The latter problem is, relatively speaking, more severe in the charmonium case,

given that the threshold is located at a smaller energy.

In contrast, there is no need to modify the perturbative charmonium spectral function

through resonance peaks at any of the deconfined temperatures that we have considered,

which is consistent with a rapid dissociation of the ηc meson in the deconfined phase of

quenched QCD. In the bottomonium case, a thermally broadened ηb peak can persist up to

∼ 1.5Tc. To rephrase these observations more strictly, our statement is that perturbative

spectral functions, which display these features, yield imaginary-time correlators perfectly

compatible with lattice data, apart from a modest shift of the threshold location. At the

same time the existence of some features beyond the perturbative ones cannot be excluded.

In order to consolidate this tentative picture, several future steps are needed. To

remove the uncertainty concerning overall normalization, non-perturbative renormaliza-

tion is desirable, including the determination of quark mass effects of O(amL) so that

O(a) improvement is complete [69]. Ambiguities originating from the fact that our low-

temperature runs, needed for scale setting, are frozen to the trivial topological sector,

should be addressed, for instance by taking volume averages in very large volumes [70].

For insight on dissociation patterns, spectral reconstruction techniques could be applied to

the continuum-extrapolated data.

We end with an important comment concerning the quenched approximation on which

this study was based. Generally, for a comparative value of T/Tc, we would expect the

quenched deconfined phase to be better described by perturbation theory (i.e. more weakly

coupled) than the unquenched one. A physics argument is that in the quenched theory

hadrons (glueballs) are heavy, with m0++
≫ 1GeV, so that the system needs to be heated

up to a high temperature to “dissolve” them. Concretely, Tc ≃ 1.24ΛMS > ΛMS, so that

α(EQCD)
s |T≃Tc

≃ 0.2 is reasonably “small” [52]. In contrast, the lightest excitations of the

unquenched theory are pions, with mπ ≪ 1GeV, and only a modest heating is needed to

reach the transition temperature (or crossover). Concretely, Tc ≃ 0.45ΛMS < ΛMS, so that

α(EQCD)
s |T≃Tc

> 0.3 is undoubtedly too large for perturbation theory to apply.

To summarize, the “effective” strong coupling, describing soft thermal physics near

threshold, is likely to be larger in the unquenched theory, and therefore the physics of ηc
could differ from that in the quenched case. Indeed, according to an up-to-date potential

model study [11], the ηc is expected to display a resonance peak at T > Tc in the un-

quenched theory. Therefore our analysis should be repeated for that situation (which has

previously been addressed with relativistic lattice techniques in ref. [16], however without a

continuum extrapolation or a comparison with resummed perturbation theory). We hope

that the present paper helps to trace out a path for tackling this ambitious challenge.
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A Strict NLO imaginary-time correlator for any M/T

In this appendix we compute the imaginary-time correlator GP(τ) up to NLO in strict per-

turbation theory. The purpose is to demonstrate that it contains no constant contribution,

unlike the corresponding correlators in the vector [19] and scalar [20] channels.

Making use of the notation

Jm1m2
n1n2

(τ) ≡ T
∑

ωn

e−iωnτ
∑

∫

{P}

(M2)m1(K2)m2

∆n1
P ∆n2

P−K

∣

∣

∣

∣

∣

∣

K≡ (ωn,0)

, (A.1)

Im1m2m3
n1n2n3n4n5

(τ) ≡ T
∑

ωn

e−iωnτ
∑

∫

{P}Q

(M2)m1(K2)m2(2Q ·K)m3

(Q2)n1∆n2
P ∆n3

P−Q∆
n4
P−K∆n5

P−Q−K

∣

∣

∣

∣

∣

∣

K ≡ (ωn,0)

, (A.2)

where ∆P ≡ P 2 + M2 and Matsubara sum-integrals are denoted by Σ
∫

{P} ≡ T
∑

{pn}

∫

p
,

with {P} denoting fermionic Matsubara momenta, the tree-level correlator reads

GLO
P (τ) = 2NcM

2
{

2J 00
10 − J 01

11

}

. (A.3)

The counterterm contribution (M2
B = M2 + δM2) is

δGNLO
P (τ) = 2Nc δM

2
{

2J 00
10 − J 01

11 − 2J 10
20 + 2J 11

21

}

. (A.4)

Here δM2 = −6g2CFM
2

(4π)2

(

1
ǫ +ln µ̄2

M2 +
4
3+δ

)

, where δ specifies the scheme. The 2-loop graphs

amount to (in naive dimensional regularization in D = 4− 2ǫ spacetime dimensions)

