
J
H
E
P
0
9
(
2
0
1
6
)
1
3
4

Published for SISSA by Springer

Received: May 24, 2016

Accepted: September 9, 2016

Published: September 21, 2016

HOMFLY polynomials in representation [3, 1] for

3-strand braids

A. Mironov,a,b,c,d A. Morozov,b,c,d An. Morozovc,d,e and A. Sleptsovb,c,d,e

aTheory Department, Lebedev Physics Institute,

Leninsky prospekt 53, Moscow 119991 Russia
bITEP,

Bol. Cheremushkinskaya 25, Moscow 117218, Russia
cInstitute for Information Transmission Problems,

Bolshoy Karetny per. 19, build. 1, Moscow 127051, Russia
dNational Research Nuclear University MEPhI,

Kashirskoe shosse 31, Moscow 115409, Russia
eLaboratory of Quantum Topology, Chelyabinsk State University,

Bratiev Kashirinyh st. 129, Chelyabinsk 454001, Russia

E-mail: mironov@lpi.ru, morozov@itep.ru, andrey.morozov@itep.ru,

sleptsov@itep.ru
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knot polynomials started in [1]. In this paper, we managed to explicitly find the inclusive

Racah matrix, i.e. the whole set of mixing matrices in channels R⊗3 −→ Q with all possible

Q, for R = [3, 1]. The calculation is made possible by the use of a newly-developed efficient
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previous conjectures on various factorizations, universality, and differential expansions.
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the Racah matrices, which promises to provide a shortcut to generic formulas for arbitrary

representations.

Keywords: Chern-Simons Theories, Quantum Groups, Topological Field Theories, Topo-

logical Strings

ArXiv ePrint: 1605.02313

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2016)134

mailto:mironov@lpi.ru
mailto:morozov@itep.ru
mailto:andrey.morozov@itep.ru
mailto:sleptsov@itep.ru
http://arxiv.org/abs/1605.02313
http://dx.doi.org/10.1007/JHEP09(2016)134


J
H
E
P
0
9
(
2
0
1
6
)
1
3
4

Contents

1 Introduction 2

2 Comments on the highest weight calculus 3

2.1 Elementary level 3

2.2 Advanced level 5

3 Specification to the case of R = [3, 1] 6

3.1 Decomposition of the square [3, 1]⊗2 and highest weights 6

3.2 Representations in the cube [3, 1]⊗3 7

4 Knot polynomials in representation [3, 1] 10

4.1 2-strand (torus) knots and links 10

4.2 Abundance of 3-strand prime knots in Rolfsen table 10

4.3 Examples 13

5 Knot polynomials from evolution 14

5.1 (m1, n1|m2, n2)-evolution 14

5.2 The family (m,−1 | 1,−1) 15

5.2.1 Generalities 15

5.2.2 Symmetric representations R = [r] 16

5.2.3 Totally antisymmetric representations R = [1r] 18

5.2.4 Representation R = [2, 1] 18

5.2.5 Representation R = [3, 1] 19

6 Generic properties of H[3,1] 21

6.1 Special and Alexander polynomials at q = 1 or A = 1 21

6.2 Factorization at roots of unity, q8 = 1 21

6.3 Symmetric Jones polynomials 21

6.4 Universality and adjoint representation at A = q4 21

6.5 Loop expansion and Vassiliev invariants 22

6.6 Genus expansion and Hurwitz τ -function 23

6.7 Differential expansion 24

7 Conclusion 26

– 1 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
4

1 Introduction

Colored knot/link polynomials [2–9] are characteristics of knots and links, which factorize

into products for composite knots. In this sense, the knot polynomials for the prime knots

play the role of prime numbers, only in the world of knots, and the most challenging

is the question if they are indeed prime or there is some additional “more elementary”

structure, which allows one to reconstruct them from some simpler constituents. Another

source of interest to the colored knot/link polynomials is that they are the Wilson loop

averages in Chern-Simons theory [10, 11], the simplest of all Yang-Mills theories, and they

can be exactly calculated non-perturbatively, because they are polynomials in the variable

q = exp(g−2). This provides a very non-trivial check for our emerging understanding of

non-perturbative methods in quantum field and string theory. Both these reasons make

evaluation of colored knot polynomials extremely important problem, since it is the first

step towards understanding their properties. Until recently, it was an unachievable task,

but development of theoretical methods in [12]–[103], combined with the current computer

power makes it nearly realistic.

This explains our reasons to make a try, and it is already partly successful. At the

previous stages, the calculus for totally symmetric and antisymmetric representations was

successfully developed [64–66], then extended in [74, 91, 92, 96, 97, 100] to representa-

tion [2, 1], and, in the present paper, we report a new achievement: results for 3-strand

polynomials in representation [3, 1]. The next big challenge is the first two-hook represen-

tation [4, 2], this requires a new serious theoretical advance, but now it seems within reach.

The powerful method needed for that purpose will be described in detail in a separate

publication, here we just mention it in general description of our approach.

It involves the following steps:

1. Define the representation R by a highest weight in the space [1]⊗R.

2. Find the highest weight of representation Y ∈ R⊗R.

3. Distinguish between Y belonging to the symmetric and antisymmetric squares of R. If

a given representation Y appears in these both, we treat Y+ and Y− as different representa-

tions: they can have there own multiplicities, but they are never summed. The reason for

this separation of Y± is that the knot polynomials depend on the eigenvalues of quantum

R-matrices: these are different (in sign) for Y+ and Y−.

4. Find highest weights of representations Q ∈ Y ⊗ R and Q ∈ R ⊗ Y . These weights

hlQ(Y ) and hrQ(Y ) (superscripts stand for “left” and “right”) are related by the Racah

(mixing) matrix UQ:

hrQ(Y ) =
∑

Y ′∈R⊗R

UQ(Y, Y
′)hlQ(Y

′) (1.1)

In the case of non-trivial multiplicities, U is defined modulo rotations in the multiplicity

spaces of Q, Y and Y ′, but these rotations leaveR-matrix intact, and therefore do not affect

knot polynomials. These rotations, however, can be essential for the eigenvalue hypothesis,

expressing the entries of U through those of R, then this freedom should be somehow fixed.
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5. Evaluate the reduced (normalized to unknot) knot/link polynomial for a knot repre-

sented by a closure of the 3-strand braid B(m1,n1|m2,n2|...) by [59–62]

H
(m1,n1|m2,n2|...)
R =

∑

Q∈R⊗3

DQ

DR
· TrQ

{

Rm1
Q UQRn1

Q U†
QRm2

Q UQRn2
Q U†

Q . . .
}

(1.2)

In the following picture m1 = 0, n1 = −2,m2 = 2, n2 = −1,m3 = 3:

�
�

✪
✪✪

6. Examine properties of the mixing matrices (say, the eigenvalue hypothesis) and the

knot polynomials (say, various factorization properties, differential expansions, recursions

with the change of R etc).

All this sounds simple, but is quite difficult in practice. We comment on steps 1− 4

in section 2 and, more specifically, 3, provide some results of step 5 in sections 4–5 and

describe some checks from step 6 in section 6. We end with a brief conclusion.

Throughout the paper we use the notation

{x} ≡ x− 1

x
, Dn ≡ {Aqn}

{q} , [n] ≡ qn − q−n

q − q−1
(1.3)

Let us also note that we use throughout the text the term “k-strand knot/link” which im-

plies the knot/link whose braid representation with minimal number of strands is k-strand.

2 Comments on the highest weight calculus

One of the crucial decisions that makes calculations doable is to extract the mixing ma-

trices from the highest weights. We already described the basis of this technique in [100],

nowadays step 2 from the above list is provided by a fast working computer program, which

finds highest weight of Y ∈ R1 ⊗ R2, the same program is used at step 4. We now briefly

describe the new aspects, which were not clear enough at the time of [100], other details

can be found in that paper.

We distinguish between elementary and advanced levels of the method: most calcula-

tions for [3, 1] were performed at the former level, but further work on higher representations

can be hard without going to the latter one.

2.1 Elementary level

• Embed all representations in tensor powers [1]⊗M of the fundamental representation

and parameterize elements of the Verma modules by number sequences. For example, for

the fundamental representation M = 1, it has the highest weight (0) and its other elements

are (1), (2), . . .. They are generated from (0) by action of the lowering Chevalley operators

T̂−a : (a− 1) −→ (a). Similarly, for the symmetric representation [r] the highest weight is

a sequence of M = r zeroes (00 . . . 0) and elements of the Verma module are q-symmetric

– 3 –
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linear combinations (10 . . . 0) + q−1(01 . . . 0) + . . . + q1−r(00 . . . 1) and so on. The first

antisymmetric representation [1, 1] has the highest vector (10)− q(01). The action of T̂−a

for M > 1 is defined by comultiplication.

• Elements of the Verma modules are generated from the highest weights by action of the

Chevalley generators T̂−a and their ordered products T̂−A =
∏

i T̂−ai . The sets of ordered

sequences A are not Young diagrams (like they were in the case of Heisenberg or Virasoro

Fock modules), they can seem to be exponentially growing with the level |A| = ∑

i ai, but

this is not true if one takes into account the conditions

T̂−aT̂−b = T̂−bT̂−a, ∀ a, b : |a− b| < 2 (2.1)

and the Serre relations

T̂ 2
−aT̂−a−1 + T̂−a−1T̂

2
−a = (q + q−1) T̂−aT̂−a−1T̂−a, ∀ a (2.2)

guaranteeing the PBW property for all simple algebras with allowed Dynkin diagrams. In

fact, for the slN algebras the sets A are closer to the 3d Young diagrams (plane partitions),

especially, if one does not restrict N : the Verma module for (continuous) gl∞ is naturally

similar to that of the double-affine DIM(gl1) [104]. In practice, imposing (2.1) and (2.2)

is indeed important for R = [3, 1] to make the problem solvable for finite time. One can

alternatively build the Verma modules with the help of all Borel generators, not Chevalley,

but we actually used the latter way.

• Highest weights are the vectors in [1]⊗M annihilated by all rising operators T̂a, they

are parameterized by the Young diagrams of size M .

• The highest weight VR is a linear combination of sequences which contain definite

amounts of zeroes, units, twos etc. These quantities are directly dictated by the Young

diagram: for R = {r1 ≥ r2 ≥ . . .} the number of zeroes is r1, the number of units is r2
and so on. For example, V[5,1,1,1] is a combination of sequences with #(0) = 5, #(1) =

1, #(2) = 1, #(3) = 1. We call collection of these entries the type tR of representation R,

e.g. t[5,1,1,1] = {00000123}. The highest weight VR is a certain linear combination of these

sequences with different orderings.

