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Abstract In the context of thermodynamics we discuss the
way inevitable emerge an interaction between dark compo-
nents, and in this way, provide a mechanism to understand
the limits of the LCDM model and the class of interaction
models between dark components. Using observational data
we have tested two particular models of explicit interaction
between dark components and reconstructed the evolution of
temperatures for both components. We found that observa-
tions suggest the interaction exist with energy flowing from
dark energy to dark matter. The best fit also suggest a phan-
tom equation of state parameter for dark energy. We discuss
the results having in mind the constraints imposed by ther-
modynamics.

1 Introduction

One of the main problems in cosmology today is to identify
or characterize the cause of the accelerated expansion found
in [1,2], usually called dark energy (DE). Although there
have been, from time to time, evidence for DE evolution, or
in its primordial form, evidence for a variable cosmological
constant, the case have taken new impulse after the results
using the BAO BOSS DR11 [3]. In that work, by interpret-
ing the results in a simple ωCDM model, strongly suggest
a 2.5σ departure from �CDM at z = 2.34. Soon after this
work appears, several papers focused on finding what model
better describe the results from the BOSS analysis. In [4]
the authors found evidence for DE evolution using the H(z)
measurement implied by [3]. They propose a model where
the cosmological constant was screened in the past. Also in
[5] the authors demonstrate that it is possible to explain the
BOSS result in the context of the interacting dark scenario
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(dark matter (DM) interacting with DE), excluding null inter-
action at 2σ . Also in [6] the authors found similar results to
[4]. Regarding the dark interaction scenario, using data from
Planck, type Ia supernova, and redshift space distortions, in
[7] the authors found statistical evidence for a dark interact-
ing model (the so called Interacting vacuum model, named
iVCDM, [8]) starting at z � 0.9.

One of the main problems with dark interaction models is
the arbitrariness in the coupling, usually named Q. In partic-
ular, in the iVCDM the coupling is written as Q = −qvHρv ,
where H is the Hubble function, qv(z) is the arbitrary con-
stant usually parameterized in bins to be reconstructed by
observations, and ρv is the vacuum energy density. In some
sense, the same pathological feature the cosmological con-
stant � has in the �CDM model, here emerges through Q
in the interacting dark matter/energy model. So it would be
interesting to find ways to constraint Q not only through
observations but also from physical principles.

In this paper, we want to explore to what extent, the inter-
action term Q can be determined and constrained by appeal-
ing to thermodynamic considerations. In what follows we use
natural units, c = 8πG = kB = 1. The paper is organized as
follows: in the next section we discuss the thermodynamics in
the context of an interacting model. In Sect.3 we discuss the
method of effective equation of state and obtain the expres-
sions for the temperature as a function of redshift. Then we
describe the two particular models of interaction we study
and the data we have used to constraint the models in Sect. 5.
We end with the discussion of our results.

2 Thermodynamics and interaction

2.1 A single fluid

Let us start with general considerations about thermodynam-
ics in an expanding Universe using a single fluid. Assuming
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a flat universe and a homogeneous component we get the
Hubble equation and the conservation equation

3H2 = ρ, ρ̇ + 3H(ρ + p) = 0, (1)

where H = ȧ/a is the Hubble parameter and a(t) the scale
factor. From the second law of thermodynamics applied to
a comoving volume element of unit coordinate volume (and
physical volume V = a3) we can write

TdS = d [(ρ + p)V ] − Vdp. (2)

Here ρ is the energy density, p is the pressure, T the tem-
perature of the system and S the total entropy per comoving
volume. Using the fact that S is an state function we get

ρ + p

T
= dp

dT
, (3)

then Eq. (2) can be written as

dS = d [(ρ + p)V ]

T
−V (ρ+ p)

dT

T 2 = d

[
(ρ + p)V

T

]
, (4)

which means that entropy can be written as

S = const. + (ρ + p)a3

T
. (5)

On the other hand, from Einstein’s equations we get the
energy conservation Eq. (1) that can be written as

d [(ρ + p)V ] = Vdp, (6)

which means that the entropy (5) is constant during the expan-
sion,

S = (ρ + p)a3

T
= const. (7)

This results emphasize the adiabatic expansion universe pic-
ture. Then Einstein’s equations implies adiabatic expansion
assuming T �= 0. Also, Eq. (7) tell us that the special com-
bination of physical variables keep a constant value once the
evolution of p(a), ρ(a) and T (a) are introduced. Clearly,
once we know the equation of state (EoS), we can infer the
temperature evolution of the system.