GNLO
P (τ) = 4g2NcCFM

2
{

2(1− ǫ)
[

I000
02100 − I000

12000 + I010
12010 − I010

02110 + I001
11110

]

+ I020
11111

+2
[

I000
11100 + I110

11111

]

+ 4
[

I110
12110 − I100

12100 − I010
11110

]

+ ǫ I010
01111

}

. (A.5)

All the Matsubara sums appearing in eqs. (A.3)–(A.5) can be carried out. To display

the subsequent results, we employ the notation of ref. [19]. The LO result becomes

GLO
P (τ) = 2NcM

2

∫

p
D2Ep

(τ) , (A.6)
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where D2Ep
≡ DEpEp

and

D
Ek+1···En

E1···Ek
(τ) ≡ e(E1+···+Ek)(β−τ)+(Ek+1+···+En)τ + e(E1+···+Ek)τ+(Ek+1+···+En)(β−τ)

[eβE1 ± 1] · · · [eβEn ± 1]
. (A.7)

The sign in the denominator is chosen according to whether the particle is a boson (ǫq ⇒ −)

or a fermion (Ep ⇒ +). Scheme dependence can be expressed as

∆δG
NLO
P (τ) = −3g2NcCFM

2 δ

4π2

∫

p

(

1− M2

2p2

)

D2Ep
(τ) , (A.8)

where δ was defined below eq. (A.4). Inserting the expressions listed in appendix A of

ref. [19] for Jm1m2
n1n2

and Im1m2m3
n1n2n3n4n5

, the remaining NLO contribution reads

GNLO
P (τ)

4g2NcCFM2
= −

∫

p

D2Ep
(τ)

8π2

+

∫

p,q
P

{

∫

z

[DǫqEpEpq
(τ) +D

ǫq
EpEpq

(τ) ]M2

ǫqEpEpq∆+−∆−+

[

ǫ2q + (Ep + Epq)
2

4M2
−

ǫ2q
∆+−∆−+

]

−
∫

z

2D
Ep

ǫqEpq
(τ)M2

ǫqEpEpq∆++∆−−

[

ǫ2q + (Ep − Epq)
2

4M2
−

ǫ2q
∆++∆−−

]

+
D2Ep

(τ)

2ǫ3q

[

1 +
E2

p(E
+
pq − E−

pq)− pǫq(E
+
pq + E−

pq)

2p(ǫ2q − E2
p)

+
ǫ2qM

2(E+
pq − E−

pq)

p(ǫ2q − E2
p)E

+
pqE

−
pq

+
2E2

p −M2

2pEp

(

ln

∣

∣

∣

∣

(Ep − p)(2p+ ǫq)

(Ep + p)(2p− ǫq)

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

1− ǫ2q/(Ep + E+
pq)

2

1− ǫ2q/(Ep + E−
pq)2

∣

∣

∣

∣

) ]

+
D2Ep

(τ)nB(ǫq)

ǫq

[

1

ǫ2q
− 1

2p2
+

ǫ2q + 2E2
p −M2

2pEpǫ2q
ln

(

Ep − p

Ep + p

) ]

+
D2Ep

(τ)nF(Eq)

Eq

[

E2
q − 3E2

p +M2

2p2(p2 − q2)

+
q2 + E2

p

2pq(Ep − Eq)Ep

(

ln

∣

∣

∣

∣

p+ q

p− q

∣

∣

∣

∣

+
Eq

Ep + Eq
ln

∣

∣

∣

∣

M2 + EpEq + pq

M2 + EpEq − pq

∣

∣

∣

∣

)]

}

, (A.9)

where P denotes a principal value; nB and nF are Bose and Fermi distributions; ǫq ≡ q;

Ep ≡
√

p2 +M2; Epq ≡
√

p2 + q2 + 2pqz +M2; E±
pq ≡ Epq|z=±; ∆στ ≡ ǫq + σEp + τEpq.

It is observed from eqs. (A.6)–(A.9) that all terms contain non-trivial τ -dependence,

i.e. that there is no constant contribution in GP(τ) at NLO.

B Strict NLO spectral function for M/T ≫ 1

We specify here the NLO expression for the thermal pseudoscalar spectral function, up to

corrections suppressed by e−M/T (techniques for including these are discussed in ref. [71]).

The main goal is to demonstrate how the spectral function behaves below the threshold,

i.e. for 2M −ω ≫ α2
sM , a regime that cannot be addressed with the methods of section 4.
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Physically, the NLO corrections originate from virtual heavy quark self-energy and gluon

exchange contributions, as well as from real gluon emissions and absorptions.