• The highest weight VY of representation Y ∈ R1 ⊗ R2 can be obtained by acting with

the lowering operators on the tensor product of the highest weights of R1 and R2:

VY ∈ ⊕
(

T̂−AVR1 ⊗ T̂−BVR2

)

, (2.3)

The question is how to choose A and B.

• The first criterion is simple: one can look at the difference of types of Y and R1 and

R2. For example, for [5, 1, 1, 1] ∈ [3, 1] ⊗ [3, 1] one should compare t[5,1,1,1] = {00000123}
with t[3,1] ∪ t[3,1] = {0001} ∪ {0001} = {00000011}. To get the former from the latter, one

should apply T̂−1T̂−2T̂−2T̂−3, which means that together A∪B = {1, 2, 2, 3}. Applying this

criterion, one restricts the set of indices {ai, bi} in the pair (A,B), and (2.1)+(2.2) reduce

the ordering freedom. Still, there are many terms of this type, differing by the positions of

different operators, and they can enter with arbitrary coefficients.
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• To fix the coefficients, we apply the second criterion: the highest weight condition

TaVY = 0 ∀a (2.4)

If there are no multiplicities, i.e. Y appears in R1 ⊗ R2 exactly once, the coefficients are

defined unambiguously modulo a common normalization factor.

• Find the highest weights of representations Q ∈ Y ⊗ R and Q ∈ R ⊗ Y . If Q has

multiplicities, then the highest weights can be chosen in an arbitrary way. This freedom

affects the form of the Racah/mixing matrix, but not the answer for the knot polynomial.

• The mixing matrices are unitary if the highest weights are normalized. Technically

simplest is the norm

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

a1,...,aM

ca1...aM (q) · {a1, . . . , aM}
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=
∑

a1,...,aM

(

ca1...aM (q)
)2

(2.5)

• The issue of multiplicities does not matter for the knot polynomials, becauseR-matrix is

diagonal in representation Y , so the basis in the multi-dimensional space of highest vectors

can be chosen arbitrarily. There is, however, one important exception: forR1 = R2 = R one

should distinguish between Y± belonging to q-symmetric and q-antisymmetric squares of R,

because the corresponding eigenvalues of R have different signs and do not coincide. This

is not a simple task, but there is a simple solution: if one rotates the unitary mixing matrix

UY into symmetric (simply symmetric, with no reference to q-symmetry), it automatically

separates Y+ from Y−.

2.2 Advanced level

The method of the previous subsection provides highest weight vectors VY as linear com-

binations of integer-number sequences from [1]⊗M , which often contain enormously many

terms (not exponentially growing, but still too much). The mixing matrices define linear

dependencies between such combinations and they are difficult to find even on powerful

computers, despite it is just a linear algebra problem.

The following procedure helps to tame these linear combinations by noting that they

are made from certain standard pieces so that one can combine substantially smaller num-

ber pieces rather than the original number sequences:

• Parametrization by the number sequences can be converted into the one by polynomials

of M auxiliary x-variables by the rule (a1, a2, . . . aM ) ←→ xa11 xa22 . . . xaMM .

• The highest weights of totally antisymmetric representations [1r] are totally q-

antisymmetric polynomials in x, i.e. certain quantum deformations of the Vandermonde

determinants ∆(r) = ∆1...r =
∏r

i<j(xi − xj). The point now is that the highest weights of

arbitrary representations R are expressed through the same determinants.

– 5 –
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• The Young diagram R = {r1 ≥ r2 ≥ . . .} has ri as the heights of its columns. The

lengths of its lines are similar parameters of the transposed diagram R′ = {r′1 ≥ r′2 ≥ . . .}.
These can be associated with totally antisymmetric representations [1r

′
i ], and the highest

weight VR(x) in x representation is just a linear combination of
∏

i∆
(r′i):

VR =
∑

σ∈S|R|

Cσ ·∆(r′1)
σ1...σr′1

·∆(r′2)
σr′1+1...σr′1+r′2

· . . . (2.6)

The sum goes over different distributions of |R| variables xi between different Vandermonde

determinants, and the coefficients Cσ are determined by the highest weight condition (that

the sum is annihilated by all raising operators T̂a).

• The Vandermonde decomposition is highly ambiguous, because there are many linear

relations between products of the Vandermonde determinants of a given type R′, but this

ambiguity does not change the highest weight itself. Of course, in the case of non-trivial

multiplicities, there are several linear independent solutions to the highest weight condition.

• These expressions for the highest weights can be straightforwardly quantized (q-

deformed) keeping the highest weights. We do not explain the quantization procedure

in the present text: it is a separate long story of its own interest.

3 Specification to the case of R = [3, 1]

3.1 Decomposition of the square [3, 1]⊗2 and highest weights

The square of [3, 1] ⊗ [3, 1] contains 11 different representations, two of them twice, but

we can distinguish between them, because they belong two symmetric and antisymmet-

ric squares, thus, for our purposes, there are 13 different representations, all with unit

multiplicities (true multiplicities occur for the first time in the square of R = [4, 2]):

[3, 1]⊗2 = [6, 2]+[6, 1, 1]+[5, 3]+2·[5, 2, 1]+[5, 1, 1, 1]+[4, 4]+2·[4, 3, 1]+[4, 2, 2]+[4, 2, 1, 1]+[3, 3, 2]+[3, 3, 1, 1]

(3.1)

In what follows, we mark representations by indices ± depending on their belonging to

symmetric or antisymmetric squares. The corresponding R-matrix eigenvalues are:

λ[6,2] = q14, λ[6,1,1] = −q12, λ[5,3] = −q10, λ[5,2,1]± = ±q7, λ[5,1,1,1] = q4, λ[4,4] = q8,

λ[4,3,1]± = ±q4, λ[4,2,2] = q2, λ[4,2,1,1] = −1, λ[3,3,2] = −1, λ[3,3,1,1] = q−2 (3.2)

They should all be additionally divided by q4κRA|R| = q8A4 to provide the knot polynomials

in the topological framing.

If [3, 1]⊗ [3, 1] is represented by ∆x1,x2 ⊗∆x5,x6 = ∆12∆56, then the highest weights of

the emerging representations are (we take them unreduced to simplify both formulas and

actual calculations: normalization of the intermediate representations Y does not affect

the answers for mixing matrices):

V[6,2]+ = ∆12∆56

V[6,1,1]− = ∆125 −∆126 = ∆256 −∆156

– 6 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
4

V[5,3]− = ∆12

(

∆37∆56 +∆47∆56 +∆38∆56 +∆48∆56

)

V[5,2,1]+ = 4
(

∆127∆56 +∆128∆56 +∆12∆356 +∆12∆456

)

− 3
(

∆123∆56 +∆124∆56 +∆12∆567 +∆12∆568

)

V[5,2,1]− = 4
(

∆127∆56 +∆128∆56 −∆12∆356 −∆12∆456

)

−
(

∆123∆56 +∆124∆56 −∆12∆567 −∆12∆568

)

V[5,1,1,1]+ = 4∆1256 +
(

∆1235 +∆1245 −∆1236 −∆1246

)

−
(

∆1567 +∆1568 −∆2567 −∆2568

)

V[4,4]− = ∆12

(

∆38∆47∆56 +∆37∆48∆56

)

V[4,3,1]+ = ∆12∆356∆47 −∆127∆38∆56 + (3 ↔ 4) + (7 ↔ 8)

V[4,3,1]− = ∆12∆356∆47 +∆127∆38∆56 −∆125∆67∆38 +∆126∆57∆38 −∆125∆36∆47 +∆126∆35∆47

+ (3 ↔ 4) + (7 ↔ 8)

V[4,2,2]+ = −8
(

∆127∆356 +∆127∆456 +∆128∆356 +∆128∆456

)

+
(

∆123∆567 +∆124∆567 +∆123∆568 +∆124∆568

)

+

+ 4
(

∆123∆456 +∆124∆356 +∆127∆568 +∆128∆567

)

V[4,2,1,1] = 2∆1256∆37 −
(

∆1237∆56 +∆12∆3567

)

+ 2
(

∆1257∆38 −∆1267∆38 +∆1356∆47 −∆2356∆47

)

+

+
(

∆1257∆36 −∆1267∆35 +∆1356∆27 −∆2356∆17

)

+ (3 ↔ 4) + (7 ↔ 8)

V[3,3,2] = ∆125∆367∆48 −∆126∆357∆48 − 3 ·∆127∆356∆48 + (3 ↔ 4) + (7 ↔ 8)

V[3,3,1,1] = 3
(

∆1237∆48∆56 +∆12∆3567∆48

)

− 6∆1256∆37∆48−

− 5
(

∆1257∆36∆48 −∆1267∆35∆48 +∆1356∆27∆48 −∆2356∆17∆48

)

+ (3 ↔ 4) + (7 ↔ 8) (3.3)

The symmetrizations in (3 ↔ 4) and (7 ↔ 8) are done independently, i.e. each explicitly

written term is substituted by the four ones. As already mentioned, there are many differ-

ent ways to represent the r.h.s. because there are many linear relations between ∆-products

of a given type and the choice of basis is somewhat arbitrary. Also we do not provide here

the exact definitions of q-deformed ∆’s, thus these formulas are mostly for demonstrative

purposes. They, however, can be directly used for q = 1, i.e. for studying the classical Racah

matrices, which is by itself quite a non-trivial problem for non-symmetric representations.