Another way to see this, is by using that our single com-
ponent satisfies number and energy conservation. Following
[10] it is possible to find the relation

Ṫ = −3HT
∂p

∂ρ
. (8)

This equation also enable us to find how the temperature
evolves if an EoS is given. For example, for p = ωρ we get

T (a) � a−3ω, (9)

that gives the expected answer for radiation (ωr = 1/3).
The same result can be obtained from Eq. (7). In general,
assuming ω = ω(a) we can write

T (a) = T (a0) exp

(
−3

∫ a

a0

da
ω(a)

a

)
. (10)

2.2 Two fluids

Let us assume now two fluids – DM and DE for example –
and assume that both components conserved separately, i.e.
they satisfy

ρ̇x + 3H (1 + ωx ) ρx = 0, (11)

ρ̇m + 3H (1 + ωm) ρm = 0, (12)

so no interaction is present. For each component is possible to
write the same equations derived before. In particular, we can
write the evolution of temperature for these two components
as

Tm � 1

a2 , Tx � exp

(
−3

∫
da

ωx

a

)
, (13)

where we have used the previous result for dust. It is clear
that this result suggest that today Tm � Tx because ωx < 0,
as was first notice in [9]. It is also clear that in this case the
expansion is adiabatic, because each one of the conservation
equations above can be written as dU + pdV = 0 where
U = �vρa3 and V = �va3 where �v is a volume constant
factor.

The current observational evidence – so far – support the
�CDM model, where � is a component that can be consid-
ered as a fluid with EoS parameter ω = −1, plus a cold (non
relativistic velocities) DM component, both of which con-
served separately, i.e., they do not interact. In this context we
can ask, what temperature can be associated to this � fluid?
From our previous considerations, assuming p = ωρ with
ω = const. we can write

dS = (1 + ω) d

(
ρV

T

)
, (14)

from which we can obtain

(1 + ω) ρV = const. × T . (15)

This relation suggest that for a fluid with ω = −1 we get
T = 0, which according to the third law of thermodynamics
implies S = 0. This result – independent of the awkward
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features of existence of a pure cosmological constant com-
ponent – tells us that such a component is at least inconsistent
with thermodynamic too.

Moreover, for the case ω < −1? i.e., the phantom case,
following the same argument we get T < 0, and if we use
the Euler relation

T S = (1 + ω) ρV �⇒ T S < 0 → S > 0, (16)

which is the well known phantom problem. In this regard
in [11] a solution is proposed in the context of irreversible
thermodynamics.

2.3 Two fluids interacting

The concordance cosmological model assumes that every
component – baryons, radiation, DM and DE – conserve
separately. Then as we have discussed in the previous sec-
tion, the universe expands adiabatically. Because both dark
components can only be detected through their gravitational
effects, is not easy to distinguish their effects and in princi-
ple they can interacts between them while the total energy
density of the dark sector is conserved. Phenomenologically
this can be described by the conservation equations as

ρ̇x + 3H (1 + ωx ) ρx = −Q, (17)

ρ̇m + 3H (1 + ωm) ρm = Q. (18)

According to (2) these equations tell us that the entropy for
each component is not constant. By re-written each one as
the first law we get for the interaction function Q

Q = −Tx
V

dSx
dt

= Tm
V

dSm
dt

. (19)

No interaction Q = 0 means both Sm and Sx being con-
stants, i.e. we have an adiabatic evolution, in contrast to an
interacting model, where a Q �= 0 leads to

TmdSm + TxdSx = 0, (20)

then we get non-adiabaticity. By using (19) we can also see
this in another form by written

d (Sm + Sx ) = −
(
Tm
Tx

− 1

)
dSm �= 0 �⇒ Sm

+Sx �= const. (21)