The spectral functions corresponding to the master sum-integrals appearing in eq. (A.5)

have been worked out in ref. [72]. Making use of the objects Si
j(ω) defined there, the spectral

function can be written as

ρP(ω)|raw
M2

≡ 2Nc ω
2S1(ω)

+4g2NcCF

{

− 3

(4π)2

(

1

ǫ
+ ln

µ̄2

M2
+

4

3
+ δ

)

ω2S1(ω)

+

[

6M2

(4π)2

(

1

ǫ
+ ln

µ̄2

M2
+

4

3
+ δ

)

− T 2

6

]

ω2S2(ω)

+ 4ω2
[

S0
4(ω)−M2S0

5(ω)
]

+ 2(1− ǫ)
[

2S1
4(ω) + ω2S2

5(ω)
]

+ (ω2 − 2M2)ω2S0
6(ω)− ǫ ω2S2

6(ω)

}

+O(g4) . (B.1)

We have set here ǫ → 0 whenever the master sum-integral that it multiplies is finite.

Expressing the result as a sum of a vacuum and thermal part,

ρP(ω)|raw = ρP(ω)|vac + ρP(ω)|T , (B.2)

where the vacuum part is defined to include also the explicit T 2 visible in eq. (B.1), and

inserting the expressions for the functions Si
j(ω) from ref. [72], the vacuum part reads

ρP(ω)|vac
M2

≡ θ(ω − 2M)
Nc ω(ω

2 − 4M2)
1
2

8π

+θ(ω − 2M)
4g2NcCF

(4π)3

{

(ω2 − 2M2)L2

(

ω −
√
ω2 − 4M2

ω +
√
ω2 − 4M2

)

+

(

3ω2

2
− 2M2 +

3M4

ω2

)

acosh

(

ω

2M

)

−ω(ω2 − 4M2)
1
2

[

ln
ω(ω2 − 4M2)

M3
− 9

8
− 3M2

4ω2

]

− ω

24(ω2 − 4M2)
1
2

[

18(ω2 − 6M2)δ + (4π)2T 2
]

}

+O(g4) . (B.3)

Here the function L2 is defined as [73]

L2(x) ≡ 4Li2(x) + 2Li2(−x) + [2 ln(1− x) + ln(1 + x)] lnx . (B.4)

The last term in eq. (B.3) is divergent at the threshold ω ∼ 2M . There is a unique

choice which avoids this at all T , namely adopting the pole mass scheme (δ ≡ 0) and resum-

ming the explicit thermal correction into an effective mass modifying the LO result [74],

M2
eff ≡ M2 +

g2T 2CF

6
. (B.5)
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We then re-interpret the mass appearing in ρP(ω)|vac/M2 as the thermal effective mass.

The correction in eq. (B.5) is very small in practice for T ≪ M , Meff −M ∼ αsT
2/M ; in

particular it is smaller than the thermal mass originating from Debye screening in eq. (4.5),

which is of order −α
3/2
s T .

Consider finally ρP(ω)|T . Going over to the notation of eq. (3.1), it can be repre-

sented as

Rp
c(ω)|T =

2αsCF

πω2

∫ ∞

0
dq

nB(q)

q

{

θ(ω) θ
(

q − 4M2 − ω2

2ω

)

[

−
√

ω(ω + 2q)
√

ω(ω + 2q)− 4M2

+ 2
(

q2 + (ω + q)2 − 2M2
)

acosh

√

ω(ω + 2q)

4M2

]

+θ(ω − 2M) θ
(ω2 − 4M2

2ω
− q

)

[

−
√

ω(ω − 2q)
√

ω(ω − 2q)− 4M2

+ 2
(

q2 + (ω − q)2 − 2M2
)

acosh

√

ω(ω − 2q)

4M2

]

+θ(ω − 2M)

[

2ω
√

ω2 − 4M2

− 4
(

ω2 + 2q2 − 2M2
)

acosh

(

ω

2M

)]}

+O(e−M/T , α2
s ) . (B.6)

This is finite and small around the threshold: limω→2M Rp
c(ω)|T ∼ αsCF(T/M)3/2.

The main importance of eq. (B.6) lies in its first term, which remains non-zero below the

threshold (ω < 2M) and gives the dominant contribution in this regime. Writing ω = 2M+

E′ and assuming |E′| ≪ M , the restriction on the integration variable q reads θ(q + E′).

Therefore, for E′ < 0, the result is ∼ αsCF(T/M)3/2nB(|E′|) ∼ αsCF(T/M)3/2e−|E′|/T .
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[53] I. Ghişoiu, J. Möller and Y. Schröder, Debye screening mass of hot Yang-Mills theory to

three-loop order, JHEP 11 (2015) 121 [arXiv:1509.08727] [INSPIRE].
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