3.2 Representations in the cube [3, 1]⊗3

The representation content of the cube is now

[3, 1]⊗
(

[3, 1]⊗ [3, 1]
)

=

= [3, 1]⊗
(

[6, 2] + [6, 1, 1] + [5, 3] + 2 · [5, 2, 1] + [5, 1, 1, 1] + [4, 4] + 2 · [4, 3, 1] + [4, 2, 2] + [4, 2, 1, 1]

+ [3, 3, 2] + [3, 3, 1, 1]
)

=

=
(

[9, 3] + [9, 2, 1] + [8, 4] + [8, 3, 1] + [8, 3, 1] + [8, 2, 2] + [8, 2, 1, 1] + [7, 5] + 2 · [7, 4, 1] + 2 · [7, 3, 2]

+ [7, 2, 2, 1] + [7, 3, 1, 1] + [6, 5, 1] + [6, 4, 2] + [6, 4, 1, 1] + [6, 3, 3] + [6, 3, 2, 1]
)

+

– 7 –
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+
(

[9, 2, 1] + [9, 1, 1, 1] + [8, 3, 1] + [8, 2, 2] + 2 · [8, 2, 1, 1] + [8, 1, 1, 1, 1] + [7, 4, 1] + [7, 3, 2]

+ 2 · [7, 3, 1, 1] + [7, 2, 2, 1] + [7, 2, 1, 1, 1] + [6, 4, 2] + [6, 4, 1, 1] + [6, 3, 2, 1] + [6, 3, 1, 1, 1]
)

+

+
(

[8, 4] + [8, 3, 1] + [7, 5] + 2 · [7, 4, 1] + [7, 3, 2] + [7, 3, 1, 1] + [6, 6] + 2 · [6, 5, 1] + 2 · [6, 4, 2] + [6, 4, 1, 1]

+ [6, 3, 3] + +[6, 3, 2, 1] + [5, 5, 2] + [5, 5, 1, 1] + [5, 4, 3] + [5, 4, 2, 1] + [5, 3, 3, 1]
)

+

+ 2 ·
(

[8, 3, 1] + [8, 2, 2] + [8, 2, 1, 1] + [7, 4, 1] + 2 · [7, 3, 2] + 2 · [7, 3, 1, 1] + 2 · [7, 2, 2, 1] + [7, 2, 1, 1, 1]

+ [6, 5, 1] + +2 · [6, 4, 2] + 2 · [6, 4, 1, 1] + [6, 3, 3] + 3 · [6, 3, 2, 1] + [6, 3, 1, 1, 1] + [6, 2, 2, 2] + [6, 2, 2, 1, 1]

+ [5, 5, 2] + [5, 5, 1, 1] + +[5, 4, 3] + 2 · [5, 4, 2, 1] + [5, 4, 1, 1, 1] + [5, 3, 2, 2] + [5, 3, 3, 1] + [5, 3, 2, 1, 1]
)

+

+
(

[8, 2, 1, 1] + [8, 1, 1, 1, 1] + [7, 3, 1, 1] + [7, 2, 2, 1] + 2 · [7, 2, 1, 1, 1] + [7, 1, 1, 1, 1, 1] + [6, 4, 1, 1]

+ [6, 3, 2, 1] + +2 · [6, 3, 1, 1, 1] + [6, 2, 2, 1, 1] + [6, 2, 1, 1, 1, 1] + [5, 4, 2, 1] + [5, 4, 1, 1, 1] + [5, 3, 2, 1, 1]

+ [5, 3, 1, 1, 1, 1]
)

++
(

[7, 5] + [7, 4, 1] + [6, 5, 1] + [6, 4, 2] + [6, 4, 1, 1] + [5, 5, 2] + [5, 4, 3] + [5, 4, 2, 1]

+ [4, 4, 3, 1]
)

++2 ·
(

[7, 4, 1] + [7, 3, 2] + [7, 3, 1, 1] + [6, 5, 1] + 2 · [6, 4, 2] + 2 · [6, 4, 1, 1] + [6, 3, 3]

+ 2 · [6, 3, 2, 1] + [6, 3, 1, 1, 1] + +[5, 5, 2] + [5, 5, 1, 1] + 2 · [5, 4, 3] + 3 · [5, 4, 2, 1] + [5, 4, 1, 1, 1]

+ [5, 3, 2, 2] + 2 · [5, 3, 3, 1] + [5, 3, 2, 1, 1] + +[4, 4, 4] + [4, 4, 2, 2] + 2 · [4, 4, 3, 1] + [4, 4, 2, 1, 1]

+ [4, 3, 3, 2] + [4, 3, 3, 1, 1]
)

+
(

[7, 3, 2] + [7, 2, 2, 1] + [6, 4, 2] + [6, 3, 3] + 2 · [6, 3, 2, 1] + [6, 2, 2, 2]

+ [6, 2, 2, 1, 1] + [5, 5, 2] + [5, 4, 3] + 2 · [5, 4, 2, 1] + +2 · [5, 3, 2, 2] + [5, 3, 3, 1] + [5, 3, 2, 1, 1]

+ [5, 2, 2, 2, 1] + [4, 4, 2, 2] + [4, 4, 3, 1] + [4, 4, 2, 1, 1] + [4, 3, 3, 2] + [4, 3, 2, 2, 1]
)

+
(

[7, 3, 1, 1]

+ [7, 2, 2, 1] + [7, 2, 1, 1, 1] + [6, 4, 1, 1] + 2 · [6, 3, 2, 1] + 2 · [6, 3, 1, 1, 1] + [6, 2, 2, 2] + 2 · [6, 2, 2, 1, 1]
+ [6, 2, 1, 1, 1, 1] + [5, 5, 1, 1] + 2 · [5, 4, 2, 1] + 2 · [5, 4, 1, 1, 1] + [5, 3, 3, 1] + [5, 3, 2, 2] + 3 · [5, 3, 2, 1, 1]
+ [5, 3, 1, 1, 1, 1] + [5, 2, 2, 2, 1] + [5, 2, 2, 1, 1, 1] + [4, 4, 3, 1] + [4, 4, 2, 2] + 2 · [4, 4, 2, 1, 1] + [4, 4, 1, 1, 1, 1]

+ [4, 3, 3, 1, 1] + +[4, 3, 2, 2, 1] + [4, 3, 2, 1, 1, 1]
)

+
(

[6, 4, 2] + [6, 3, 3] + [6, 3, 2, 1] + [5, 4, 3] + [5, 4, 2, 1]

+ 2 · [5, 3, 3, 1] + [5, 3, 2, 2] + [5, 3, 2, 1, 1] + [4, 4, 3, 1] + [4, 4, 2, 2] + 2 · [4, 3, 3, 2] + [4, 3, 3, 1, 1]

+ [4, 3, 2, 2, 1] + [3, 3, 3, 3] + [3, 3, 3, 2, 1]
)

++
(

[6, 4, 1, 1] + [6, 3, 2, 1] + [6, 3, 1, 1, 1] + [5, 4, 2, 1]

+ [5, 4, 1, 1, 1] + [5, 3, 3, 1] + [5, 3, 2, 2] + 2 · [5, 3, 2, 1, 1] + [5, 3, 1, 1, 1, 1] + +[4, 4, 3, 1] + [4, 4, 2, 1, 1]

+ [4, 3, 3, 2] + 2 · [4, 3, 3, 1, 1] + [4, 3, 2, 2, 1] + [4, 3, 2, 1, 1, 1] + [3, 3, 3, 2, 1] + [3, 3, 3, 1, 1, 1]
)

(3.4)

and the highest weights are too numerous to be listed here, see [105].

Each block of lines here is associated with the corresponding intermediate representa-

tion: [6, 2], [6, 1, 1], . . . from (3.1), and most representations appear in several blocks in

the table below. The number of times the representation Q enters (3.4) is given in the first

column of the table, and it is the size of the mixing matrix UQ which we need to calculate.

Clearly, there are quite a few (40) matrices of non-unit size, some are quite big. Only 26 of

them (up to size 6) can be found from the eigenvalue hypothesis of [72, 73] and its recent

generalization in [101], all the rest had to be calculated by the methods of section2 (actually

we did so also for the matrices of sizes 5 and 6 to double check the eigenvalue hypothesis).
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number of

matrix size Q

matrices

1 [9,3], [9,1,1,1], [7,1,1,1,1,1], [6,6], [5,2,2,1,1,1], [4,4,1,1,1,1], [3,3,3,3], [3,3,3,1,1,1] 8

2 [9,2,1], [8,4], [8,1,1,1,1], [6,2,1,1,1,1], [5,2,2,2,1], [4,4,4], [4,3,2,1,1,1], [3,3,3,2,1] 8

3 [7,5], [5,3,1,1,1,1] 2

4 [8,2,2], [6,2,2,2], [4,3,2,2,1] 3

5 [4,4,2,2] 1

6 [8,3,1], [8,2,1,1], [7,2,1,1,1], [6,2,2,1,1], [5,5,1,1], [4,4,2,1,1], [4,3,3,2], [4,3,3,1,1] 8

7 [5,5,2] 1

8 [6,5,1], [6,3,3], [5,4,1,1,1] 3

9 [7,2,2,1], [5,3,2,2], [4,4,3,1] 3

10 [7,4,1], [6,3,1,1,1], [5,4,3] 3

11 [7,3,2] 1

12 [7,3,1,1], [5,3,3,1], [5,3,2,1,1] 3

15 [6,4,2], [6,4,1,1] 2

19 [5,4,2,1] 1

20 [6,3,2,1] 1

(3.5)
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4 Knot polynomials in representation [3, 1]

4.1 2-strand (torus) knots and links

Among the knots and links having 3-strand braid representation there are many compos-

ites consisting of 2-strand torus components. The reduced HOMFLY polynomials for the

composites are just products of those for the constituents and, for the sake of completeness,

we complement (1.2) by its simple 2-strand counterpart:

H
(n)
R =

∑

Y ∈R⊗R

dY
dR

·
(

ǫY q
κY

q4κRA|R|

)n

(4.1)

with Casimir eigenvalue κY =
∑

(i,j)∈Y

(
i− j

)
, quantum dimension

dY = dimq(Y ) = SchurY

(

pk = {Ak}/{qk}
)

=
∏

(i,j)∈Y

{Aqi−j}
{q1+arm(i,j)+leg(i,j)} , (4.2)

and ǫY = ±1 depending on whether Y belongs to the symmetric or antisymmetric square

of R.

4.2 Abundance of 3-strand prime knots in Rolfsen table

As to the prime knots given by 3-strand braids, their place in the entire set is clear from

the following table, where the minimal number of strands is shown for up to 10 crossings.