According to (19) also we get that

Q > 0 �⇒ dSx < 0 and dSm > 0, (22)

implying the DE entropy decreases as the DM entropy
increases. From (20) it is direct to write

d

dt
(Sx + Sm) = −

(
Tm
Tx

− 1

)
dSm
dt

≷ 0 �⇒ Tm ≶ Tx ,

(23)

because dSm/dt > 0. Then at any instant DM is cooler than
the DE. We can also write this last relation using (19) to get

d

dt
(Sx + Sm) =

(
1

Tm
− 1

Tx

)
V Q

> 0 ⇐⇒ Q > 0 and Tm < Tx . (24)

This means that, if we require that the second law be valid in
this case, then we have to have Tm < Tx . This is an interesting
result, because we do not have any idea of the magnitudes
of these temperatures. There are attempts to determine the
case for Tm using candidates particles for DM, but we do
not have any idea about Tx for DE. This is also interesting
to notice that this result, that Tm < Tx is also in connection
with the inequality Q > 0, making clear the relation between
the validity of the second law with a positive Q which means
a transfer of energy from DE to DM.

Having found these results, let us discuss a specific model.
Let us study an interacting model close to the �CDM one.
According to (17) and (18)

ρ̇x + 3H(1 + ωx )ρx = −Q =
(

1

V

)
Tx

dSx
dt

, (25)

ρ̇m + 3H(1 + ωm)ρm = Q =
(

1

V

)
Tm

dSm
dt

, (26)

and for the purpose in hands, let us assume ωx = −1 (�),
and ωm = 0 (CDM), then we get

ρ̇x = −Q �⇒ ρx = −
∫

dtQ, (27)

ρ̇m + 3Hρm = Q, (28)

which reduces to �CDM for Q = 0 zero interaction. This
model is actually the i�CDM model of [8]. It was this model
that was tested in [7] against observation finding positive evi-
dence for interaction. Given there are evidence for an evolv-
ing ρx that means – given the well known results in [12] –
we have also evidence for an interacting model.

For a component ρx = � (ωx = −1) it is clear that
Q = 0 and then TmdSm/dt = 0, and beacuse Tm = const.,
then Sm = const. And also as we saw before, because
Tx (ωx = −1) = 0 and Sx (ωx = −1) = 0.

In conclusion, �CDM is well supported by observations
and also the assumption of adiabatic evolution ( S = const.)
is consistent with the philosophy of the standard model that
ensures adiabatic evolution after inflation ends. Then – if
there is evidence for an interaction between DE and DM –
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then in general the universe evolution is no adiabatic. Thus,
our considerations on thermodynamics implies that a pure
� component is hardly consistent with physics, unless we
accept that both components – DM and DE – interact with
each other.

3 Effective temperature method (ETM)

In this section we study the thermal evolution in an interaction
DE/DM model using an effective equation of state. We follow
previous works [13,14] on the subject. Let us write the system
(25, 26) as

ρ̇x + 3H
(

1 + ω
e f f
x

)
ρx = 0, (29)

ρ̇m + 3H
(

1 + ω
e f f
m

)
ρm = 0, (30)

where

ω
e f f
x = ωx + Q

3Hρx
and ω

e f f
m = ωm − Q

3Hρm
, (31)

then according to (10) we can write

T (z) = T (0) exp

(
3
∫ z

0

dz

1 + z
ωe f f (z)

)
. (32)

where we have used that 1 + z = a0/a, and so for each dark
component from (17) and (18) we can write

Tx (z) = Tx (0) (1 + z)3ωx exp

[∫ z

0
d ln (1 + z)

(
Q

Hρx

)]
,

(33)

Tm (z) = Tm (0) (1 + z)3ωm exp

[
−

∫ z

0
d ln (1 + z)

(
Q

Hρm

)]
,

(34)

and from this, we see that if interaction exists for ωm = 0
(CDM) we get Tm (z) �= const.

Let us apply this result to the most well known Ansatzes:
Q = 3γ Hρx and Q = 3γ Hρm . These ansatzes can be con-
sidered as a good probe to explore small departures from
the usual evolution of each component. For example, in the
absence of interaction in a flat universe the DM component
evolves as a−3. A small departure from this behavior can be
parameterized as a−3(1+β) with β small. In this case, accord-
ing to Eq. (18) an interaction term of the type ∝ 3Hβρm is
suggested. Then, under the assumption that these interaction
are small – which is supported by the success of the �CDM
model – we proceeds studying these two specific models.