Explicitly listed are the 3-strand braid representations of knots, and just the number of

strands is given for everything else. The non-arborescent knots are boldfaced.
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knot braid index

31 2

41 (1,−1, 1,−1)

51 2
52 (3, 1,−1, 1)

61 4
62 (3,−1, 1,−1)
63 (2,−1, 1,−2)

71 2
72 4
73 (5, 1,−1, 1)
74 4
75 (4, 1,−1, 2)
76 4
77 4

81 5
82 5,−1, 1,−1
83 5
84 4
85 3,−1, 3,−1
86 4
87 4,−1, 1,−2
88 4
89 3,−1, 1,−3
810 3,−1, 2,−2
811 4
812 5
813 4
814 4
815 4
816 2,−1, 2,−1, 1,−1
817 2,−1, 1,−1, 1,−2
818 (1,−1)4

819 3, 1, 3, 1
820 3,−1,−3,−1
821 3, 1,−2, 2

91 2
92 5
93 7, 1,−1, 1
94 4
95 5
96 6, 1,−1, 2
97 4
98 5
99 5, 1,−1, 3
910 4
911 4
912 5
913 4
914 5
915 5
916 4, 2,−1, 3
917 4
918 4
919 5
920 4
921 5
922 4
923 4
924 4
925 5
926 4
927 4
928 4
929 4
930 4
931 4
932 4
933 4
934 4
935 5
936 4
937 5
938 4
939 5
940 4
941 5
942 4
943 4
944 4
945 4
946 4
947 4
948 4
949 4

101 6
102 7,−1, 1,−1
103 6
104 5
105 6,−1, 1,−2
106 4
107 5
108 4
109 5,−1, 1,−3
1010 5
1011 5
1012 4
1013 6
1014 4
1015 4
1016 5
1017 4,−1, 1,−4
1018 5
1019 4
1020 5
1021 4
1022 4
1023 4
1024 5
1025 4
1026 4
1027 4
1028 5
1029 5
1030 5
1031 5
1032 4
1033 5
1034 5
1035 6
1036 5
1037 5
1038 5
1039 4
1040 4
1041 5
1042 5
1043 5
1044 5
1045 5
1046 5,−1, 3,−1
1047 5,−1, 2,−2
1048 4,−2, 1,−3
1049 4
1050 4
1051 4
1052 4
1053 5
1054 4
1055 5
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1056 4
1057 4
1058 6
1059 5
1060 5
1061 4
1062 4,−1, 3,−2
1063 5
1064 3,−1, 3,−3
1065 4
1066 4
1067 5
1068 5
1069 5
1070 5
1071 5
1072 4
1073 5
1074 5
1075 5
1076 4
1077 4
1078 5
1079 3,−2, 2,−3
1080 4
1081 5
1082 4,−1, 1,−1, 1,−2
1083 4
1084 4
1085 4,−1, 2,−1, 1,−1
1086 4
1087 4
1088 5
1089 5
1090 4
1091 3,−1, 1,−2, 1,−2
1092 4
1093 4
1094 3,−1, 2,−2, 1,−1
1095 4
1096 5
1097 5
1098 4
1099 2,−1, 2,−2, 1,−2
10100 3,−1, 2,−1, 2,−1
10101 5
10102 4
10103 4
10104 3,−2, 1,−1, 1,−2
10105 5
10106 3,−1, 1,−1, 2,−2
10107 5
10108 4
10109 2,−1, 1,−2, 2,−2
10110 5

10111 4
10112 3,−1, 1,−1, 1,−1, 1,−1
10113 4
10114 4
10115 5
10116 2,−1, 2,−1, 1,−1, 1,−1
10117 4
10118 2,−1, 1,−1, 1,−2, 1,−1
10119 4
10120 5
10121 4
10122 4
10123 (1,−1)5

10124 5, 1, 3, 1
10125 5,−1,−3,−1
10126 5, 1,−3, 1
10127 5, 1,−2, 2
10128 4
10129 4
10130 4
10131 4
10132 4
10133 4
10134 4
10135 4
10136 4
10137 5
10138 5
10139 4, 1, 3, 2
10140 4
10141 4,−1,−3,−2
10142 4
10143 4, 1,−3, 2
10144 4
10145 4
10146 4
10147 4
10148 4, 1,−2, 1,−1, 1
10149 4, 1,−1, 1,−1, 2
10150 4
10151 4
10152 3, 2, 2, 3
10153 4
10154 4
10155 3, 1,−2, 1,−2, 1
10156 4
10157 3, 2,−1, 1,−1, 2
10158 4
10159 3, 1,−1, 1,−2, 2
10160 4
10161 3, 1,−1, 1, 2, 2
10162 4
10163 4
10164 4
10165 4
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4.3 Examples

Explicit expressions for the knot polynomials are quite lengthy, we give just three examples

in the two simplest and one more complicated case:

Trefoil knot 31 = (m1 = 1, n1 = 1,m2 = 1, n2 = 1) also known as the torus

knot T [3, 2]: H
31
[3,1] = q12A16 +

(

− q30 − q28 − q26 − q24 − q20 − q18 − q16 − q14
)

A14q−12 +
(

q34 +

2 q30 + 2 q28 + q26 + 3 q24 + 2 q22 + 2 q20 + 4 q18 + q16 + 2 q14 + q12 + q10 + q8 + q6
)

A12q−12 +
(

− q34−q32−

q30−3 q28−q26−3 q24−4 q22−q20−4 q18−2 q16−q14−4 q12−2 q10−q8−2 q6−1
)

A10q−12 +
(

q32 +2 q28 + q26 +

2 q22 + q20 + q18 + 2 q16 + 2 q12 + q10 + q6 + q4 + 1
)

A8q−12

figure-eight knot 41 = (m1 = 1, n1 − 1,m2 = 1, n2 = −1): H
41
[3,1] = q8A8 +

(

− q32 − q28 − q26 + q24 − q22 − q16
)

A6q−18 +
(

q36 − q34 +3 q32 + q30 − 2 q28 +4 q26 − 2 q24 − q22 +5 q20 −

q18 + q16 + 2 q14 − q12 + q8
)

A4q−18 +
(

− 2 q36 − 5 q30 + 5 q28 − q26 − 8 q24 + 7 q22 − 6 q20 − 5 q18 + 9 q16 −

6 q14−2 q12+3 q10−5 q8+ q4− q2
)

A2q−18+
(

q36+2 q34−3 q32+4 q30+2 q28−7 q26+12 q24− q22−8 q20+

15 q18 − 8 q16 − q14 + 12 q12 − 7 q10 + 2 q8 + 4 q6 − 3 q4 + 2 q2 + 1
)

q−18 +−q34 + q32 − 5 q28 + 3 q26 − 2 q24 −

6 q22+9 q20−5 q18−6 q16+7 q14−8 q12−q10+5 q8−5 q6−2q−18A−2+
(

q28−q24+2 q22+q20−q18+5 q16−

q14−2 q12+4 q10−2 q8+ q6+3 q4− q2+1
)

q−18A−4+
(

− q20− q14+ q12− q10− q8− q4
)

q−18A−6+ q−8A−8

Knot 10161 (non-arborescent, thick, but with relatively short H[31]): H
10161
[3,1] =

(

q50 −
q48−q46+3 q44−4 q42+2 q40+5 q38−9 q36+5 q34+4 q32−9 q30+9 q28−2 q26−6 q24+6 q22−2 q20+q16−
q14

)

A40+
(

2 q52−q50+3 q46−4 q44+2 q42+4 q40−10 q38+8 q36+q34−14 q32+16 q30−8 q28−6 q26+16 q24−

11 q22+6 q18−5 q16+2 q14+3 q12−q10−q8+q6+1
)

A38+
(

−1−q62+2 q54+6 q48−9 q46+9 q38−7 q34+8 q42−
q58−5 q22+2 q20+q26+2 q44−3 q50−13 q40+q−2−7 q16−4 q52+3 q36+6 q24+7 q32−q−10+q12−2 q56+3 q8+

3 q30−q2−2 q6+3 q18−5 q28−2 q10+q14
)

A36+
(

7+4 q54+2 q48−2 q46−7 q38+3 q34+2 q60−5 q22−13 q20−
21 q26+3 q−6+q50+2 q40+q66−9 q−2−7 q16−2 q52−8 q4+15 q24−16 q32−2 q−14+q−10+9 q12−7 q8+6 q30+

q−4−3 q2+12 q6+16 q18−4 q−8+3 q28−6 q10−8 q14
)

A34+
(

−8+q−26−q64+q62−q54−4 q48+3 q46−7 q38+

6 q34−8 q42−14 q22+13 q20+q26+q44−7 q−6+4 q50+12 q40+9 q−2−7 q16−q52+5 q36+10 q4+10 q24−10 q32+

4 q−14−5 q−12+4 q−10−15 q12+q56+4 q8+13 q30+2 q−16+2 q2−14 q6−4 q18+4 q−8−6 q28+q−22+2 q−20−
3 q−18+7 q10+14 q14

)

A32+
(

5+q−30+q64−5 q54−2 q48+8 q46−4 q34−q−32+4 q42−3 q60+2 q58−4 q22+

28 q20+25 q26−4 q44+2 q−6−4 q50−q40−q66+3 q−2+5 q16+6 q52+7 q36+3 q4−9 q24+12 q32+7 q−14+q−12−
2 q−10−7 q12+q56+9 q8+3 q−24+2 q30+6 q−4−3 q−16+4 q2+2 q6−15 q18+4 q−8−13 q28−4 q−22+q−20−q−28+

3 q−18+7 q10+17 q14
)

A30+
(

−31−q−30−3 q−26+q54+q48−5 q46+20 q38−2 q34−4 q42+q60+26 q22+22 q20+

30 q26+9 q44−20 q−6+3 q50−6 q40+7 q−2+34 q16−22 q36+9 q4+q−34−55 q24+28 q32−3 q−14−8 q−12+2 q−10−
40 q12+11 q8−q−24−32 q30+8 q−4+15 q2−34 q6−53 q18−q−36+4 q−8+8 q28+2 q−22−3 q−20+2 q−28−q−18+

21 q10+6 q14
)

A28+
(

13−q−30+q−26−3 q54−7 q48+3 q46−11 q38+4 q34+q−32−8 q42−q60−q58+21 q22−
47 q20−25 q26−6 q44+12 q−6+5 q40+8 q−2+17 q16−2 q52−3 q36+8 q4−q−34−q24−16 q32−4 q−14+9 q−12−
10 q−10+24 q12−36 q8−2 q−24−7 q30−23 q−4−q−16−28 q2+18 q6+17 q18+17 q28+2 q−22−2 q−20−q−28+

5 q10−46 q14
)

A26+
(

17+q−30+q−26+2 q54+5 q48+q38−6 q34+10 q42+q60−14 q22−3 q20−3 q26−q44+10 q−6−
q50−5 q40−19 q−2−31 q16+q52+11 q36−22 q4+25 q24+5 q32−2 q−14+3 q−12+6 q−10+25 q12+15 q8+q−24+

8 q30+8 q−4+2 q−16+11 q2+17 q6+30 q18+q−36−10 q−8−5 q28−q−22+2 q−20+q−18−31 q10+15 q14
)

A24
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Clearly, in this form they are not too informative. A list, suitable for further studies is

provided in the form of a txt-file at site [105]. Much more informative are expressions for

the evolution families, of which we provide a couple of simple examples in the next section,

and spectacularly elegant properties of these complicated expressions in the later sections.

5 Knot polynomials from evolution

5.1 (m1, n1|m2, n2)-evolution

Studying the knot polynomials for families of knots is the most natural and effective

approach, see [1, 56, 83, 86, 100, 102] for motivation and examples. The simplest of this

kind is the evolution method of [56] and [83], for the three-strand braids (m1, n1|m2, n2| . . .)
it studies the dependence on parameters mi and ni.

The simplest family (m,n) fully consists of composites of the 2-strand knots, this

means that their reduced polynomials are products of those for the constituents, which in

this case are the 2-strand torus knots/links with the HOMFLY in arbitrary representation

given in section 4.1:

H
(m,n)
R = H

(m)
R ·H(n)

R (5.1)

Since knots/links (m1, n1|m2, 0) = (m1 + m2, n1), the same remains true for three-

parametric families.

The first non-trivial family is (m1, n1|m2, n2). According to the general rules of the

evolution method

H
(m1,n1|m2,n2)
R =

NR∑

a1,a2,a3,a4=1

ha1a2a3a4R λm1
a1

λn1
a2
λm2
a3

λn2
a4

(5.2)

where NR is the number of different representations in the square R ⊗ R (if the same

representation appears in the symmetric and antisymmetric squares, it contributes twice)

and λa are the correspondingR-matrix eigenvalues, λQ = ǫQq
κQ−4κRA−|R| (the dependence

on R is fixed by the topological framing). Thus, within the evolution method, the colored

HOMFLY polynomials for our family are described by the 4-rank tensors hR.

As a simple illustration, in the fundamental representation N[1] = 2 (Q = [2]+ , [1, 1]−)

and

habcd[1] =
{Aq}{A/q}
[2]4{q}2 ·







{Aq3}+2{Aq}
{A/q} for abcd = 1111

1 for abcd = 1112, 1121, 1211, 2111 and 1222, 2122, 2212, 2221

−1 for abcd = 1122, 1221, 2211, 2112

[3] for abcd = 1212, 2121
{A/q3}+2{A/q}

{Aq} for abcd = 2222

(5.3)

look rather elegant.

A lot of this structure survives in the first non-symmetric representation, where N[2] =

3 (Q = [4]+ , [3, 1]− , [2, 2]+) and
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h
abcd
[2] =

{Aq3}{Aq2}{A/q}

{q}4[4]3[3]3[2]2
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[2]4

[4][3]{A/q}
·
(

{Aq6}{Aq7} + {Aq3}
(

2{Aq8} + 5[3]{Aq4} + {A}
))

for abcd = 1111

2
[3]4[4]2

{Aq3}
{Aq2}2 +

[2]4[3]4

[4]

(

2
[4]
[2]

({A} − 2{Aq2}) + [2]{Aq} + 2{Aq6} − {A/q4}
)

for abcd = 2222

{A}

[4]3[3][2]{Aq3}{Aq2}
·
(

{A}2 + [2]{Aq2}
(

2{Aq} + 2{A/q} + {A/q3}
))

for abcd = 3333

[2]4 ·
(

2[2]{Aq3} + {Aq6}
)

for abcd = 1112, 1121, 1211, 2111

[2]4 · [3]
(

− [2]{Aq3} + {A}
)

for abcd = 1122, 1221, 2211, 2112

[2]4 · [3]
(

[2]{Aq7} + {Aq4} + [2]2{A}
)

for abcd = 1212, 2121

[2]4 · [3]2
(

2{Aq2} − 2{A} + {A/q2}
)

for abcd = 1222, 2122, 2212, 2221

{A}
[3]

· [2]3 for abcd = 1113, 1131, 1311, 3111

{A}
[3]

· [4][2]2 for abcd = 1133, 1331, 3311, 3113

{A}
[3]

· [5][4]2[2] for abcd = 1313, 3131

{A}
[3]

· [4]2[2] for abcd = 1333, 3133, 3313, 3331

[3]2[2]2{A}

{Aq3}

(

{Aq4} − 2{Aq2} + 3{A} − {A/q2} + {A/q4}
)

for abcd = 2223, 2232, 2322, 3222

[4][3][2]{A}

{Aq3}

(

{Aq2} − 2{A} − {A/q4}
)

for abcd = 2233, 2332, 3322, 3223

[4]2[3]{A}

{Aq3}

(

2{A} + {A/q2} + {A/q4}
)

for abcd = 2323, 3232

[4]2{A}

{Aq3}

(

2{A} + {A/q2} + {A/q4}
)

for abcd = 2333, 3233, 3323, 3332

− [2]3{A} for abcd = 1123, 1231, 2311, 3112

and 1132, 1321, 3211, 2113

[2]3[5]{A} for abcd = 1213, 2131, 1312, 3121

−[2]2[6]{A} for abcd = 1223, 2231, 2312, 3122

and 3221, 2213, 2132, 1322

[2]3[3]{A} for abcd = 1232, 2321, 3212, 2123

− [2]2[4]{A} for abcd = 1233, 2331, 3312, 3123

and 2133, 1332, 3321, 3213

[2]{A} for abcd = 1323, 3231, 2313, 3132

5.2 The family (m,−1 | 1,−1)

5.2.1 Generalities

What we can provide at the current stage is the answer for the simplest one-parametric

family (m1, n1|m2, n2) = (n,−1 | 1,−1). For the low odd values of n it includes:

(−1,−1 | 1,−1) unknot (1,−1 | 1,−1) 41
(−3,−1 | 1,−1) 52 (3,−1 | 1,−1) 62
(−5,−1 | 1,−1) 73 (5,−1 | 1,−1) 82
(−7,−1 | 1,−1) 93 (7,−1 | 1,−1) 102

. . .

(5.4)

The family (n,−1 | 1,−1) describes the simple subfamily of pretzel knots (n, 2̄, 1) at odd n

(see [95]), while for even n we get quite interesting two-component links. This is next to the

twist knots series in the Rolfsen table. The twist knots (. . . , 92, 72, 52, 31, 41, 61, 81, 101, . . .)

are currently the main source of intuition about colored the knot polynomials [63–66, 83],

and consideration of the next family is both natural and important.

Since the family under consideration belongs to the pretzel knots, the coefficients

hR,Y (A, q) in the general evolution formula,

H
(n,−1 | 1,−1)
R (A, q) =

∑

Y ∈R⊗2

(
ǫY q

κY

q4κRA|R|

)n

hR,Y (A, q) (5.5)
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are directly described in terms of the Racah matrices [95, eq. (45)], [97, eqs. (38)-(39)],

which are known for all (anti)symmetric representations [95, 106], as well as for represen-

tation [2, 1] (see [91, 97]):

H
(n,−1 | 1,−1)
R (A, q) = H

Pr(n,1,2̄)
R (A, q) = d

2
R

∑

X∈R⊗R̄

1√
dX

(

ST
n
S

†
)

∅X

(

STS
†
)

∅X

(

S̄
†
T̄

2
S̄
)

∅X

= d
2
R

∑

Y ∈R⊗2

(
ǫY qκY

q4κRA|R|

)n

·



S∅Y

∑

X∈R⊗R̄

S
†
Y X√
dX

(

STS
†
)

∅X

(

S̄
†
T̄

2
S̄
)

∅X





︸ ︷︷ ︸

hR,Y (A,q)

(5.6)

where S is the Racah matrix that relates the cases of differently placed brackets in the map

of the product: R⊗R⊗ R̄ → R, while S̄ for R⊗ R̄⊗R → R, and T is the diagonal matrix

with entries being eigenvalues ǫY qκY

q4κRA|R| . Note that S∅X =
√
dX/dR and S̄∅X =

√
dX/dR.

Thus, we list below the coefficients hR,Y (A, q) for the (anti)symmetric representations

and representation [2, 1] and calculate for the [3, 1] case from the 3-strand representation

of this paper, since the proper Racah matrices are not known yet.

After summation over X or from the coefficients ha1a2a3a4R of (5.2) after weighted sum-

mation (averaging) over three indices a2,3,4, formula (5.6) can be rewritten in the form of

corrections to the 2-strand formula (4.1), in terms of the A-independent coefficients CR,Y
i (q):

H
(n,−1 | 1,−1)
R (A, q) = (AqµR)2|R| ·

∑

Y ∈R⊗R

dY
dR

·
(

ǫY q
κY

q4κRA|R|

)n

·
︸ ︷︷ ︸

H
(n)
R

·



1 +

|R|
∑

i=1

(−)i CR,Y
i (q) ·

( {q}
A2q2µR

)i



 (5.7)

where µR = r − s for the single hook representations R = [r, 1s−1].

5.2.2 Symmetric representations R = [r]

For symmetric R = [r] the sum in (5.5) goes over the representations [2r − a, a], and one

can use formulas from [95, 106] to write manifestly

h[r],[2r−a,a](A, q) = (−1)a+1
r∑

k=0

d̄kaka ·
( r∑

i=0

akiq
i2+i

)( r∑

j=0

ākjq
2j2−2jA2j

)

(5.8)

where d̄k is the quantum dimension of the representations arising in the decomposition

[r]⊗ [r] = ⊕r
k=0 [2k, kN−2]:

d̄k = D2k−1 ·





k−2∏

j=0

Dj

[j + 2]





2

·D−1 (5.9)
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and

akm = (−1)r+k[2m+ 1]
G(r −m)

G(r + k + 1)
·

(

[k]![m]!
)2

[r − k]! [r −m]!

[r + k + 1]! [r +m+ 1]!
× (5.10)

×
min(r+k+m,2r)

∑

j=max(r+m,r+k)

(−1)j [j + 1]!

[2r − j]!
(

[j − r − k]! [j − r −m]! [r + k +m− j]!
)2 · G(j + 1)

G(j − r −m)

ākm =
(−1)r+k+mD2m−1G(m)2

G(r + k + 1)G(r +m+ 1)
·

(

[k]![m]!
)2

[r − k]! [r −m]!

[r + k + 1]! [r +m+ 1]!

×
min(r+k+m,2r)

∑

j=max(r+m,r+k)

(−1)j [j + 1]!

[2r − j]!
(

[j − r − k]! [j − r −m]! [r + k +m− j]!
)2 · G(j + 1)

G(r + k +m− j)

with

G(n) =
1

[n]!

n−2∏

i=−1

Di =
(A/q; q)n
(q; q)n

(5.11)

where we used the symmetric q-Pochhammer symbol (A; q)n =
∏n−1

j=0 {Aqj}. At A = qN ,

G(n) becomes the q-binomial

(

N + n− 2

n

)

q

.

From (5.8) one can also read off the coefficients Ci(r, a) in representation of h(A, q) in

form (5.7)

h[r],[2r−a,a](A, q) =
(
qr−1A

)2r ·
d[2r−a,a]

d[r]
·
(

1 +
r∑

i=1

(−)iq
i(i+1)

2 [i]! Ci(r, a)

( {q}
(qr−1A)2

)i
)

(5.12)

In particular, one can realize the following properties of these coefficients:

• They have a symmetry i −→ r − i,

Cr−i(r, a|q) = (−)a · q−2ar+a(a−1) · Ci(r, a|q−1) (5.13)

involving also the change q −→ q−1 and rescaling.