3.1 Ansatz Q = 3γ Hρx

In this case, we get

Tx (z) = Tx (0) (1 + z)3(ωx+γ ) , (35)

Tm (z) = Tm (0) (1 + z)3ωm exp

[
−3γ

∫ z

0
d ln (1 + z)

{
1

r (z)

}]
.

(36)

where r (z) = ρm (z) /ρx (z) is the coincidence parameter.
In order to get a close solution for both temperatures we need
the solution for both energy densities first. In this case – using
the Eq. (29) – we get the solution

ρx (z) = ρx (0) (1 + z)3(1+ωx+γ ) . (37)

Using this last result in the conservation equation for dark
matter ρm in Eq. (30) and using that x = a/a0 and d/dt →
d/da, we can write the equation as

dρm
dx

+ 3 (1 + ωm)

x
ρm = 3γρx (a0) x

−[3(1+ωx+γ )+1], (38)

whose solution is given by

ρm (x) = exp

[
−3 (1 + ωm)

x

] [
C2 + 3γρx (a0)

×
∫

dx exp

[
3 (1 + ωm)

x

]
x−[3(1+ωx+γ )+1]

]

(39)

The integral can be done directly, recalling that x = a/a0 =
(1 + z)−1. In this way we get ρm (z) and consequently r (z)
y Tm (z), according to (36).

3.2 Ansatz Q = 3γ Hρm

Using this ansatz, with γ > 0 we get

Tx (z) = Tx (0) (1 + z)3ωx exp

[
3γ

∫ z

0
d ln (1 + z) r (z)

]
,

(40)

Tm (z) = Tm (0) (1 + z)3(ωm−γ ) , (41)

Again, from the conservation Eq. (30) we get

ρm (z) = ρm (0) (1 + z)3(1+ωm−γ ) (42)

Using this in the conservation equation for ρx we get

ρ̇x + 3H (1 + ωx ) ρx = −3γ Hρm (a0) (a0/a)3(1+ωm−γ ) .

(43)
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Following the previous case we get

ρx (x) = exp

[
−3 (1 + ωx )

x

] [
C1 − 3λmρm (a0)

∫
dx exp

[
3 (1 + ωx )

x

]
x−[3(1+ωm−λm )+1]

]
(44)

and the integral can be done explicitly. In this way knowing
ρx (z) and then r (z) and Tx (z) according to (40).

4 The models

In this section we write explicitly the formulae to be used
in the study of restrictions imposed by observational data.
Here we study the two models of interaction discussed in the
previous section, Q1 = 3γ Hρx , and Q2 = 3γ Hρm . Both
have been already studied in [15]. If γ is zero, then there is
no interaction.

Let us start with the set of equations for the dark compo-
nents (17, 18). We assume here that the EoS parameter for
DM is ωm = 0, and we let free the EoS parameter for DE
ωx .

ρ̇x + 3H (1 + ωx ) ρx = −Q, (45)

ρ̇m + 3Hρm = Q. (46)

For the first model (i), we can solve (45) for ρx first. We find
that ρxa3(1+ωx+γ ) = const. Then we replace this in (46) to
find an explicit form for ρm(a). Having both energy densities
we can insert these in the Hubble equation

H2 = κ(ρm + ρm + ρr ), (47)

where κ = 8πG/3 and we have assumed a flat universe.
Writing everything in terms of the redshift 1 + z = a0/a ,
the Hubble function H(z)/H0 = E(z) for model (i) is given
by

E2(z) = �m(1 + z)3 + �r (1 + z)4

+�x

(
γ

w + γ
(1 + z)3 + w

w + γ
(1 + z)3(1+w+γ )

)
,

(48)

where �r = 2.469 × 10−5h−2(1 + 0.2271Neff ) and Neff =
3.04, and γ is the parameter that makes the interaction man-
ifest. Here �m = �c + �b, where �c is the non-baryonic
part and �b is the baryonic one.