• They satisfy simple sum rules in lines:
∑r

i=0 Ci(r, r) =
∏r

j=1(1− q−2j)
∑r

i=0(−)iCi(r, r) =
∏r

j=1(1 + q−2j)=q−
r(r−1)

2
∏r

j=1
[2j]
[j]

∑r
i=0 Ci(r, r − 1) = 2

∏r
j=2(1− q−2j)

∑r
i=0(−)iCi(r, r − 1) = 0

∑r
i=0 Ci(r, r − 2) = (2 + [2]2)

∏r
j=3(1− q−2j)

∑r
i=0(−)iCi(r, r − 2) = −q−

(r−2)(r+3)
2

∏r
j=2

[2j]
[j]

∑r
i=0 Ci(r, r − 3) = 2(1 + [3]2)

∏r
j=4(1−q−2j)

∑r
i=0(−)iCi(r, r − 3) = 0

. . . . . .

(5.14)

or, in general,

r∑

i=0

Ci(r, r − b) = q−
(r−b)(r+b+1)

2 {q}r−b [r]!

[b]!
·

b∑

i=0

(
[b]!

[j]![b− j]!

)2

r∑

i=0

(−)iCi(r, r − b) = (−)
b
2 q−

(r−b)(r+b+1)
2

[2r]!! [b]!

[r]! ([b]!!)2
·
{

0 for odd b

1 for even b
(5.15)

– 17 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
4

5.2.3 Totally antisymmetric representations R = [1r]

As usual (rank-level duality [56, 58, 63]), for antisymmetric representations

H
(n,−1 | 1,−1)
[1r] (A, q) = H

(n,−1 | 1,−1)
[r] (A, q−1) (5.16)

5.2.4 Representation R = [2, 1]

In this case, the evolution coefficients can be calculated both from formula (5.6) and by

the evolution method from several known knot polynomials [83]. Let us use the second

possibility here, since only this approach can be used in the [3, 1] case.

For [2, 1]⊗2 the eigenvalues of R-matrix are

λ[4,2] =
q5

A3
, λ[4,1,1] = − q3

A3
, λ[3,3] = − q3

A3
, λ[3,2,1]± = ± 1

A3
,

λ[3,1,1,1] =
1

q3A3
, λ[2,2,2] =

1

q3A3
, λ[2,2,1,1] = − 1

q5A3

and therefore the m-evolution is defined as follows:

H
(n,−1 | 1,−1)
[2,1]

= (5.17)

=
h[4,2]q

5n+
(

h[4,1,1]+h[3,3]

)

(−q3)n+h[3,2,1]+
+h[3,2,1]−

(−)n+
(

h[3,1,1,1]+h[2,2,2]

)

(q−3)n+h[2,2,1,1](−q−5)n

A3n

Note that two pairs of representations have the same eigenvalues, thus their contributions

are not separated. The two representations [3, 2, 1]± contribute equivalently to knot poly-

nomials: for odd n only the difference h[3,2,1]+ − h[3,2,1]− is seen, but link polynomials with

even n separate these two contributions. The other two sums are inseparable within the

(n,−1 | 1,−1) series, we, however, suggest a plausible decomposition, which can be checked

in the analysis of richer evolution patterns. In fact, after proposing these decompositions

we derived them using (5.6) and manifest formulas for the Racah matrices from [97] (notice

an additional sign factors that have to be added in this case in accordance with [97, s.7]

and [102, s.2.7]). Unfortunately, at the moment, these Racah matrices are not known for

[3, 1] case yet and, hence, such a method is unavailable in that case. Finally, the values of

the coefficients are:

h[4,2] =
d[4,2]

d[2,1]
·
(

A
6−q · (q4+q

2+2+q
−4){q}A4+q

4(q4+q
2+3+q

−2+q
−4){q}2A2−q

5[3]{q}3
)

(5.18)

h[4,1,1] + h[3,3] =
d[4,1,1]

d[2,1]
·
(

A
6 − q · (q4 + 1 + q

−4){q}A4 − q
2(q4 + 1 + q

−4){q}2A2 + q
3[3]{q}3

)

+

+
d[3,3]

d[2,1]
·
(

A
6 − q · (q4 + q

2 + 2− q
−6){q}A4 + q

2(q6 + q
4 + 2q2 − q

−4){q}2A2 + q
3[3]{q}3

)

1

2

(

h[3,2,1]+ + h[3,2,1]−

)

=
d[3,2,1]

d[2,1]

(

A
6 − [3][4]

[2]
{q}2A4 − [3]{q}2A2

)

1

2

(

h[3,2,1]+ − h[3,2,1]−

)

= −d[3,2,1]

d[2,1]
· [3]{q}3

(

A
2(q2 + q

−2) + 1
)

h[3,1,1,1] + h[2,2,2] =
d[3,1,1,1]

d[2,1]
·
(

A
6 + q

−1(q4 + 1 + q
−4){q}A4 − q

−2(q4 + 1 + q
−4){q}2A2 − q

−3[3]{q}3
)

+

+
d[2,2,2]

d[2,1]
·
(

A
6 + q

−1(q−4 + q
−2 + 2− q

6){q}A4 + q
−2(q−6 + q

−4 + 2q−2 − q
4){q}2A2 − q

−3[3]{q}3
)

h[2,2,1,1]=
d[2,2,1,1]

d[2,1]
·
(

A
6+q

−1(q4+2+q
−2+q

−4){q}A4+q
−4(q4+q

2+3 + q
−2+q

−4){q}2A2+q
−5[3]{q}3

)
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The diagram [2, 1] is symmetric, this explains the simple form of the coefficients and their

symmetries. Clearly, for the transposed diagrams one has h[2,2,1,1](q) = h[4,2](−q−1),

h[3,1,1,1](q) = h[4,1,1](−q−1), h[2,2,2](q) = h[3,3](−q−1) and h[3,2,1]±(q) = h[3,2,1]±(−q−1).

Note that the sum and difference of h[321]± have different parities of powers in q: this is

because the corresponding eigenvalue differs in this power from all the others and there is

a need to compensate for the difference between odd and even m for knots and links.

5.2.5 Representation R = [3, 1]

For [3, 1]⊗2 theR-matrix eigenvalues were already listed in (3.2). In the topological framing,

they are:

λ[6,2] =
q14

q8A4
, λ[6,1,1] = − q12

q8A4
, λ[5,3] = − q10

q8A4
, λ[4,4] =

q8

q8A4
, λ[5,2,1]± = ± q7

q8A4
,

λ[5,1,1,1] =
q4

q8A4
, λ[4,3,1]± = ± q4

q8A4
, λ[4,2,2] =

q2

q8A4
, λ[4,2,1,1] = − 1

q8A4
, λ[3,3,2] = − 1

q8A4
,

λ[3,3,1,1] =
q−2

q8A4
,

and

H
(n,−1 | 1,−1)
[3,1] = (A4q8)−n ·

{

h[6,2]q
14n + h[6,1,1](−q12)n + h[5,3](−q10)n + h[44]q

8n (5.19)

+h[5,2,1]+q
7n + h[5,2,1]−(−q7)n ++

(

h[5,1,1,1] + h[4,3,1]+

)

q4n

+h[4,3,1]−(−q4)n + h[4,2,2]q
2n +

(

h[4,2,1,1] + h[3,3,2]

)

· (−1)n + h[3,3,1,1]q
−2n

}

Our evaluation of [3, 1]-colored HOMFLY, together with additional arguments already used

in section 5.2.4, allows one to find/conjecture all these coefficients h(·,−1 | 1,−1):

h[6,2] =
d[6,2]

d[3,1]

{

(qA)8 − {q}(qA)6(q3 + q
−3)(q4 + q

2 + 2 + q
−2)

+[2]{q}2(qA)4(q11 + 3q7 + 2q5 + 2q3 + 3q + 2q−1 + q
−5)−

−[2]2{q}3(qA)2(q11 + q
9 + q

7 + 3q5 + q) + q
8[4][2]{q}4

}

h[6,1,1] =
d[6,1,1]

d[3,1]

{

(qA)8 − [4]{q}(qA)6(q4 − q
2 + 1 + q

−2)

−[2]{q}2(qA)4(q9 − q
7 − q

3 − q − q
−1 − q

−5) +

+[2]2{q}3(qA)2(q9 + q
7 + 2q3 − q + q

−1) − q
6[4][2]{q}4

}

h[5,3] =
d[5,3]

d[3,1]

{

(qA)8 − [2]{q}(qA)6(q6 + 2q2 + q
−4 − q

−6)

+[2]{q}2(qA)4(q11 + 2q7 + 2q5 + q + q
−1 − 2q−3 − q

−9)−
−[2]2{q}3(qA)2(q9 − q

7 + q
5 − 2q + q

−1 − q
−3) − q

4[4][2]{q}4
}

h[4,4] =
d[4,4]

d[3,1]

{

(qA)8 − [4]{q}(qA)6(q4 + 1− q
−4) + [4]{q}2(qA)4(q9 + q

5 + q
3 − q − q

−1 − q
−5 + q

−9) +

+[2][4]{q}3(qA)2(q5 + q
−1 − q

−3) + [2][4]{q}4q2
}

1

2

(

h[5,2,1]+ + h[5,2,1]−

)

=
d[5,2,1]

d[3,1]

{

(qA)8 −
(

q
7 + q

3 + q + q
−3 − q

−7
)

{q}(qA)6

+
(

q
6 − 2q−2 − 2q−4 − q

−6 − 2q−8 − q
−10

)

{q}2(qA)4 +
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+q
−1[2][4]{q}3(qA)2

}

1

2

(

h[5,2,1]+ − h[5,2,1]−

)

= −d[5,2,1]

d[3,1]
· [2][4]{q}3

·
{

q(q3 + q
−3)(qA)4 + (qA)2

(

− q
4 + q

2 + 1− q
−2 + q

−4
)

− q{q}
}

h[5,1,1,1] + h[4,3,1]+

?
=

d[5,1,1,1]

d[3,1]

{

(qA)8 + q
−1[2][4]{q}3(qA)6 − [2]2[4]{q}2(qA)4(q − q

−1 + q
−5)

+q
−2[2]2[4]{q}5(qA)2 + q

−2[2][4]{q}4
}

+

+
d[4,3,1]

d[3,1]

{

(qA)8 − [4]{q}2(qA)6(q3 + q + q
−3) + [4]{q}2(qA)4(q5 − q

3 − 1− q
−5 + q

−9)

+[2][4]{q}4(qA)2(1 + q
−2 + q

−6) + q
−2[4][2]{q}4

}

h[4,3,1]− =
d[4,3,1]

d[3,1]

{

(qA)8 − [4]{q}2(qA)6(q3 + q
−1 + q

−3)

−[4]{q}2(qA)4(q5 − q
3 + q + 2q−1 − 2q−3 + q

−5 − q
−9)−

−[4]{q}3(qA)2(q2 + 1− q
−2 + 2q−4 − q

−8)− [2][4]{q}4q−2
}

h[4,2,2] =
d[4,2,2]

d[3,1]

{

(qA)8 − (q3 + q
−3){q}(qA)6(q4 − q

−2 − q
−4)

+[2]{q}2(qA)4(q5 − q
3 − 2q−3 + q

−5 − q
−7 + q

−11) +

+[2]{q}3(qA)2(q2 + 1− q
−2 − 3q−6 − q

−8 − q
−10 − q

−12) + q
−4[4][2]{q}4

}

h[4,2,1,1] + h[3,3,2]
?
=

d[4,2,1,1]

d[3,1]

{

(qA)8 +
q6 − q4 + 1

q4
[4]{q}(qA)6 − (q6 − q4 + 1){q}

q7
[4][2]{q}2(qA)4

−q8 + q6 − q4 + q2 + 1

q10
[4]{q}3(qA)2 − q

−6[4][2]{q}4
}

+

+
d[3,3,2]

d[3,1]

{

(qA)8 − q8 − q6 + 1

q4
[4]{q}(qA)6

−q8 − q6 − 1

q8
[4][2]{q}2(qA)4 − q10 + q8 − q6 − q2 − 1

q12
[4]{q}3(qA)2 − q

−6[4][2]{q}4
}

h[3,3,1,1] =
d[3,1,1,1]

d[3,1]

{

(qA)8

+[2]{q}(qA)6(q4 − q
2 + 1 + q

−2 + q
−6) + [2]{q}2(qA)4(q + q

−3 + 2q−5 + q
−7 + q

−9 + q
−11) +

+[2]{q}3(qA)2 · q−2(1 + q
−2 + q

−6)(1 + q
−4 + q

−6) + q
−8[4][2]{q}4

}

(5.20)

where the questions marks means conjectural decompositions of the sums. As a corollary

of these formulas

1

2

(

h[4,3,1]+ + h[4,3,1]−

)
?
=

d[4,3,1]

d[3,1]

{

(qA)8 − [4]{q}2(qA)6(q3 + q
−1 + q

−3)− [4]{q}2(qA)4

×(q + q
−1 − q

−3 + q
−5 − q

−9)− q
−4[4]{q}3(qA)2

}

1

2

(

h[4,3,1]+ − h[4,3,1]−

)
?
=

d[4,3,1]

d[3,1]
· [4]{q}3 ·

{

q(q3 + q
−3)(qA)4 + (qA)2

×(q2 + 1− q
−2 + q

−4 − q
−8) + q

−2[2]{q}
}

(5.21)
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6 Generic properties of H[3,1]

6.1 Special and Alexander polynomials at q = 1 or A = 1

According to [56, 57, 63, 67–70, 82],

HR(A) = H
|R|
1 (A) at q = 1 ∀ representations R (6.1)

and

HR(q) = H1

(

q|R|
)

at A = 1 ∀ singlehook representations R = [r, 1s−1] (6.2)

This holds for all our 3-strand H[3,1].

6.2 Factorization at roots of unity, q8 = 1

According to [99],

H[3,1] = H[4] at q8 = 1 (6.3)

This is true in all our examples and this provides a new serious support to the factorization

conjectures of [99].

6.3 Symmetric Jones polynomials

It is well-known that the representation R = [3, 1] reduces to R = [2] for the Lie algebra

sl2. Therefore, if we put A = q2, the HOMFLY polynomial H[3,1] reduces to the Jones

polynomial in the first symmetric representation J[2]:

H[3,1] = J[2] at A = q2. (6.4)

Since the symmetric Jones polynomials are known for many knots, in particular, for all

knots from the Rolfsen table, one can use them to check our results.

6.4 Universality and adjoint representation at A = q4

By the general rule (rank-level duality [56, 58, 63]), for the transposition of Young diagram

HRtr(A, q) = HR(A,−q−1) (6.5)

(an additional inversion A → −A−1 provides a mirror knot instead of transposing the

representation).

Thus, together with H[3,1] we simultaneously know

H[2,1,1](A, q) = H[3,1](A,−q−1) (6.6)

For the particular case of sl4 algebra, [2, 1, 1] is the adjoint representation and the adjoint

HOMFLY polynomial satisfies [101, 107] the universality hypothesis [108], unifying

them with the adjoint polynomials for other groups, including the much simpler adjoint

Kauffman polynomials (they are simpler because the adjoint representation of soN is just

[1, 1] for all N , while it is an N -dependent [2, qN−2] for slN ). This allows one to compare

our H[3,1] at A = q4 with the universal formulas from [101]. They match in all examples

that we looked at.
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6.5 Loop expansion and Vassiliev invariants

The HOMFLY polynomials have an interesting well-defined expansion when ~ → 1, A =

exp
(
N~

2

)
, q = exp

(
~

2

)
. This expansion is known as loop expansion, and the coefficients

are the celebrated Vassiliev invariants [109–111]. In the Vassiliev approach, the HOMFLY

polynomial can be written as [114]

HK
R (A = e

N~

2 |q = e
~

2 ) =

∞∑

i=0

~
i

Ni∑

j=1

r
(R)
i,j vKi,j (6.7)

where r
(R)
i,j are the polynomials of degree |i| in N corresponding to the trivalent dia-

grams [112–114], and Ni is the dimension of the vector space formed by the trivalent

diagrams. Here vKi,j are finite type knot invariants introduced by V.Vassiliev. Thus, what

stands in (6.7) is the double series in powers of ~ and N , such that the degree of ~ exceeds

or equals to the degree of N . The polynomials r
(R)
i,j are known up to degree 6 in arbitrary

representation R, whereas the Vassiliev invariants up to order 6 are known for all knots

with number of crossings less than 15. Thus, it provides a lot of explicit checks. To be

more concrete, we consider one example of the knot 10161 from section 4.3.

As an illustration, we look at the first terms of the expansion (6.7) in the case of

R = [3, 1] and for the knot 10161 mentioned in section 4.3. Taking the knot-independent

trivalent diagrams from [89] and the lowest Vassiliev invariants for 10161 from [115],

r2,1 = −N2 −N + 4 v101612,1 = 28

r3,1 =
1

2
N (N2 +N − 4) v101613,1 = −144

r4,1 =
(
−N2 −N + 4

)2
v101614,1 = 392

r4,2 = −1

4
N2

(
N2 + N − 4

)
v101614,2 =

2882

3

r4,3 =
1

4
N4 +

3

4
N3 +

11

2
N2 + 4N − 32 v101614,3 =

430

3

(6.8)

we obtain the first terms of the ~-expansion (6.7):

H10161
[3,1] = 1− 28

(
N2 +N − 4

)
~
2 − 72N

(
N2 +N − 4

)
~
3

+

(
5056

3
− 995N2 − 7688N

3
+

1954N3

3
+

563N4

3

)

~
4 +O

(
~
5
)

Comparing with the coefficients of the ~ expansion of (6.8), we find a complete agreement.

At the present moment, we know the trivalent diagrams explicitly only up to degree

6 (they are available at [89] up to degree 4). The corresponding Vassiliev invariants are

fully determined by the HOMFLY polynomials in representations R = [1] and R = [2].

To extract new Vassiliev invariants from more interesting higher symmetric, [2, 1]- and the

newly-calculated [3, 1]-colored HOMFLY, more complicated diagrams are needed.
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6.6 Genus expansion and Hurwitz τ -function

Another interesting expansion of the HOMFLY polynomials is the large N , or genus expan-

sion, which relates knot theory with the Hurwitz enumeration problem. In this expansion,

one expands the knot polynomials in powers of ~ (q = e~) similarly to the previous sub-

section, but now A, i.e. ~ · N rather that N is fixed. It turns out that the Ooguri-Vafa

partition functions of the colored HOMFLY polynomials [47] is equal to certain generating

functions of the Hurwitz numbers [78–80, 89], hence, we also call this expansion Hurwitz,

and the corresponding generalization of the KP/Toda τ -functions (a general solution to

the AMM/EO topological recursion [116–119]) is called Hurwitz τ -function.

The genus expansion for colored HOMFLY is also interesting, because it separates the

representation- and knot-dependencies:

HK
R (q, A) =

(

σK
[1]

)|R|
· exp

(
∑

∆

~
|∆|+l(∆)−2 SK

∆

(
A2, ~2

)
ϕR(∆)

)

(6.9)

(in the leading order, this reproduces (6.1), also known as exponential growth prop-

erty [82]). The sum here goes over all Young diagrams ∆, as usual, |∆| and l(∆) denote

respectively the number of boxes and of lines in the diagram, ϕR(∆) are the symmetric

group characters: they do not depend on the knot and are common for all Hurwitz τ -

functions, [78–80]. Dependent on the knot are the general special polynomials in the free

energy expansion

SK
∆(A

2, ~2) =
∑

g≥0

~
2g

(

σK
[1]

)2g · σK
∆(g) (6.10)

where σK
∆(g) are knot-dependent polynomials in A, presumably related by the AMM/EO

topological recursion for a knot-dependent spectral curve.

For us of importance is that, since ϕR(∆)’s are non-diagonal, one and the same special

polynomial σK
∆(n) affects the HOMFLY polynomial in different representations. Since the

lowest polynomials were already extracted from study of the symmetric representations, we

can now use them to test our new results for R = [3, 1]. Indeed, since ϕ[3]([2, 1]) = 3 6= 0 in

log
HK

R (q,A)
(

σK
[1](0)

)|R|
=

(
~

σ[1]

)

·σK
[2](1)ϕR([2])+

(
~

σ[1]

)2

·
(

σ
K
[1](2)ϕR([1])+σ

K
[1,1](2)ϕR([1, 1])+σ

K
[3](2)ϕR([3])

)

+

+

(
~

σ[1]

)3

·
(

σ
K
[2](3)ϕR([2]) + σ

K
[2,1](3)ϕR([2, 1]) + σ

K
[4](3)ϕR([4])

)

+O(~4) (6.11)

one can compute the first special polynomials σK
∆(g) with the help of only symmetric

representations R = [1], [2], [3], [4] using [72, 73].