For the second model (ii), we obtain

E2(z) = �x (1 + z)3(1+w) + �r (1 + z)4 + �b(1 + z)3

+�c

(
γ

w + γ
(1 + z)3(1+w) + w

w + γ
(1 + z)3(1−γ )

)
.

(49)

Here the free parameters are h, �b, �c, w and γ . It is clear
that for γ = 0 both expressions - those for models (i) and
(ii) - reduced to that of the ωCDM model.

5 The data

In this section we describe the five sets of observational
data we have used to put constraints on the models we have
defined in the previous section. Preliminary results of this
work appears in [16]. We use: measurements of the Hub-
ble function H(z), from type Ia supernova (SNIa), baryonic
acoustic oscillations (BAO), gas mass fraction in clusters
fgas and from Cosmic Microwave Background Radiation
(CMBR).

The 31 data points for the Hubble function H(z) are taken
from several works and were compiled by [17] expanding a
redshift range from z = 0.07 to z = 1.965. In summary it
comprise data points from [18–20] and also from [21]. It is
important to notice that we have used only those H(z) mea-
surements obtained using the differential age method [22],
and we have explicitly exclude those obtained using the clus-
tering method, because we are also using data from BAO.

The latest sample of SNIa is the Pantheon sample [23].
Here we use the chi square function defined as

χ2 = (μ − μth)
TC−1(μ − μth), (50)

where C corresponds to the covariance matrix delivered in
[23], μth = 5 log10 (dL(z)/10pc) is the distance modulus
where dL(z) is the luminosity distance, and the modular dis-
tance is assumed to take the shape

μ = m − M + αX − γY, (51)

where m is the maximum apparent magnitude in band B, X
is related to the widening of the light curves, and Y corrects
the color. The cosmological parameters are then constrained
along with the parameters M , X and Y . Also from [23] a
binned version of the data was published where only M is a
free parameter.

The data points we use for BAO are those compiled in
[24]. This set comprise data from the 6dF survey [25] at red-
shift z = 0.106, distance measurements from [26] at redshift
z = 0.15, and with data from the Baryon Oscillation Spec-
troscopic Survey (BOSS) at redshifts z = 0.32, z = 0.57 and
z = 2.34. In all these cases the baryonic peak is estimated
performing an average in the radial and transverse direction.
At higher redshift it is possible to measure the BAO scale in
the radial and tangential directions simultaneously, proving
measurements of the Hubble parameter H(z) and the angular
diameter distance DA(z).

123



357 Page 6 of 10 Eur. Phys. J. C (2019) 79 :357

The BAO observations give information about the ratio

DA(z)

rs
= P

(1 + z)
√−�k

sin

(√−�k

∫ z

0

dz

E(z)

)
, (52)

for the transverse direction. Here P = c/(rs H0) and it takes
the value 30.0 ± 0.4 for the best �CDM Planck fit, rs is the
co-moving sound horizon that according to Planck it takes
the value rs = 1059.68 [27], and also information about the
ratio

DH (z)

rs
= P

E(z)
, (53)

for the line-of-sight direction. The parameter P was used in
[24] to perform an unanchored BAO analysis, which does
not use a value for rs obtained from a cosmological constant,
also performed in [28].

At low redshift, because it is not possible to disentangle the
BAO scale in the transverse and radial direction, the surveys
give the value for the ratio DV (z)/rs , where

DV (z) =
[
z(1 + z)2DA(z)2DH (z)

]1/3
, (54)

which is an angle-weighted average of DA and DH . From
[24] the data considered are: at low redshift, at z =
0.106 we have DV /rs = 2.98 ± 0.13, and for z =
0.15, DV /rs = 4.47 ± 0.17. For high redshift we con-
sider 0.00874DH/rs + 0.146DA/rs = 1.201 ± 0.021 and
0.0388DH/rs − 0.0330DH/rs = 0.781 ± 0.053 at z =
0.32; 0.0158DH/rs + 0.101DA/rs = 1.276 ± 0.011 and
0.0433DH/rs−0.0368DH/rs = 0.546±0.026 at z = 0.57.
Following [24], in order to use the BAO measurements for
the Lyman α, we used the χ2 files supplied on the website
[29] directly. In what follows, we take the Planck value for
rs and use P as a function of H0.