Let us briefly consider our sample example of knot 10161. In this case,

σ
10161
[1] (0) = −A

6(A4 +A
2 − 3)

σ
10161
[2] (1) = 2A12 (A− 1) (A+ 1)

(

11A6 + 8A4 + 6A2 − 39
)

σ
10161
[1] (2) = 4A24

(

A
4 +A

2 − 3
)3(

A
4 +A

2 − 9
)

σ
10161
[1,1] (2) = −2A24

(

8A16 − 185A14 + 686A12 − 608A10 + 142A8 − 1072A6 + 824A4 + 1419A2 − 1242
)
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σ
10161
[3] (2) = −2A24 (A− 1)2 (A+ 1)2

(

30A12 − 319A10 + 890A8 − 731A6 + 618A4 − 355A2 − 348
)

σ
10161
[2] (3) =

4A36

3

(

A− 1
)(

A+ 1
)(

42A22 − 1975A20 + 11805A18 − 24834A16 + 31718A14

−32535A12 + 10767A10 − 2928A8 + 23940A6 + 37971A4 − 109701A2 + 56160
)

σ
10161
[2,1] (3) =

8A36

3

(

A− 1
)(

A+ 1
)(

279A22 − 5185A20 + 32544A18 − 100305A16 + 182258A14

−198924A12 + 121074A10 − 45282A8 + 23637A6 + 8658A4 − 40437A2 + 22113
)

σ
10161
[4] (3) =

4A36

3

(

A− 1
)(

A+ 1
)(

660A22 − 10753A20 + 68289A18 − 230418A16 + 475094A14

−627231A12 + 545397A10 − 331230A8 + 147924A6 − 33405A4 − 16317A2 + 12420
)

. . . (6.12)

Now one can find the values of ϕR(∆) in the table in [120, 121], and, with the help of

formula (6.11), compare the results with the corresponding genus expansion of H10161
[3,1] .

They coincide, which provides yet another nontrivial check of our results for H[3,1].

To understand if the newly-calculated [3, 1]-colored HOMFLY provides new special

polynomials σ∆, as one could naturally expect, a better understanding of non-linear rela-

tions between different ϕR(∆) is needed.

6.7 Differential expansion

The naive genus (or loop) expansion in powers of ~ does not respect the polynomial prop-

erty of HOMFLY. This is cured in a far less trivial “differential expansion” [63, 83, 84, 98],

which also reflects the hidden “differential structure” [48] lying in the base of the Kho-

vanov approach [28–46] to knot polynomials, very different from the R-matrix one ex-

ploited in the present paper. In variance with naive genus expansion, the differential

expansion contains only a finite number of terms up to the r + s power of Z’s, where

Z
(k)
I|J = {AqI+k}{A/qJ−k} = ZI+k|J−k ∼ ~

2. The expansion in the variable h defined

as q = e~ = (1 + h), A = eN~ = (1 + h)N can also be made finite for each natural N .

What breaks the polynomiality in h is the analytical continuation from integer values of N .

While reasonably understood for the symmetric representations, the differential expansion

remains a complete mystery beyond them, simply because almost nothing has been known

so far about the generic colored HOMFLY polynomial. Our new results for R = [3, 1] allow

one to make a new small step as compared to [74, 97, 100], where only the information

about R = [2, 1] could be used.

From [74] we know the Z-linear term of the differential expansion for the hook dia-

grams:

H[r,1s−1] = 1 +

(

Z2r−1|2s−1 +
r−1∑

i=1

Z2r−s−2i|s +
s−1∑

j=1

Zr|2s−r−2j

)

·G[1](A, q) +O(Z2) (6.13)

with the knot-dependent polynomial G1(A, q), which is one and the same for all represen-

tations, including the fundamental one with r = s = 1. Therefore, for representation [3, 1]
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with r = 3 and s = 2 one expects:

H[3,1] = 1 +
(

{Aq5}{A/q3}+ {Aq3}{Aq}+ {Aq2}{A/q2}+ {A}{A/q2}
︸ ︷︷ ︸

Z5|3+Z
(2)
1|1

+Z
(−1)
3|1

+Z−1
1|1

... [4]

·G[1](A, q)
)

+{Aq3} ·O(~3) (6.14)

We write down explicitly that the O(Z2) terms in this case are always proportional to

{Aq3}, because the transposed H[2,1,1] should coincide with H[1] = 1 + G1{Aq}{A/q} for

sl3 group, thus, the difference of reduced polynomials H[3,1] − H[1] = 0 at A = q−3. For

many knots (those with the defect zero, see [98]) they are also proportional to {A}, but
this is not the case, say, for the defect-two 819.

There is no yet commonly accepted choice of the next terms of the differential expansion

for non-symmetric representations. We now suggest an improved (as compared to [100])

differential expansion for [2, 1]:

H[2,1] = 1 +
(

{Aq3}{A/q3}+ {Aq2}{A}+ {A}{A/q2}
)

·G[1](A, q) + (6.15)

+[3]{Aq2}{A/q2}
{Aq3} ·G[2](A, q) + {A/q3} ·G[2](A, q

−1)

[2]

+{Aq2}{A/q2}
(

{Aq3}{A/q3} ·G[3](A, 1) + {q}2 ·G[2,1](A, q)
)

In this case, G[21] is of the order ~
2 like G[3] (we remind that the symmetric representation

coefficients are always G[r] ∼ ~
r−1, but they are explicitly divisible by factors {Aqi} only

for small defects, see [98]). We remind that G[21] drops out of the differential expansion for

the special polynomial (i.e. at q = 1). Also

G[2](A, q
−1) = G[2](A, q

−1) = G[1,1](A, q) and G[2,1](A, q
−1) = G[2,1](A, q) (6.16)

what makes the expression explicitly symmetric under the transposition of Young diagram.

Searching for a counterpart of (6.15) for R = [31], we use the three properties:

H[3,1] −H[2] ∼ {A/q2} =⇒ H[3,1]
A=q2

= H[2]

H[3,1] −H[1] ∼ {Aq3} =⇒ H[2,1,1]
A=q3

= H[1]

H[3,1] −H[2] ∼ {Aq3} =⇒ H[2,1,1]
A=q3

= H[1,1] (6.17)

which implies that

H[3,1] = 1 +
(

{Aq5}{A/q3}+ {Aq3}{Aq}+ {Aq2}{A/q2}+ {A}{A/q2}
)

·G[1](A, q) +

+{Aq3}{Aq2}{A/q} ·G2(A, q) + {Aq3}{A/q2} ·
(

something
)

(6.18)

“Something” should complement this expression so that it contains six terms of the order

of G2, four terms of the order of G3 and one term of the order of G4, with possible

corrections by G21 and G31. Eq. (6.18) is true for all our examples, but this only checks
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their consistency with representation theory. Less trivial (but more speculative) conjectures

about the non-symmetric differential expansion will be presented elsewhere.

Since we devoted a piece of this paper to implications of the evolution method, it

deserves mentioning that description of the knot polynomials in terms of the differential

expansion parameters GR is badly consistent with the evolution considered in section 5.2.

This is clear already from the fact that unity, the first term in the differential expansion is

not an eigenvalue of the R-matrix in the R⊗2 channel (it is in the channel R⊗ R̄, and this

explains a nice consistency of the evolution and differential expansion for the peculiar family

of twist knots [63, 83, 92]). In general the interplay between the two hidden structures, the

evolution and differential expansion coefficients leads to a very interesting and important

puzzle in knot theory.

7 Conclusion

In this paper we report the results of tedious calculation of the Racah (mixing) UQ matrices

for [3, 1]⊗3 −→ Q and their application to study of the 3-strand knots and links. These

results confirm previous conjectures and slightly extend our understanding of complicated

issues like evolution method [56, 83] and differential expansion [48, 84]. This advance was

made possible by application of the highest weight method, which we developed in [100].

The size of this paper does not reflect the actual complexity and amount of calculations,

we just commented briefly on various problems encountered and solved on the way, and

provided simple illustrations for the results at different steps of calculations. For the full

set of newly-derived mixing matrices (additionally converted to the block form) see [105]:

they are too big for a paper, but are nicely handled by the eigenvalue hypothesis [72, 73].

Also at [105] there are the [3, 1]-colored HOMFLY polynomials for the 3-strand knots up

to 10 crossings and the evolution coefficients for the entire infinite next-to-twist family

(n,−1 | 1, 1) = {(n+ 3)2, (2− n)3}. In this paper, we also updated the list of properties in

section 6, including the improved differential expansion for asymmetric representations.

This list of 5 boldfaced items describes the main results reported in the present paper.

The next steps in study could be:

• Finding the inclusive Racah matrices R⊗3 −→ all for higher representations R. This

can look like impossible dream, but there is certain evidence that general formulas can

exist. Still, this requires an essential progress in the highest weight method, we devote a

separate publication to these perspectives.

• Finding the Racah matrices SR for R ⊗ R̄ ⊗ R̄ −→ R and S̄R for R ⊗ R ⊗ R̄ −→ R.

These are much simpler, because only one outgoing representation Q = R is requested.

They are more complicated for the highest weight method, because R̄ depends on N (of

slN ) and so do the highest weights. As explained in [75–77, 97, 102], the knowledge

of these matrices allows one to handle all arborescent (double fat) knots [9, 122, 123],

and merging that knowledge with the results of the present paper extends this to the

fingered 3-strand knots [1, 100, 102] which include at least the entire Rolfsen table up to 10

intersections and, after applying the power family method from these papers, many more.
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The Racah matrices S and S̄ for the symmetric representations are well known [93–95, 106],

for R = [2, 1] they were found in [91].

• In fact, a simple trick allows one to extract S from comparison of two different

expressions, 3-strand and Pretzel ones for a peculiar two-parametric evolution family

(m,−1|n,−1) = Pr(m,n, 2̄). The second matrix S̄ can then be built from S by equa-

tion (63) from [97]. The result, requiring a generalization of our analysis in section5, is

presented in [124].

• A serious shortcut to the Racah matrix calculus can be provided by the eigenvalue

hypothesis of [72, 73], see also [101], expressing these matrices through the much simpler

eigenvalues of quantum R-matrices (for which there is a general formula through the

eigenvalues of the Casimir/cut-and-join-operator [56, 120, 121]). Even if the very hypothe-

sis is true, it suffers from two uncertainties: the sign choice (well defined are the squares of

matrix elements) and the problem of degenerate R-matrix eigenvalues. One of the results

of our studies in this paper is a confirmation of a natural assumption: that this degeneracy

just implies a decomposition of mixing matrices into simpler (smaller-size) blocks, which

are provided by the same eigenvalue hypothesis. Further work in this direction looks

quite promising, and, perhaps, can provide general formulas for the Racah matrices much

sooner than any alternative approach.
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