Data from measurements of gas mass fraction in clusters,
fgas was also used assuming they are sources of X-ray as
suggested by [30]. In particular we use the data from [31]
which consist in 42 measurements of the X-ray gas mass
fraction fgas in relaxed galaxy clusters in the redshift range
0.05 < z < 1.1. To determine constraints on cosmological
parameters we use the model function [32]

f �CDM
gas (z) = b�b

(1 + 0.19
√
h)�M

[
d�CDM
A (z)

dA(z)

]3/2

, (55)

where dA(z) is the angular diameter distance, b is a bias factor
which accounts that the baryon fraction is slightly lower than
for the universe as a whole. From [33] it is obtained b =
0.824 ± 0.0033. In the analysis we also use standard priors
on �bh2 = 0.02226 ± 0.0023 and h = 0.678 ± 0.009 [34].

We also use CMB data in the form of the acoustic scale
lA, the shift parameter R, and the decoupling redshift z∗. The
χ2 for the CMB data is constructed as

χ2
CMB = XTC−1

CMB X, (56)

where

X =
⎛
⎝ lA − 302.40

R − 1.7246
z∗ − 1090.88

⎞
⎠ . (57)

The acoustic scale is defined as

lA = πr(z∗)
rs(z∗)

, (58)

and the redshift of decoupling z∗ is given by [35],

z∗ = 1048[1 + 0.00124(�bh
2)−0.738][1 + g1(�mh

2)g2 ],
(59)

g1 = 0.0783(�bh2)−0.238

1 + 39.5(�bh2)0.763 , (60)

g2 = 0.560

1 + 21.1(�bh2)1.81 , (61)

The shift parameter R is defined as in [36]

R =
√

�m

c(1 + z∗)
DL(z). (62)

C−1
CMB in Eq. (56) is the inverse covariance matrix,

C−1
CMB =

⎛
⎝ 3.182 18.253 −1.429

18.253 11887.879 −193.808
−1.429 −193.808 4.556

⎞
⎠ . (63)

More details of the work with the data see [37].

6 Results

For the analysis we have used the code EMCEE [38]. It is a
Python module that implement an Affine-invariant Markov
chain Monte Carlo (MCMC) method. We have perform the
analysis using the five data sets mentioned in the previous
section. In practice we have considered a burn-in phase where
we monitoring the auto-correlation time (τ ) and set a target
number of independent samples. Then, we set 10000 MCMC
steps (N) with a number of walkers in the range between 50
and 100. Our estimations of the auto-correlation times for
each parameter in the three models all satisfies the relation
N/τ � 50 suggested in [38], a condition that is considered
a good measure of assets convergence in our samplings.
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Table 1 Best fit values of the cosmological parameters for the interac-
tion models using SNIa+H(z)+BAO+ fgas+ CMB

Q = 3Hγρm Q = 3Hγρx

h 0.669 ± 0.008 0.671 ± 0.009

�c 0.301 ± 0.004 0.300 ± 0.004

�b 0.049 ± 0.001 0.048 ± 0.001

ω − 1.03 ± 0.02 − 1.05 ± 0.02

γ 0.071 ± 0.006 0.07 ± 0.005

The results are shown in Table 1, and the best fit plots are
shown in Fig. 1 for model (i) and in Fig. 4 for model (ii).

As can be seen, the best fit with the full set of observa-
tional data in both models indicates positive evidence for

interaction – with a similar value for γ � 0.07 – and that the
transfer of energy flows from DE to DM. Based on the con-
siderations we have made in previous sections, we find that
our theoretical constraints are in good agreement with the
observational evidence. We also notice that the EoS param-
eter for DE ω is less than −1 in both cases, pointing towards
evidence for phantom dark energy. The rest of the parameters
take best fit values that are not too different from the usual
ones. The results for the best fit for model (i) is shown in
Fig. 1.

Using these best fit values, we can use Eqs. (35 and 36)
to reconstruct the temperatures for DE and DM. In Fig. 2 we
show the result for model (i).

According to what we expect, the temperature of the dark
energy grows with the expansion, and through the interac-

Fig. 1 We display the results for 1σ , 2σ and 3σ for the model (i) in the parameter space (�m , �b, ω, γ, h) using all the data
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Fig. 2 We display the reconstructed temperatures for model (i)
using the expressions (35, 36) using all the data. The upper line is
Tm(z)/Tm(0) and the lower one is Tx (z)/Tx (0)

Fig. 3 We display the reconstructed temperatures for model (ii) using
the expressions (40) and (41) using all the data. The upper line is
Tm(z)/Tm(0) and the lower one is Tx (z)/Tx (0)

tion, causes also that the temperature of dark matter to grow
as well, much more moderately, but it increases. This is
expected because, without interaction, DM temperature is
constant, so once there is a transfer of energy from DE to
DM, it will result in an increase in temperature, since the DE
temperature increases with the expansion.

In the case of model (ii) the results are very similar as
can be seen in Table 1. The best fit values of the parameters
are shown in Fig. 4. The reconstructed temperatures are also
very similar as can be seen in Fig. 3.

In order to determine how good our interacting models
are in describing the data, we use two well know statistic
tools: the Akaike Information Criteria (AIC) based on infor-
mation theory and the Bayesian Information Criteria (BIC)
based on Bayesian inference [39]. In Table 2 we display
the results of the analysis using the definition for AIC and
BIC.

According to these results, between our reference model
(ωCDM) and the interacting model (i) we find �AIC = 2
indicating that both models are as good as each other describ-
ing the data. However, using the �BIC = 4.82 indicates a
positive evidence against the fit of model (i). This is not a
surprise, the BIC generally penalizes free parameters more

Table 2 Comparison among the models under study. The non interact-
ing ωCDM, and the interacting models, (i) Q1 = 3Hγρm and model
(ii) Q2 = 3Hγρx . We display the χ2

min value for the best fit using all
the observational probes, together the value for the AIC and BIC as is
discussed in the text

ωCDM Q1 Q2

χ2
min 134.85 134.85 127.63

AIC 142.85 144.85 137.63

BIC 154.13 158.95 151.73

strongly than the Akaike information criterion. In the case
of model (ii) we get �AIC = 5.2 and �BIC = 2.4, indi-
cating that this model is as good as the reference model in
describing the data.

In this section we have performed an analysis using five
geometric probes to constrain two interacting models. Com-
pared to previous analysis as in [15], we have used more data
probes but we have obtained higher values for γ in both cases.
The reason behind this finding could be the use of BAO data
at larger redshift as those at z = 2.34 and z = 2.36 not used in
[15] and also the use of gas mass fraction data. We know that
the inclusion of the BAO data points suggest strongly a depar-
ture from �CDM and a preference for an interaction model
[3–5,37]. It could be also the use of fgas data, a set with well
known tension with �CDM [40]. According to the analysis
by using both information and bayesian criteria, model (ii) is
far better than model (i) in describing the data, but however
although the AIC criteria does not exclude the possibility that
model (i) can describe the data as good as the model ωCDM,
the BIC criteria suggest that model (ii) is not better than the
reference model. In the case of model (ii) compared to the
reference model, we find that both criteria suggest that model
(ii) performs better than the ωCDM (Fig. 4).

Although we have performed an analysis in the context
of an interacting model, it is interesting to come back to the
thermodynamic features of the �CDM model. As we have
discussed here, a pure � component – understood as a source
in the right hand side of Einstein’s equations – does not have
any sense thermodynamically. In fact, as we have found in
Sect. 2, the entropy associated to � should be zero during all
the universe evolution. This implies that a more sound model
is necessary to explain what we are observing. Assuming that
the EoS parameter evolve with redshift is equivalent to con-
sider an interaction between components, in our case DE
and DM, so, a more physical model – thinking in thermo-
dynamics – must consider an interaction, something that the
observational data seems to support.

Finally, it is very difficult to measure the temperature for
dark matter (see for example [41,42]). What we know from
the thermodynamic considerations is that Tm < Tx . Cer-
tainly, more work is needed to understand the implications
of the thermodynamic evolution of our universe.
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Fig. 4 We display confidence boundaries for 1σ , 2σ and 3σ for the model (ii) for the free parameters (�m , �b, ω, γ, h) using all the data
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